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Abstract: The Qaidam Basin is the highest and one of the largest and driest deserts on Earth. It is
considered a mars analog area in China. In contrast to numerous studies concerning its geology,
geophysical, and chemistry, relatively few studies have reported microbial diversity and distribution
in this area. Here, we investigated culturable yeast diversity in the northeast Qaidam Basin. A total of
194 yeast strains were isolated, and 12 genera and 21 species were identified, among which 19 were
basidiomycetous yeasts. Naganishia albida, N. adeliensis, and Filobasidium magnum were the three
most dominant species and were distributed in thirteen samples from eight locations. Five new
species (Filobasidium chaidanensis, Kondoa globosum, Symmetrospora salmoneus, Teunia nitrariae, and
Vishniacozyma pseudodimennae) were found and described based on ITS and D1D2 gene loci together
with phenotypic characteristics and physiochemical analysis. Representative strains from each species
were chosen for the salt-tolerant test, in which species showed different responses to different levels
of NaCl concentrations. Further, the strain from soil can adapt well to the higher salt stress compared
to those from plants or lichens. Our study represents the first report of the yeast diversity in the
Qaidam Basin, including five new species, and also provides further information on the halotolerance
of yeasts from the saline environment in mars analog.

Keywords: Qaidam basin; mars analog; yeast diversity; new species; halotolerant species

1. Introduction

Mars analogs are places on Earth that possess one or more geological, geochemical,
and geomorphic features similar to those found on Mars, either current or past [1,2]. The
possibility of the emergence of life on the early Mars stage has been shown due to the
presence of liquid water, carbon, electron donors, and acceptors that can drive micro-
bial metabolism [3–8]. Due to the expensive and long-term dependent organization of
space exploration, terrestrial analogs can serve as models for studies on the habitability of
Mars, which has been a priority of Mars science investigations [5]. Generally, the terrestrial
analogs on Earth are characterized by extreme environmental conditions, such as hyper-arid
desert, saline or hypersaline habitat, thermal acidic spring, and cryogenic and dry Antarc-
tica [9–15]. The Atacama Desert in Chile, the Mars Desert Research Station in Utah, USA,
and Rio Tinto in Huelva, Southwestern Spain are among the famous and well-studied Mars
analog environments. Special issues of International Journal of Astrobiology (‘Astrobiology
field research in Moon/Mars analog environments’ in 2011), Life (‘Planetary Exploration:
Habitats and Terrestrial Analog’ in 2014), Antonie van Leeuwenhoek (‘Microbiology of the
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Atacama Desert’ in 2018), and Environmental Microbiology (‘Ecophysiology of Extremophiles’
in 2021) have been published for systematical studies on the Mars analog environments
on Earth.

Microbial composition and ecology in different Mars analogs have drawn attention
due to their ecological and astrobiological importance. Microbiological studies in Mars
analogs performed in the past decades have contributed to our better understanding of the
strategy and spatiotemporal limit of life on Earth [16–23]. However, these studies mostly
focused on bacteria [18,20,24,25], and the diversity and ecology of fungi in Mars analogs
remain largely unknown.

Yeasts are unicellular or dimorphic fungi with a stable free-living unicellular state
during their life cycles [26]. Yeasts are considered ubiquitous and have been found in highly
diversified substrates and environments, including extremely dry or cold habitats [27].
An increasing number of studies have shown that yeasts can inhabit the Antarctic, glacier,
acidic, hypersaline, hyper-arid, and desert areas [28–34]. Nevertheless, the occurrence and
diversity of yeasts in extreme environments have not been fully investigated.

The Qaidam Basin is located in the North Tibetan Plateau, China, and is the highest
desert in terms of altitude and one of the largest and driest deserts on Earth. It has an
average elevation of ~2800 m and is considered a terrestrial analog site of Mars [12]. This
area harbors Mars-like extreme environments, e.g., hyper-arid, salt deposits, and high-
UV, and similar mineral compositions and geomorphological structures to terrains on
Mars [12,35]. The geology, geophysiology, and chemistry of the Qaidam Basin have been
well characterized [36–38], and microbial diversities focusing on bacteria and archaea
in different parts of this area using culture-independent methods have been performed
in recent years [39–41]. However, the fungal diversity in the Qaidam Basin remains to
be revealed.

In this study, we collected soil, soil crust, plant, and lichen samples in the northeast
Qaidam Basin in Qinghai province and investigated the occurrence and diversity of yeasts
in these samples using a culture-based approach. A total of 21 species, including five new
species, were identified from the isolated yeast strains. In addition, the salt-tolerant ability
of the representative yeast strains isolated was tested to evaluate their biotechnological
potential. To our knowledge, this is the first report of the diversity of culturable yeasts
within the Qaidam Basin. The aim of this study is to characterize the yeast community
inhabiting this specific environment and identify potential salt-tolerant yeasts that could be
of importance for astrobiology and biotechnology.

2. Materials and Methods
2.1. Sampling Sites

A total of 27 samples, including 19 surface soil and soil crust samples and eight whole
plant tissue and lichen samples, were selected from Delingha city in the Qaidam Basin
located in Qinghai province in April 2021 (Figure 1 and Table 1). Samples were sealed in
sterilized plastic bags and transported to the laboratory at ambient temperatures.

Table 1. Geographical locations and chemical properties (mean± SD) (n = 5) of soil samples collected.

Sampling
Sites Coordinates Altitude

(m) Nature of Sample Sample Type Sample No. Salinity (‰) pH Presence
of Yeasts

GPS1 97◦13′00′′ E
37◦20′27′′ N 2922 Gobi desert Soil 248 1.15 ± 0.00 7.93 ± 0.01 No

GPS2 97◦08′44′′ E
37◦23′02′′ N 3041.5 Gobi desert, colonized

by Nitraria tangutorum
and lichen

Soil 245 0.16 ± 0.00 7.86 ± 0.01 No

Vegetation soil 247 0.25 ± 0.00 8.10 ± 0.01 Yes
Plant 246 / / Yes

Lichen(Endocarpon) 241 / / Yes

GPS3 96◦51′15′′ E
37◦15′49′′ N 2813.6 Saline-alkali land Soil 249 34.32 ± 1.13 8.22 ± 0.00 Yes

Saline-alkali soil 250 50.36 ± 0.39 8.03 ± 0.01 No
Plant 251 / / Yes

GPS6 95◦10′49′′ E
37◦34′51′′ N 3499 Gobi desert Plant 255 / / Yes
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Table 1. Cont.

