A new species of Crocodile Newt, genus *Tylototriton* (Amphibia, Caudata, Salamandridae) from the mountains of Kachin State, northern Myanmar

Than Zaw¹, Paw Lay², Parinya Pawangkhanant³, Vladislav A. Gorin⁴, Nikolay A. Poyarkov, Jr.^{4,5,*}

¹Zoology Department, Mohnyin Degree College, Mohnyin, Kachin State, Myanmar

²Flora and Fauna International, Lon Ton Village, Indawgyi, Kachin State, Myanmar

³Bansomdejchaopraya Rajabhat University, Hiran Ruchi, Thon Buri, Bangkok 10600, Thailand

⁴Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia

⁵Joint Russian-Vietnamese Tropical Research and Technological Center, Nghia Do, Cau Giay, Hanoi, Vietnam

ABSTRACT

We describe a new species of the genus Tylototriton from Ingvin Taung Mt., Mohnyin Township, Kachin State, Myanmar, based on morphological and molecular evidence. The new species is assigned to the subgenus *Tylototriton* s. str. and is clearly distinct from all known congeners by the following characters: medium body size; thin, long tail, lacking lateral grooves; rough skin; truncate snout; wide, protruding supratemporal bony ridges on head, beginning at anterior corner of orbit; weak, almost indistinct sagittal ridge; long, thin limbs, broadly overlapping when adpressed along body; distinct, wide, non-segmented vertebral ridge; 13 or 14 rib nodules; brown to darkbrown background coloration with dull orange-brown to yellowish-brown markings on labial regions, parotoids, rib nodules, whole limbs, vent, and ventral tail ridge. We also briefly discuss biogeography and species diversity of the genus *Tylototriton* in Myanmar.

Keywords: *Tylototriton kachinorum* **sp. nov.**; mtDNA genealogy; ND2; 16S rRNA; Shan; Biogeography; Endemism; Taxonomy

INTRODUCTION

The salamandrid genus *Tylototriton* Anderson, 1871, or Crocodile Newts, currently includes 24 recognized species, inhabiting montane forest areas throughout the Asian monsoon climate zone from eastern Himalaya, southern and central China including Hainan Island, to northern Indochina including Vietnam, Laos, Thailand, and Myanmar (Hernandez, 2016; Wang et al., 2018). Recent progress in phylogenetic

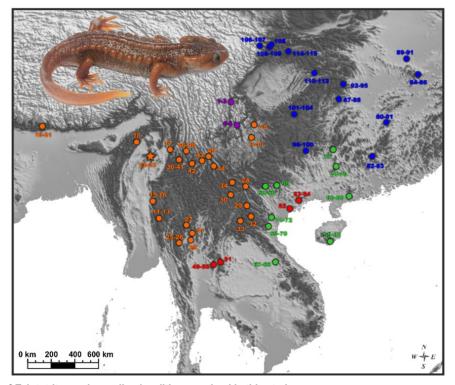
studies of the genus *Tylototriton* has indicated that the genus is monophyletic (Nishikawa et al., 2013a, 2013b; Phimmachak et al., 2015; Wang et al., 2018) and includes two major groups, corresponding to the subgenera *Tylototriton* s. str. and *Yaotriton* (Wang et al., 2018). Molecular taxonomy methods have proven to be useful for deciphering taxonomic diversity of the genus *Tylototriton*, with 13 species (over 50%) described in the past five years (Grismer et al., 2018a; Hou et al., 2012; Khatiwada et al., 2015; Nishikawa et al., 2013a, 2013b, 2014; Phimmachak et al., 2015; Shen et al., 2012; Yang et al., 2014; Zhao et al., 2012). However, recent molecular surveys indicate that our knowledge on taxonomic diversity of the genus *Tylototriton* is still far from complete, revealing several cryptic lineages likely corresponding to as yet undescribed species (Grismer et al., 2018a; Wang et al., 2018).

Myanmar, previously known as Burma, is the largest country of mainland Southeast Asia. Despite this, its herpetofauna remains one of the least explored in the region (Grismer et al., 2018a). Members of the genus *Tylototriton* have long been recorded from northern and eastern parts of Myanmar and have been traditionally classified as *T. verrucosus* Anderson, 1871 (Gyi, 1969). Nishikawa et al. (2014), based on the examination of specimens assigned to *T. verrucosus* collected from the Shan Plateau in eastern Myanmar and pet-trade animals assumed to originate from Myanmar, recently described a new species, *T. shanorum* Nishikawa, Matsui & Rao, 2014. Soon after, Phimmachak et al. (2015) published sequence

Received: 30 October 2018; Accepted: 21 February 2019; Online: 28 March 2019

Foundation items: The study was partially supported by the Russian Science Foundation (19-14-00050)

