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Abstract: Photosynthetic orchids associate with mycorrhizal fungi that can be mostly ascribed
to the “rhizoctonia” species complex. Rhizoctonias’ phylogenetic diversity covers a variety of
ecological/nutritional strategies that include, beside the symbiosis establishment with host plants,
endophytic and pathogenic associations with non-orchid plants or saprotrophic soil colonization.
In addition, orchid mycorrhizal fungi (OMF) that establish a symbiotic relationship with an orchid host
can later proliferate in browning and rotting orchid tissues. Environmental triggers and molecular
mechanisms governing the switch leading to either a saprotrophic or a mycorrhizal behavior in OMF
remain unclear. As the sequenced OMF genomes feature a wide range of genes putatively involved in
the degradation of plant cell wall (PCW) components, we tested if these transitions may be correlated
with a change in the expression of some PCW degrading enzymes. Regulation of several genes
encoding PCW degrading enzymes was evaluated during saprotrophic growth of the OMF Tulasnella
calospora on different substrates and under successful and unsuccessful mycorrhizal symbioses.
Fungal gene expression in planta was investigated in two orchid species, the terrestrial Mediterranean
Serapias vomeracea and the epiphytic tropical Cattleya purpurata. Although we only tested a subset
of the CAZyme genes identified in the T. calospora genome, and we cannot exclude therefore a role
for different CAZyme families or members inside a family, the results showed that the degradative
potential of T. calospora is finely regulated during saprotrophic growth and in symbiosis, often with
a different regulation in the two orchid species. These data pose novel questions about the role of
fungal PCW degrading enzymes in the development of unsuccessful and successful interactions.
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1. Introduction

Orchids associate with a diverse range of mycorrhizal fungi whose taxonomic position mainly
correlates with the plant habitat and photosynthetic ability [1,2]. In particular, most photoautotrophic
orchids form mycorrhizal associations with fungi in the ‘rhizoctonia’ species complex, a polyphyletic
group that comprises teleomorphs in at least three families of Basidiomycetes: the Ceratobasidiaceae and
Tulasnellaceae in the Cantharellales and the Serendipitaceae in the Sebacinales [3–6]. The Tulasnellaceae,
in particular, are the most frequent orchid mycorrhizal fungi (OMF) found in both temperate and
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tropical regions [2]. There is a common belief that most orchid mycorrhizal (OM) rhizoctonias are
unspecialized soil saprotrophs [7,8], based on observations of their fast growth in vitro on soluble
sugars as well as complex polymers such as starch, pectin, cellulose and occasionally lignin [9–11].
However, recent studies reporting the absence/undetectability of some Tulasnella sp. outside the orchid
rhizosphere [12,13] would question the actual saprotrophic capability of at least some OM rhizoctonias
in the environment.

Although seed germination and early orchid development in Nature rely on mycorrhiza
formation [14,15], the interaction of OM rhizoctonias with the orchid host shows a variety of possible
outcomes. A compatible interaction leads to the formation of a mycorrhizal orchid protocorm,
a postembryonic plant structure whose cells are colonized by intracellular fungal hyphae (pelotons).
Viable mycorrhizal protocorms usually develop into photosynthetic seedlings, but they can occasionally
be overgrown by the fungal mycelium and rot [9]. It has been suggested that unsuccessful mycorrhizal
relationships may be due to the OM fungus switching from a biotrophic to a parasitic behavior [9].
A similar switch in growth behavior has been reported for Serendipita vermifera (syn. Sebacina vermifera),
another OMF, during endophytic root colonization of Arabidopsis [16]. After a biotrophic phase of
root colonization, S. vermifera is found to massively proliferate in dead or dying Arabidopsis root cells.
Both interactions may occur simultaneously in a population of protocorms, thus emphasizing the
dynamic and relatively unstable nature of the orchid-fungus association. However, the environmental
and/or molecular clues leading to the different outcomes of plant-fungus interactions are currently
unknown. It is also unclear whether the occasional rotting protocorms are the results of the OMF
actually killing the orchid host as a necrotroph, or whether the fungus simply overgrows dead plant
tissues as a saprotroph. In any case, both necrotrophic and saprotrophic growth would require an
array of degradative enzymes in these fungi. Genome sequencing of fungi with different mycorrhizal
abilities [17] has revealed a high number of Carbohydrate Active Enzymes (CAZymes) in the OMF
S. vermifera and Tulasnella calospora. CAZymes are likely the most important enzymes involved in fungal
and plant cell wall remodeling as well as in the degradation of plant-derived organic matter [18,19].
CAZymes have been grouped into four classes: glycoside-hydrolases (GH), glycosyl transferases (GT),
polysaccharide lyases (PL) and carbohydrate esterases (CE), but several classes of auxiliary activities
(AA) including redox enzymes acting together with CAZymes to degrade lignocellulose material
were recently added to the ‘CAZy’ database (www.cazy.org [18]). In particular, the T. calospora (isolate
AL13/4D) genome contains about one hundred CAZymes-coding genes, more than its saprotrophic
sister taxon Botryobasidium botryosum [17]. Among these genes, several encode CAZymes and AAs
involved in the degradation of plant cell wall (PCW) polysaccharides, including seven GH6 and
twenty-seven GH7 (i.e., cellobiohydrolases with a role in the extensive saccharification of cellulose)
in addition to thirty-three lytic polysaccharide monooxygenases (LPMOs) of the AA9 family [18].
It is unclear whether this wide array of CAZymes is mostly needed during saprotrophic growth of
T. calospora because many CAZymes coding genes are also expressed by this fungus under symbiotic
conditions [17]. A role of CAZymes during the development of the ectomycorrhizal (ECM) symbiosis
has been suggested [19,20], and CAZymes may be needed to degrade the plant cell wall and to form
intracellular fungal structures in endomycorrhizal associations [21].