Sampling
Sites Coordinates Altitude

(m) Nature of Sample Sample Type Sample No. Salinity (‰) pH Presence
of Yeasts

GPS7 95◦09′41′′ E
37◦33′19′′ N 3370 Yardang/Danxia

landforms
Soil 254 1.85 ± 0.01 8.85 ± 0.01 Yes

Salt crystal 252 58.51 ± 0.55 7.75 ± 0.01 No

GPS8 95◦08′54′′ E
37◦31′09′′ N 3261

Yardang/Danxia
landforms

Red soil 263-8 1.23 ± 0.00 8.37 ± 0.01 Yes

Sandy soil 263-5 0.21 ± 0.01 7.95 ± 0.01 Yes
Green sandy soil 263-1 4.17 ± 0.02 7.82 ± 0.01 Yes
Green soil crust 263-4 8.69 ± 0.02 7.54 ± 0.01 No
Yellow soil crust 263-10 16.78 ± 0.00 7.88 ± 0.00 No

Plant 263 / / Yes

GPS9 95◦11′21′′ E
37◦32′25′′ N 3354 Yardang/Danxia

landforms
Soil 261 1.84 ± 0.01 8.03 ± 0.00 No

Rhizosphere soil 260 0.69 ± 0.00 8.34 ± 0.02 Yes
Plant 259 / / No

GPS10 95◦12′20′′ E
37◦31′54′′ N 3424

Yardang/Danxia
landforms

Soil 258 0.26 ± 0.00 9.74 ± 0.00 No

Rhizosphere soil 257 1.32 ± 0.01 9.01 ± 0.00 No
Plant 256 / / Yes

GPS12 94◦39′13′′ E
38◦1′36′′ N 2921 Gobi desert, colonized

by Nitraria tangutorum
Soil 243 0.59 ± 0.00 7.99 ± 0.01 Yes

Plant 244 / / No

GPS13 94◦17′23′′ E
37◦57′35′′ N 2754 Yardang landforms Saline-alkali soil 264 12.88 ± 0.01 7.65 ± 0.01 Yes

GPS14 93◦46′19′′ E
37◦37′27′′ N 3198 Sandy area and

Saline-alkali land Soil 242 6.33 ± 0.02 7.87 ± 0.01 Yes
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Figure 1. The locations and types of the sampling sites in the Qaidam Basin. (A) The sampling area
(Qinghai province) in China, shown in grey color; (B) The locations of the sampling sites in Delingha
city in Qinghai province labeled as GSP1–GPS3, GPS6–GPS10, and GPS12–GPS14; (C) Gobi desert at
site GPS2; (D) Saline-alkali land near the Keluke lake at site GPS3; (E) Green sandy soil at site GPS8;
(F) Typical plant at site GPS10.

2.2. Soil Chemical Analyses

The soil was suspended 1:5 (w/v) in sterile water and shaken at 180 rpm at 20 ◦C
for 30 min. Soil pH and salinity were determined using the HQ40d Portable Meter (Hach
Company, Loveland, CO, USA) (Table 1).
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2.3. Yeast Isolation

All samples were processed immediately after returning to the laboratory. Approx-
imately 2 g of soil, soil crust, and fragmented plant and lichen tissue samples were sus-
pended in 10 mL of sterile water and shaken at 180 rpm for 24 h. Aliquots of 0.2 mL of
each suspension were spread on potato dextrose agar (PDA, w/v, 20% potato infusion,
2% glucose, 2% agar), 1/2 PDA, and 1/10 PDA plates supplemented with 500 mg L−1 of
ampicillin and 500 mg L−1 of streptomycin sulfate. The plates were incubated at 17 ◦C and
25 ◦C, respectively, for 3–7 d. All the yeast colony morphotypes were isolated, purified,
and preserved in 20% glycerol at −80 ◦C for further study.

2.4. Molecular Phylogenetic Analysis

Genomic DNA was extracted from yeast cells that were actively growing on a YPD
medium (w/v, 1% yeast extract, 2% peptone, 2% glucose, 2% agar) following the protocol
described by Makimura et al. [42]. The ITS region (including the 5.8 S rRNA gene) and
D1/D2 domain of the LSU rRNA gene were amplified and sequenced using the primers
ITS1 and NL4 as described previously [43].

Sequences were inspected and assembled using the SeqMan program in the Lasergene
7 software package (DNASTAR Inc., Madison, WI, USA). They were then aligned using
MAFFT version 7 using the G-INS-I algorithm [44]. The alignment was manually edited
and trimmed, and minor gaps in all alignments were deleted. Maximum likelihood (ML)
and Bayesian analyses were performed for separate and combined gene sequences using
RAxML-HPC V.8 [45] and MrBayes 3.2.1 [46] on the CIPRES Science Gateway (http://www.
phylo.org (accessed on 23 January 2022)), respectively. ML analysis was implemented with
the rapid bootstrap algorithm with 1000 replicates and a subsequent search for the best-
scoring tree using the GTRGAMMA model. The best-fit evolution model of separate and
combined nucleotide sequences was determined using the Bayesian Information Criterion
(BIC) jModeltest [47]. Five million generations were run with four Markov chains, sampling
every 5000 generations.

Branches that received bootstrap values (BP) for Maximum likelihood and Bayesian
posterior probabilities (BPP) greater than or equal to 70% and 0.95, respectively, were
considered as significantly supported. The GenBank accession numbers for the sequences
of the ITS region, LSU rRNA gene D1/D2 domain used in this study are listed in Supple-
mentary Table S1. The alignments and trees were deposited in TreeBase (www.treebase.org
(accessed on 1 March 2022), No. 29479).

