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Abstract: Germination of conidia is an essential process within the Aspergillus life cycle and plays
a major role during the infection of hosts. Conidia are able to avoid detection by the majority of
leukocytes when dormant. Germination can cause severe health problems, specifically in immuno-
compromised people. Aspergillosis is most often caused by Aspergillus fumigatus (A. fumigatus) and
affects neutropenic patients, as well as people with cystic fibrosis (CF). These patients are often
unable to effectively detect and clear the conidia or hyphae and can develop chronic non-invasive
and/or invasive infections or allergic inflammatory responses. Current treatments with (tri)azoles
can be very effective to combat a variety of fungal infections. However, resistance against current
azoles has emerged and has been increasing since 1998. As a consequence, patients infected with
resistant A. fumigatus have a reported mortality rate of 88% to 100%. Especially with the growing
number of patients that harbor azole-resistant Aspergilli, novel antifungals could provide an alter-
native. Aspergilloses differ in defining characteristics, but germination of conidia is one of the few
common denominators. By specifically targeting conidial germination with novel antifungals, early
intervention might be possible. In this review, we propose several morphotypes to disrupt conidial
germination, as well as potential targets. Hopefully, new antifungals against such targets could
contribute to disturbing the ability of Aspergilli to germinate and grow, resulting in a decreased
fungal burden on patients.

Keywords: Aspergillus; aspergillosis; Aspergillus fumigatus; azole resistance; conidia; cystic fibrosis;
germination; lung infection

1. Introduction

The Aspergillus species is one of the most common invasive fungal pathogens, as they
make up about 20% of the invasive fungal infections in the US [1]. According to current
estimates, more than 300,000 life-threatening cases of invasive pulmonary aspergillosis (IPA)
occur annually worldwide, with a reported mortality rate of 30 to 95% [2,3]. As displayed
in Figure 1, aspergillosis comprises numerous diseases caused by Aspergillus species, such
as non-invasive aspergillomas, allergic bronchopulmonary aspergillosis (ABPA), chronic
pulmonary aspergillosis (CPA), chronic necrotizing pulmonary aspergillosis (CNPA), IPA,
severe asthma with fungal sensitization (SAFS), and extrapulmonary aspergillosis [4–6].
Aspergillus fumigatus (A. fumigatus) causes the majority of aspergillosis cases [7,8]. The
main cause of IPA is A. fumigatus (with 57%), while other species, such as A. flavus, A.
niger and A. terreus were found in about 12%, 10% and 12% of the cases, respectively,
although these numbers can vary between countries [4]. In addition, infections with cryptic
species of Aspergillus have been increasingly identified in clinical settings in the last few
decades [9–13]. What is more, Aspergilli reside on crops such as nuts, grains, beans, and
dried fruits, which leads to spoilage [14]. However, the presence of Aspergilli on crops
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can be harmful to humans because they exudate mycotoxins, including aflatoxins [15].
Aflatoxin-contaminated foods were found to impact health negatively, considering that
aflatoxin was found to play a major role in 4.6 to 28.2% of global liver cancer cases [16,17].
Clearly, the impact Aspergilli has on human health is extensive, but in consequence of the
major mortality rates and the shortcomings of current azole-based therapies this review
will focus on the pathogenicity.
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Figure 1. Schematic overview of common lung diseases caused by Aspergilli. Representative
alveoli, capillaries with red blood cells and immune cells involved in the direct pathology of as-
pergilloses such as allergic bronchopulmonary aspergillosis (ABPA) and severe asthma with fungal
sensitization (SAFS).

Daily, humans inhale a relatively low amount of Aspergillus spores estimated at around
100–1000 spores, which they can eliminate from their lungs without the occurrence of in-
flammation [18,19]. Aspergilli have conidiophores that produce and release conidia, which
are asexual spores [20,21]. About a third of Aspergilli, including A. fumigatus, have a sexual
life cycle, during which cleistothecia develop and produce asci, which produce sexual
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spores called ascospores [21–24]. Aspergillus conidia can be found in the air as bioaerosols,
both indoors and outdoors. As such, they pose an eminent risk for immunocompromised
and/or immunodeficient people, and also when in high concentrations for the healthy
population as well [1,25]. Conidia are small and hydrophobic, characteristics predisposed
to facilitate dispersion into the air [26,27]. The increased efficiency of dispersal of conidia in
the air by A. fumigatus compared to other Aspergilli contributes to their higher prevalence
and infection rates [8]. What is more, the conidia have a high stress resistance and the
ability to germinate at 37–39 ◦C [26,28,29]. This makes Aspergilli resilient and highly suited
to the conditions of human hosts.

Specific groups of people with underlying (immune) diseases experience specific
aspergilloses more often. It was found that chronic pulmonary aspergillosis (CPA), a
chronic Aspergillus infection, is more common in patients with damaged lung tissue and/or
pulmonary diseases [30,31]. Pulmonary tuberculosis (PTB) is one of the most common
diseases worldwide, with about 9 million cases each year. Especially when left untreated,
patients often develop lung damage and, as a consequence, have a higher risk of developing
CPA [32]. Similarly, ABPA was thought to impact only 17.7% of patients with cystic fibrosis
(CF) but that may be a gross underestimation, as it is now estimated that almost 50% of
adult CF patients have/have had ABPA or Aspergillus bronchitis (AB) [33]. Infections
caused by Aspergillus species were most commonly found in patients with CF [34–38],
chronic obstructive pulmonary disease (COPD) [2,30,39,40], transplant recipients [41],
hematopoietic stem cell transplant (HPSC) recipients [4,42–45], and especially neutropenic
patients [46,47]. The common denominator is that the immune system is compromised
and thus unable to recognize and remove the (dormant) conidia and developing struc-
tures [3,48,49]. The presence of cell wall debris and/or hyphal fragments, either dead or
alive, is sufficient to trigger immune activation in such a way that it can cause asthma
and hypersensitivity pneumonitis [50]. It should be mentioned, however, that bronchial
epithelial cells are part of the defense and were shown to process dormant conidia by
clearance from the epithelium, thereby preventing germination [51]. In addition, bronchial
epithelial cells can process dormant conidia via uptake and killing [52], although various
studies showed that these DHN-melanin-containing conidia can escape being killed by
suppressing phagolysosomal acidification [53,54]. Excess mucus formation in CF patients
affects, among other things, mucociliary clearance and, in addition, prevents interactions
with bronchiolar epithelial cells, thereby compromising conidial clearance [55,56]. It was
also found that up to 60% of germlings internalized by epithelial lung cells are able to
escape phagosomes through dysregulation of multiple processes because the phagosomes
do not acidify, and hyphal structures escape the phagosomes without undergoing lysis [40].
Therefore, Aspergilli evade the Th1 response that effectively clears the conidia in healthy
patients [57]. Consequently, the fungus can colonize the host tissue [47].

Since the current COVID-19 pandemic started in 2019, co-infection of SARS-CoV-2
and Aspergillus is becoming prevalent [58–60]. What is more, the frequency of co-infection
with IPA ranged from 19.6 up to 33% of patients but occurred mainly in severe COVID-19
cases. Subsequently, several hospitals have decided to use antifungal medications such
as amphotericin B (AmB) and azoles as a prophylactic treatment for every intubated and
mechanically ventilated patient in the ICU [61]. This poses a quandary, as drug-resistant
Aspergilli are becoming more prevalent, and they cause a higher mortality rate than their
non-resistant counterparts [62]. A recent study in the Netherlands has found that of the
31.7% of CF patients in CF centers that were infected with A. fumigatus, 7.1% had an azole-
resistant strain [63]. Especially as current first-line treatment includes mostly (tri)azoles.
Subsequently, the emergence of (tri)azole-resistant species, markedly A. fumigatus, is having
a highly negative impact on patient survival and health [64,65].