The main aim of this study was to understand whether the expression of fungal CAZymes changed
during saprotrophic growth of T. calospora on diverse substrates and in symbiosis with two different
orchid species, the terrestrial Serapias vomeracea and the epiphytic Cattleya purpurata. In particular,
available genomic and transcriptomic sequences of T. calospora isolate AL13/4D [17] allowed us to
evaluate by RT-qPCR the gene expression of seven CAZyme coding genes belonging to GH and
AA9 classes. Gradual browning and rotting of orchid protocorms colonized in vitro by T. calospora
occurred occasionally for both host species, similarly to what has been reported for other orchid
species [22–24]. Therefore, the expression of these fungal CAZymes was evaluated during saprotrophic
growth as well as in the successful mycorrhizal interaction and in brown protocorms overgrown by the
fungal mycelium. To monitor the plant-fungus interaction, the expression of fungal and plant marker
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genes expressed in symbiosis [25–27] was also tested. Unveiling the changes in T. calospora CAZyme
gene expression under different conditions and on different host plants might provide new information
on how this OMF switches from a symbiotic to a saprotrophic growth (e.g., in brown protocorms).

2. Results

2.1. Seed Germination and Microscopy Observations

Serapias vomeracea seeds were germinated under both asymbiotic and symbiotic conditions.
Asymbiotic germination on M551 medium yielded a germination percentage of 91.1%± 6.9 SD, whereas
symbiotic seed germination with T. calospora resulted in a germination percentage of 83.8% ± 5.3 SD.
Occasionally, symbiotic S. vomeracea protocorms started to brown at stage P3 (development of a leaf
projection) and eventually became very dark and soft (Figure 1).
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Figure 1. Protocorms of Serapias vomeracea inoculated with Tulasnella calospora at different stages: from
the typical features (a) to a brown-dark/rot aspect (b–d). Bars = 2mm.

Semi-thin sections of S. vomeracea protocorms colonized by T. calospora at different developmental
and browning stages (selected on the basis of the external color, from white-yellowish to very dark
brown) showed a typical intracellular mycorrhizal colonization only at early stages of browning
(Figure 2a–c). By contrast, very dark and soft protocorms were colonized by fungal hyphae that were
evenly distributed inside the protocorm tissues. In these protocorms, at least in some parts, plant cells
were no longer surrounded by a well-defined cell wall (Figure 2d).

Cattleya purpurata seeds also germinated under both asymbiotic and symbiotic conditions.
Asymbiotic germination on half-strength MS yielded a higher germination percentage (25.1% ± 3.2 SD)
than symbiotic germination with T. calospora (18.3%± 4.0 SD). Although the percentage of asymbiotically
germinated seeds was higher for both S. vomeracea and for C. purpurata, the rate of orchid protocorms
developing beyond the P3 stage was higher, in both orchid species, following symbiotic germination.

Healthy protocorms of C. purpurata developed into seedlings containing typical hyphal coils
within root cells. Mycorrhizal root colonization was confirmed by staining with the FITC-Wheat
Germ Agglutinin (WGA) conjugate, showing the presence of chitin in the fungal cell wall (Figure S1).
Gradual browning and rot were occasionally observed also for C. purpurata protocorms colonized by
T. calospora. These dark protocorms were overgrown by the fungal mycelium (Figure S1).
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Figure 2. Semi-thin sections of Serapias vomeracea protocorms colonized by Tulasnella calospora. (a) Stage
where protocorms appeared with the typical features and color. At cellular level, typical colonization
pattern with T. calospora is evident with the presence of coils at different developmental stages. c, coil; cc,
collapsed coil. (b,c) Subsequent stages where protocorms are becoming brown. The fungal colonization
pattern is still evident as well as host cell features. (d) Section of a dark/soft protocorm. Cell borders
are not well-defined and the fungal hyphae are widespread in the tissues without a typical colonization
pattern. Bars = 33, 13, 45, 25 µm for (a), (b), (c) and (d), respectively.