2.5. Phenotypical Characterization

The phenotypic and physiological characters were examined according to standard
methods used in yeast taxonomy [48]. The potential sexual cycles of all new species were
investigated using CMA (w/v, 2.5% corn meal infusion, 2% agar), PDA, V8 (w/v, 10% V8
juice, 2% agar), and YCB (w/v, 1.17% yeast carbon base, 2% agar). A loopful of cells of
each test strain was incubated singly or mixed on an agar plate and incubated at 17 ◦C for
one month. The ballistoconidium-forming activity of all new species was observed by the
inverted-plate method [49] on CMA at 17 ◦C. After 3 to 14 d, the glass slide containing the
discharged spores was removed for examination under the microscope.

2.6. Salinity Tolerance Analysis

Salinity tolerance tests were performed on the representative strains of each species
using spot plates. All the growth experiments were conducted at 20 ◦C in YPD agar
plates supplemented with 0%, 3%, 6%, 9%, 12%, and 15% (w/v) NaCl, respectively. Briefly,
strains were precultured in 3 mL YPD broth for 48 h at 20 ◦C with shaking at 180 rpm.
Optical density (OD) at 600 was measured, and the cell suspension was adjusted to OD
0.8 before a ten-fold dilution series was carried out. An aliquot of 4 µL of each dilution
of cell suspension was then spotted onto YPD agar plates supplemented with different
concentrations of NaCl and incubated for five days at 20 ◦C.

http://www.phylo.org
http://www.phylo.org
www.treebase.org
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2.7. Statistical Analysis

Standard statistical analyses were performed in the R project (v3.3.1) [50]. The statisti-
cal significance was calculated using the ANOVA or Kruskal–Wallis test executed by the
aov function and kruskal.test function of R package multcomp and FSA, respectively.

3. Results
3.1. Yeast Diversity

Yeast strains were isolated from 10 of the 19 soil samples and six of the eight plant
and lichen samples collected from Delingha city in the Qaidam Basin. The soil samples
with more than 34.32‰ salinity and the soil crust samples were yeast negative (Table 1).
A total of 194 yeast strains were isolated, and the abundance of yeasts varied depending on
the substrate, incubation temperature, and medium (Figure 2). A total of 153 and 41 yeast
strains were isolated from the plant and lichen tissues and soil samples, respectively. The
PDA, 1/2 PDA, and 1/10 PDA agar produced 95, 68, and 31 yeast strains, respectively.
A total of 91 and 103 yeast strains were isolated from the plates incubated at 17 ◦C and
25 ◦C, respectively (Supplementary Tables S2–S4). Comparative analysis indicated that
both the numbers of yeast strains and species from plant and lichen tissue samples were
significantly higher than those from soil samples, whereas no significant difference in the
abundance and species number was observed regarding the temperature and medium
used for yeast isolation (Figure 2). In addition to the shared species, different substrates,
temperatures, and media harbored their own yeast species (Figure 2).
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Figure 2. Comparison of abundance of yeast strains (A), species (B), and unique and shared yeast
species (C) isolated from different types of samples (plant/lichen and soil) at different temperatures
(17 ◦C and 25 ◦C) and using different media (PDA, 1/2 PDA, and 1/10 PDA). Single asterisk (*)
represents p < 0.05 and double asterisk (**) represents p < 0.01.
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The sequences of the D1/D2 domain of the 194 isolated strains were determined.
The closest relative of each strain was recognized based on a blast search against the
GenBank database using the BLASTn tool. The strains were classified to the species level
based on the threshold of >99% sequence identity with the type strain of a described
species in the ITS region or D1/D2 domain [51–53]. A total of 21 species belonging to
12 genera were identified from the isolated strains. Among the species identified, 19 species
were basidiomycetous yeasts, including Dioszegia hungarica, Filobasidium magnum, Kondoa
sorbi, Naganishia adeliensis, N. albida, Papiliotrema laurentii, Teunia korlaensis, Udeniomyces
puniceus, Vishniacozyma dimennae, V. tephrensis, V. victoriae, and eight undescribed species,
i.e., Fibulobasidium sp., Filobasidium sp., Kondoa sp., Symmetrospora sp., Teunia sp., and
Vishniacozyma sp. (Supplementary Table S2), and two were ascomycetous yeast species,
namely Diutina catenulata and Pichia kudriavzevii. The most abundant yeast genus was
Naganishia, followed by Filobasidium and Teunia. The Naganishia species, viz. N. albida
and N. adeliensis, accounted for 39.2% of the total number of isolates. To a lesser extent
was the genus Filobasidium, of which an undescribed species, Filobasidium sp. formed the
majority of the isolates. The strains belonging to the genus Teunia accounted for 9.8%
of the total yeast strains isolated, and half belonged to an undescribed species of the
genus. On the whole, 24.7% of the isolated strains belonged to undescribed species, and
most of these were isolated from plant samples (Supplementary Table S2). Among the
21 species identified, three species, i.e., Filobasidium magnum, Naganishia adeliensis, and N.
albida, were the most dominant species, which occurred in seven to eight samples collected
from different locations, while thirteen species, i.e., Dioszegia hungarica, Fibulobasidium sp.,
Kondoa sorbi, Kondoa globosum sp. nov., Kondoa sp. Teunia nitrariae sp. nov., Vishniacozyma
dimennae, Vishniacozyma pseudodimennae sp. nov., and Vishniacozyma tephrensis, occurred
only in one sample or location (Supplementary Table S2).