With the emergence of more resistant A. fumigatus in patients, the development of new
antifungal drugs is expedient for the treatment of aspergillosis. Further alternatives include
cathelicidins, which are antimicrobial peptides such as LL-37, which is also used by mam-
malian cells [29]. New targets must be identified, and recent transcriptomic and proteomic
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studies could be of use to uncover potential targets [39,48]. Some potential targets for novel
antifungal drugs are transcription factors such as Crz1, RlmA, SltA, AtfA, and BrlA [66–69].
Other targets include stress–response components of Aspergillus, such as trehalose [69].
Considering the role of germination regarding the pathogenicity of A. fumigatus, antifungals
with the aim of precluding germination would be promising [3,40,70,71]. More advances
can be made with an expanded knowledge of germination, azole resistance, and genomic
and transcriptomic studies that focus specifically on germinating Aspergilli. As of now,
there is a variety of proposed targets for new antifungals. The aim of this review is to sort
out the currently proposed targets and uncover potential new anti-germination targets in
A. fumigatus, considering the properties of antifungal drugs and the arising resistance.

2. Host Susceptibility—Immune Clearance and Evasion of the Immune System

Predisposition to aspergillosis is linked to diseases such as AIDS, chronic granuloma-
tous disease (CGD), CF, asthma, influenza [72], COVID-19, immune suppression due to the
use of immunosuppressive drugs such as corticosteroids [73], and lung damage as a result
of COPD and PTB [5,45,74–77]. Additionally, host genetics play a role in susceptibility,
such as mutations in Dectin-1 and -2 [78] and STAT3 [79]. Disparate aspergilloses, such as
IPA, CPA, SAFS, ABPA, non-invasive, extrapulmonary and acute/community-acquired,
occur more frequently within specific patient groups, as can be seen in Figure 1 [4,75,80].
This diverse range of illnesses indicates a disparity in either the specific isolates that cause
distinct aspergilloses or between the patients. Alternatively, both could play a role. Unlike
other Aspergillus-caused diseases, CPA has an estimated burden of up to 3 million world-
wide and impacts mostly immunocompetent people after pulmonary tuberculosis [6,32].
Nevertheless, generally, people with a compromised immune system suffer the most from
aspergilloses [43]; What makes these immunocompromised patients more susceptible to
different types of aspergillosis? An important aspect to consider is whether the pathogenic-
ity varies between various isolates and how Aspergilli have evolved as both plant and
animal pathogens. With more insight into what makes Aspergilli pathogenic and which
conditions are most suitable for germination, this could be applied to develop new an-
tifungal or anti-Aspergillus drugs. Especially with the growing burden of tuberculosis,
COVID-19, and other lung- and immune-affecting diseases worldwide, the encumbrance
of aspergillosis on the worldwide population will grow.

2.1. Pathogenicity of Aspergilli through Resilience and Dispersal

Several Aspergilli are highly virulent in humans, although some, such as A. flavus, were
reported as plant pathogens as well [21]. Moreover, their resilience is displayed through
their ability to grow under relatively extreme circumstances such as temperatures ranging
from 6 to 55 ◦C, as well as with very little organic resources, and in low humidity [21,28,81].
In addition, A. fumigatus is versatile in its ability to use carbon and nitrogen sources, which
enables the fungi to grow in a variety of environments due to its nutritional versatility [82].
Infections by Aspergilli, but especially A. fumigatus, are also associated with the ability
to disperse conidia efficiently [8,19]. The combining factors of conidial size (2–3 µm),
hydrophobins, and shielding cell wall structures all conduce deep penetration of the lungs
as well as evasion of the host’s immune responses [18,83–88].

The conidia of Aspergilli have different cell wall layers, and the one that forms the
outer layer is mostly comprised of melanin [89] and hydrophobins, especially RodA [88].
Under this cell wall layer, polysaccharides such as β-1,3-glucan, α-1,3-glucan, α-mannan,
galactomannan (GM), and galactosaminogalactan (GAG; not present in dormant conidia)
form an interconnected network with chitin up until close to the plasma membrane [90,91].
Conidial melanin is a pigment present in conidia that has a role in platelet activation [92].
Different melanin pigments were found in A. fumigatus, among which are DHN-melanin
and pyomelanin [93]. It was found that A. fumigatus conidia have adapted to evade
the host’s immune system by expressing hydrophobics, of which RodA appeared to be
the most important because RodA is required for rodlet formation on the surface of the
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conidia [86,88,94]. When RodA is mutated, evasion of the immune system is disrupted, as
a consequence of the disturbance in the rodlet layer [87]. The function of RodA in conidia
is to prevent exposure of pathogen-associated molecular patterns (PAMPs), such as β1,3-
glucan and α-mannan to the host’s immune system [85,87]. More recently it was found
that CcpA is another conidial surface protein of dormant conidia that prevents recognition
by the host’s immune system, similar to RodA [83]. After cell wall remodeling takes place
during germination, CcpA maintains the functionality of contributing to immune evasion
of conidia. This is not the case with RodA, as conidia relinquish RodA during germination.
Due to the ability of dormant conidia to evade the host’s immune system with proteins
such as CcpA and RodA, clearance of these (dormant) conidia can be hindered in healthy
people as well in immunocompromised individuals.

2.2. Normal Host Clearance of Aspergillus

Antigen-presenting cells (APCs), including most types of macrophages, can efficiently
recognize PAMPs and present antigens to other immune cells. Consequently, either the
Th1 or Th2 immune response is activated, depending on the production of signaling
molecules such as cytokines and interleukins (IL), for example, tumor necrosis factor α

(TNF-α) and interferon-gamma (IFN-γ) [80]. When healthy individuals come into contact
with Aspergillus conidia, PAMPs are recognized by lymphocytes. As a result, TNF-α, IL-
2, IFN-γ, and granulocyte–macrophage colony-stimulating factors are produced, while
mononuclear cells (MNCs) present antigens that eventually lead to induction of the Th1
immune response [57]. Macrophages are monocyte-derived cells that express lectins, among
others, which are imperative for various cellular recognition events. Specific C-lectins,
Dectin-1 and Dectin-2 are essential in the recognition of Aspergillus conidia by macrophages,
as well as the successive production of different ILs and TNF-α [85]. Conidial cell wall
component DHN-melanin can be recognized by C-type lectin MelLec, which is mostly
involved in recognition by myeloid and likely epithelial lung cells [95]. Internalization of
dormant conidia by epithelial lung cells is mediated by EphA2 and Dectin-1 as a response to
DHN-melanin and glucans exposed on the surface [96]. However, Aspergilli have partially
adapted to evade recognition by the immune system with hydrophobic rodlets and proteins
RodA and CcpA on the surface that conceal PAMPs when conidia are dormant [86]. What
is more, the immune system of individuals with compromised immune systems is often
unable to detect and act upon contact with Aspergillus conidia.

2.3. Interactions between Hosts and Aspergillus Conidia

As the main cause of aspergillosis, A. fumigatus was found to respond to its host’s envi-
ronment by expressing different genes at different time points [42,68,83,97,98]. Compounds
that Aspergilli secrete, such as gliotoxins, have a considerable impact on mammalian cells
through reactive oxygen species that mediate oxidative damage and apoptosis [99]. Intrigu-
ingly, A. fumigatus conidia have shown differential expression of nine genes encoding for
proposed secreted proteins during host infection in two different murine models [42]. They
found that there was a significantly different expression of A. fumigatus genes between days
two and three of inoculation of steroid model and chemotherapeutic model mice when
studying IPA. In steroid-treated model mice, 35 genes were upregulated on day three, while
only 24 genes were upregulated in the chemotherapeutic model. Most of the transcriptomic
differences were found to lie within the gliotoxin biosynthesis gene cluster, which was
found to be downregulated in the chemotherapeutic model. Moreover, A. fumigatus can
recognize and subsequently modulate gene expression upon encountering neutrophils
from either immunocompetent people or neutropenic CGD patients [98]. Taken together,
this indicates that Aspergilli, or at least A. fumigatus, behaves differently depending on
the immune status of individual hosts. This specific adaptation is possibly why patients
with underlying conditions experience disparate aspergilloses, especially if this means that
Aspergilli infect immune deficient patients more frequently.
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2.4. Abnormal Host Immune Responses to Aspergilli