2.2. CAZymes Profiles in T. calospora and Other Basidiomycetes

Taking advantage of available genomic and transcriptomic resources, the number of members
inside the CAZyme gene families, as well as their expression levels, in T. calospora were compared with
the data already available in different species of Basidiomycetes with different ecological and nutritional
strategies, such as the OMF S. vermifera, two ECM fungi, two white rot and two phytopathogenic
fungi [28–34]. Details on the species used, growing conditions and corresponding RNA-seq experiments
accession are reported in Tables S1–S3. As shown in Figure 3, despite the highly populated CAZymes
families annotated in the T. calospora genome, with some gene families being represented by very high
gene numbers (e.g., GH5, GH6, GH7, GH10, GH11, AA9), there was in general a low global expression
of these gene families both in symbiotic S. vomeracea protocorm tissues and in free-living mycelium
grown on OA medium. By contrast, genes considered as being markers of saprotrophism and lignin
degradation, such as GH5, GH6, GH7, GH11 and GH28, were highly expressed in the white rot fungus
P. chrysosporium on a YMPG medium containing simple carbon sources [35].
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Euclidean distances. Fungal species with different lifestyles were considered: orchid mycorrhizal (OM),
ecto-mycorrhizal (ECM), white rot (WR), plant pathogens.

2.3. CAZymes Expression in the Free-Living Mycelium and in Plant Tissues

The expression of ten T. calospora genes coding for GHs and AA9 CAZymes involved in the
degradation of PCW polymers were tested by RT-qPCR on several growth conditions and developmental
stages (Table 1).

Table 1. Experimental conditions considered in RT-qPCR experiments.

Experimental Condition ID Description

Symbiotic roots/protocorms SYM Roots of C. purpurata seedlings or S. vomeracea protocorms
colonized by T. calospora

Dark colonized
protocorm/seedlings DP Protocorms/young seedlings of C. purpurata or protocorms of

S. vomeracea, colonized by T. calospora, turned brown/black

Free-living fungus on dead
plant tissues WS Dead leaves obtained from asymbiotic growth, then aseptically

dried and inoculated with T. calospora

Free-living fungus on OA OA Free-living T. calospora grown on a complex Oat-meal
Agar medium

Free-living fungus on MMN MMN Free-living T. calospora grown on mineral Melin-Norkins
modified medium

A previous transcriptomic analysis [26] (Table 2) showed differential expression of these genes in
free-living mycelium grown on OA medium and in mycorrhizal S. vomeracea protocorms. Here, we tested
additional media and symbiotic conditions (Table 1). In detail, CAZymes expression during saprotrophic
growth of T. calospora was evaluated on three different substrates: on MMN, a mineral medium
supplemented with glucose as carbon source (a condition that should not induce CAZymes involved
in the degradation of complex polysaccharides), on OA medium containing a mixture of starch and
PCW polysaccharides, and on dried plant material (WS) that should mimic saprotrophic growth on
dead host tissues (Table 1). Expression of these genes in association with the host plant was tested in
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C. purpurata and S. vomeracea, both in a compatible mycorrhizal interaction (SYM) and in protocorms
exhibiting browning and rot (DP).

Table 2. CAZyme and symbiosis marker genes considered in RT-qPCR experiments.

Gene Name Putative Function Transcript ID †
MYC Normalized

Reads ‡
FLMNormalized

Reads ‡

Tulasnella calospora

TcGH6 cellobiohydrolase 69053 2.71 12.98

TcGH10a endo-1,4-β-xylanase 14789 3.37 24.59

TcGH11 endo-1,4-β-xylanase 80414 5.43 0.62

TcGH45* endoglucanase 224031 26.58 6.49

TcAA9a Lytic polysaccharide
monooxygenase (LPMO) 75481 3.45 12.18

TcAA9b LPMO 6298 102.01 61.82

TcAA9f LPMO 4643 16.35 0.33

TcAMT1 ammonium transporter 241330 584.63 324.12

TcAMT2 ammonium transporter 183841 525.27 184.32

TcAAT2 amino acid transporter 81605 363.85 77.20

Serapias vomeracea

SvNod1 early nodulin 55-2, putative DN89686_c0_g1_i1 - -

SvEXO exocyst subunit exo70 DN73752_c2_g2_i1 42.61 7.38

* Oligonucleotides worked only in the Cattleya-Tulasnella model. † T. calospora transcripts IDs refers to the
AL13/D transcriptome deposited in JGI portal (Kohler et al. 2015) while S. vomeracea IDs refers to the assembled
transcriptome [26] available at NCBI (accession GSE87120). ‡ MYC reads and FLM reads refer to the T. calospora
RNA-seq transcriptome analysis [17,26]. MYC reads and FLM reads columns show the mean number of reads
observed in symbiotic and free-living conditions, respectively.

Among the AA9 genes tested in this work (Table S4), we focused on the three genes (TcAA9a,
TcAA9b and TcAA9f) that resulted in detectable expression values by RT-qPCR (Figure 4).