3.2. Salt-Tolerant Ability

Representative strains from lichen, plant, and soil samples were subjected to salt-
tolerant ability tests using spot plate assay. Different species had different responses to
concentrations of NaCl. In detail, all tested strains of 21 species identified in this study
could grow well with NaCl concentrations up to 6% (Supplementary Figure S2), while
no strains could grow on the plate with NaCl concentrations of 15% (data not shown). It
suggested that their growth was apparently prevented when NaCl concentration increased
to 15%. Four species, such as Dioszegia hugarica, Fibulobasidium sp., Kondoa globosum, and
Teunia korlaensis, were particularly sensitive to 9% NaCl concentration, while the other
species, especially Diutina catenulata, Filobasidium magnum, Kondoa sorbi, Naganishia adeliensis,
Papiliotrema laurenti, Pichia kudriavzevii, Symmetrospora salmoneus, and Vishniacozyma victoriae,
showed to be unaffected by this level of salt exposure (Supplementary Figure S2). Several
strains, such as F. chaidanensis, Kondoa sp. N. albida, Teunia nitrariae, Teunia sp., Udeniomyces
puniceus, Vishniacozyma dimennae, V. pseudodimennae, and V. tephrensis, showed some ability
to grow at 9% NaCl concentration. In contrast, most strains appeared to be sensitive
to exposure to NaCl concentration of 12%. The strains of F. magnum, P. laurenti, and V.
victoriae seemed to be relatively unaffected by this level of NaCl exposure (Supplementary
Figure S2). These three species exhibited a similar tendency, that is, no difference, in all
tested strains in growth ability regardless of their origin from plant and soil samples with
different NaCl concentrations, except for the strain of F. magnum from lichen (Figure 3).
The strains of N. adeliensis and S. salmoneus from the soil sample showed better growth
than those from plant or lichen thallus at 12% NaCl concentration, indicating that the strain
from soil samples can adapt well to the higher salt stress.
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Figure 3. Spot plate assay for growth of representative strains of selected species on YPD medium
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3.3. Phylogeny and Taxonomy of Novel Yeast Species
3.3.1. Phylogeny

Among the yeast strains isolated, 43 strains were unable to be identified as any species
because of their significant difference from any described yeast species in the sequence of
the D1/D2 domain. The ITS sequences of these strains were then determined to confirm
their novelty and phylogenetic positions.

A total of 32 strains, represented by CGMCC 2.6791, CGMCC 2.6792, CGMCC 2.6793,
CGMCC 2.6794, CGMCC 2.6795, CGMCC 2.6796T, 25-0-5-256-2, and 25-0-5-256-6 isolated
from plant tissues formed a separate clade in the genus Filobasidium in the tree obtained
from the combined ITS and D1/D2 sequences (Figure 4A). These strains possessed identical
ITS and D1/D2 sequences or differed by only one nucleotide in the two regions and thus
were conspecific. They differed from the type strain of closely related species F. oeirensis, F.
floriforme, F. elegans, and F. magnus by seven to nine nt (~1.1–1.5%) and 26–36 nt (~4.1–5.8%)
mismatches in the D1/D2 (Supplementary Figure S1A) and ITS regions, respectively.
Therefore, these strains represent a new species in Filobasidium, for which the name F.
chaidanensis sp. nov. was proposed.

Strain CGMCC 2.6805T was located in the Kondoa clade and closely related with K.
sorbi CGMCC 2.2303T in the tree obtained from the combined ITS and D1D2 sequences
(Figure 4B). The two strains differed from each other by 9 nt (~1.4%) and 55 nt (~8.4%)
mismatches in the D1/D2 and ITS regions, respectively. An undescribed strain ‘Bensingtonia’
sp. CCFEE 5424 isolated from rock samples [54] and two unpublished strains ‘Pucciniomy-
cotina’ sp. RP185 (AB727159) and RP186 (AB727160) isolated from plant materials in Japan
showed close relationships with strain CGMCC 2.6805T (Supplementary Figure S1B), but
they differed from the latter by more than 1% bases in the D1/D2 domain. The result
suggests that strain CGMCC 2.6805T represents a novel species in the genus Kondoa, for
which the name K. globosum sp. nov. was proposed.
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Three strains, CGMCC 2.6800, CGMCC 2.6801T, and 17-256-4 isolated from sandy
soil and plant tissues possessed similar sequences with no more than one nt difference
in the ITS and D1D2 regions, indicating they are conspecific. They were clustered in the
Symmetrospora clade with strong support in the tree constructed from the combined ITS
and D1/D2 sequences (Figure 4C). S. foliicola CBS 8075T is closely related to these three
strains but without significant support (Figure 4C and Supplementary Figure S1C). Ten to
eleven nt (~1.6–1.7%) and eighteen nt (~3.1%) differences were observed in the ITS region
and D1D2 domain, respectively, between these three strains and S. foliicola. S. rhododendri,
S. coprosmae, and S. oryzicola were located as a sister group to the group represented by
CGMCC 2.6801T and S. follicola but differed from the group CGMCC 2.6801T by 7–10 nt
(~1.3–1.6%) mismatches in the D1D2 domains and more than 7.2% (44–51 bp) mismatches
in the ITS regions. Thus, these three strains represent a novel Symmetrospora species, for
which the name S. salmoneus sp. nov. was proposed.

Six strains, represented by strain CGMCC 2.6797T, formed a well-supported clade
(Figure 4D). Four nt and one nt mismatches in the D1D2 and ITS regions, respectively,
were found among these six strains indicating they were conspecific. The closest relative
of the CGMCC 2.6797T group is Teunia korlaensis, but differed from the type strain of the
latter by eight to nine nt (~1.3–1.5%) in the D1D2 domains and 22 nt (~3.9%) in the ITS
regions, respectively. They also had a close relationship with T. rosae in the D1/D2 tree
(Supplementary Figure S1D). They differed from the type strain of the latter by three to
five nt (~0.5–0.8%) in the D1D2 domains but 38 to 40 nt (~6.8–7.1%) mismatches in the
ITS regions, respectively. Therefore, a novel species, Teunia nitrariae, was proposed to
accommodate these six strains.

Strain CGMCC 2.6790T was located in the genus Vishniacozyma. It was closely related
to Vishniacozyma dimennae (Figure 4E and Supplementary Figure S1E) but differed from
the type strain of V. dimennae by ten nt (~1.6%) and 19 nt (~4.0%) mismatches in the D1D2
domains and ITS regions, respectively, suggesting that CGMCC 2.6790T represents a new
species in Vishniacozyma, for which the name V. pseudodimennae sp. nov. is proposed.
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ium (A), Kondoa (B), Symmetrospora (C), Teunia (D), Vishniacozyma (E). The tree backbones were con-
structed using RAxML, and the numbers at each node represent bootstrap percentages (BP) of max-
imum likelihood from 1000 replicates and Bayesian posterior probabilities (PP). BP values ≥ 70 and 
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0.02 substitution per nucleotide position. 
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Figure 4. Phylogenetic trees constructed based on the concatenated sequences of the ITS and the LSU
rDNA D1/D2 domains, depicting the positions of the new yeast species in the genera Filobasidium (A),
Kondoa (B), Symmetrospora (C), Teunia (D), Vishniacozyma (E). The tree backbones were constructed
using RAxML, and the numbers at each node represent bootstrap percentages (BP) of maximum
likelihood from 1000 replicates and Bayesian posterior probabilities (PP). BP values ≥ 70 and PP
values ≥ 0.9 are plotted on the branches of the tree. The new species are shown in bold. Scale in
0.02 substitution per nucleotide position.