^{*}Corresponding author, E-mail: n.poyarkov@gmail.com DOI: 10.24272/j.issn.2095-8137.2019.043


data for specimens collected from the Sagaing Region and Kachin State in northern Myanmar, which were reported as T. verrucosus. More recently, Grismer et al. (2018a) demonstrated the presence of two morphologically and genetically distinct lineages of Tylototriton in the Shan Plateau and described a new species from its north-western edge, T. ngarsuensis Grismer, Wood, Quah, Thura, Espinoza, Grismer, Murdoch & Lin. 2018. The same work of Grismer et al. (2018a) reanalyzed sequences of specimens from the Sagaing and Kachin regions of Myanmar and demonstrated that they belong to a distinct lineage - Tylototriton sp. 1, distinct from T. verrucosus s. str. Recent work also indicated the presence of T. himalayanus Khatiwada, Wang, Ghimire, Vasudevan, Paudel & Jiang, 2015 (a species described from Nepalese Himalaya) in northern Myanmar, but without providing voucher specimen information or any other justification for this identification (Hernandez, 2016; Hernandez et al., 2018). The recent monographic review of the genus Tylototriton by Hernandez (2016) also indicated the possibility of the occurrence of T. uyenoi Nishikawa, Khonsue, Pomchote & Matsui, 2013 and T. shanjing Nussbaum, Brodie & Yang, 1995 in parts of Myanmar adjacent to northern Thailand and the southwestern Yunnan Province of China; however, these records are not supported by voucher specimens. Thus, our knowledge on the taxonomic composition and diversity of the genus Tylototriton in Myanmar is still far from complete.

In the present paper, we report on a new population of the genus *Tylototriton* from the Kachin Hills in the southern part of Kachin State, northern Myanmar. We applied morphological and molecular methods to evaluate its taxonomic status and describe it as a new species. We also discuss biogeography and taxonomy of the genus *Tylototriton* in Myanmar.

MATERIALS AND METHODS

Sample collection

Fieldwork was carried out in northern Myanmar, Kachin State, from 14 to 21 July 2018. Specimens of Tylototriton sp. were collected by hand in swamps in forest clearings surrounded by montane evergreen tropical forests of Ingvin Taung Mountain, Indawgyi Lake area, Kachin State (Figure 1; samples 22-23). Geographic coordinates and altitude were obtained using a Garmin GPSMAP 60CSx GPS receiver (Garmin Ltd., USA) and recorded in datum WGS 84. Specimens were euthanized by 20% benzocaine and tissue samples for genetic analysis were taken and stored in 96% ethanol (femoral muscles) prior to preservation. Specimens were subsequently preserved in 70% ethanol and deposited in the herpetological collection of the Zoological Museum of Moscow State University (ZMMU) in Moscow, Russia; Zoological Institute of Russian Academy of Sciences (ZISP) in St. Petersburg, Russia; and Zoology Department of University of Mandalay (ZDUM), Mandalay, Myanmar.

Figure 1 Distribution of *Tylototriton* and sampling localities examined in this study Colors of dots correspond to clades 1–5 denoted in Figure 2. Sample numbers 1–115 refer to Table 1. Type locality of new species *Tylototriton kachinorum* **sp. nov.** is marked with a star. Photo by Nikolay A. Poyarkov.

Morphological description

Specimens of *Tylototriton* sp. were photographed in life and after preservation. The sex and maturity of the specimens and number of eggs were checked and counted by minor dissections. Measurements were taken using a digital caliper to the nearest 0.01 mm, subsequently rounded to 0.1 mm. We used a stereoscopic light binocular microscope when necessary. Statistical analyses were performed with Statistica 8.0 (Version 8.0; StatSoft, Tulsa, OK, USA).