Despite the high variability in the expression data, expression of all CAZymes was suppressed on
the MMN medium (Figure 4). The three different genes coding for TcAA9 and TcGH6 were expressed
at the same levels both in MMN and OA samples, whereas TcGH10 and TcGH11 were significantly
more/less expressed on OA than in MMN medium, respectively (Figure 4). A trend of decreasing
expression, as compared with MMN and OA medium, is evident for TcAA9a and TcAA9b on dried
plant material (WS), that was significant only for the S. vomeracea WS sample. By contrast, TcAA9f
seemed more expressed in the S. vomeracea WS substrate, although this difference was not statistically
significant (Figure 4). CAZyme expression during symbiotic growth of T. calospora was evaluated in
both host plants. The results indicate, for most of the CAZyme genes, a different expression pattern
in the two mycorrhizal plant species. This is particularly evident for the expression of TcGH10.1 and
TcGH11, both involved in hemicellulose degradation, in the symbiotic (SYM) tissues of C. purpurata and
S. vomeracea (Figure 4). In detail, the TcGH11 gene was significantly downregulated in the S. vomeracea
SYM samples, when compared to C. purpurata, whereas the opposite was observed for TcGH10.1
(Figure 4). Additionally, TcGH11 was significantly upregulated, with respect to OA medium, in all
growth conditions involving C. purpurata (both dead and living plant tissues). By contrast, TcGH6 was
not significantly regulated in any of the samples involving contact with plant tissues, independently
from the plant species and the plant tissue being alive or dead (Figure 4). However, some differences
could be observed when expression data were compared with saprotrophic growth on different media.
For example, a lower TcGH6 expression, with respect to the OA medium, was found in all the samples
where T. calospora interacted with the plant, apart from the C. purpurata WS sample, whereas the
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differences were not significant when compared to MMN. When compared to T. calospora saprotrophic
growth on different media as free living mycelium, TcGH10.1 expression showed an opposite trend
with respect to TcGH11, with an expression level similar to OA in all the S. vomeracea samples (WS, SYM)
and a downregulation in all the C. purpurata ones, with the lowest level in SYM sample. Expression of
TcAA9a and TcAA9b was very low in symbiotic structures of S. vomeracea, independently form the
status of the protocorms, while an upregulation trend is evident for the C. purpurata SYM samples.
By contrast, TcAA9f was significantly downregulated in the C. purpurata SYM sample, suggesting
a functional specificity. We also performed RT-qPCR with primers for TcGH45, which codes for a
putative endoglucanase potentially active in cellulose degradation. However, a specific amplification
signal could be observed only for C. purpurata samples, whereas the S. vomeracea samples yielded an
aspecific signal. TcGH45 expression was surprisingly higher on MMN (p ≤ 0.05), than on any other
free-living conditions; the gene was upregulated in the SYM condition as compared to both OA and
the WS samples (Figure S2).
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To monitor the plant-fungus interaction in the plant tissues, we evaluated the expression of
three fungal genes (TcAAT2, TcAMT1, TcAMT2) involved in the transport of nitrogen compounds
and already demonstrated to be regulated in symbiosis [26,27]. In a similar way to the CAZymes,
the expression level of the TcAA2 and TcAMT2 transporters was not significantly different in the plant
samples (SYM and DP) colonized by T. calospora, for both plant species (Figure 5).

It is worth noting that TcAMT1 showed an upregulation in C. purpurata tissues independently
from their status (SYM or DP), while this trend was not found in S. vomeracea. Gene expression of the
marker genes in the WS samples, i.e., free-living mycelium grown on dried plant material, was always
similar to gene expression in the free-living mycelium grown on MMN and OA. For S. vomeracea,
we also monitored the expression of two plant genes (SvNOD1 and SvEXO) previously shown to be
strongly upregulated in viable mycorrhizal protocorms [25]. The results (Figure S3) confirmed that
both SvEXO and SvNOD1 were upregulated in mycorrhizal (SYM) tissues with respect to asymbiotic
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protocorms (AP). Notably, the expression of these two plant genes was not significantly different in
viable mycorrhizal (SYM) and in brown (DP) protocorm samples (Figure S2).
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3. Discussion

In this study, we showed that symbiotic orchid seed germination with the OM fungus T. calospora
led to contrasting outcomes in two orchid species, as already reported for other OM associations with
fungi in the ‘rhizoctonia’ species complex [9,24]. S. vomeracea and C. purpurata seeds symbiotically
germinated in vitro developed into healthy mycorrhizal protocorms featuring intracellular fungal
pelotons, and subsequently developed (at least C. purpurata) into seedlings hosting typical fungal
pelotons in the root cells. However, as already observed in other orchid systems [24], in both orchid
species a variable percentage of mycorrhizal protocorms started to brown and rot in the plates and
were eventually overgrown by the fungal mycelium. It has been suggested [9] that this unsuccessful
mycorrhizal relationship may be due to the OM fungus switching from a biotrophic to a parasitic
behavior. To assess whether the fungus had a role in the rotting protocorm phenotype, e.g., by increasing
the production of PCW degrading enzymes, the transcriptional regulation of the fungal enzymatic
abilities was verified, taking advantage of the information obtained in recent years on the mycorrhizal
model system represented by S. vomeracea and T. calospora [25–27,36]. These previous papers were
mainly focused on the symbiotic regulation of plant and fungal genes involved in N uptake and
metabolism, but also led to the identification of genes specifically expressed in symbiotic protocorms
(some of them only in pelotons containing cells) that can be considered symbiotic markers [25–27].
Transcriptomic analyses have been performed also on other orchid symbiotic systems (see [37] for
a review), unveiling the orchid and fungal genes involved in symbiosis and providing novel useful
information for a comprehensive understanding of OM biology. However, due to the complexity and
the diversity of these interactions, several mechanisms involved in the developing and functioning of
these associations remain to be elucidated.