3.3.2. Taxonomy

Filobasidium chaidanensis X.Z. Liu, F.Y Bai, and X.Y. Wei, sp. nov. (Figure 5A)
MycoBank: MB 842980
Etymology: the specific epithet chaidanensis refers to the geographic origin of the type

strain, Chaidan county, Qinghai province.
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Figure 5. The Vegetative cells grown on YM agar for 7 days at 20 ◦C. (A) Filobasidium chaidanensis sp.
nov. CGMCC 2.6796T; (B) Kondoa globosum sp. nov. CGMCC 2.6805T; (C) Symmetrospora salmoneus
sp. nov. CGMCC 2.6801T; (D) Symmetrospora salmoneus sp. nov. CGMCC 2.6801T × CGMCC
2.6800; (E) Teunia nitrariae sp. nov. CGMCC 2.6797T; (F) Vishniacozyma pseudodimennae sp. nov.
CGMCC 2.6790T.

Culture characteristics: After growth on YM agar for 7 days at 20 ◦C, cells were globose
or subglobose, 3.3–6.6 µm × 2.8–6.7 µm, and occurred singly or in pairs. Budding was
polar. After 7 days of growth on YPD agar at 20 ◦C, the streak culture was whitish to pale
greyish-cream, smooth, and butyrous. The margin was entire. In Dalmau plated culture on
corn meal agar, pseudohyphae and hyphae were not formed. Sexual structures were not
observed on YCB, 5% MEA, PDA, V8, and CMA agar. Ballistoconidia were not produced
on corn meal agar.

Physiological and biochemical characteristics: Glucose was not fermented. Glucose,
galactose (positive or weak), L-sorbose (weak or slow), sucrose, maltose, cellobiose (positive
or delayed), trehalose, lactose, melibiose (weak), raffinose (positive or delayed), melezitose,
inulin (weak), soluble starch, D-xylose, L-arabinose, D-arabinose (weak), D-ribose (weak),
L-rhamnose, methanol (weak), ethanol (positive or delayed), glycerol (positive or delayed
or weak or delayed and weak), ribitol (weak or delayed weak), galactitol (weak), D-
mannitol, D-glucitol, Methyl-α-D-glucoside (positive or delayed), salicin, D-gluconate
(weak), DL-lactate (weak), succinate, citrate (positive or weak), myo-inositol (weak) and
xylitol (positive or delayed) were assimilated as sole carbon sources. D-glucosamine,
erythritol, hexadecane, and N-Acetyl-D-glucosamine were not assimilated as sole carbon
sources. Ammonium sulfate, potassium nitrate, cadaverine, L-lysine, and ethylamine
(variable) were assimilated as sole nitrogen sources. Sodium nitrite was not assimilated
as the sole nitrogen source. Growth in the vitamin-free medium was positive. Starch-like
compounds were produced. Urease activity was positive. Diazonium Blue B reaction was
positive. The maximum growth temperature was 29 ◦C.

Physiologically, F. chaidanensis differed from its close relatives F. oeirensis, F. floriforme,
F. elegans, and F. magnus in the ability to assimilate inulin, methanol, and DL-lactate and its
ability to grow in a vitamin-free medium.

Typus: China, Chaidan town, Delingha City, Qinghai province, obtained from unde-
scribed plant tissue, April 2021, X.L. Wei, holotype CGMCC 2.6796 preserved in a metaboli-
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cally inactive state. Ex-type culture has been deposited in the Japan Collection of Microor-
ganisms (JCM) as JCM 35,461 (=25-P263-B).

Kondoa globosum X.Z. Liu, F.Y Bai, and X.Y. Wei, sp. nov. (Figure 5B)
MycoBank: MB 842983
Etymology: the specific epithet globosum refers to the globose vegetative cells of the

type strain.
Culture characteristics: After growth on YM agar for 7 days at 20 ◦C, cells were

subglobose to globose, 4.5–7.6 µm × 4.3–7.3 µm, and occurred singly or in pairs. Budding
was polar. After 7 days of growth on YPD agar at 20 ◦C, the streak culture was cream-
colored, smooth, and dull. The margin was entire. In Dalmau plated culture on corn meal
agar, pseudohyphae were not formed. Hyphae were seldom formed. Sexual structures
were not observed on YCB, 5% MEA, PDA, V8, and CMA agar. Ballistoconidia were not
produced on corn meal agar.

Physiological and biochemical characteristics: Glucose was not fermented. Glucose,
maltose, cellobiose (slow), trehalose, lactose (weak), melibiose (weak), soluble starch
(delayed weak), glycerol (slow), ribitol (slow), D-mannitol (weak), salicin (weak), DL-
lactate (weak), and succinate (delayed) were assimilated as sole carbon sources. Galactose,
L-sorbose, sucrose, raffinose, melezitose, inulin, D-xylose, L-arabinose, D-arabinose, D-
ribose, L-rhamnose, D-glucosamine, methanol, ethanol, erythritol, galactitol, D-glucitol,
Methyl-α-D-glucoside, D-gluconate, citrate, myo-inositol, xylitol, hexadecane, and N-
Acetyl-D-glucosamine were not assimilated as sole carbon sources. Ammonium sulfate,
potassium nitrate, cadaverine, L-lysine, and ethylamine were assimilated as sole nitrogen
sources. Sodium nitrite was not assimilated as the sole nitrogen source. Growth in the
vitamin-free medium was positive. Starch-like compounds were not produced. Urease
activity was positive. Diazonium Blue B reaction was positive. The maximum growth
temperature was 28 ◦C.

