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Abstract: Long unpunctuated texts containing complex linguistic sentences are a stumbling block
to processing any low-resource languages. Thus, approaches that attempt to segment lengthy texts
with no proper punctuation into simple candidate sentences are a vitally important preprocessing
task in many hard-to-solve NLP applications. To this end, we propose a preprocessing solution
for segmenting unpunctuated Arabic texts into potentially independent clauses. This solution
consists of: (1) a punctuation detection model built on top of a multilingual BERT-based model,
and (2) some generic linguistic rules for validating the resulting segmentation. Furthermore, we
optimize the strategy of applying these linguistic rules using our suggested greedy-like algorithm.
We call the proposed solution PDTS (standing for Punctuation Detector for Text Segmentation).
Concerning the evaluation, we showcase how PDTS can be effectively employed as a text tokenizer
for unpunctuated documents (i.e., mimicking the transcribed audio-to-text documents). Experimental
findings across two evaluation protocols (involving an ablation study and a human-based judgment)
demonstrate that PDTS is practically effective in both performance quality and computational cost.
In particular, PDTS can reach an average F-Measure score of approximately 75%, indicating a
minimum improvement of roughly 13% (i.e., compared to the performance of the state-of-the-art
competitor models).

Keywords: text splitting; text tokenization; transfer learning; mask-fill prediction; NLP linguistic
rules; missing punctuations; cross-lingual BERT model; masked language modeling

1. Introduction

Segmenting unpunctuated textual documents into simple candidate sentences is a
vitally important preprocessing task for the success of many natural language processing
(NLP) applications. However, this ambiguous segmentation task is intuitively challenging
when attempting to tokenize long text that consists of compound sentences but with no
proper punctuation (e.g., no obvious clue how to apply sentence-based tokenization when
full-stop punctuation is missing).

With hard-to-solve NLP applications that require text understanding (such as auto-
matic summarization [1], simplification [2–4], and question-answering [5]), text segmen-
tation is considered a key preprocessing step for achieving a high-precision performance.
Take the example of summarizing a large transcribed audio-to-text document, targeting
individuals with low-literacy skills [6] (e.g., non-native readers or children). Here, such an
audio document requires complicated or, probably, manual preprocessing to perform the
needed tokenization precisely.

Lengthy unpunctuated texts are a stumbling block to processing any low-resource
languages. The Arabic language is no exception [7] due to its high linguistic complexity
and shortage in having parsing and tokenizing resources, including complete lexicons.
Specifically, some of the linguistic hurdles related to text splitting have resulted due to the
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ambiguity in identifying (1) word-stemming/lemmatization (as the Arabic language has a
significantly rich derivational morphology) and (2) POS-tagging precisely (i.e., in the case
the diacritics are missing, which is usually the case) [1].

Approaches to tackling text segmentation problems (i.e., under the low-resource set-
ting) can be distinctly classified into either traditional or transfer-based paradigms. In this
context, the traditional paradigm would include approaches that focus on, e.g., constructing
hand-crafted rules for text segmentation or extensively designing/training a specific mono-
lingual model. Transfer-based approaches, however, strive to take advantage of languages
with rich resources (such as English) in two ways: transferring resources (i.e., cross-lingual
transfer learning) or adopting a pre-trained multilingual model for transferring the needed
NLP capabilities [8]. Concerning the Arabic language, different text segmentation methods
have been put forward, focusing only on the traditional techniques [1,9–15], and to our
knowledge, no transfer-based method has been proposed yet.

In this paper, we demonstrate insights into the capabilities of adopting a multilingual
model for Arabic text segmentation. We consider Multilingual BERT (mBERT https://
github.com/google-research/bert/blob/master/multilingual.md, accessed on 14 October
2022), an extended language understanding model from the original monolingual BERT [16]
(Bidirectional Encoder Representations from Transformers [17]). In more detail, mBERT is
pre-trained on a tremendous amount of Wikipedia text from the top 104 languages using
a Masked-Language Modeling (MLM) objective [18]. It principally focuses on improving
different cross-lingual NLP tasks, including the Mask-fill task (i.e., allows predicting masked
words according to the context of a given input text without reconstructing the entire text).
Its stacked Transformer architecture consists of 12-layer, 768-hidden, and 12-heads, which
gives 110 M parameters in total. Although mBERT allows sharing vocabulary and weights
parameters across these 104 languages, the training samples are designed based on the
monolingual method, and no cross-lingual objectives are considered. However, mBERT
generalizes well from the monolingual training data and surprisingly gives state-of-the-art
results on cross-lingual benchmarks [18].

Although few works have attempted to train an Arabic-specific BERT model exten-
sively (such as ArBERT [19], AraBERT [20], and CAMeLBERT [21]), we hypothesize and
reveal that fine-tuning a state-of-the-art pre-trained mBERT for the Mask-fill task could
give highly competitive results, compared with the monolingual Arabic models, in a more
straightforward manner. In a nutshell, the major contributions presented in this paper are
stated as follows:

• We propose a punctuation detection approach for splitting a complex Arabic text
into a set of simple candidate sentences; each sentence is potentially representing
an independent clause. This approach begins with employing an MLM method
to detect the missing punctuation in a long text, and then it validates them using
straightforward linguistic rules. The originality lies in employing a transfer-based
paradigm, for the first time, to address the Arabic text segmentation problem.