Immunocompromised individuals have other responses to Aspergilli compared to
healthy individuals, which is apparent in the case of ABPA and SAFS. In patients that
experience ABPA, Aspergillus conidia induce relatively high levels of IL-4, IL-5 and IL-13,
and low levels of IFNγ [100–103]. These interleukins are cytokines associated with a Th2
immune response, which includes stimulation of B-cells that produce a host of cytokines
that lead to IgE antibody formation and inflammation [104,105]. Inflammation is a con-
sequence of activation of mast cells and recruitment of eosinophils, mainly by cytokines
such as IL-5 combined with high levels of IgE [101,106,107]. Patients that exhibit this
type of immune response, have an impaired ability to eradicate Aspergillus fungal growth.
Contrastingly, recognition of A. fumigatus by monocytes from healthy hosts led to higher
expression of interleukins (IL-10, IL-8, IL-1β, CXCL2, CCL3, CCL4, and CCL20), CD14,
matrix metalloproteinase 1 (mmp1), ficolin-1, and opsonin long pentraxin 3 [108]. With
regards to the eosinophil stimulation and maturation that takes place upon the response
of Aspergillus-antigens, targeting the IL-5 pathway might have some potential [109,110].
Considering the role of the individual cytokines and the balance of Th1 and Th2 immune
responses, modulating this to the advantage of patients would likely need customization
for patients or patient groups.

Because of the high prevalence of allergic aspergilloses such as ABPA (10.5%) and SAFS
in the specific risk group of CF patients, it might be promising to look into specific thera-
pies [111]. The inflammatory response, which is a key symptom of ABPA, which primarily
CF patients exhibit, could possibly be targeted through modulating TLR-4/TLR5 [112]. It
was found that the cystic fibrosis transmembrane conductance regulator (CFTR), which
causes CF when defective due to mutations, is important in the regulation of CD4+ T-cells.
Consequently, mutations in CFTR lead to a bias towards a Th2 response to A. fumigatus anti-
gen exposure, as IL-4, IgE and IgG are elevated compared to wild-type CFTR [49,112,113].
Co-infection of Aspergilli and Pseudomonas aeruginosa (P. aeruginosa) might contribute to
the prevalence of ABPA in CF patients, as P. aeruginosa mediates a shift towards the Th2
response [114] and is found in CF patients with a prevalence of about 26.9% [115]. The
presence of P. aeruginosa likely contributes to higher host susceptibility to aspergillosis,
specifically through a TLR5-mediated shift to a Th2 inflammatory response concordant with
ABPA symptoms [100,116]. In addition, a new line of therapy to treat CF was introduced,
which corrects effects caused by mutations in CFTR by modulating CFTR [37,117–119].
Considering this, forestalling a TLR5-mediated shift, combined with prophylactic inhibitory
drugs that target Aspergilli, could possibly prevent the colonization of A. fumigatus before
the development of ABPA.

3. Current and Past Treatments for Aspergillosis and the Rising Azole Resistance

The first antifungal drugs that were used for aspergillosis are amphotericin B (AmB)
and itraconazole, as mentioned in Table 1. AmB binds to sterols, leading to increased
permeability of membranes and inhibition of ATPase proton pumps [19]. However, AmB
has been used for more than 50 years and different formulations such as L-AMB have
been developed, but there are also some drawbacks, even though it is effective for treating
invasive aspergillosis [120]. For one, it is hydrophobic and thus difficult to administer to
patients affected by aspergillosis. Most detrimental is the toxicity of AmB on patients, even
though fungal cells are affected more than host cells. Itraconazole is a triazole that binds
competitively to a catalytically active iron atom in the enzyme14α lanosterol demethy-
lase, which is involved in cytochrome P450 (CYP450) [19,121]. Since 1998/1999, resistance
against azole medications emerged among patients with aspergillosis, first reported in
the Netherlands [122]. The isolates were specifically resistant to itraconazole, but not
the newer voriconazole medication, which had become the new first-line treatment since
2002 [123]. Following that, other azole-based antifungals such as posaconazole, as well
as echinocandins caspofungin, micafungin and anidulafungin were used as (invasive)
aspergillosis treatments [62,124–126]. Most of these azoles have a similar mechanism of ac-
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tion; affecting sterols in the plasma membrane by targeting the 14α lanosterol demethylase
enzyme, thereby also targeting the CYP450 family. It should be noted that new antifungals
are under development and target, for example, GPI-anchor biosynthesis or sphingolipid
synthesis [127], as well as cell wall synthesis and remodeling [128]. As of 2009, azole resis-
tance became more common as from 6 to 12.8% of patients in the Netherlands were found
to have resistant isolates, yet these numbers may vary between countries [129,130]. The
development of isavuconazole, a newer azole-based antifungal was to no avail [131–133].
This was because the isolates resistant to itraconazole showed a reduced susceptibility for
voriconazole and posaconazole [129,130]. Currently, azole resistance is still a problem for
patients with aspergillosis, especially immunocompromised patients. Among patients,
aspergillosis leads to a further decline in respiratory health, and the azole resistance of A.
fumigatus was found in 7.1% of the culture-positive CF patients [63].

3.1. Mechanisms of Azole Resistance

Most of the azole-resistant strains have mutations in the cyp51A gene, which is part of
the CYP450 family, with hotspots at codons 54, 98, and 220 [134–136]. However, not only
mutations in the cyp51A or cyp51B genes [137] can lead to resistance, but mutations in other
genes such as afcox10, hapB, hapE, hmg1, mfsC, nctA, nctB, srbA, and svf1 were identified to
contribute to azole resistance as well [138–140]. The most dominant mutations, especially
for multi-azole resistance, were tandem repeat (TR) mutations of 34 bp (also called TR34)
and an L98H substitution in cyp51A [141]. Tandem repeat mutations in the promotor region
such as TR34 or TR46, lead to increased expression of cyp51A and combined with the L98H
mutation, contribute to a multi-azole resistant phenotype [129,142]. Cyp51A encodes for the
enzyme 14α-lanosterol demethylase which is essential for CYP450 functioning. Prevalent
mutations that were found in azole-resistant isolates include L98H, TR34, relocation of
tyrosine 107 and 121, and G54W, which all led to a smaller binding site, resulting in impaired
binding of (tri)azoles [141]. What is more, no unfavorable fitness costs were found with
these azole-resistant mutations. This is most likely because the mutated Cyp51A protein
functions normally, even though the mutated regions are normally highly conserved [143].
It was proposed that specific mutations lead to resistance to either multiple azole resistance
or to resistance for specific azoles. For example, a G448S mutation in A. fumigatus in cyp51A
was associated with resistance against voriconazole, but not posaconazole [144]. It seems
to be the case that azole resistance is a broad term that describes several mutations that can
be obtained, but mostly (up to 80% of azole-resistant strains) in the cyp51A gene, with the
most common mutations being TR34 and L98H in A. fumigatus [63,145].

Other prevalent cyp51A mutations were found in patients with aspergillosis, including
a less prevalent 53bp TR mutation (also called TR53) [147] and a 46 bp TR mutation (also
called TR46) with Y121F and T289A mutations [148]. Moreover, in this study, most of the
patients that harbored the TR46/Y121F/T289A mutations were diagnosed with (probable)
IPA and had not undergone azole treatments prior to the infection [148]. About half of
the patients with probable or proven IPA in the study received voriconazole as first-line
treatment and all died within 12 weeks of culturing of the isolate. The other half received
liposomal AmB, and those patients all survived until at least 12 weeks, although two of the
patients maintained a persistent infection. These findings highlight that the mutation was
already present in the fungi and that, at least in these cases, the first-line treatment solely
affected patient survival but not resistance.
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Table 1. Common antifungal drugs used as aspergillosis treatment. Itraconazole and fluconazole
were part of the first generation of azole drugs. Second generation of azoles include voriconazole,
posaconazole, and isavuconazole. CYP450 as target means that the ergosterol synthesis is affected,
which is essential for the cell membrane. This is performed by inhibiting 14α lanosterol demethylase,
on which CYP450 depends.