In this study, in addition to the expression of different CAZyme families, we have investigated the
expression of some fungal and plant genes previously identified as markers for the OM symbiosis.
In particular, Fochi et al. [26] found differential expression in symbiosis of a repertoire of fungal genes
involved in the transport of N compounds. These induced genes can therefore be considered as
markers of the compatible interaction. Despite the broad data distribution, likely due to the biological
systems considered and the difficulties to exactly synchronize the sample stages, both TcAMT1 and
TcAMT2 appeared to be upregulated in mycorrhizal C. purpurata roots (SYM) as compared to the
free-living mycelium grown on MMN, OA and WS. This finding, observed on different orchid hosts
(C. purpurata and S. vomeracea) and at a different symbiotic stage (mycorrhizal roots for C. purpurata and
mycorrhizal protocorms for S. vomeracea), confirms AMT genes as symbiosis markers for T. calospora [26].
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An upregulation trend of TcAMT2, but not TcAMT1, in mycorrhizal S. vomeracea protocorms confirms
previous results and suggests a slightly different relationship between the host plant and the fungus in
terms of N transport.

Of the two plant genes previously shown to be upregulated in mycorrhizal S. vomeracea protocorm
cells, SvNOD1 and SvEXO [25,27], SvNOD1 in particular was confirmed to be strongly upregulated
in the mycorrhizal protocorms. The similar upregulation observed for both plant genes in brown
protocorms, where the fungal hyphae proliferate inside the orchid tissues without forming typical
coils, is intriguing and it may be due to the persistence of the corresponding gene transcripts in these
plant tissues, or to the persistence of some intact cells in the rotting protocorms.

Despite the high variability, the picture emerging from the RT-qPCR experiments would exclude
that the switch from a successful OM plant-fungus relationship to an unsuccessful one (i.e., the browning
and rotting protocorms) correlates with a massive increase in the expression of fungal enzymes
capable of degrading the host plant cell wall. In fact, quite unexpectedly, the expression of most
CAZymes was not significantly different in viable mycorrhizal SYM samples (symbiotic protocorms
for S. vomeracea and mycorrhizal roots for C. purpurata) and in brown, dark (DP) protocorms, for both
plant hosts (Figure S4). Moreover, TcGH45 gene expression in C. purpurata protocorms was significantly
higher in viable mycorrhizal samples than in brown protocorms. As for the other CAZymes, some
differences in transcript levels in DP with respect to SYM samples were observed, but values were not
statistically different.

In the T. calospora CAZyme repertoire, cellulolytic activities are represented by enzymes of
the GH5_5, GH12, GH45 (endoglucanases), cellobiohydrolases or exo-1,4-β-glucanases (GH6 and
GH7) and AA9 (lytic polysaccharide mono-oxygenases that oxidatively cleave cellulose) families [17].
When interacting with C. purpurata, T. calospora upregulates TcGH45 gene expression only when in
symbiosis (SYM sample), suggesting for this CAZyme a role during mycorrhizal establishment or
functioning, rather than during saprotrophic growth. This observation recalls other mycorrhizal
systems, like the ECM formed by Tuber melanosporum, where the upregulation of a GH45 gene suggests
a role in ECM development [20]. A recent study on the ECM fungus Laccaria bicolor suggests that a
GH5 endoglucanase may have an important role in reshaping the plant cell wall during symbiosis [38],
and it has been speculated that endoglucanases may be responsible for plant-cell remodeling during
early fungal colonization on poplar [19].

The expression pattern of TcGH6 suggests that this cellulase is probably not involved in the
development of the symbiotic interaction but is used by T. calospora during saprotrophic growth.
With respect to expression on the OA reference medium, TcGH6 was significantly downregulated
in the SYM samples in both species and may reflect the fungal ability to degrade plant-derived
polysaccharides. However, a similar downregulation was also observed in the WS samples, containing
dead orchid tissues, suggesting either that the fungus can recognize the host tissues thus exhibiting a
“friendly” behavior, or that orchid tissues may contain compounds able to inhibit expression of some
degradative enzymes in T. calospora. Orchid tissues can accumulate secondary metabolites that can
affect fungal growth [39].