• Since our approach can generate a large set of potentially missed punctuations that are
prone to prediction errors, we tackle this by proposing a greedy strategy for selecting
the best subset punctuations (i.e., subject to the unknown size of the optimal subset).

• We showcase the efficient performance and practicality of our proposal through
several experimental evaluations conducted on two public Arabic corpora. The
evaluation protocols include standard quantitative metrics with an ablation study
and a qualitative human-based judgment. Further, we report on an implementa-
tion and make the code publicly available for replicating our experiments (https:
//github.com/AMahfodh/ArSummarizer, accessed on 14 October 2022).

The rest of this paper unfolds as follows. First, Section 2 strives to examine gaps
in the literature regarding Arabic text segmentation approaches, focusing on their main
drawbacks. Next, Section 3 introduces our proposed punctuation detection method for
text splitting, and Section 4 presents the subsequent analysis and results. Lastly, Section 5
concludes the paper and discusses ways we intend to extend on this work in the future.

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/AMahfodh/ArSummarizer
https://github.com/AMahfodh/ArSummarizer
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2. Related Literature

Text segmentation is rooted as a preprocessing phase in many needed solutions
that focuses on philosophical understandings of natural languages. As a consequence,
one can review various text segmentation approaches with different objectives within
NLP-literary circles (see the pre-2018 approaches surveyed in [22] and, more recently,
in [23]). Furthermore, existing approaches endeavor to split a given text into subtexts while
tackling different levels of language complexities. These levels range from identifying
morphological and lexical cohesion boundaries within word-to-small text segments [1,4,13]
(e.g., words, phrases, and simple discourse (e.g., Elementary Discourse Units (EDUs))
sentences) to higher-level syntactic and thematic structures [24–26] (such as paragraphs,
passages, chapters, or textual documents containing many chapters). In terms of the
underlying technique used, existing text segmentation approaches also vary according to
their chronological development, which can be classified into three genres:

• The early discourse segmentation approaches (some approaches date back to the
previous decade), which often depend on extracting linguistic annotation features,
including treebank structure and POS tags [4,9,10,24];

• The statistical and machine learning methods, which often manipulate text similarity
metrics and distances; and recently [12–14,26];

• The natural language understanding (NLU) approaches depending on artificial neural
networks, particularly those adopted transformer-based models (e.g., [27]).

In this paper, we follow the third genre for generating subtexts that potentially repre-
sent independent clauses by surrounding them with proper punctuation predicted.

To date, tremendous NLP work has made a productive contribution to only a few Indo-
European languages (mainly, the English language, which is an extremely high-resource).
In contrast, work on low-resource languages, such as Arabic, is still rudimentary. Unfortu-
nately, a handful of related text segmentation approaches are suggested for Arabic [1,9–15].
Therefore, in the remaining of this section, we limit the discussion by reviewing these
related approaches only.

Word-level segmentation solutions are presented wider in the literature (e.g., [10,13,14])
than the other higher and linguistically more complex levels (such as phrases/sentences and
(in)dependent clauses, e.g., [1,9,11,12,15]). In the former segmentation, ref. [10] suggested
an improved clitic segmentation model (at a character-based level) targeting formal and
informal dialectal Egyptian text. In particular, the authors extend the labeled features of
an existing linear-chain Markov model and then retrain it on some annotated Egyptian
corpus. Nonetheless, the proposed extension does not seem to generalize well to other
Arabic dialects. In a similar line with [10], ref. [13] proposed (Farasa, which means insight
in Arabic) a more robust character-level segmentation model (implemented using a linear
SVM classifier) for anticipating segmentations of a word. However, it depends heavily
on extracted lexicons and morphological features. As yet, Farasa is one of the state-of-
the-art word-level segmentation methods, which outperforms other well-known similar
approaches, including Madamira [28] and Stanford-Arabic (Stanford-Arabic NLP https:
//nlp.stanford.edu/projects/arabic.shtml, accessed on 14 October 2022). A follow-up
attempt to improve existing word-level segmentation approaches, depending on SVM
and Bi-directional LSTM machine learning models, is suggested by [14]. Their models are
trained on authors-created corpora containing naturally occurring text from social media.
Although [14] reports an improved performance compared to [13], ref. [13] seems much
lighter and more straightforward to adopt.

Concerning sentence-level segmentation solutions that we consider in this paper, we
come across quite a few works: [1,9,11,12,15]. Here, [9] attempted to segment texts into
phrases/simple sentences based on just one specific linking word (i.e., wāw, /w/, AND
in English), which is a coordinating conjunction that has six rhetorical rules associated
with it. The authors trained and tested a simple SVM classifier on a small-scale dataset
for predicting the rhetorical type that allows text splitting. Nonetheless, many other
conjunction types are not covered, which critically raises its shortcomings and hinders its

https://nlp.stanford.edu/projects/arabic.shtml
https://nlp.stanford.edu/projects/arabic.shtml
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usability. Another attempt based on an SVM classifier is suggested by [12]. The authors,
here, proposed (USeg) for segmenting turn (a complete transcribe speech-to-text unit)
into utterances (a segment of a turn), trained on authors-defined Egyptian Arabic corpus.
This USeg relies on extracting morphological features extracted from their annotated data.
However, the considered morphological features (e.g., n-gram contextual word, conjunction
POS, and previously predicted tags) could be expensive to implement and may not scale
well with a medium-to-large textual input.