Antifungal
Drug Drug Target Year Dispensed Resistance

Status Source(s)

Amphotericin B
(AmB)

Sterols in the membrane
of Aspergilli. Increased

permeability and
inhibition of ATPase

proton pumps

1958
(re-introduction

in 1990s with
lipid-based

AmB)

Yes, but
uncommon [19,62]

Itraconazole CYP450 1992 Yes [121]

Caspofungin
Synthesis of cell wall

component
1,3-β-d-glucan

2001 [121,125]

Voriconazole CYP450 2002 Yes [121,123]

Micafungin
Synthesis of fungal cell

wall component
β-1,3-glucan

2005 Yes [126]

Posaconazole CYP450 2006 Yes [124]

Anidulafungin
Synthesis of fungal cell

wall component
β-1,3-glucan

2006 Yes [146]

Isavuconazole CYP450 2015 Yes [131–133]
The antifungal drug names are in bold; the fields on the right are colored to indicated the correct parts belonging
to the drug described.

3.2. The Rise and Challenge of Azole Resistance

It is highly sought after how azole resistance has originated, as azoles have now
been used for over 20 years in the medical field as well as in agriculture [122,129]. Azole-
resistant Aspergilli were found in environmental samples/isolates in the Netherlands,
Belgium, India, Italy, and the UK [145,148–151]. Furthermore, high levels of azole-resistant
A. fumigatus were found in a study on azole resistance (mutations) in organic waste from
landscaping, flower bulb waste, wood chippings, and household waste [152]. These
findings are in line with earlier findings that related azole-resistant strains to the isolates
that caused IPA could be found in air samples in the surrounding environment [148]
and which was confirmed by population genomics analysis [145]. More comparable
azole resistance genetic markers were found in patients with aspergillosis or Aspergillus
colonization and environmental samples of Aspergilli [145]. Additionally, it was found
that the agricultural use of azoles puts enough selective pressure on A. fumigatus for it
to acquire the TR34/L98H mutation to induce azole resistance [153,154]. Similar results
for azole-based fungicides were found for G54 mutations, among others [155,156]. This
is despite the regulation of azoles and other fungicides in agriculture and the different
azoles (DMIs) that are used in agriculture compared to first-line treatment for patients.
The urgency of the effects that the usage of azoles has in agriculture was highlighted by
findings of a novel pan-triazole-resistant mutation with a triple TR46-bp promoter repeat
in the promoter region of cyp51A, possibly due to sexual reproduction [157]. In-patient
acquired resistance was found as well, especially in patients with CPA and ABPA, or those
with reoccurring or persistent IPA infections [158,159]. The (multi-)azole resistance in A.
fumigatus has an exceptionally detrimental effect on patient survival, as the mortality of
patients infected with resistant strains was found to be between 50 and 100%, although
some have reported that it would be between 88 and 100% since the transition from the
“azole era” to the “azole-resistant” era [65,148,160].
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4. Conidial Germination and Its Different Morphotypes

Aspergilli are a diverse group of fungi, currently comprising 446 species, and all of
them go through an asexual life cycle where conidia are produced [23,161]. Conidia are
resistant to many stressors such as temperature shocks, drought, low nutrient availability
as well as osmotic and oxidative stress [21,162]. This results from the physical barrier
consisting of layers of polymers that encompass conidia, molecules such as trehalose and
mannitol, as well as the ability of conidia to stay dormant [162–164]. Germination of A. fu-
migatus was shown to be heterogeneous and conidia program themselves by the formation
of transcripts during sporulation, which is affected by culture conditions [165–167]. Fur-
thermore, heterogeneity between conidia in cell wall composition affects fungal sensitivity
and phagocytosis [168]. During germination, conidia have distinct morphotypes, which can
be seen in Figure 2. Resting or dormant conidia of A. fumigatus make up the first of the ger-
mination morphotypes, where they are the smallest with a diameter of about 2–3 µm [19].
In this dormant morphotype, conidia can disperse, evade the immune system of their host,
and withstand stressors until the environment is favorable for germination [28,169]. The
second morphotype is the breakage of dormancy, which is not visible but characterized
by transcriptional changes in the conidia [170]. Early conidial germination and the timing
of the transitions are dependent on the availability of resources, such as inorganic salts,
sugars, and amino acids [27,28]. In the third morphotype, isotropic growth takes place,
where conidia swell to about double their original size [170]. The fourth morphotype is
when a switch from isotropic to polarized growth takes place. A germ tube, otherwise
known as a polar tube, is formed during polarized growth where the outer spore wall is
breached [171]. When these germ tubes continue to grow, vegetative growth takes place,
where the formed hyphae grow.
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Transitions and Differences between Morphotypes; How Are They Facilitated?

Transitions between each of the morphotypes of germination are highly regulated
and were studied at the RNA level [170]. The functions associated with the transcripts
were distinct for the conversion between the morphotypes. In dormant conidia, there
is mostly RNA encoding for polymers and other shielding- and preservation-associated
(glyco) proteins important for the synthesis of the cell wall, as well as enzymes and other
(secondary) metabolic pathway components [173].

www.biosensesolutions.dk
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In a study, A. niger was found to express different genes only 1 h after inoculation
of newly harvested dormant conidia in a medium [174]. They found that upregulated
genes were associated with fermentation/glycolysis, nitrogen metabolism, TCA cycle,
mitochondria, and respiration. Whereas genes that were downregulated were associated
with the metabolism of internal and alternative carbon sources, the GABA metabolic
pathway, and anaerobic respiration mediated by glyoxylate. This differs compared to a
similar study of A. niger conidia where transcripts upregulated after breaking dormancy
(after 2 h) were associated mostly with the cell cycle, DNA processing, respiration, and
protein synthesis [170].

Some of the genes associated with internal carbon source metabolism are mannitol
dehydrogenases such as mpdA, glycerol dehydrogenase, glyceraldehyde dehydrogenase
gpdA, and trehalase (treB). An abundance of transcripts was found in dormant conidia,
as well as during isotropic and polarized growth, but not shortly before isotropic growth
takes place [174]. One of the most important differences found to set apart dormant
and germinating conidia is the degradation of internal trehalose by trehalases during
the breaking of dormancy [175,176]. Subsequently, during isotropic growth, trehalose
biosynthesis is activated [69,176]. Trehalases such as TreA and TreB make up a group of
enzymes that break down trehalose and together with trehalose biosynthesis transcripts
(encoding for TpsA, TpsB, TpsC), TreA-encoding RNA was found to be abundantly present
in dormant conidia of A. nidulans and A. niger [164,170]. After 2 h, during isotropic growth,
transcripts of genes involved in the formation of trehalose and trehalase were found to be
decreased, but the expression was elevated increasingly throughout the germination [170].
It was found that TreA is either synthesized or activated after germination starts but
is less abundant than TreB in A. fumigatus [176,177]. Mutated TreB in A. nidulans was
found to result in a delayed germination phenotype, especially when carbon resources are
scarce [176].

The transition between dormant and isotropic growth occurs as a response to external
triggers such as carbon and nitrogen sources [178]. Dormant conidia can detect molecules
in their environment, some of which are able to trigger or forestall germination. To sense
the available nitrogen, one of the key resources Aspergilli require to germinate, Aspergilli
were found to use G-protein coupled receptors (GPCRs) [178]. GanB is an essential gene
encoding for the Gα-subunit of a GPCR that induces germination in some Aspergilli, such
as A. nidulans [179]. Deletion mutants of ganB showed a delayed germination phenotype,
and although constitutive activation resulted in germination, hyphal growth and asex-
ual sporulation/conidiation were impaired. GpaB is the ganB homolog in A. fumigatus
for the Gα-subunit of GPCRs found in A. nidulans, but its role in germination was not
established [180]. We hypothesize that GpaB might also be important for germination in
A. fumigatus, although more research is needed to determine whether it can be targeted
to halt germination. Notably, other homologous GPCR subunits, such as GpaA and SfaD
were found to be compulsory for germination in A. fumigatus [181].