Physiologically, K. globosum differed from its close relatives K. sorbi in its ability to
assimilate potassium nitrate and ethylamine and inability to assimilate raffinose, D-xylose,
L-arabinose, D-glucitol, and D-gluconate.

Typus: China, Chaidan town, Delingha City, Qinghai province, obtained from soil,
April 2021, X.L. Wei, holotype CGMCC 2.6805 preserved in a metabolically inactive state.
Ex-type culture has been deposited in the Japan Collection of Microorganisms (JCM) as
JCM 35,467 (=17-P263-8-2).

Symmetrospora salmoneus X.Z. Liu, F.Y Bai, and X.Y. Wei, sp. nov. (Figure 5C)
MycoBank: MB842985
Etymology: The specific epithet refers to the salmon color of the colony of the strains

in this species.
Culture characteristics: After growth on YM agar for 7 days at 20 ◦C, cells were globose

and subglobose, 4.1–6.6 µm × 3.6–6.3 µm, and occurred singly or in pairs. Budding was
polar. After 7 days of growth on YPD agar at 20 ◦C, the streak culture was salmon-pink
or orange-colored, smooth, slightly wrinkled, butyrous, and semi-glossy. The margin was
entire. In Dalmau plated culture on corn meal agar, pseudohyphae and hyphae were not
formed. Hyphae were seldom formed when mixed strains were cultured (Figure 5D). Sexual
structures were not observed on YCB, 5% MEA, PDA, V8, and CMA agar. Ballistoconidia
were not produced on corn meal agar.

Physiological and biochemical characteristics: Glucose is not fermented. Glucose,
galactose (weak), sucrose (weak), maltose (weak), melibiose (weak), soluble starch (weak),
D-xylose (weak), L-arabinose (weak), D-ribose (delayed or delayed weak), ethanol (de-
layed weak), glycerol (delayed or weak), ribitol (weak), D-mannitol (variable), D-glucitol
(weak), salicin (delayed weak), DL-lactate (weak), succinate (variable), and xylitol (delayed
weak) are assimilated as sole carbon sources. L-sorbose, cellobiose, trehalose, lactose,
raffinose, melezitose, inulin, D-arabinose, L-rhamnose, D-glucosamine, methanol, ery-
thritol, galactitol, Methyl-α-D-glucoside, D-gluconate, citrate, myo-inositol, hexadecane,
and N-Acetyl-D-glucosamine are not assimilated as sole carbon sources. Ammonium
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sulfate, potassium nitrate (variable), cadaverine (variable), and ethylamine (variable) are
assimilated as sole nitrogen sources. Sodium nitrite and L-lysine are not assimilated as
sole nitrogen sources. Growth in the vitamin-free medium is positive (weak). Starch-like
compounds are not produced. Urease activity is positive. Diazonium Blue B reaction is
positive. The maximum growth temperature is 29 ◦C.

Physiologically, S. salmoneus differed from its close relatives S. foliicola in the inability
to assimilate L-sorbose, cellobiose, trehalose, melezitose, D-arabinose, D-gluconate, and
sodium nitrite.

Typus: China, Chaidan town, Delingha City, Qinghai province, isolated from sand,
April 2021, X.L. Wei, holotype CGMCC 2.6801 preserved in a metabolically inactive state.
Ex-type culture has been deposited in the Japan Collection of Microorganisms (JCM) as
JCM 35,466 (=17-P263-5-2).

Teunia nitrariae X.Z. Liu, F.Y Bai, and X.Y. Wei, sp. nov. (Figure 5E)
MycoBank: MB 842986
Etymology: The specific epithet refers to Nitraria, the plant genus from which the type

strain was isolated.
Culture characteristics: After growth on YM agar for 7 days at 20 ◦C, cells were

subglobose, globose to ovoid, 3.2–6.4 µm × 2.5–5.7 µm, and occurred singly or in pairs.
Budding was polar. After 7 days of growth on YPD agar at 20 ◦C, the streak culture was
yellowish-cream, smooth, and glossy. The margin was entire. In Dalmau plated culture on
corn meal agar, pseudohyphae and hyphae were not formed. Sexual structures were not
observed on YCB, 5% MEA, PDA, V8, and CMA agar. Ballistoconidia were not produced
on corn meal agar.

Physiological and biochemical characteristics: Glucose was not fermented. Glu-
cose, galactose, L-sorbose (variable), maltose (weak), cellobiose, trehalose (positive or
weak), lactose (positive or slow), melibiose (weak), soluble starch (variable), D-xylose,
L-arabinose, D-arabinose (variable), D-ribose (positive or weak), L-rhamnose (positive or
weak), ethanol (delayed weak), glycerol (weak or delayed weak), ribitol (weak or delayed
weak), galactitol (delayed), D-mannitol, D-glucitol, salicin (positive or weak), D-gluconate
(positive or delayed or delayed weak), DL-lactate (delayed weak), succinate (delayed),
myo-inositol (delayed weak), and xylitol (positive or delayed) were assimilated as sole
carbon sources. Sucrose, raffinose, melezitose, inulin, methanol, Methyl-α-D-glucoside,
citrate, D-glucosamine, erythritol, hexadecane, and N-Acetyl-D-glucosamine were not
assimilated as sole carbon sources. Ammonium sulfate, potassium nitrate (variable), ca-
daverine, L-lysine, and ethylamine (variable) were assimilated as sole nitrogen sources.
Sodium nitrite was not assimilated as the sole nitrogen source. Growth in the vitamin-free
medium was positive. Starch-like compounds were produced (variable). Urease activity
was positive. Diazonium Blue B reaction was positive. The maximum growth temperature
was 29 ◦C.

Physiologically, T. nitrariae differed from its close relatives, T. korlaensis and T. rosae,
in the ability to assimilate D-glucitol and L-lysine and inability to assimilate sucrose and
melezitose. Thus, it should be proposed as a new species in Tuenia.

Typus: China, Delingha City, Qinghai province, obtained from plant tissue of Nitraria
tangutorum, April 2021, X.L. Wei, holotype CGMCC 2.6797 preserved in a metabolically
inactive state. Ex-type culture has been deposited in the Japan Collection of Microorganisms
(JCM) as JCM 35,462 (=17-P246-2-1).