Furthermore, ref. [15], proposed (DJAZI) a text segmentation tool for Arabic, which
attempts to split texts into contextual sentences, as well as morphological words. The
authors implemented a simple brute-force procedure for identifying split boundaries
based on punctuation marks (assumed to be available for sentence splitting) and a lexical
knowledge database for word matching and isolating. Regardless, their considered problem
seems far from being addressed by the suggested DJAZI, and more importantly, their
procedure is not capable of handling any unpunctuated texts that we can process in our
PDTS. In addition, refs. [1,11] proposed a handy text chunking process based on a pre-
defined list of conjunctions as text split delimiters for randomly splitting texts into words
and small text segments. Nonetheless, their error rate for determining segment boundaries
is expected to be high as no precise linguistic rules are considered in their approaches.

In Table 1, we briefly outline all the post-2011 text segmentation studies we encoun-
tered, carried out for Arabic and English. Based on the literature inspected, the apparent
limitations/drawbacks of the mentioned approaches, particularly for Arabic, are:

• The high computational effort consumed in generating linguistic annotation features;
• The uncertainty in implementing large discourse segmentation, especially with un-

punctuated texts;
• The inability to effectively handle multiple textual dialects that often raises out-of-

vocabulary (OOV) problems. This inability mainly results from training specific
models on a limited available annotated corpus.

Irrespective of these drawbacks, our approach is ahead of all works (i.e., summarized
in Table 1) in handling large unpunctuated text effectively without text-annotating or going
through ambiguous linguistic analysis (e.g., extracting TreeBank structures). Moreover, to
the best of our knowledge, this paper introduces a novel work concerning the use of the
MLM method depending on a leading state-of-the-art multilingual model (mBERT) for
clause-based text segmentation.

Table 1. A brief summary of text segmentation studies carried out for Arabic and English languages.

Language Reference Segmentation Level
Method Dialect- Language Transfer

A B C D Specific Understanding Learning

Arabic

Rhetorical SVM
classifier [9]

Phrase to a simple
sentence X 7

Linear-chain Markov
model [10] Word X X X 7

Chunking
procedure [11]

Random between
word to small text

segments
X 7

USeg
(utterances) [12]

Phrase to a simple
sentence X X X 7
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Table 1. Cont.

Language Reference Segmentation Level
Method Dialect- Language Transfer

A B C D Specific Understanding Learning

Arabic

Rhetorical SVM
classifier [9]

Phrase to a simple
sentence X 7

SVM and
Bi-directional

LSTM [14]
Word X X 7

DJAZI (Chunking
procedure) [15]

Random between
word to small text

segments
X 7

Regular rule-based
expressions [1]

Simple sentence
(independent clause) X X 7

Our PDTS Simple sentence
(in)dependent clause X X Multilingual X

SegBot [29,30] Sentence and
document X 7

DisSim [24] Discourse sentence X 7

English

Three BERT-style
models [27]

Discourse sentence
and document X Monolingual

Context-preserving
approach [4] Simple sentence X 7

TopicDiff-LDA
Latent Dirichlet
Allocation [26]

Document X 7

A: Chunking procedure based on pre-defined split-delimiters. B: Document/discourse segmentation approaches
depending on extracting linguistic annotation features. C: Statistical/classical machine learning methods. D: Deep
learning/transformer-based models

3. PDTS: Punctuation Detector for Text Segmentation

Encouraged by the MLM method that particularly enables learning complex linguis-
tic patterns of a natural language in a self-supervised objective, we base our proposed
punctuation detector for text splitting (PDTS) on top of a robust pre-trained MLM. Given
a very large complex text X (typically a document composed of sentences but without
full-stop punctuation) that consists of a sequence of words X =

{
x1, x2, · · · , x|n|

}
, PDTS

attempts to segment X into a set of simple sentences Y ← PDTS(X). Each simple sen-
tence Yi represents an independent-clause segmentation without rephrasing. Intuitively,
the problem that needs to be tackled lies in detecting the missing punctuations (mainly,
full-stop, comma, semicolon, colon, and exclamation/question marks).

Considering Figure 1, PDTS begins with detecting the missing punctuations using
mBERT (described in A, B, and C), then it applies some linguistic rules for validating them
(described in D and E). For a more detailed description of the elemental BERT architecture,
including its input and output embedding representations (mentioned in B and C), we
recommend that researchers refer to the original works [16,17]. In the following sections,
we detail the underlying steps of our PDTS (expressed outrightly in Algorithms 1 and 2)
and use Figure 1 for illustration.
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Algorithm 1: The proposed procedure for predicting punctuations in an unpunc-
tuated document using an MLM model.

Function : PunTokens← predPunctuations(X, α, θ)
input : X an unpunctuated document, consisting of a sequence of words.

α a positive integer parameter for fragmenting X into smaller
pieces, such that (1 ≤ α ≤ 512).
θ a probability-threshold for temporary accepting the predicted
punctuations.

output : PunTokens a set of punctuations predicted by an MLM model (e.g., mBERT) to
be added into X.

1 / / Declarer a set of user-defined punctuations in Pun[], for example:
2 Pun[]← { colon , question−mark , exclamation−mark , f ull − stop , comma }
3 PunTokens← ∅

4 iBeginIndex = 0
5 wx ← wordTokenizer(X)
6 if α > |X| then α← |X|
7 if α > 512 then α← 512 / / This is limited by some BERT-based models.