It was proposed that the immune system clears germinating conidia with exposed β1,3-
glucan and α-mannan by Dectin-1 and -2 expressing immune cells, while dormant conidia
are bound to airways mucins and macrophages through FleA recognition in a fucose-
dependent manner [182]. The lectin FleA (also known as AFL1), was found to play a role in
inflammatory (via IL-8 production) [183] and immune response, acting as a PAMP against
which the host immune system can act. Its importance in attenuating pathogenicity was
proven in a few in vivo studies with FleA-deficient conidia in mice [182,184], highlighting
the relevance of the lectin in the proper clearance of conidia. Interestingly, a study [185]
showed that bronchial epithelial cells (BEAS-2B) are able to attenuate germination of A.
fumigatus conidia through recognition of FleA and that this fungistatic activity is effectuated
by the phosphoinositide 3-kinase (PI3K) pathway on the host side. The most widely
accepted opinion is that FleA recognition by host cells does not endanger internalization;
its role in adhesion and phagocytosis, however, is still under debate and its function needs
to be elucidated further. In this direction, significant synthetic efforts are currently directed
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to elaborate strong FleA inhibitors that can probe its involvement in adhesion [186] and
filament formation of extracellular A. fumigatus [187].

AtfA is an important regulator for the induction of germination in dormant A. fumiga-
tus conidia [97]. Earlier, AtfA was found to be a key bZip transcription factor upregulated
when conidia experience stress, mediating SakA and MpkC in the MAPK pathway [69].
AtfA expression leads to the upregulation of genes associated with dormant conidia (such
as aspf3, aspf8, cyp4, hsp90, and rpL3), whereas in the absence of AtfA, genes associated with
germination were upregulated (such as calA and calB) [97]. As one of the most upregulated
genes shortly after induction of germination, the CalA protein is a proposed germination
initiator. What is more, it is one of the genes downregulated in dormant conidia and in
the presence of AtfA. Transcription factors regulate many processes within conidia and
during host infection, which makes transcription factors such as AtfA interesting targets
for novel Aspergillus-specific drugs, which were also proposed [67]. Especially seeing that
transcription factors tightly regulate gene expression in conidia, which is essential for the
different morphotypes of germination and for establishing invasion and colonization of
host tissue.

During the transition from dormant conidia to isotropic growth and polarized growth,
the cell wall is remodeled, and transcriptomics studies reflected this with findings that
genes associated with biosynthesis of mannose and β1,3-glucan, such as gel1, gel4 and
srbA are upregulated [173,188,189]. Genes that modulate cellular growth, metabolism and
genomic replication are upregulated mostly during polarized growth, in conjunction with
cell wall biosynthesis- and remodeling-associated genes, such as gel2 and gel5 [71,173]. One
of the most distinct external hallmarks of polarized growth is the formation of a germ tube,
which the host immune system can detect and halt in immunocompetent patients, but not
in immunocompromised patients [86].

5. Proposed Targets for Novel Approach to Aspergillosis Treatments through Targeting
Conidial Germination
5.1. To Target the Host or the Spores?

Seeing that many aspergillosis patients are immunocompromised, the question arises
whether novel antifungal drugs should target patients, fungal structures such as conidia, or
both. The current drugs target specific mechanisms of the pathogens but were proposed to
balance the Th1/Th2 immune response, especially for treating ABPA [100]. They proposed
that IFNγ might increase the Th1 response and lessen the fungal burden, which is supported
by findings that natural killer cells damage germinated conidia by releasing IFNγ in
response to A. fumigatus [104]. This is also in line with the findings that CF patients exhibit
an inflammatory Th2 response, especially when they have ABPA [49]. Mutations in CFTR
cause CF, and it was found that CFTR is a key regulator of CD4+ T-cells. Consequently, these
mutations in CFTR lead to a bias towards a Th2 response to A. fumigatus antigen exposure,
as IL-4, IgE and IgG are highly elevated compared to non-immunocompromised people.

What is more, several other host factors and mutations were found to contribute to
a higher fungal burden, as A. fumigatus showed more adhesion, internalization, growth,
and germination in immunocompromised patients. Firstly, ZNF77 is a transcription factor
in humans that regulates extracellular matrix proteins among others, and genetic variant
rs35699176 was found to contribute to a higher fungal burden in ABPA patients [190].
Secondly, mutations in the serum amyloid P component (SAP/APCS gene) are associated
with impaired recruitment of neutrophils upon recognition of conidia [191]. In 2019, seven
more host markers were found to facilitate the internalization and processing of conidia by
host cells [192]. They proposed the pathways mediated by RAB5C, PIK3C3, and flotillin-2
as potential targets for host-targeted therapeutics.

Although targeting the host rather than the pathogen can be beneficial when the
immune system has a high response, patients would still require a responsive immune
system. Since CF patients are immunocompromised but are still able to develop an immune
response in most cases, they could benefit greatly if the Th1/Th2 balance would shift to
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Th1. Not all aspergillosis patients are able to produce an immune response, especially
immunodeficient patients, and a novel antifungal that targets the Aspergilli rather than
the hosts would be more beneficial in these cases. Moreover, it is expected that such an
antifungal would probably benefit neutropenic, immunodeficient, and immunocompro-
mised patients, as well as immunocompetent patients (with underlying conditions such
as CF and asthma). Antifungals that inhibit germination might be of use as prophylactic
agents to prevent fungal outgrowth in patients that subsequently receive immunosuppres-
sive therapy. Except prophylactic treatment should be carefully considered in the face of
potential resistance.

5.2. Possible Targets for Novel Antifungals That Hinder Germination

Germination is an essential and consistent occurrence in cases of Aspergillosis. As each
morphotype exhibits an expression of different genes, and switches within RNA profiles,
proteins, metabolism, and cell wall composition were reported [21,71,97,170,173,174,193–195].
Proposed potential targets to modulate Aspergillus germination can be found in Tables 2 and 3.

Table 2. Potential targets to disrupt the specific morphotypes of germination of Aspergillus conidia.

Germination
Morphotype to

Disrupt
Potential Target Description Which

Aspergillus Source

Dormant
conidia Arp1, Arp2, Ayg1

Associated with melanin biosynthesis
(black-cluster Baltussen et al., 2018). Expression

was found to be exclusively high in
dormant conidia.

A. fumigatus [173,195]

Aspf3, Aspf8
Cell surface-associated proteins can be

recognized as allergen by host’s
immune system.

A. fumigatus [97]

AtfA
Key transcription factor present in dormant

conidia that negatively regulates calA and calB,
which are involved in breaking of dormancy.

A. fumigatus [97,196]

CatA, ConJ, Fhk1

Genes that are upregulated in an
AtfA-dependent manner.

CatA is a spore-specific catalase.
ConJ has an unknown function in A. fumigatus.
Fhk1 is a transcription factor that regulates the
CLB2 cluster of genes in the G2/M phase of the
cell cycle, associated with cell growth, mitosis,

and cytokinesis.

A. fumigatus [97]

CatA, Cat2, Cat3 Catalases that protect dormant conidia against
oxidative stress. A. fumigatus [97,195]

CcpA Associated with stress resistance in vitro
with cells. A. fumigatus [83]

Cyp4 Peptidyl-prolyl cis-trans isomerase. A. fumigatus [83]

DprA, DprB,
DprC

Dehydrin-like proteins involved in
stress–response of dormant conidia,

upregulated in an AtfA-dependent manner.
A. fumigatus [83]

Hsp90 Heat-shock protein, associated with
temperature stress. A. fumigatus [83,166,

197–199]
RpL3 Ribosomal protein L3. A. fumigatus [83]

Involved in alcohol fermentation (pyruvate
decarboxylase and alcohol dehydrogenase). A. fumigatus [174,195]

Breaking of
Dormancy Ace2

Transcription factor for Swi5, regulates
germination, pigment production, and

virulence. Tightly regulated, upregulated at t =
0.5 h, downregulated at t = 2.5 h.

A. fumigatus [200]

AmyD Key regulator associated with α-glucan
synthesis and cell wall remodeling. A. nidulans [201]
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Table 2. Cont.