Adult morphology

Morphometrics followed Nishikawa et al. (2014), Khatiwada et al. (2015), and Okamiya et al. (2018) and included the following 24 measurements: (1) SVL (snout-vent length) from tip of snout to anterior tip of vent; (2) HL (head length); (3) HW (head width); (4) MXHW (maximum head width); (5) IND (internarial distance); (6) AGD (axilla-groin distance); (7) TRL (trunk length); (8) TAL (tail length) from anterior tip of vent to tail tip; (9) VL (vent length); (10) FLL (forelimb length); (11) HLL (hindlimb length); (12) VTW (vomerine tooth series width): greatest width of vomerine tooth series; (13) VTL (vomerine tooth series length): greatest length of vomerine tooth series; (14) LJL (lower jaw length from tip of lower jaw to articulation of upper and lower jaws); (15) SL (snout length from tip of snout to anterior tip of upper eyelid); (16) IOD (minimum interorbital distance); (17) UEW (maximum upper eyelid width); (18) UEL (upper eyelid length, distance between anterior and posterior angles); (19) OL (orbit length); (20) BTAW (basal tail width at level of anterior tip of cloaca); (21) MTAW (tail width at mid-level of tail); (22) MXTAH (maximum tail height); (23) MTAH (tail height at mid-level of tail); (24) ON (orbitonarial distance). For holotype description, we examined the following 12 morphometric and three meristic characters following Poyarkov et al. (2012) and Okamiya et al. (2018): additional morphometric characters: (25) ICD (intercanthal distance); (26) CW (chest width); (27) NSD (nostril-snout distance); (28) 1FL (first finger length from base to tip); (29) 2FL (second finger length from base to tip); (30) 3FL (third finger length from base to tip); (31) 4FL (fourth finger length from base to tip); (32) 1TL (first toe length from base to tip); (33) 2TL (second toe length from base to tip); (34) 3TL (third toe length from base to tip); (35) 4TL (fourth toe length from base to tip); (36) 5TL (fifth toe length from base to tip); meristic characters: (37) UJTN (number of teeth on upper jaw); (38) LJTN (number of teeth on lower jaw); (39) VTN, number of teeth on vomer. We also recorded the following characters as per Nishikawa et al. (2014) and Grismer et al. (2018a): shape of vomerine teeth and their positional relationship relative to choanae; skin texture; number and shape of rib nodules counted from posterior margin of vent to axilla; width and prominence of vertebral ridge and head ridges; and coloration of dorsum, venter, head, labial region, parotoid glands, rib nodules, limbs, soles, palms, tail surfaces, and vent region.

The characters of adult morphology chosen for comparison and data on other *Tylototriton* species were taken from the following sources: Anderson (1871); Böhme

et al. (2005); Chen et al. (2010); Fang & Chang (1932); Fei et al. (1984); Grismer et al. (2018a); Hernandez (2016); Hou et al. (2012); Khatiwada et al. (2015); Le et al. (2015); Liu (1950); Nishikawa et al. (2013a; 2013b; 2014); Nussbaum et al. (1995); Phimmachak et al. (2015); Qian et al. (2017); Shen et al. (2012); Stuart et al. (2010); Unterstein (1930); Yang et al. (2014).

Larval morphology

Description of larval morphology followed Okamiya et al. (2018). For larval specimens, we recorded nine morphometric characters including (1) SVL, (2) HL, (3) HW, (4) OL, (5) AGD, (6) TAL, (7) FLL, (8) HLL, and (9) MXTAH (definition same as for adult morphology). Developmental stages were determined following Grosse (2013).

DNA isolation, PCR, and sequencing

Total genomic DNA was extracted from 95% ethanol-preserved muscle tissues using standard phenol-chloroform extraction protocols (Hillis et al., 1996). Total DNA concentration was estimated in 1 μ L using a NanoDrop 2000 spectrophotometer (Thermo Scientific, USA), and consequently adjusted to 100 ng DNA/ μ L.

We amplified two mtDNA fragments consisting of partial sequences of the ND2 and 16S rRNA mtDNA genes. These markers were chosen as they are useful in studies of Tylototriton phylogeny and taxonomy (Nishikawa et al., 2013a, 2013b, 2014; Wang et al., 2018; Zhao et al., 2012 and references therein). We used the 16L-1 (forward) (5'-CTGACCGTGCAAA GGTAGCGTAATCACT-3') and 16H-1 (reverse) (5'- CTCCGG TCTGAACTCAGATCACGTAGG-3') primers to amplify the 16S rRNA fragments (Hedges, 1994). For amplification and sequencing of the ND2 gene, we used the SL-1 (forward) (5'-ATAGAGGTTCAAACCCTCTC-3') and SL-2 (reverse) (5'-TTAAAGTGTCTGGGTTGCATTCAG-3') primers of Wang et al. (2018). Polymerase chain reaction (PCR) was performed in 20 µL reactions using 50 ng genomic DNA, 10 nmol of each primer, 15 nmol of each dNTP, 50 nmol additional MgCl₂, Taq PCR buffer (10 mmol/L Tris-HCl, pH 8.3, 50 mmol/L KCI, 1.1 mmol/L MgCl₂, and 0.01% gelatin), and 1 U of Taq DNA polymerase. PCR cycles included an initial denaturation step of 4 min at 94 °C and 35 cycles of denaturation for 30 s at 94 °C, primer annealing for 30 s at 48-58 °C, and extension for 1 min 30 s at 72 °C. PCR products were visualized by agarose gel electrophoresis in the presence of ethidium bromide and consequently purified using 2 µL from a 1:4 dilution of ExoSaplt (Amersham, UK) per 5 µL of PCR product prior to cycle sequencing. Sequencing was performed in both directions using the same primers as used in PCR on an ABI3730xl automated sequencer (Applied Biosystems, USA) at Evrogen Inc., Moscow (Russia). The newly obtained sequences were aligned and deposited in GenBank under the accession numbers MK095616-MK095619 and MK097271-MK097274 (Table 1). Sequences of 25 other Tylototriton species used for comparisons were obtained from GenBank (Table 1).