8 for i← 0 to |wx| do

9 if α/2 ≤ i ≤ (|wx| − α) then iBeginIndex + = 1

10 Fragmenti ← subStringFromTokens (iBeginIndex, α)
11 Fragmenti ← addMaskTokenAtIndex (Fragmenti, i)
12 Pred← MLM.FillMask (Fragmenti) / / In PDTS, we use mBERT

13 if pred.Vocab ∈ Pun and θ ≤ pred.Score then
14 PunTokens.append(i, pred.Vocab, pred.Score)

15 return X and PunTokens

Text Fragment and
Token Embeddings

𝑋𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡 1

...E[CLS] E
ةالابتسام

E
كلمة

E
طيبة

E
بغير

E
E[MASK]حروف E[SEP]E

تغني
E
من

E
انها

E
ةالابتسام E[SEP]

𝑋𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑛

...E[CLS] E
ةالابتسام

E
كلمة

E
طيبة

E
بغير

E
E[MASK]حروف E[SEP]E

تغني
E
من

E
انها

E
ةالابتسام E[SEP]

...E[CLS] E
ةالابتسام

E
كلمة

E
طيبة

E
بغير

E
حروف E[MASK]E[SEP]E

تغني
E
من

E
انها

E
ةالابتسام E[SEP]

... ... ...

mBERT Multilingual Masked Language Model

Contextual 
Embeddings

Test the score of the predicted punctuations

𝑜𝑢𝑡1

𝑜𝑢𝑡2

𝑜𝑢𝑡𝑛...

رطيبةكلمةالابتسامة رحروفبغي   
رمنتفقررولاريأخذرمنتغن  رتستغرقلاريعط  رذكراهارلكنبصراللمحمنأكي  تبق 

رمنيوجدرلارطويلر  
ريملكهارلارمنيوجدرولارعنهاريستغن  للمتعبوراحةدقاءالأصبي  رالمحبةميثاقعلىالتوقيعه 

رللبائسالأملوشعاع ىلارللمحزونعزاءأجمله  ضولارتستجدىولارتشي  لابتسامةاانهارتسلبولارتقي 

Input X
(text without punctuations)

رطيبةكلمةالابتسامة ر.حروفبغي   
رمنتفقررولاريأخذ،منتغن  رتستغرقلار.يعط  رذكراهارلكنص،البلمحمنأكي  تبق 

رمنيوجدرلار.طويل  
ر.يملكهالارمنيوجدرولارعنها،يستغن  وراحةدقاء،الأصبي  رالمحبةميثاقعلىالتوقيعه 

ر.للبائسالأملوشعاعللمتعب، ىلار.للمحزونعزاءأجمله  ضولارتستجدىولارتشي  .الابتسامةانهار.بتسلولارتقي 

Output Y
(text with punctuations)

Downstream layer 
for Fill-Mask task

A greedy strategy for the best subset (punctuations) selectionLinguistic Rules

A

B

C

E

D

Figure 1. Overview of our proposed PDTS that detects missing punctuations in a complex Arabic
text X with the purpose of chunking X into concatenated simple sentences Y. The translation of the
mentioned Arabic text X is Smile is the right word without letters. It enriches the one who receives but does
not diminish the one who gives. It does not last more than a jiffy to behold, but its memory remains long. No
one can do without it, and no one does not own it. It is the signing of the charter of respect between friends, a
relief from the tiredness, and a ray of hope for the miserable. It is the most beautiful consolation for the dejected.
It is neither purchasable, borrowable, nor lootable. It’s the smile.
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Algorithm 2: The proposed procedure for validating the predicted punctuations
in Algorithm 1 and selecting the best ones to be added in X. These added
punctuations can be then used as split delimiters for segmenting X.

Function :Y ← PDTS(X, PunTokens)
input : X and PunTokens are the return from Algorithm 1
output :Y the text in X with the best detected punctuations added

(i.e., Punselected ∈ PunTokens).

1 Y ← X
2 Punselected[]← ∅

3 repeat

4 maxPred← getPredWithMaxScore (PunTokens)

5 / / Recursively, we extract the text segments before (SB) and after (SA) the predicted
maxPred.Vocab. These surrounding segments are determined based on the added
punctuations to Y at each iteration

6 SB, SA← getSurroundingTextSegments (Y, maxPred)

7 SBv ← [R1(SB) and (R2(SB) or R3(SB))]
8 SAv ← [(R1(SA) and (R2(SA) or R3(SA))) or R4(SA, maxPred.Vocab)]
9 / / Rules (R1-R4) are presented in Table 2.

10 if SBv == SAv == true then
11 Y ← addPunctuation (Y, maxPred.index, maxPred.Vocab)
12 Punselected.append (maxPred)

13 PunTokens.remove (maxPred)

14 until PunTokens == ∅

15 / / Return Y that contains X plus the added punctuations.
16 / / Here, we can straightforwardly tokenize Y based on Punselected as split delimiters (i.e.,

Y.split(Punselected)).
17 return Y

3.1. mBERT: Multilingual Masked Language Model

Instead of extensively training a large language understanding model on a specific
non-English language (such as ArBERT [19], AraBERT [20], and CAMeLBERT [21] for the
Arabic language), a more straightforward alternative is to fine-tune a comprehensive pre-
trained multi-lingual model for the needed task that could give highly competitive results.
We discuss the performance of some of these models (cf. Section 4), but for designing our
approach, we follow the latter (i.e., the base of our approach is mBERT, which is fine-tuned
for the Mask-fill task) as it gives better performance for understanding the Arabic sentences
in general.