Germination
Morphotype to

Disrupt
Potential Target Description Which

Aspergillus Source

AreA, NirA
Transcription activators that respond to

nitrogen. Found to be germination triggers and
for nitrogen uptake

A. fumigatus [68,178]

CalA, CalB
Thaumatin-like protein, associated with

triggering breaking of dormancy. Negatively
regulated by AtfA.

A. fumigatus [97]

CreA
(An02g03830),
(An02g03540)

Fermentation/
Glycolysis: creA is a catabolite repressor. [174]

FleA
Recognizes and binds receptors, plays a role in
attachment/adhesion to epithelial cells, as well

as recognition by host’s immune system.

A. fumigatus and
S. apiospermum

(as SapL1)

[182–
187,202]

PmaA,
(An11g04370),
(An01g10190),
(An04g02550),
(An08g08720)

Mitochondria/Respiration. A. fumigatus [174]

-Translation
initiation factor

CpcC
-Transcription

factor CpcA
-Neutral amino

acid transporters
(An16g05880,
An04g09420,
An17g00860)
-Transporter

proteins
(An11g00450),
(An03g05590)

Nitrogen metabolism. A. fumigatus [174]

TCA cycle. A. fumigatus [174]

Isotropic growth Gel1, Gel4 Gel family, important for cell wall remodeling.
Linking and elongating of β-1,3-glucans. A. fumigatus [173,203]

VadA
Transcription factor involved in regulation of

genes associated with polysaccharide
metabolism, cell wall, and stress.

A. nidulans [204]

Polarized growth Bisque4 module

Associated with cellular growth, includes genes
such as sun1 (involved in modification of

β-1,3-glucan), sidA (essential for the primary
step of siderophore biosynthesis), GEL family

genes (gel2, gel3, gel5), and chitin
synthase genes.

A. fumigatus [170,173]

ChiA1 Class III chitinase, associated with conidial
stress, upregulated in hypoxic conditions. A. fumigatus [205,206]

Ecm33
GPI-anchored protein associated with cell wall
biosynthesis, stress resistance, and evasion of

host’s immune system.
A. fumigatus [27,207]

Sienna3 module

Associated with regulation of the cell cycle and
DNA processing

-mitotic metaphase plate congression
-assembly of the midzone of the mitotic spindle

-nucleation of microtubules by the spindle
pole body.

A. fumigatus [173]
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Table 2. Cont.

Germination
Morphotype to

Disrupt
Potential Target Description Which

Aspergillus Source

SrbA

Transcription factor in the family of sterol
regulatory element-binding proteins (SREBPs).
Regulator of cell wall polarity and essential for

outgrowth of germ tubes.

A. fumigatus [171,205]

Sod3
Sod3 is an allergenic putative manganese

superoxide dismutase, associated with reactive
oxygen defense.

A. fumigatus [203]

Trr1 Putative thioredoxin reductase. A. fumigatus [203]

5.2.1. Targeting Dormant Conidia

Dormant conidia of Aspergilli are protected by several cell wall layers, which protect
against extracellular stressors and hinder immune recognition of PAMPs as well [86]. As a
result of their survival and virulence characteristics, dormant conidia are challenging to
target for the host immune system. However, dormant conidia have an extremely distinct
transcriptome compared to other germination morphotypes [174]. Upregulated genes in
dormant conidia that are possible targets are shown in Table 2; most genes are associated
with metabolism, stress resistance, or synthesis of cell wall components. Especially the
cell wall and surface proteins in the melanin ‘black-cluster’, along with Aspf3, and Aspf8
are components that are expected to be exposed on the outer surface [173,195]. AtfA is a
transcription regulator found to perform a key role in keeping conidia dormant, down-
regulating genes associated with breaking of dormancy such as calA and calB [97,208].
Considering the survival mechanism dormant conidia present, affecting cellular compo-
nents involved in the regulation of internal and external stressors could disturb the conidia
enough to reside in a dormant state. Conidia are not completely impenetrable when they
are dormant but targeting components that reside within conidia might be challenging as
the conidial cell wall is dense and thick. Targeting dormant conidia might still be useful,
but rather when conidiation takes place outside hosts, as a means to prevent new conidia
from germinating in the environment. Especially because many aspergillosis patients are
treated and reside in hospitals for extended periods of time.

5.2.2. Hindering the Breaking of Dormancy

Conversion of conidia from a dormant state to isotropic growth is facilitated by tight
regulation of transcription factors such as Ace2, AmyD, AreA, and NirA (see
Table 2) [68,178,200,201]. The transcription factors associated with this morphotype of-
ten regulate cell wall remodeling, as is expected, seeing the subsequent morphotype is
characterized by conidial expansion. Other potential targets include thaumatin-like proteins
CalA and CalB, which are negatively regulated by transcription factor AtfA in dormant
conidia [97]. Other than that, abundant transcripts are associated with mitochondria and
respiration, fermentation/glycolysis, the TCA cycle, and nitrogen metabolism [174]. Lastly,
FleA transcripts are abundant in this morphotype. Since FleA is expressed as a conidial
surface protein that mediates adhesion to the host, it can be targeted by anti-adhesive
agents designed to prohibit the long-lasting attachment of the microbe on the cell surface,
therefore preventing infection [185]. FleA was also found to be upregulated during the
transition into isotropic growth [182]. In an alternative approach, FleA expression could be
regulated in such a way that the lectin is continuously presented to epithelial host cells, so
they can exert their antifungal activity on extracellular conidia through the PI3K pathway.
However, additional experiments are required to investigate whether extracellular A. fumi-
gatus conidia expressing FleA are inhibited during isotropic or polarized morphotypes. The
morphotype is unknown as Richard et al. (2018) incubated the conidia with epithelial cells
for 6 h with a reported 15.9% ± 2.1 germination rate, whereas the conidia incubated with a
PI3K inhibitor had a germination rate of 42.7% ± 10.4 [185]. They did not describe whether
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these rates corresponded to the formation of a germ tube or whether they checked the
conidia for isotropic growth. Nevertheless, the involvement of FleA in cellular recognition
and its multifaceted activity makes it a promising target, although (most likely) limited to
the A. fumigatus or Aspergillus conidia.

5.2.3. Targeting Cell Wall Remodeling That Facilitates Isotropic Growth

Normally, conidia of A. fumigatus expose β-1,3 glucan and other PAMPs during ger-
mination, as a consequence of cell wall remodeling that takes place to facilitate conidial
expansion and germ tube formation in the isotropic and polarized growth morphotypes, re-
spectively. This remodeling of the cell wall during isotropic growth is facilitated by proteins
involved in the metabolism of polysaccharides, such as VadA in A. nidulans, ChiA1, and
Gel4 together with Gel1 in the Gel family involved in the elongation of β-1,3 glucans in A.
fumigatus (see Table 2) [173,204]. By targeting the conidial cell wall remodeling, premature
germination of conidia could possibly be triggered. This might lead to depletion of energy
resources, earlier exposure, and recognition by the host’s immune system, as well as low-
ering the hypoxial, mechanical, and chemical stress tolerance of the conidia. On the other
hand, if essential cell wall synthesis genes such as gel4 are overexpressed, conidia might be
perturbed in their ability to form germ tubes because of a more rigid and near-impenetrable
cell wall, hindering or delaying both further isotropic growth and germ tube formation.
Disruption of processes where the cell wall is broken down to facilitate the formation and
breakthrough of a germ tube could be hindered. ChiA1 is one of these possible targets
as it facilitates chitin breakdown [206]. Nevertheless, targeting cell wall breakdown or
biosynthesis will promise to be a precarious journey, with reports of Aspergilli mutated in
several chitin deacetylases (Cda) with no attenuation of virulence [209].