Table 1	Sequences and vouche	r specimens of 7	<i>ylototriton</i> and o	outgroup taxa u	sed in this study
Tuble I	ocquences and vouche	speciments of <i>i</i>	yiototiittoii alla o	algioup luxu t	

Sample No.	Species name	Voucher number	Locality	16S rRNA	ND2
	Ingroup:				
1	Tylototriton taliangensis	CIB GG200110183	Shimian Co., Ya'an City, Sichuan, China	KY800559	KC147819
2	Tylototriton taliangensis	CIB GG200110185	Shimian Co., Ya'an City, Sichuan, China	KY800560	KY800829
3	Tylototriton taliangensis	CIB GG200110186	Shimian Co. Ya'an City, Sichuan, China	KY800561	KY800830
4	Tylototriton pseudoverrucosus	CIB WCG2012003	Ningnan Co., Liangshan Yi Autonomous Prefec- ture, Sichuan, China	KY800597	KY800861
5	Tylototriton pseudoverrucosus	CIB WCG2012007	Ningnan Co., Liangshan Yi Autonomous Prefec- ture, Sichuan, China	KY800598	KY800862
6	Tylototriton pseudoverrucosus	CIB WCG2012012	Ningnan Co., Liangshan Yi Autonomous Prefec- ture, Sichuan, China	KY800599	KY800860
7	Tylototriton kweichowensis	CIB WG20080818014	Bijie City, Guizhou, China	KY800551	KY800823
8	Tylototriton kweichowensis	CIB WG20080818018	Bijie City, Guizhou, China	KY800552	KY800824
9	Tylototriton kweichowensis	CIB 20050213	Shuicheng Co., Guizhou, China	KY800557	KY800827
10	Tylototriton kweichowensis	CIB 20050215	Shuicheng Co., Guizhou, China	KY800558	KY800828
11	Tylototriton shanorum lineage 1	CAS 230933	Taunggyi Township, Shan, Myanmar	_	AB922822
12	Tylototriton shanorum lineage 1	CAS 230940	Taunggyi Township, Shan, Myanmar	_	AB922823
13	Tylototriton shanorum lineage 1	CAS 230899	Taunggyi Township, Shan, Myanmar	_	HM77008
14	Tylototriton shanorum lineage 2	KUHE 42348	pet trade, presumably from Myanmar	_	AB769544
15	Tylototriton ngarsuensis	LSUHC 13762	Ngar Su, Shan, Myanmar	_	MH83658
16	Tylototriton ngarsuensis	LSUHC 13763	Ngar Su, Shan, Myanmar	_	MH83658
17	Tylototriton sp. 1	CAS 245418	Chipwi Township, Kachin State, Myanmar	_	KT304279
18	Tylototriton sp. 1	CAS 245290	Lahe Township, Sagaing Region, Myanmar	_	KT304278
19	Tylototriton himalayanus	CIB 201406246	Mai Pokhari, Illam, Mechi, Nepal	KY800590	KT765173
20	Tylototriton himalayanus	CIB 201406284	Mai Pokhari, Illam, Mechi, Nepal	KY800591	KT765207
21	Tylototriton himalayanus	CIB 201406285	Mai Pokhari, Illam, Mechi, Nepal	KY800592	KT765208
22	Tylototriton kachinorum sp. nov.	ZMMU A5953	Ingyin Taung Mt., Indawgyi, Kachin, Myanmar	MK095618	MK09727
23	Tylototriton kachinorum sp. nov.	ZDUM-0103	Ingyin Taung Mt., Indawgyi, Kachin, Myanmar	MK095619	MK09727
24	Tylototriton yangi	KUHE 42282	Pingbian Co., Yunnan, China	KY800624	KY800887
25	Tylototriton uyenoi	ZMMU NAP-08220	Doi Inthanon, Chiang Mai, Thailand	MK095617	MK09727
26	Tylototriton uyenoi	KUHE 19037	Doi Inthanon, Chiang Mai, Thailand	_	AB830730
27	Tylototriton uyenoi	KUHE 19147	Doi Ang Khang, Chiang Mai, Thailand	_	AB830729
28	Tylototriton uyenoi	ITNT1	Doi Suthep, Chiang Mai, Thailand	_	AB830733
29	Tylototriton anguliceps	TBU PAE671	Thuan Chau, Son La, Vietnam	_	LC017833
30	Tylototriton anguliceps	VNMN A20143	Muong Nhe, Dien Bien, Vietnam	_	LC017832
31	Tylototriton anguliceps	LK003	Doi Lahnga, Chiang Mai, Thailand	_	AB830728
32	Tylototriton podichthys	KUHE 34399	Phu Pan, Xam Neua, Laos	_	AB830727
33	Tylototriton podichthys	IEBR A2014-1	Xam Neua, Huaphanh, Laos	_	LC017835
34	Tylototriton pulcherrimus	CIB TY 040	Lüchun Co., Yunnan, China	KY800626	KY800890
35	Tylototriton pulcherrimus	KUHE 46406	Pet Trade	KY800620	KY800880
36	Tylototriton verrucosus	CIB TSHS1	Longchuan Co., Dehong, Yunnan, China	KY800581	KY800847
37	Tylototriton verrucosus	CIB-TSHS2	Longchuan Co., Dehong, Yunnan, China	KY800582	KY800848
38	Tylototriton verrucosus	CIB TSHS3	Longchuan Co., Dehong, Yunnan, China	KY800583	KY800849