The input and output representations of mBERT (like any other pre-defined encoder-
based models) are grounded to token embeddings at different layers (i.e., word token
embedding, segment embedding, transformer positional embedding, and contextual token
embedding for the output). We consider all these embeddings in our approach except
segment embedding (i.e., recognized by the specific BERT token [SEP]) as our input text
is a single large complex sentence (i.e., assumed to have no full-stop punctuation). For
fine-tuning mBERT on downstream Mask-fill task, we consider the output softmax dense
layer and inspect only the contextual token-to-vocab vectors that are mapped with the
input token [MASK], see (B and C) of Figure 1. In other words, to predict a masked vocab
from contextual-mBERT vectors (i.e., at the output embeddings layers), we implement
Equation (1):

p(v|X; θ) = So f tmax(WTc) (1)

where W ∈ R|X|×|V| is the weight matrix of the last staked FFNN layer (i.e., used to project
the contextual vector (c) of the specified masked token into mBERT vocabulary (V)), v is
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the predicted masked vocab (i.e., has the highest softmax probability score), and θ is a
decision-threshold parameter.

3.2. Arabic Text Fragments and Masked Token-to-Vocab Prediction

For tokenizing X into a set of independent clauses, PDTS requires invoking mBERT
|X| times to detect whether the space between every two sequential tokens should include
proper punctuation. Let X = 〈t1, t2, ti, · · · , tn〉 be a sequence of n tokens, i is the index of
token-sequence, we generate M = {tm

1 , tm
2 , tm

i , · · · , tm
n } by invoking mBERT n times, such

that tm
i represents the temporarily predicted masked vocab between (ti and ti+1) when

i < n or after ti when i = n. To clarify more, we generate M by (1) inserting [MASK]
into X at i index (denoted as X′i ← insertMASK(X, i), ∀i ∈ X) and (2) we collect the set of
mBERT’s outputs, expressed in Equation (2):

tm
1 ← mBERT(〈t1, [MASK], t2, ti, · · · , tn〉)

tm
i ← mBERT(〈t1, t2, ti, [MASK], · · · , tn〉)

tm
n ← mBERT(〈t1, t2, ti, · · · , tn, [MASK]〉)

(2)

Intuitively, invoking mBERT many times can affect the runtime efficiency of PDTS,
particularly when applying it for a large-scale X that might contain a long sequence of
sentences (e.g., a document containing |X| > 5k). We address scaling PDTS by reducing
the size of the input sequence from |X| down to α without significantly sacrificing the
detection accuracy of tm

i (α is a positive integer pre-defined parameter). In Algorithm 1, we
describe the steps of invoking mBERT with a fixed size of input sequence α (i.e., supposed
to be smaller than |X|), see lines 6–11. To use PDTS as expressed in Equation (3), the user
must first declare a set Pun containing their desired punctuations to be added in X (see
line 2 of Algorithm 1) besides a decision-threshold θ for temporary-accepting/ignoring the
predicted punctuation:

p(pum
i |tm

i ; pun, θ) = PDTS(X′i) (3)

where pum
i represents the accepted mBERT’s output, pun and θ are model parameters used

to filter out tm
i (i.e., obtained by Equation (2)). In lines 12–13 of Algorithm 1, we implement

Equation (3) to filter out the predicted masked tokens (tm
i ), and temporarily store pum

i in
PunTokens to be validated next by our linguistic rules.

3.3. A Greedy Strategy for Selecting the Best Subset Punctuations

Up to line 15 of Algorithm 1, the discussion concerning the predicted masked to-
kens has been relatively abstract. Now we introduce our greedy strategy for select-
ing the best subset punctuations from PunTokens (implemented in Algorithm 2 and
presented in Figure 1D), such that Punbest ∈ PunTokens. This strategy aims to it-
eratively validate/accept pum

i according to Equation (3) besides our defined linguis-
tic rules, starting in each iteration with pum

i that has the highest accuracy score (i.e.,
pum

i ← getPredWithMaxScore(PunTokens)). Given two text segments SB and SA (i.e.,
text segment before and after the punctuation pum

i , see lines 6–10 of Algorithm 2), extracted
at a particular iteration, our linguistic rules validate if SB and/or SA contains simple
sentences to be separated.

More generally, regarding the Arabic language grammar, simple Arabic sentences are
linguistically categorized into either: nominal-sentence (noun+noun) or verbal-sentence
(typically, a verb followed by a noun); each is formulated with a minimum of two words.
Depending on the parts-of-speech of the first word, the type of sentence can be deter-
mined [31]. In this context, and without delving into the complex subcategories of Arabic
sentences, we apply four straightforward rules to validate if SB and/or SA include at least
one simple sentence. Let s be the text segment that we want to validate, we define our
linguistic rules in Table 2, such that R1 checks the minimum number of words allowed in a
simple sentence; R2 and R3 check whether s is a nominal or a verbal sentence; and R4 is a
special case rule applicable when full-stop punctuation precedes s.
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Table 2. Our generic linguistic rules (represented as IF-Then block), used in PDTS to validate the
detected punctuations.