5.2.4. Targeting Polarized Growth

After isotropic growth, the cell wall was modulated, and as a consequence, the ger-
minating conidia are less resilient to stressors. This is reflected by the transcriptome
throughout polarized growth: more transcripts of genes associated with stress resistance
such as ecm33, sod3, and trr1 are found, as can be seen in Table 2 [27,203,207]. In addition,
Ecm33 is not only involved in stress resistance but also in cell wall synthesis and evasion
of the immune system. Targeting these stress regulators during the polarized growth
morphotype of germination can be conducive to preventing substantial vegetative hyphal
growth. Sphingolipids also play a critical role in spore germination and polarized growth
and are potential targets [210–212]. Cell wall polarity is important for the outgrowth of
the germ tube during polarized growth, which is why SrbA is an intriguing target as
well [171,213]. SrbA is a membrane-bound transcription factor in the family of sterol
regulatory element-binding proteins (SREBPs), that regulates cell wall polarity, and it is
involved in the biosynthesis of ergosterol, induced mostly in hypoxic conditions [205,214].
If stabilization does not occur, the conidium is not as capable of rupturing the cell wall
with a polar germ tube [205]. Through in vivo experiments in mice lungs, it was found
that srbA is highly upregulated during infection, highlighting its role in virulence [68].
Gene co-expression analysis was used to identify gene clusters associated with isotropic
and polarized growth in A. fumigatus conidia. Modules representing highly co-expressed
clusters were identified and analyzed [173]. As the conidium grows, the Sienna3 module
is upregulated, which contains genes associated with the mitotic spindle and metaphase
plate [173]. Even though this is a possible target, it can be anticipated that by targeting struc-
tures as conserved as microtubules, host cells are targeted as well as conidia which would
be undesirable. Lastly, the bisque4 module is associated with cellular growth, with specific
Gel family gene expression of gel2 and gel5 in the polarized growth morphotype, with
upregulation of gel1 and gel4 genes during both isotropic and polarized growth [71,173,215].
Specifically, gel4 was found as an essential putative glucanosyltransferase in A. fumigatus
conidia germination [215], whereas gel1 disruption was not found to impact germination or
viability [216].
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Table 3. Other potential targets to disrupt the germination of Aspergillus conidia.

Category Potential Target Description Which Aspergillus Source

Other AcuM, AcuK Key transcription factors associated with
gluconeogenesis and acquisition of iron. A. fumigatus [217]

CrhB, CrhC
Associated with swelling, germ tube formation

and branching. Expressed mostly between t = 1 h
and t = 6 h.

A. niger [218]

FacB Transcription factor that is associated with acetate
metabolism. A. fumigatus [219]

HbxB
Key transcription factor, associated with

repressed transcription of genes associated with
β-glucan degradation.

A. nidulans [220]

MybA Transcription factor that affects conidial viability. A. fumigatus [196,221]

RlmA

Transcription factor that regulates mycotoxin
production in conidia, as well as cell wall

remodeling and synthesis, in particular, chitin.
Associated with the fungal burden in lungs

in vivo (mice).

A. fumigatus [68,194]

TreB Trehalase, breaks down trehalose during
germination. A. niger [222,223]

Hypoxia

Cox5b, CycA,
Afu3g06190,

Afu1g1078, Gel4,
and Rip1

Most upregulated genes during hypoxia found
in vitro with A549 cells. A. fumigatus [203,205]

Electron transport chain: complexes III and IV are
essential for adaptation under hypoxic growth. A. fumigatus [224]

SrbA

Transcription factor in the family of sterol
regulatory element-binding proteins (SREBPs).

Regulator of cell wall polarity and
sterol-associated genes. Involved in iron sensing

and adaptation to hypoxia.

A. fumigatus [68,205,213,
214]

Oxidative
damage CatA, Cat2, Sod3

Superoxide dismutase and catalases, associated
with protection from reactive oxygen species and

oxidative damage in vitro with A549 cells.
A. fumigatus [203]

ThiJ/Pfp1 family
protein

(AFUA_3G01210)

Within the Thil/Pfp1 family. Possibly associated
with defense against reactive oxygen species due

to similarity to YDR33C in yeast.
A. fumigatus [195]

Stress response AtfA-D

bZip transcription factors, associated with
regulation of osmotic and cell wall stress. All four

interact with MAPK Saka in conditions that
lacked stress.

A. fumigatus [208]

DprA, DprB, Scf1 Highly upregulated in vitro with A549 cells. A. fumigatus [203]

MsbA

Associated functions are within the cell wall
integrity pathway, cell wall morphogenesis, and

sensor/signaling. A homolog of MSB2 in C.
albicans, S. cerevisiae, and A. nidulans, functional
as an external sensor and important for virulence.

A. fumigatus [225]

Downregulated
after breaking

dormancy

Cat2, MirD, Sdh2,
SidA, SidC, SidD,

SidF

Associated with iron acquisition. Downregulated
in vitro with A549 cells. Only cat2 sidA, sidD,

and mirD were found to be downregulated
in vivo [68].

A. fumigatus [203]

GpgA

GPCR-γ subunit associated with gliotoxin
production. A loss of function mutant showed

severely delayed and impaired germination, with
reduced structures in the maximum 65%

germinated conidia.

A. fumigatus [42,181,203]

SltA
Downregulated as a response to nutrient
deficiencies during growth in vivo (mice,

IPA model).
A. fumigatus [68]
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5.2.5. Other Anti-Germination Targets

Affecting the components involved in stress resistance of conidia in dormant stadia
and during early germination would impede vegetative growth of hyphae. This would
prevent penetration and invasion of host tissue, resulting in a decreased fungal burden
for patients. Hypoxia was identified as a stressor for A. fumigatus and several genes
upregulated during germination are associated with hypoxia stress tolerance, as displayed
in Table 3. Upon contact with host cells, A. fumigatus downregulates genes associated with
virulence such as sidA, sidD, and gpgA in conidia [68,203]. This could contribute to the
evasion of the host’s immune system, by adapting to the host’s environment [84].

6. Discussion and Conclusions

Aspergillosis has a tremendous impact on humanity, in particular the neutropenic
population, as a result of congenital defects [226], infections with pathogens [227–229],
or following treatment [230,231]. The latter is most often the case due to corticosteroid
therapies [73,232] and chemotherapeutic agents [233–235]. Not only are Aspergilli the
cause of disease in over 14 million people worldwide, but they cause high mortality rates
depending on the specific disease [3]. Invasive infections have reported mortality rates
of 30 to 95% [3], whereas chronic aspergillosis has minimal mortality of 15% in the first
6 months following diagnosis [2]. Additionally, Aspergilli possibly contribute to a higher
susceptibility to other pathogens as a consequence of the burden they pose on patients [36].

Conidia are the most important causative agents of these infections since they are
dispersed easily and once inhaled reach deep parts of the lungs. A. fumigatus was found to
adapt to its surroundings by delaying germination and by modulating gene expression,
upon recognition of neutrophils or epithelial cells [84,98,200]. As a direct consequence
of delayed germination, A. fumigatus conidia are affected less by macrophages and neu-
trophils compared to A. niger, along with reduced immune response and more efficient
internalization by lung epithelial cells [84,203]. The host immune system is an important
factor to consider, especially combined with the ability of Aspergilli to evade the immune
system. A course of action would be to negate the interplay of aspergillosis and the immune
system, by modulating or correcting the immune system of the host. However, this is not
a possibility for immunodeficient patients, as the state of the immune system is often
already modulated through treatment. Patients undergoing corticosteroid treatments or
chemotherapy are often chronically or temporarily neutropenic. Therefore, modulating
their deficient or malfunctioning immune system to combat Aspergillosis would not benefit
the patients considerably. Similarly, other susceptible groups have no prospective or cur-
rently effective treatments. Thus, solely modulating the host is not desirable as it does not
prevent aspergillosis for many susceptible patients. Moreover, immunocompetent patients
with COPD and PTB, among others who suffer from aspergillosis would not benefit from
this specific type of treatment. IFNγ was tested as adjunctive immunotherapy for invasive
fungal infections [236], but one should also consider the adverse effects of IFNγ that were
previously reported [237]. Another consideration is the polymicrobial environment the
lungs of many Aspergillus-affected patients have, as it was found to have an impact on the
efficacy of antimicrobial agents [238]. Therefore, another approach that specifically targets
Aspergilli would be pertinent for all aspergillosis patients.