154 www.zoores.ac.cn

Sample					Continued
No.	Species name	Voucher number	Locality	16S rRNA	ND2
39	Tylototriton verrucosus	CIB TSHS4	Longchuan Co., Dehong, Yunnan, China	KY800584	KY800850
40	Tylototriton verrucosus	CIB TSHS5	Longchuan Co., Dehong, Yunnan, China	KY800585	KY800851
41	Tylototriton verrucosus	CIB TSHS6	Longchuan Co., Dehong, Yunnan, China	KY800586	KY800852
42	Tylototriton shanjing	KIZ 201306081	Yongde Co., Yunnan, China	KY800593	KY800856
43	Tylototriton shanjing	KIZ 201306098	Yun Co., Yunnan, China	KY800594	KY800857
44	Tylototriton shanjing	KIZ 201306102	Jingdong Co., Yunnan, China	KY800595	KY800858
45	Tylototriton shanjing	KIZ 201306108	Nanjian Co., Yunnan, China	KY800596	KY800859
46	Tylototriton shanjing	CIB 980004	Baoshan City, Yunnan, China	KY800562	KY800831
47	Tylototriton shanjing	CIB 980005	Baoshan City, Yunnan, China	KY800563	KY800832
48	Tylototriton shanjing	CIB 980006	Baoshan City, Yunnan, China	KY800564	KY800833
49	Tylototriton panhai	ZMMU NAP-08217	Phu Hin Rong Kla NP, Phitsanulok, Thailand	MK095616	MK097271
50	Tylototriton panhai	PH019	Phu Hin Rong Kla NP, Phitsanulok, Thailand	_	AB830735
51	Tylototriton panhai	PL009	Phu Luang WS, Loei, Thailand	_	AB830736
52	Tylototriton vietnamensis	IEBR A.3674	Yen Tu, Bac Giang, Vietnam	KY800614	KY800874
53	Tylototriton vietnamensis	IEBR A.0702	Mauson, Lang Son, Vietnam	KY800612	KY800872
54	Tylototriton vietnamensis	IEBR A.0701	Mauson, Lang Son, Vietnam	KY800613	KY800873
55	Tylototriton ziegleri	VNMN 3389	Bao Lac, Cao Bang, Vietnam	_	KY800888
56	Tylototriton ziegleri	VNMN 3390	Quan Ba, Ha Giang, Vietnam	KY800625	KY800889
57	Tylototriton ziegleri	VNUH HG.082	Quan Ba, Ha Giang, Vietnam	KY800610	KY800870
58	Tylototriton ziegleri	VNUH HG.081	Quan Ba, Ha Giang, Vietnam	KY800611	KY800871
59	Tylototriton hainanensis	CIB 20081048	Mt. Diaoluo, Hainan, China	KY800553	KC147817
60	Tylototriton hainanensis	CIB 20081049	Mt. Diaoluo, Hainan, China	KY800554	KC147818
61	Tylototriton hainanensis	CIB 20081051	Mt. Diaoluo, Hainan, China	KY800555	KY800825
62	Tylototriton hainanensis	CIB 20081052	Mt. Diaoluo, Hainan, China	KY800556	KY800826
63	Tylototriton asperrimus lineage 2	CIB XZ20091201	Xinyi City, Guangdong, China	KY800616	KY800876
64	Tylototriton asperrimus lineage 2	CIB XZ20091204	Xinyi City, Guangdong, China	KY800619	KY800879
65	Tylototriton asperrimus lineage 2	CIB XZ20091	Xinyi City, Guangdong, China	KY800618	KY800878
66	Tylototriton asperrimus lineage 2	CIB XZ20092	Xinyi City, Guangdong, China	KY800617	KY800877
67	Tylototriton notialis	FMNH HERP271120	Boualapha Dist., Khammouan, Laos	_	HM462061
68	Tylototriton notialis	FMNH HERP271121	Boualapha Dist., Khammouan, Laos	_	HM462062
69	Tylototriton notialis	VNMN TAO1229	Pu Hoat, Nghe An, Vietnam	_	KY800883
70	Tylototriton notialis	VNMN TAO1235	Pu Hoat, Nghe An, Vietnam	_	KY800884
71	Tylototriton asperrimus lineage 1	VNMN TAO1213	Thuong Tien, Hoa Binh, Vietnam	KY800623	KY800885
72	Tylototriton asperrimus lineage 1	VNMN TAO1214	Thuong Tien, Hoa Binh, Vietnam	_	KY800886
73	Tylototriton asperrimus lineage 1	CIB 70063	Longsheng Co., Guangxi, China	KY800549	KC147816
74	Tylototriton asperrimus lineage 1	CIB GX20080714	Jinxiu Co., Guangxi, China	KY800546	KY800819
75	Tylototriton asperrimus lineage 1		Jinxiu Co., Guangxi, China	KY800547	KY800820
76	Tylototriton asperrimus lineage 1		Jinxiu Co., Guangxi, China	KY800548	KY800821
77	Tylototriton asperrimus lineage 1		Jinxiu Co., Guangxi, China	KY800550	KY800822
78	Tylototriton asperrimus lineage 1		Jinxiu Co., Guangxi, China	KY800565	KY800834
79	Tylototriton asperrimus lineage 1	CIB 200807055	Jinxiu Co., Guangxi, China	KY800566	KC147815