Rule Description

Rule1: if |s| ≥ 2 then true : false otherwise. It asserts that segment s consists
of at least two-word tokens.

Rule2 : if nltk (NLTK: Natural Language Toolkit—
-www.nltk.org/, accessed on 14 October 2022).
pos_tag(s).numOf(NOUN) ≥ 2 then true : false oth-
erwise.

It asserts that segment s consists
of at least two part-of-speech
nouns.

Rule3 : if nltk.pos_tag(s).numOf(NOUN) ≥ 1 and It asserts that segment s consists
nltk.pos_tag(s).numOf(VERB) ≥ 1 then

true : false otherwise.
of at least one part-of-speech
noun as well as one verb.

Rule4 : if tm
i ==nltk.pos(Full_Stop) and s ∈ ∅ then

true : false otherwise.
It asserts that segment s repre-
sents the end of a sentence/text.

As explained, the analysis of the collected punctuations in PunTokens (i.e., obtained
in the first step by mBERT) performs in a greedy-like strategy, which iteratively selects
a pum

i with the highest prediction score. In principle, this subset selection problem is
known to be an NP-hard problem [32] (i.e., it cannot be solved in an exact polynomial time).
However, a greedy-like strategy often provides a well-approximated solution to the target
optimization problem and is practically implemented in many applications, including, e.g.,
sparse learning and feature data mining selection. In our problem, the size of the best
subset selection |Punbest| is unknown, and the search for selection terminates once no pum

i
is satisfying the rules presented in Table 2. Formally, our PDTS attempts to optimize the
subsect selected punctuations (i.e., Punbest) as expressed in Equation (4):

maximize
Punbest

f (Punselected)

subject to Punselected ∈ PunTokens.
(4)

where f represents our objective function (described in Algorithm 2 lines 3–14) that aims to
maximize the number of splits in x by adding the best punctuations from PunTokens.

4. Experiments and Discussion

The ultimate overarching purpose behind our proposed PDTS is to tokenize long-
given texts into simple candidate sentences, employing two procedures: (1) identifying
punctuation-split delimiters and (2) validating them using our suggested linguistic rules.
Thus, to explore the overall effectiveness of PDTS, we conducted several experiments to
evaluate these procedures, elaborated as follows. First, we measured the overall perfor-
mance of PDTS concerning different input sizes (|X|) along with different settings for α.
Here, we shed light on the comparison with the closely related state-of-the-art pre-trained
base models. Second, we studied the humanistic point of view in eliciting and evaluating
the performance of PDTS (i.e., by focusing on both aspects: linguistic sentence rules and
punctuation prediction depending on the MLM method). For reproducibility purposes, we
make the code and files of our experiments publicly available under.

4.1. Experiment Setup
4.1.1. Experiment Protocol and Metrics

In the context of this paper, a proper protocol to experiment is to generate a represen-
tative test set from any available well-written corpus (i.e., contains grammatically correct
punctuations). The thought is to treat the original texts, typically written by expert writers,
as gold-standard references, while removing all punctuation from them to form tests’ inputs
(i.e., mimic the transcribed audio-to-text documents). Then, comparing the tests’ outputs

www.nltk.org/
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(i.e., produced by PDTS) with the original gold references to estimate the generalization
error. We have implemented this protocol (illustrated in Figure 2) and used four standard
evaluation metrics (accuracy, precision, recall, and f-measure) to measure the performance
quality of PDTS, expressed as follows:

accuracy =
(TP + TN)

(TP + FP + FN + TN)
,

precision =
TP

(TP + FP)
,

recall =
TP

(TP + FN)
,

f-measure = 2 · precision · recall
precision + recall

where TP (true-positive) represents correct predicted cases of punctuations; FP (false-
positive) represents wrong predicted cases due to a mismatch of predicted punctuations
with the already existing ones in the gold-standard references; TN (true-negative) represents
wrong predicted punctuations due to their absence in the gold-standard references; and
FN (false-negative) represents missed cases to predict the existing punctuations in the
gold-standard reference.

Source 
Texts

Preprocessing PDTS 
Model

Performance 
Score

• Accuracy
• Precision
• Recall
• F-Measure

Text with punc_ 
tuations added

• Removing punctuations 

Figure 2. Description of our quantitative evaluation protocol.

4.1.2. Arabic Corpora

We choose to experiment on a combination of two public Arabic corpora. They
provide a variety of short-to-long texts written in different styles and formats (i.e., in
terms of the presence of diacritics and punctuation). The first corpus is ABMC (https://
metatext.io/datasets/arabic-in-business-and-management-corpora-abmc, accessed on 14
October 2022) (Arabic in Business and Management Corpora), comprising 1200 documents
(400 statements written by chairpersons and chief executive managers, besides another
800 news articles on the economic and stock market). The second corpus (https://github.
com/AliOsm/arabic-text-diacritization, accessed on 14 October 2022) comprises 55,000
formal and diacritized statements. Overall, we test our PDTS on 16,281 text examples (out
of 56,200) after excluding documents that contain less than 50 words. We have categorized
these 16,281 text examples into short, mid (i.e., number of words between 168 and 512), and
long based on their length, see their statistical descriptions in Table 3.

Table 3. Statistical descriptions of text examples used for evaluation.