Lytic polysaccharide mono-oxygenases (LPMO) are CAZymes with auxiliary activities (AA9,
formerly GH61) that often form a large multigene family in fungi and are active on the plant cell
walls [40]. Fungal AA9 enzymes improve cellulase activity by the oxidation of crystalline cellulose and
they randomly cleave cellulose chains at the microfibrils surface, thus loosening the cellulose microfibril
structure [19]. An involvement of the different AA9 members in mycorrhizal formation was already
demonstrated during ECM development [19]. Sillo et al. [20] showed that one of the two LPMO genes
in the Tuber melanosporum genome was upregulated in ECM with respect to the free-living mycelium,
and regulation of AA9 genes has been reported also at different stages of the interaction between L.
bicolor and poplar [19]. Here, we showed the results for three different T. calospora AA9 genes: two
of them, TcAA9a and TcAA9b yielded a significantly different expression in the two orchid species.
In particular, a very low level of transcripts was found for both genes in all samples containing
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S. vomeracea tissues (WS, SYM, DP), irrespective of the tissues being alive or dead. These results
would again suggest that S. vomeracea tissues may contain some compounds capable of specifically
inhibit expression of these genes. By contrast, TcAA9f was expressed at the same level in the different
conditions in C. purpurata, although a downregulation trend in DP with respect to SYM was observed
in mycorrhiza S. vomeracea tissues.

Hemicelluloses are mainly represented by xylan, xyloglucan and galactomannan that cross-link
cellulose microfibrils. In particular, xylan degradation is performed by a large set of enzymes including
endo-β-1,4-xylanase/endo-β-1,3-xylanase belonging to GH10 and GH11 families. Here, two T. calospora
genes (TcGH10.1 and TcGH11) have been analyzed, showing only a weak regulation in the several
conditions considered. It is worth noting that, as for the AA9 genes, a different regulation trend was
evident in C. purpurata and S. vomeracea tissues. This observation could be due to a different symbiotic
interaction of T. calospora with the two orchid species, but we cannot exclude that their expression
mirrored a different cell wall composition for the two plant species.

4. Materials and Methods

4.1. Fungal Material and Growth as Free-living Mycelium

Tulasnella calospora AL13/D was isolated from the roots of the Mediterranean orchid Anacamptis
laxiflora collected in Northern Italy as described in Girlanda et al. [4] but found to induce seed
germination also on other plant species, like Serapias vomeracea [25,26] and Cattleya purpurata (this
study). Three different free-living growth conditions were tested for T. calospora. The mycelium was
grown on: (1) a modified Melin-Norkrans liquid medium (CaCl2 × 2H2O 0.066 g/L, NaCl 0.025 g/L,
MgSO4 × 7H2O 0.15 g/L, FeCl3 × 6H2O 0.001 g/L, glucose 12.5 g/L, thiamine HCl 1.0 mL/L, l-glutamine
0.322 mL/L), as a control condition with a simple carbon source (hereinafter “MMN” experimental
condition); (2) oatmeal agar medium [41], which contains a complex mixture of plant polysaccharides
(“OA” condition); and (3) oven dried (at 70 ◦C for 24 h) asymbiotically grown orchid tissues (C. purpurata
seedlings or S. vomeracea protocorms), to reproduce possible degradation of dead host tissues by
T. calospora. In this last case, a 5 mm diameter mycelium plug was placed directly on the dead plant
tissues, laid on oven-sterilized (180 ◦C, 3 h) quartz sand in 3 cm diam Petri dishes. Three mL of ddH2O
was added to the quartz sand in the dishes to ensure sufficient moisture was present for the duration
of the experiment.

4.2. Orchid Seed Germination and Symbiotic Fungal Growth

Capsules of S. vomeracea were collected in the Liguria Region, Italy (Pompeiana, IM; 43◦51′16”92 N,
07◦53′27”24 E). Collection was performed according to the Regional Law n. 28/2009. Capsules of
C. purpurata were obtained by hand-pollinated plants belonging to the private collection of “Azienda
Agricola Nardotto e Capello” (Camporosso, Imperia, Italy). At the time of capsule maturation, indicated
by a yellowish color, seeds were collected into a paper sachet and then stored at 4 ◦C until use [42].
Symbiotic seed germination was obtained as described by Ercole at al. [40]. Briefly, after surface
sterilization in 1% Sodium Hypochlorite solution for 20 min, orchid seeds were rinsed three times
in sterile dH2O for 5 min and then sowed on oatmeal agar (OA) medium inoculated with a central
5 mm diameter. plug of the fungal isolate T. calospora AL13/4D previously maintained on solid 2% malt
extract agar at 25 ◦C. S. vomeracea asymbiotic protocorms, as germination control, were obtained on
Malmgren modified medium (M551, Phytotechnology), while C. purpurata asymbiotic protocorms,
as germination control, were obtained on half-strength Murashige and Skoog [43] medium including
vitamins (Duchefa, RV Haarlem, The Netherlands) and enriched with 50 mL/L of coconut water, 10 gr/L
of sucrose and 2 gr/L activated charcoal. After germination, symbiotic protocorms were cultivated
on OA medium. Whereas C. purpurata protocorms developed to the seedling stage and mycorrhizal
roots were collected, S. vomeracea showed a slower development and mycorrhizal protocorms were
collected at stage P3 [44]. Symbiotic tissues were indicated as SYM samples. Seed germination of both
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S. vomeracea and C. purpurata in combination with T. calospora resulted in occasional gradual browning
of some protocorms (DP, dark protocorms). Different stages of browning S. vomeracea protocorms were
collected and analyzed by microscopical observations.