					Continued
Sample No.	Species name	Voucher number	Locality	16S rRNA	ND2
80	Tylototriton liuyangensis	CSUFT 20100108	Liuyang City, Hunan, China	KY800606	KJ205598
81	Tylototriton liuyangensis	CIB 110601F06	Liuyang City, Hunan, China	KY800615	KY800875
82	Tylototriton lizhenchangi	KUHE 42316	Yizhang Co., Hunan, China	KY800621	KY800881
83	Tylototriton lizhenchangi	KUHE 42317	Yizhang Co., Hunan, China	KY800622	KY800882
84	Tylototriton dabienicus lineage 2	CIB 08042905-2	Yuexi Co. Anhui, China	KY800587	KY800853
85	Tylototriton dabienicus lineage 2	CIB 08042905-3	Yuexi Co. Anhui, China	KY800588	KY800854
86	Tylototriton dabienicus lineage 2	CIB 08042905-4	Yuexi Co. Anhui, China	KY800589	KY800855
87	Tylototriton broadoridgus	CIB 200085	Sangzhi Co., Hunan, China	KY800569	KC147814
88	Tylototriton broadoridgus	CIB 200084	Sangzhi Co., Hunan, China	KY800570	KY800837
89	Tylototriton dabienicus lineage 1	HNNU 1004-015	Shangcheng Co., Anhui, China	KY800607	KC147811
90	Tylototriton dabienicus lineage 1	HNNU 1004-024	Shangcheng Co., Anhui, China	KY800608	KC147812
91	Tylototriton dabienicus lineage 1	HNNU 1004-026	Shangcheng Co., Anhui, China	KY800609	KY800869
92	<i>Tylototriton wenxianensis</i> lineage 3	CIB WH10001	Wufeng Co., Hubei, China	KY800600	KY800863
93	<i>Tylototriton wenxianensis</i> lineage 3	CIB WH10002	Wufeng Co., Hubei, China	KY800601	KY800864
94	<i>Tylototriton wenxianensis</i> lineage 3	CIB WH10003	Wufeng Co., Hubei, China	KY800602	KY800865
95	<i>Tylototriton wenxianensis</i> lineage 3	CIB WH10007	Wufeng Co., Hubei, China	KY800603	KY800866
96	<i>Tylototriton wenxianensis</i> lineage 2	CIB Wg20090730001	Libo Co., Guizhou, China	KY800575	KY800842
97	<i>Tylototriton wenxianensis</i> lineage 2	CIB Wg20090730002	Libo Co., Guizhou, China	KY800576	KY800843
98	<i>Tylototriton wenxianensis</i> lineage 2	CIB Wg20090730003	Libo Co., Guizhou, China	KY800577	KY800844
99	<i>Tylototriton wenxianensis</i> lineage 2	CIB Wg20090730005	Libo Co., Guizhou, China	KY800578	KY800845
100	<i>Tylototriton wenxianensis</i> lineage 2	CIB Wg20090730004	Libo Co., Guizhou, China	KY800580	KY800846
101	<i>Tylototriton wenxianensis</i> lineage 1	CIB WG200600019	Suiyang Co., Zunyi, Guizhou, China	KY800544	KY800817
102	<i>Tylototriton wenxianensis</i> lineage 1	CIB WG20060007	Suiyang Co., Zunyi, Guizhou, China	KY800545	KY800818
103	<i>Tylototriton wenxianensis</i> lineage 1	CIB WG20090601002	Suiyang Co., Zunyi, Guizhou, China	KY800573	KY800840
104	<i>Tylototriton wenxianensis</i> lineage 1	CIB WG20090601001	Suiyang Co., Zunyi, Guizhou, China	KY800574	KY800841
105	<i>Tylototriton wenxianensis</i> lineage 1	CIB 20090527	Wenxian Co., Gansu, China	KY800579	KC147813
106	<i>Tylototriton wenxianensis</i> lineage 1	CIB 2010123101	Pingwu Co., Gansu, China	KY800604	KY800867
107	<i>Tylototriton wenxianensis</i> lineage 1	CIB 2010123102	Pingwu Co., Gansu, China	KY800605	KY800868
108	<i>Tylototriton wenxianensis</i> lineage 1	CIB 20070639	Qingchuan Co., Sichuan, China	KY800542	KY800815