Document Size Documents Sentences Words

Small 5427 6639 328,872
Medium 5427 6807 491,693

Large 5427 13,404 1,057,131
Total 16,281 26,850 1,877,696

4.1.3. Baselines

We compared the pre-trained mBERT model (i.e., used as a base model for constructing
PDTS) against the state-of-the-art Arabic monolingual, as well as multilingual MLM models.
ArBERT [19], AraBERT [20], and CAMeLBERT [21] are Arabic-specific transformer-based

https://metatext.io/datasets/arabic-in-business-and-management-corpora-abmc
https://metatext.io/datasets/arabic-in-business-and-management-corpora-abmc
https://github.com/AliOsm/arabic-text-diacritization
https://github.com/AliOsm/arabic-text-diacritization
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language models, trained with the same architecture as BERTBase configuration but on
different datasets. ArBERT is trained on 61 GB of MSA text, while AraBERT is trained
on around 23 GB of Arabic text (containing 70 M sentences and 3B words). CAMeLBERT
is trained (The model is trained for 1 m epochs which took approximately 4.5 days.) on
the largest Arabic dataset, containing different dialectal corpora with a size of about 107
GB. XLM-RoBERTa [33], however, is a state-of-the-art multilingual version of RoBERTa,
which is pre-trained on 2.5 TB of filtered CommonCrawl data that consists of 100 languages,
including Arabic.

4.1.4. Implementation Details

All base models (i.e., mBERT and other pre-trained baselines) are publicly available
at the Hugging Face (https://huggingface.co/, accessed on 14 October 2022), under the
model names: ‘bert-base-multilingual-uncased’, ‘UBC-NLP/ARBERT’, ‘aubmindlab/bert-base-
arabertv02’, ‘bert-base-arabic-camelbert-mix’, ‘xlm-roberta-large’. We have used the PyTorch
(https://pytorch.org, accessed on 14 October 2022) framework to construct them and
utilized Python-based NLP toolkits for text preprocessing, including NLTK (https://www.
nltk.org/, accessed on 14 October 2022) and CAMeL (https://camel-tools.readthedocs.
io/, accessed on 14 October 2022). For a more detailed description of how to use these
models, we recommend that researchers refer to Hugging Face Documentations (https:
//huggingface.co/docs, accessed on 14 October 2022). For computation, we used a PC
machine equipped with Intel i9-CPU, 64G-RAM, and a single NVIDIA GeForce RTX3070
GPU.

4.2. Performance Evaluation

The performance of PDTS concerning different document sizes is illustrated in Table 4.
The overall prediction score looks generally high but relatively resembling between small
vs. large document categories. In addition to the lower scores observed with the medium
document category, the obtained scores indicate that document size as a factor is indepen-
dent of performance quality. This means that document size can affect only computational
performance. Further, it should be pointed out that the Accuracy score presents the average
height score of 0.89 (see Table 4), which results from having a high TN’s rate, not TP’s rate.

Table 4. Performance comparison of PDTS with respect to different document sizes: small (|X| < 168),
medium (168 ≤ |X| ≤ 512), and large (512 < |X|). The base model is mBERT, and α = 40. For θ, the
best value found in all our experiments is around 0.4.

Accuracy Precision Recall F-Measure

small 0.86 0.74 0.87 0.79
medium 0.87 0.67 0.67 0.65

large 0.95 0.78 0.92 0.82

avg. 0.89 0.73 0.82 0.75

As mentioned, we introduced the parameter α to reduce computation costs when
processing large document sizes. Thus, we conducted several experiments to analyze the
sensitivity of α with respect to both the quality as well as the computational performance,
reported in Table 5 and visualized in Figure 3.

Table 5 illustrates the performance of PDTS on six runs, each with and without using our
linguistic rules (discussed in Table 2). Through those achieved scores, while paying more
attention to the highest f-measure (i.e., FM = 0.75), we can observe that PDTS performs
well and demonstrates the best results at α = 40. The practical feasibility of applying our
linguistic rules is evidently anticipated by an average of around 16% improvement (see the
acc, recall and f-measure with using vs. without using rules). Moreover, while it is obvious
that the execution time would increase by increasing α, this notable improvement (i.e.,
anticipated to be achieved when applying our rules) is worth sacrificing a few seconds

https://huggingface.co/
https://pytorch.org
https://www.nltk.org/
https://www.nltk.org/
https://camel-tools.readthedocs.io/
https://camel-tools.readthedocs.io/
https://huggingface.co/docs
https://huggingface.co/docs
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of performance. This is indicated by giving insight into the computational overhead (see
execution time columns). In our experiments, the maximum computational overhead has
reached 35 s at α = 160 for processing 16,281 documents.

In Table 6, we compare different pre-trained transformer-based models (i.e., alternative
options rather than mBERT for basing our PDTS). Surprisingly, our considered mBERT
outperforms all the state-of-the-art competitor models in the f-measure score, including
monolingual Arabic models, for processing Arabic texts. Moreover, while ArBERT [19] is
trained on the least amount of data compared to AraBERT [20] and CAMeLBERT [21], it
gives next to the best f-measure. Concerning the execution time, CAMeLBERT [21] gives the
best performance but performs poorly in f-measure.

Table 5. Ablation study of our PDTS to assess the effectiveness of applying our linguistic rules,
described in Table 2. The base model is mBERT and θ = 0.4. The best performance found is indicated
by the asterisk *.