4.3. Microscopy

Protocorms of S. vomeracea colonized by T. calospora at different developmental and browning
stages (from white protocorms to very dark ones) were separately fixed in 2.5 glutaraldehyde in
phosphate buffer 10 mM, washed in buffer and post-fixed in 1% osmium tetroxide. Samples were then
dehydrated in an ethanol series (30%, 50%, 70%, 90%, 100% twice) and acetone 100% (twice) before
embedding them in Epon/Araldite resin. Semi-thin sections were prepared and stained with Toluidine
blue in order to verify the type of colonization by the fungus using a Carl Zeiss Primo Star optical
microscope equipped with a DFC425C digital camera (Leica Microsystems GmbH, Wetzlar, Germany).

Root colonization of mycorrhizal seedlings of C. purpurata was verified by staining with FITC-
wheat germ agglutinin (WGA) conjugate. Hand-cut root sections were incubated with 2% (w/v) BSA
in PBS for 30 min at room temperature, washed three times with PBS/Tween 20 and incubated with
FITC-conjugated WGA (0.1 mg/mL in PBS, 1% (w/v) (BSA) for 1 h at room temperature [45]. After three
washes with PBS/Tween 20, colonized roots were mounted in distilled water and checked using an
Eclipse E400 epifluorescence microscope (Nikon Instruments Inc., Amstelveen, The Netherlands).

4.4. RNA Extraction and cDNA Synthesis

Once the free-living T. calospora mycelium and the symbiotic plants were grown enough, they
were collected and stored at −80 ◦C. RNA was extracted from each experimental condition following
using a modified version of the “pine-tree” bench protocol by Chang et al. [46]. The extracted RNA was
quantified using a ND-1000 Nanodrop (Thermo Fisher Scientific, Waltham, MA, USA) and treated with
RNase-free DNase (TURBO DNA-free™ Kit Thermo Fisher Scientific), according to the manufacturer’s
instructions. Approximately 500 ng of RNA were retrotranscribed in cDNA using SuperScript™
II Reverse Transcriptase (Thermo Fisher Scientific). cDNAs were diluted 1:2 and stored at −20 ◦C.
For each experimental condition, three biological replicates were processed with the same procedure.

4.5. Primers Design and RT-qPCR

CAZymes specific primers, designed on the T. calospora genome sequences [17], were created
using NCBI/Primer-BLAST based on Primer3 and BLAST (www.ncbi.nlm.nih.gov/tools/primer-blast/).
Five representative families were considered (GH6, GH10, GH11 and GH45 and AA9), which are
active on cellulose and hemicelluloses [18]. The genes were selected on the basis of their differential
expression in symbiotic versus free-living mycelia in a previous T. calospora transcriptomic study [26].
Primer specificity for PCR was tested in silico on the T. calospora transcriptome using ‘primersearch’
tool in EMBOSS software suite [47]. TcAMT1, TcAMT2 and TcAAT2 primers were selected from the
same study as markers for the symbiotic condition. Thanks to the available S. vomeracea assembled
transcriptome [25], two genes previously described as being involved in symbiosis, SvNOD1 [25] and
SvEXO [26,27], were also considered. Further primer details are reported in Table S4.

RT-qPCR reactions were performed with at least two technical repetitions for each biological
replicate as described in [48]. qPCR reaction volume was 15 µL composed of 2.25 µL ddH2O, 2.25
µL forward primer (3 µM); 2.25 µL reverse primer (3 µM), 7.5 µL of iQ SYBRTM Green® Supermix
(Bio Rad, Hercules, CA, USA) or Rotor-Gene SYBR® Green PCR Kit (Qiagen, Hilden, Germany) and
0.75 µL cDNA. RT-qPCR reactions were performed using a Rotor-Gene Q (Qiagen) thermocycler
using the following cycling conditions: 10 min at 95 ◦C, 40 cycles of 15 s at 95 ◦C and 1 min at 60 ◦C.
To ensure reaction specificity a melting curve was recorded at the end of each run with a heating
rate of 0.5 ◦C per 10 s and a continuous fluorescence measurement. The expression of S. vomeracea
target transcripts was quantified after normalization to the two reference genes SvUBI and SvEF1α
(ubiquitin and an elongation factor, respectively) while T. calospora elongation factor (was used to
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normalize the expression of fungal target transcripts. The same genes have previously been used in
Fochi et al. [26,27].