Sample No.	Species name	Voucher number	Locality	16S rRNA	ND2
109	<i>Tylototriton wenxianensis</i> lineage 1	CIB 20070638	Qingchuan Co., Sichuan, China	KY800543	KY800816
110	<i>Tylototriton wenxianensis</i> lineage 1	CIB 20080002	Yunyang Co., Chongqing, China	KY800540	KY800813
111	<i>Tylototriton wenxianensis</i> lineage 1	CIB 20080003	Yunyang Co., Chongqing, China	KY800541	KY800814
112	<i>Tylototriton wenxianensis</i> lineage 1	CIB 20081201	Yunyang Co., Chongqing, China	KY800567	KY800835
113	<i>Tylototriton wenxianensis</i> lineage 1	CIB 20081202	Yunyang Co., Chongqing, China	KY800568	KY800836
114	<i>Tylototriton wenxianensis</i> lineage 1	CIB WA20090601	Wangcang Co., Sichuan, China	KY800571	KY800838
115	<i>Tylototriton wenxianensis</i> lineage 1	CIB WA20090602	Wangcang Co., Sichuan, China	KY800572	KY800839
	Outgroup:				
116	Echinotriton chinhaiensis	CIB ZHJY1	Zhenhai Co., Zhejiang, China	KY800627	KY800891
117	Echinotriton chinhaiensis	CIB ZHJY2	Zhenhai Co., Zhejiang, China	KY800628	KY800892
118	Echinotriton andersoni	MVZ 232187	Tokunoshima, Kagoshima, Japan	EU880314	EU880314
119	Pleurodeles waltl	MVZ 231894	Cadiz, Andalusia, Spain	EU880330	EU880330

For sampling localities see Figure 1. Institutional abbreviations: CAS: California Academy of Sciences, Department of Herpetology, USA; CIB: Chengdu Institute of Biology, Chinese Academy of Sciences, China; CSUFT: Central South University of Forestry and Technology, China; FMNH: Field Museum, USA; HNNU: Henan Normal University, China; IEBR: Institute of Ecology and Biological Resources, Vietnam; KIZ: Kunming Institute of Zoology, Chinese Academy of Sciences, China; KUHE: Graduate School of Human and Environmental Studies of Kyoto University, Japan; LSUHC: La Sierra University, Herpetological Collection, USA; MVZ: Museum of Vertebrate Zoology, University of California, USA; TBU: Thuan Chau University, Vietnam; VNMN: Vietnam National Museum of Nature, Vietnam; VNUH: Vietnam National University Hanoi, Vietnam; ZDUM: Zoological Department, University of Mandalay, Myanmar; ZISP: Zoological Institute, Russian Academy of Sciences, Russia; ZMMU: Zoological Museum of Lomonosov Moscow State University, Russia. Co.: County. —: Not available.

Phylogenetic analyses

Sequences of partial fragments of *ND2* and 16S rRNA mtDNA for 119 Salamandridae specimens, including 115 representatives of *Tylototriton* (26 species) and four sequences of outgroup members of Salamandridae (*Echinotriton* and *Pleurodeles*) were included in the final alignment with a total length of up to 1 665 bp. Information on voucher specimens and GenBank accession Nos. used in phylogenetic analyses is summarized in Table 1. Nucleotide sequences were initially aligned in MAFFT v.6 (Katoh et al., 2002) with default parameters, and then checked by eye in BioEdit 7.0.5.2 (Hall, 1999) and slightly adjusted.

The dataset was divided into four partitions: three codonpartitions for the *ND2* gene and a single partition for 16S rRNA, with the optimal evolutionary models for each estimated using MODELTEST v. 3.06 (Posada & Crandall, 1998). According to the Akaike information criterion (AIC), the TVM+ G model was the best fit for the 16S rRNA partition; for the *ND2* gene, however, the HKY+G model was considered the best fit for the first and second codon partitions, whereas the J2+G model was selected as the best fit for the third codon partition. Mean uncorrected genetic distances (*P*-distances) between sequences were determined with MEGA 7.0 (Kumar

et al., 2016).