With Excluding Linguistic Rules With Applying Linguistic Rules

α Acc P R FM ET (Sec) Acc P R FM ET (Sec)

5 0.81 0.66 0.36 0.44 865 * 0.93 * 0.55 0.90 * 0.64 886
10 0.82 0.73 0.44 0.51 973 0.91 0.61 0.84 0.69 983
20 0.80 0.77 0.44 0.54 1213 0.91 0.71 0.74 0.70 1234

40 * 0.77 0.78 0.44 0.54 1980 0.89 0.73 0.82 0.75 * 1987
80 0.77 0.80 * 0.48 0.57 3181 0.87 0.69 0.74 0.68 3213

160 0.77 0.77 0.47 0.55 3507 0.86 0.63 0.69 0.64 3542

0.64

0.69
0.70

0.75

0.68

0.64

0

500

1000

1500

2000

2500

3000

3500

4000

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

5 10 20 40 80 160

Ex
e

cu
ti

o
n

 t
im

e
 (

Se
c.

)

F-
M

e
as

u
re

α

F-Measure Execution Time (Sec.)

Figure 3. Impact of the parameters α (while θ = 0.4) on the effectiveness of PDTS w.r.t the trade-off
between the f-measure score and execution time.
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Table 6. Performance comparison of PDTS concerning the closely related state-of-the-art pre-trained
base models (the asterisk * indicates the best performance), under the settings (α = 40 and θ = 0.4).
Here, α is set according to the best f-measure score found; see Figure 3.

Base Model Language F-Measure ET (Sec)

ArBERT [19] Monolingual (Arabic) 0.6235 1286.81
AraBERT [20] Monolingual (Arabic) 0.3500 1173.98

CAMeLBERT [21] Monolingual (Arabic) 0.2121 986.17 *
XLM-RoBERTa [33] Multilingual 0.3035 4916.51

mBERT [16] Multilingual 0.7523 * 1986.91

4.3. Human Evaluation

To further evaluate the performance of PDTS, we conducted a qualitative investigation
by eliciting human assessments with 54 text documents. These documents were randomly
sampled from the 16,281 documents, where the punctuations were added by PDTS using
mBERT besides the other competitor base models. We asked three expert consultants in
Arabic linguistics (not authors of this paper) to assess these documents on three criteria
using a five-point Likert scale (1–5):

• Adequacy (preservation of the source meaning);
• Contextual soundness (in terms of the avoidance of error cases, including (1) the

generation of unimportant punctuations and/or (2) the failure in not generating
important punctuations);

• Grammaticality (the correctness of the generated punctuations).

Each expert is given 18 sample documents to be compared with their three original
documents (denoted as gold-standard references). The average number of words in each
sample is around 115 words. The experimental results, reported in Table 7, confirm that
our PDTS (indicated by ‡) produces the best average ratings of about 3.72 and outperforms
all competitor bases models in contextual soundness criteria.

We observe that employing ArBERT as an alternative-based model to mBERT is quite
convenient, as ArBERT achieves the highest Adequacy and Grammaticality ratings (see 4.17
and 3.67 in the first row of Table 7). This observation is also indicated by the insignificant
p-values obtained with ArBERT (and also AraBERT) against mBERT (including linguistic
rules). Apart from the strengths and weaknesses of these base models, this experiment
revealed that fine-tuning a comprehensive pre-trained multilingual model (such as mBERT)
for the needed Arabic tasks (i.e., in such a low-resource language) is more straightforward
and could produce significantly better performance than employing existing monolingual
Arabic BERT-style models (particularly, CAMeLBERT that has been trained on the largest
Arabic dataset). Nevertheless, not all existing multilingual models are suitable for Arabic
as unexpectedly, the worst performance observed was with XLM-RoBERTa [33].

Table 7. Human evaluation results for the three criteria: Adequacy, Contextual soundness, and
Grammaticality. Base pre-trained models with † are significantly different from PDTS’s base model ‡,
depending on a two-tailed independent student t-test, at p < 0.05. The asterisk * indicates the best
result.

Base Model A C G Avg. p-Value (t-Value)

ArBERT [19] 4.17 * 3.17 3.67 * 3.67 0.925156 (0.11)
AraBERT [20] 3.33 2.50 3.17 3.00 0.069934 (2.46)

CAMeLBERT [21] 2.67 1.50 2.17 2.11 0.002153 (7.03) †
XLM-RoBERTa [33] 1.67 1.83 1.67 1.72 0.003126 (6.36) †

mBERT [16] 3.83 3.33 3.30 3.50 0.468527 (0.81)
mBERT [16] + Linguistic rules 3.83 3.83 * 3.50 3.72 * ‡
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5. Conclusions and Future Work

This paper investigated whether fine-tuning a pre-trained language model for the Fill-
Mask task can be beneficially applied in punctuation detection approaches. We proposed
PDTS, a punctuation detector for text splitting, built on top of a multilingual BERT-based
model, four generic linguistic rules, and a greedy algorithm for the best subset punctuation
selection. We have showcased how PDTS is employed as a text tokenizer for unpunctuated
documents, which can be highly useful to text simplification approaches that concentrate on
handling large generated audio-to-text documents. Depending on our considered standard
quantitative metrics and qualitative human-based evaluation protocols, experimental find-
ings across two well-written Arabic corpora demonstrated that PDTS is practically effective
in both performance quality and computational cost. For future work, we are striving to
expand our PDTS toward supporting automatic text simplification and summarization
problems.
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