Vishniacozyma pseudodimennae X.Z. Liu, F.Y Bai, and X.Y. Wei, sp. nov. (Figure 5F)
MycoBank: MB 842987
Etymology: the specific epithet ‘pseudodimennae’ refers to the cell morphology and

colony phenotype similar to its closely related species, V. dimennae.
Culture characteristics: After growth on YM agar for 7 days at 20 ◦C, cells were

subglobose to ovoid, 2.6–5.6 µm × 2.4–4.3 µm, and occurred singly or in pairs. Budding
was polar. After 7 days of growth on YPD agar at 20 ◦C, the streak culture was whitish
cream, smooth, and slightly glistening. The margin was entire. In Dalmau plated culture
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on corn meal agar, pseudohyphae and hyphae were not formed. Sexual structures were not
observed on YCB, 5% MEA, PDA, V8, and CMA agar. Ballistoconidia were not produced
on corn meal agar.

Physiological and biochemical characteristics: Glucose was not fermented. Glucose, su-
crose, cellobiose, trehalose (delayed weak), lactose, raffinose, soluble starch (delayed weak),
D-xylose (delayed weak), D-arabinose (weak), glycerol (delayed and weak), D-glucitol
(delayed and weak), salicin (delayed), D-gluconate, DL-lactate (delayed), myo-inositol (de-
layed), and xylitol (delayed) were assimilated as sole carbon sources. Galactose, L-sorbose,
maltose, melibiose, melezitose, inulin, L-arabinose, D-ribose, L-rhamnose, D-glucosamine,
methanol, ethanol, erythritol, ribitol, galactitol, D-mannitol, Methyl-α-D-glucoside, succi-
nate, citrate, hexadecane, and N-Acetyl-D-glucosamine were not assimilated as sole carbon
sources. Ammonium sulfate, potassium nitrate, cadaverine, L-lysine, and ethylamine were
assimilated as sole nitrogen sources. Sodium nitrite was not assimilated as the sole nitrogen
source. Growth in the vitamin-free medium was positive (weak). Starch-like compounds
were not produced. Urease activity was positive. Diazonium Blue B reaction was positive.
The maximum growth temperature was 30 ◦C.

Physiologically, V. pseudodimennae differed from its close relative V. dimennae in the ability
to assimilate potassium nitrate and inability to assimilate in galactose, L-sorbose, L-arabinose,
D-ribose, L-rhamnose, ethanol, ribitol, galactitol, D-mannitol, succinate, and citrate.

Typus: China, Chaidan town, Delingha City, Qinghai province, obtained from unde-
scribed plant tissue, April 2021, X.L. Wei, holotype CGMCC 2.6790 preserved in a metaboli-
cally inactive state. Ex-type culture has been deposited in the Japan Collection of Microor-
ganisms (JCM) as JCM 35,455 (=25-0-5-263-4).

4. Discussion

The Qaidam Basin has been proposed as the first Mars analog in China as it harbors
a hyper-arid, cold, salt-deposited, and high UV environment similar to the surface of Mars,
as well as Mars-like geomorphological structures and mineral composition [12]. It provides
an ideal systematic model as a terrestrial analog with astrobiological and extremophile
implications. This study reports the culturable yeast diversity in lichen, plants, and soils in
the Qaidam Basin for the first time.

Generally, yeasts grow well in a slightly acidic environment, with the optimum pH
between 4.5 to 5.5 [55]. Nevertheless, basidiomycetous yeasts, i.e., Naganishia albida, Papil-
iotrema laurentii, Rhodotorula glutinis, R. mucilaginosa, Sporobolomyces roseus, and Trichosporon
asahii, were found to thrive at pH value above 10 [56,57]. In our study, the pH values among
the sampling sites varied from 7.54 to 9.74, indicating the alkali nature of the sampling
area. Yeasts were obtained in the sampling sites with pH values between 7.65 to 8.85 but
not for the soil samples with pH values greater than 9. The salinity of soil samples in
our study ranged from 0.16‰ to 58.51‰. Yeasts were detected in ten soil samples with
salinity from 0.21‰ and 34.32‰. Meanwhile, no yeasts occurred in seven soil samples
with salinity between 0.16‰ to 16.78‰, including two soil crust samples. Though pH and
salinity limited the presence of yeast inhabitants to some extent, their presence did not
directly correlate with these two abiotic variables. This is probably due to additional abiotic
variables affecting yeast number and diversity that have not been captured in this study.

Approximately 85% of strains obtained in our study were tremellomycetous yeast species
that are in good agreement with previous studies of other extreme environments [28–30,34,58].
Of 21 species identified in this study, six species, such as Diutina catenulata, Filobasidium
magnum, Naganishia adeliensis, N. albida, Papiliotrema laurentii, and Vishniacozyma victoriae,
had been reported to be resident in extreme environments, especially saline, alkali, cold
or dry conditions [59]. The most frequent yeast species were assigned to Naganishia in
our study in that about 39.2% of isolates were identified as N. adeliensis and N. albida. The
high abundance combining frequent occurrence in more than half of the samples of these
two species suggested that they are resident species in the sampling area of our study [60].
Naganishia adeliensis and N. albida are versatile extremophilic species that are frequently
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found in acidic, alkaline, hypersaline, cold, and arid environments [59]. These two species
are found as the dominant species in hypersaline soils surrounding Urmia Lake and the dry
sandy soils of the desert [30,57,61]. They are characterized as capsulated yeasts that might
contribute to water retention and enhance water availability [62]. Filobasidium magnum was
also detected in our study at a higher abundance and frequency (Table S2). Filobasidium
magnum, which has been reported from Arctic glaciers [34,63] and plants inhabiting the
Negev Desert and the Dead Sea region [64], was observed in our sampling sites in the
Qaidam Basin that is characterized by hyper-arid, alkaline, and hypersaline environments.
Similarly, strains of F. magnum were also plant-related with frequent isolation from plants in
our study, implying this species may help plants to survive in dry areas. This was confirmed
by the study where the application of F. magnum to the seed of Brassica alboglabra enhanced
its metal resistance and its ability to grow in multi-metal contaminated soil [65]. We also
isolated 32 strains of a novel species, Filobasidium chaidanensis sp. nov., from plants, which
may own similar ecological functions as F. magnum. Though the other three species, Diutina
catenulata, Papiliotrema laurentii, and Vishniacozyma victoriae, were detected in our study with
low abundance and frequency, they were most commonly reported in previous studies.
P. laurentii and V. victoriae displayed polyextremophilic capability, including acidophilic,
alkali-tolerant, halophilic, xerotolerant, and psychrophilic aptitudes [59]. Diutina catenulata
is a human pathogen that has been one of the most commonly reported in beach sand and
estuarine and sea waters that represent alkali and saline environments [66,67].