Current treatments to combat aspergillosis consist of mainly antifungal azoles such as
voriconazole, but there has been a rising resistance against azoles since 1998/1999 [19,62,122].
Consequently, the mortality of aspergillosis was found to be about 88% for azole-resistant
A. fumigatus infections [160]. Most concerning is that azole-resistant A. fumigatus can be
found quite often, with a resistance prevalence as high as 7.1% in a study of CF patients [63]
and 11.3% in IPA patients [239]. In the search for novel antifungal drugs, it is essential to
consider factors that facilitated azole resistance, as a means to prevent the reoccurrence of
drug resistance. Altogether, this prompted the main question and aim of this review; to
combat aspergillosis, what are potential targets to preclude Aspergillus spp. germination?
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The approach to determine novel targets to hinder germination was to review and
inspect transcriptomic and proteomic studies on conidial and hyphal gene expression. We
feel that it is relevant to remark upon the difference between in vivo and in vitro studies;
a study found that the transcriptional profiles of A. fumigatus in vivo were considerably
different, with higher induction of gene expression, up to 1200 genes more when compared
to in vitro assays without human or murine cells [217]. Several studies have identified
in vivo transcriptomic profiles of A. fumigatus conidia during infection of host lung ep-
ithelial tissue [42,68]. However, most studies with human cells were conducted in vitro
with primary human airway epithelial cells [39], lung epithelial cells A549 [84,203], 16HBE
bronchial epithelial cells [39,190], blood [200], or neutrophils [98]. One study used a spe-
cific A549 type II pneumocyte cell line, as well as human polymorphonuclear leukocytes
(PMNs) and monocyte-derived dendritic cells (moDCs), from healthy donors [83]. Another
important aspect to consider is that even though all these experiments were conducted
with A. fumigatus and most use the Af293 isolate, others use specific clinical isolates. The
repercussion is that the findings of these studies might not be fully comparable. All in all,
there are some discrepancies among these studies, but they are important to consider gene
expression during germination.

Firstly, some of the potential targets are expressed exclusively in a certain morphotype
of conidial germination, whereas other targets are not distinct for one morphotype, but
are still specific for germination. Dormant conidia and the breaking of dormancy are
compelling morphotypes to target during conidial germination, but due to the tight regula-
tion involved in the breaking of dormancy, might be too confining for a novel antifungal.
Especially, seeing that for instance transcripts of transcription factor Ace2 were found
to be upregulated after incubating for half an hour, but downregulated after 2.5 h total
incubation time [200]. FleA might be one of the most promising targets for blocking the
breaking of dormancy, as it does not depend on normal host immune responses based
on neutrophils, but rather on epithelial cells [185]. Thus, treatments targeting FleA in
neutropenic patients with A. fumigatus infections might facilitate the clearance of an early
infection by themselves. At the same time, immunocompetent patients with aspergillosis
would benefit from a targeted halt of conidial germination. Constitutive FleA on conidia
might be targeted through the promotor but blocking FleA degradation potentially has a
similar effect. We used NCBI BLASTN to examine whether FleA homologs of A. fumigatus
Af293 are present in other pathogenic Aspergilli (Gene ID: 3511258). Consequently, all five
Aspergilli aligned with the query of pathogens: A. pseudoviridinutans, A. fischeri NRRL 181,
A. novofumigatus IBT 16806, and A. lentulus. Even though it seems to be the case that not all
pathogenic Aspergilli can be targeted through FleA, it seems to be a conceivable optional
target for at least the primary strain causative of aspergillosis (A. fumigatus). Promisingly,
a BLASTP (Accession XP_753183.1) resulted in a high query coverage of the amino acid
sequence of FleA with more Aspergilli than the search with BLASTN, including pathogenic
species such as A. flavus.

Next to Aspergilli, Scedosporium spp. is the second-most prevalent fungus in the lungs
of CF patients [240] and a homolog of FleA has recently been found and characterized in
Scedosporium apiospermum [202]. Findings of homologs of FleA in other fungi that cause
mycosis are promising for the impact potential FleA-targeting antifungals could have on
the battle against fungal infections.

Both isotropic and polarized growth are associated with a higher susceptibility to stres-
sors and more recognition of PAMPs by the host immune system. Hence, it is compelling to
utilize the native vulnerabilities by targeting these genes, transcription factors, and proteins.
Nonetheless, a conceivable downfall of this approach is that there are many presumed re-
dundant genes, especially within stress resistance. Therefore, mutation-driven resistance is
more probable to occur, as has already been demonstrated for SrbA and Ace2 [139,159,213].
By targeting several factors within stress resistance-associated genes, the redundancy might
be bypassed, resulting in a lower chance of mutation-driven resistance.
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We propose to target several essential components within conidial germination in
antifungal treatment, as this would limit the likelihood of a single escape mutant acquir-
ing resistance and colonizing patient tissue. Combination therapy was found to be more
efficacious for several applications of drugs targeting mutating targets, such as in can-
cers [241–243] or Gram-negative bacteria [244]. Considering that azole use by agricultural
and commercial sectors has contributed to azole resistance it is essential to prevent the
application of structurally related fungicides [153]. The emergence of medically induced
in-host-acquired azole resistance could be restricted through recently improved diagnostics,
along with the detection of mutations indicating resistance [245,246].

The proposed targets can be evaluated by determining (protein) structure, localization
in (germinating) conidia with confocal microscopy, as well as studying interactions. Tools
such as STRING could contribute since they display networks of known and predicted
protein–protein interactions. By using STRING, the A. fumigatus Gel4 protein was found to
interact with Ecm33, Crf2, ExgA, and some other unnamed proteins (complete interaction
network shown in Figure 3) [247]. These insights can contribute to a well-rounded estima-
tion of the consequences of targeting certain genes. Several targets were experimentally
tested, although an approach with loss-of-function, overexpression, or SNP mutants, with
a specific focus on germination of conidia, would be called for, specifically to analyze
whether affecting the proposed targets halts or delays certain germination morphotypes
as is predicted. Others were only tested in culture, on different media, and thus different
stressors and/or energy and nutrient limitations. Others have not been tested in the pres-
ence of epithelial cells in vitro, or in vivo, while both would provide more insight relevant
to patient treatments.
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Figure 3. Protein interaction network of query protein Gel4 (red node) in Aspergillus fumigatus
(A. fumigatus) (NCBI taxonomy Id: 746128) with reduced legend. Each node represents a protein.
Filled nodes have a known or predicted 3D structure, whereas empty nodes do not. Edges represent
protein–protein interactions and colors indicate known, predicted, or other interactions. The protein
CADAFUBP0000 7976 is unnamed and has the protein accession code: XP_747364.1 Produced with
the STRING tool (V11.5) [247] by K. Verburg.

In this review, we propose to target specific morphotypes of conidial germination for
the development of novel antifungal treatments for aspergilloses. This is mainly aimed at
neutropenic patients, where azole resistance emerges frequently, and current treatments are
severely insufficient. We think that immunocompetent patients could perhaps benefit more
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from antifungals that target conidiation [66]. The antifungals could have a possible pro-
phylactic application for patients at the start of, e.g., chemotherapy, to completely obstruct
Aspergillus growth. As antifungals would specifically target Aspergilli, one could expect
lower patient toxicity than current antifungals pose. Personalized treatments, dependent on
immune status, could offer a means to prevent resistance as well as both specific and broad
activity. The primary drug could be a novel antifungal targeting germination, which would
provide a broad activity against Aspergilli. This could be made to target several genes,
proteins and/or transcription factors within one or several germination morphotypes. A
secondary drug could enhance or complement the immune response in immunocompetent
patients, wherein the immune system could be balanced in, e.g., ABPA/CF patients, and
possibly lead to enhanced clearance by bronchial epithelial cells in immunodeficient pa-
tients. To sum up, combination therapy of novel antifungals targeting germination could
mainly benefit neutropenic patients affected by aspergillosis.
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