4.6. Statistical Analysis

Relative gene expression was calculated as described in [49] using take-off and amplification
efficiency values as calculated by the Rotor-Gene Q software using the ‘comparative quantitation’ mode.
Normalized Relative Quantities (NRQ) were calculated based on gene specific amplification according
to Pfaffl [50]. Data normality and homoscedasticity were checked on NRQ values using Shapiro-Wilk
and Levene’s test respectively using ‘shapiro.test’ in package ‘stats‘ and ‘leveneTest’ function in
package ‘car’ [51] at p < 0.05. Differences between means of different conditions were assessed using the
Kruskal-Wallis test (p < 0.05) and if significant, Dunn’s posthoc test was used for multiple comparisons
(p < 0.05) using the ‘dunnTest’ function in ‘FSA’ R package [52]. Barplots were generated using
ggplot2 R package [53]. All analyses were performed in R programming environment [54].

4.7. RNA-seq Expression Profiles of CAZymes in T. calospora and Other Basidiomycetes Species

The expression profiles of CAZymes in T. calospora were compared with expression of the
orthologous genes in different Basidiomycota species with different ecological strategies, using
RNA-seq dataset available in the Short Read Archive (SRA, NCBI) from previous studies. T. calospora,
Serendipita vermifera were selected as OM fungi, Hebeloma cylindrosporum and Piloderma croceum as ECM
fungi, Phanerochaete crysosporium and Schizophyllum commune as white rots (WR), Puccinia graminis and
Ustilago maydis as pathogens. Details on RNA-seq libraries used in this analysis, including accession
numbers and full meta-data, are reported in Table S1.

Libraries were downloaded from the Short Read Archive (SRA) as. fastq files using the
‘fasterq-dump’ command in the NCBI SRA-Toolkit v2.9.6-1 software. Reads were filtered and
trimmed using BBDuk software within BBTools suite from the Joint Genome Institute (https:
//jgi.doe.gov/data-and-tools/bbtools/) setting ‘ktrim = r k = 23 mink = 5 hdist = 1 qtrim = rl trimq
= 10 maq = 15 minlen = 76 t = 10′. The bulit-in comprehensive Illumina adapters database (file
‘adapters.fa’) was used to filter residual adapters. Cleaned reads were pseudo-mapped on reference
transcriptomes using ‘salmon’ v 0.11.3 [55] which accounts for sequencing and GC content biases using
‘–seqBias –gcBias –numBootstraps 1000 –posBias –validateMappings’ parameters. Reads number
details are reported in Table S2. Publicly available reference transcriptomes were downloaded from
MycoCosm project at Joint Genome Institute [56] as summarized in Table S3. Transcripts per million
(TPM) were imported into R programming environment [54] using the ‘tximport’ R library [57].
CAZymes were predicted on reference transcriptomes using the ‘dbCAN’ pipeline implemented in the
standalone ‘run_dbcan.py’ script [58] setting ‘inputType’ to ‘meta’ and leaving other parameters to
default values. Transcripts were annotated as CAZymes only if assigned to the same family by at least
two methods within DIAMOND, HotPep and HMMER. Gene expression heatmaps were generated
averaging TPM values for transcripts IDs annotated within each family. Plots were generated using
the ‘pheatmap’ package v1.0.12 in R [59] and scaled by rows. Only selected CAZymes families were
reported according to results previously reported by Kohler et al. [17].

5. Conclusions

An intriguing question is whether the several genes coding for PCW degrading enzymes found in
OMF are needed mainly for saprotrophic growth or whether they also play important functions in
symbiosis. Although we miss a complete picture of CAZymes expression under the different conditions
tested, our observations provide a first evidence that the degradative potential of T. calospora is finely
regulated during saprotrophic growth and in symbiosis, with a different regulation often observed in
the two orchid species. Apart from the cellulase TcGH6, all other CAZyme genes were differentially
regulated in the mycorrhizal protocorms formed by the two orchid species and colonized by T. calospora,
indicating that expression of the fungal CAZymes highly depends on the host plant. The fact that

https://jgi.doe.gov/data-and-tools/bbtools/
https://jgi.doe.gov/data-and-tools/bbtools/


Int. J. Mol. Sci. 2020, 21, 3139 13 of 16

expression of these degradative enzymes did not significantly increase when the fungus colonized
brown and rotting protocorms raises some questions on the actual cause behind these unsuccessful
interactions and calls for further studies dedicated to understanding the role of fungal and plant
determinants in this process. It could be interesting to verify the expression of transcription factors
reported as activators of plant cell wall degrading enzymes in other fungi as well as to understand the
role of the environmental conditions (e.g., temperature) and the host plant in the activation/repression
of their expression.
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Abbreviations

OM Orchid Mycorrhiza
OMF Orchid Mycorrhizal Fungi
PCW Plant Cell Wall
CAZyme Carbohydrate-active enzyme
GH Glycoside-Hydrolase
GT Glycosyl Transferase
PL Polysaccharide Lyase
CE Carbohydrate Esterase
AA Auxiliary Activities
LPMO Lytic Polysaccharide Monooxygenase
ECM Ectomycorrhiza
WGA Wheat Germ Agglutinin
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