Our study also yielded yeast species, namely Dioszegia hungarica, Kondoa sorbi, Pichia
kudriavzevii, Teunia korlaensis, Udeniomyces puniceus, Vishniacozyma dimennae, and V. tephren-
sis, that have not been reported in microbial diversity research of extreme environments.
Meanwhile, black yeasts, such as Hortaea werneckii, Phaeotheca triangularis, Trimmatostroma
salinum, and Wallemia ichthyophaga, which are the common representatives in the hyper-
saline environment [59], were not found in our study. Additionally, seven undescribed
species, namely Fibulobasidium sp., Kondoa globosum sp. nov., Kondoa sp., Symmetrospora
salmoneus sp. nov., Teunia nitrariae sp. nov., Teunia sp., and Vishniacozyma pseudodimennae sp.
nov., were found for the first time. Considering their low abundance and rare occurrence,
they could be classified as transient species [60]. More impressively, most of these transient
species colonized in plants, giving us an apparent indication of their role in plant growth
in dry and alkaline soils. On the contrary, plants may help these organisms to survive
in harsh conditions by transporting nutrition from soils. With this close association with
plants, the transient species may obtain an intermedia to stabilize their colonization in
harsh environments and then may evolve as a resident species with high abundance. The
yeast diversity was significantly higher in the presence of vegetation in our study than that
in the absence of vegetation, which has been proven in the Mars Desert Research Station in
Utah, USA [17], probably indicating the important role of plants in the microbial growth
and colonization.

Based on the delimitation of halophilic species that yeast strains can survive at salt
concentration > 1%, such as seawater [68], the strains from the soil with salinities of 12.88‰
and 34.32‰ in our study have the potential to be halophilic species. Because they were
distributed in lichen, plant, and soils with lower salinities, it is intriguing to know the
extent of their ability to adapt to salinity variations, which will unravel the phenotypic
scales of yeasts under extreme conditions. Along with the increasing NaCl concentration,
the number of species that can grow well decreased from 17 species at 9% NaCl concen-
tration to six species at 12% NaCl concentration and zero at 15% NaCl concentration. The
four species that can grow at 12% NaCl concentration in our study, i.e., F. magnum, N.
adeliensis, P. laurenti, and V. victoriae, have also been frequently found in the salty envi-
ronment, and some of them from hypersaline lakes have been proved to tolerate 10% to
15% NaCl [30,59]. The intraspecies salt tolerance showed different tendencies. On the one
hand, all the tested strains from lichen, plants, and soils have the same salt tolerance ability,
such as F. magnum, P. laurenti, and V. victoriae. On the other hand, the adaption to salt
stress should be variable inside the species. The strains of N. adeliensis and S. salmoneus
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from soils have extensive flexibility in changing environments compared to the strains
from plants and displayed superior adaption along with elevated salinity. Previous studies
indicated that halotolerant yeasts developed a number of structural and metabolic strate-
gies to cope with the harsh environmental condition, including producing resting spores
such as ascospores, teliospores, and chlamydospores [59]; adjusting the composition of
a phospholipid, unsaturated fatty acid, and sterol of the yeast plasma membrane [69,70]; se-
creting extracellular cold-related enzymes [71] or redox enzymes to reduce the acidity [72];
synthesizing polysaccharidic capsule to prevent from drying [73]. The dynamic expression
patterns of salt-dependent genes, such as ENA P-type ATPases involved in the Na+/K+

transport, Glycerol-3-phosphate dehydrogenase regulating glycerol synthesis, and BAT2,
ARG4, or AGP2 involved in amino acid metabolites, has been well studied, which provide
genomic-level knowledge on the mechanisms involved in the halotolerant behaviors of
yeasts, especially black yeast [69,74,75]. The underlying molecular mechanisms of halotol-
erance in species other than black yeasts deserve further investigation. It will increase our
understanding of microorganisms in the saline environment and identify potential targets
of economically important yeasts. To sum up, the biodiversity in Qaidam Basin not only
gives us knowledge of life limits but also reserves resources such as halotolerant yeasts
that can be used in agriculture as an eco-friendly biofertilizer to elevate crop productivity
under saline conditions.

5. Conclusions

This is the first study that reports on the culturable yeast diversity in Delingha city in
the northeast Qaidam Basin in Qinghai province, considered to be a mars analog area in
China. It contributes to the general knowledge of yeast diversity in Mars analog. A total of
194 yeast isolates assigned to 12 genera and 21 species were found from ten soil samples and
six plant and lichen samples with the dominance of basidiomycetous yeasts, which reveals
the underestimated importance of basidiomycetous yeasts as inhabitants of the harsh
environment of the Qaidam Basin desert. Furthermore, five novel species are described in
this study. A significant difference in the number of yeast strains and species from plants
(including one lichen sample) and soils was observed, indicating the close association
between plants and yeasts. Microorganisms can be beneficial for the growth of the plant.
Representative strains from different substrates of each species found in this study were
subject to salt-tolerant ability from 0% to 15% NaCl concentrations. Seventeen and five
species could grow at 9% and 12% NaCl concentration, while no strains could grow on the
plate with 15% NaCl concentrations. Strains from soils can adapt well to the higher salt
stress compared to those from plants and lichen. More comprehensive studies on yeast
distribution across a wider range of sampling sites would be clearly desirable to better
comprehend the distribution, ecology, diversity, and functions of yeast in the Qaidam Basin.
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