The matrilineal genealogy was inferred using Bayesian inference (BI) and maximum likelihood (ML) algorithms. BI analyses were conducted in MrBayes v3.1.2 (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 2003). Metropoliscoupled Markov chain Monte Carlo (MCMCMC) analyses were run with one cold chain and three heated chains for twenty million generations and sampled every 2 000 generations. Five independent MCMCMC runs were performed and 1 000 trees were discarded as burn-in. We checked the convergence of the runs and that the effective sample sizes (ESS) were all above 200 by exploring the likelihood plots using TRACER v1.6 (Rambaut et al., 2014). Confidence in tree topology was tested by posterior probability (PP) for the BI trees (Huelsenbeck & Ronguist, 2001). Nodes with PP values over 0.95 were *a-priori* regarded as sufficiently resolved, those between 0.95 and 0.90 were regarded as tendencies, and values below 0.90 were considered to be not supported.

We conducted ML analyses using the RAxML web server (http://embnet.vital-it. ch / raxml-bb/; Stamatakis et al., 2008) and searched ML trees using the gamma model of rate heterogeneity option. Confidence in node topology was tested by non-parametric bootstrapping with 1 000 replicates (ML BS, see Felsenstein, 1985). We *a-priori* regarded tree nodes with bootstrap (ML BS) values of 70% or greater and BI PP values over 0.95 as sufficiently resolved; ML BS values between 70% and 50% (BI PP between 0.95 and 0.90) were treated as tendencies, and nodes with ML BS values below 50% (BI PP below 0.90) were regarded as unresolved (Felsenstein, 2004; Huelsenbeck & Hillis, 1993).

RESULTS

Phylogenetic analyses

Sequences and statistics: The final alignment of the *ND2* gene contained 1 157 aligned characters, including 712 conserved sites and 445 variable sites, of which 405 were parsimony-informative. The transition-transversion bias (R) was estimated to be 4.56 (all data for ingroup only). Nucleotide frequencies were 37.5% (A), 23.7% (T), 28.3% (C), and 10.5% (G). The final alignment of the 16S rRNA gene contained 508 aligned characters, including 424 conserved sites and 82 variable sites, of which 69 were parsimony-informative. The transition-transversion bias (R) was estimated to be 5.84 (all data for ingroup only). Nucleotide frequencies were 36.8% (A), 24.9% (T), 20.3% (C), and 18.0% (G).

Position of *Tylototriton* **sp. in matrilineal genealogy:** Bl and ML phylogenetic analyses resulted in essentially similar topologies (Figure 2). In general, the topology of the mtDNA-based matrilineal genealogy was consistent with the phylogeny of *Tylototriton* presented by Wang et al. (2018), suggesting that the genus is divided into five clades (1–5) grouped into two major reciprocally monophyletic groups (Figure 2):

(1) The first group joined two clades with sister relationships: clade 1 (including *T. verrucosus* (type species of *Tylototriton* s. str. Anderson, 1871), *T. anguliceps*, *T. himalayanus*, *T. kweichowensis* (type species of *Qiantriton* Fei, Ye & Jiang, 2012), *T. ngarsuensis*, *T. podichthys*, *T. pulcherrimus*, *T. shanjing*, *T. shanorum*, *T. uyenoi*, *T. yangi*, and *Tylototriton* sp. 1 from the western part of the Kachin and Sagaing States of Myanmar and the newly discovered population of *Tylototriton* **sp. nov.** from the Indawgyi Lake area in the southern part of Kachin State) and clade 2 (including *T. pseudoverrucosus* and *T. taliangensis*, the latter being the type species of *Liangshantriton* Fei, Ye & Jiang, 2012).

(2) The second group joined clade 3 (including *T. broadoridgus*, *T. dabienicus*, *T. liuyangensis*, *T. lizhenchangi*, and *T. wenxianensis*), clade 4 (including *T. panhai* and *T. vietnamensis*), and clade 5 (including *T. asperrimus* (type species of *Yaotriton* Dubois & Raffaëlli, 2009), *T. hainanensis*, *T. notialis*, and *T. ziegleri*); the topological relationships between these three clades are essentially unresolved.

In accordance with the results of Wang et al. (2018) our analysis indicated deep phylogenetic structuring and paraphyly of *T. asperrimus* (consisting of two non-monophyletic lineages), *T. wenxianensis* (consisting of three lineages, not forming a monophyly), and *T. dabienicus* (consisting of two non-monophyletic lineages), suggesting that taxonomy of this

group is incomplete and further taxonomic and phylogenetic research is required.

The newly discovered population of Tylototriton sp. nov. from the Indawgyi Lake area belongs to clade 1 (Figure 2), which occurs in western and northern Indochina, Himalaya, and Yunnan Province of China (Figure 1), and is grouped with T. himalavanus from Nepal, though not with significant node support (0.85/57, hereafter given for BI PP/ML BS, respectively). Tylototriton sp. nov. from the Indawgyi Lake area and T. himalayanus form a well-supported monophyletic group with Tylototriton species from the Shan Plateau in Myanmar (1.0/96), whereas populations of *Tylototriton* sp. 1 from the Sagaing and Kachin states in northern Myanmar, reported by Grismer et al. (2018a), are clustered with other members of Tylototriton clade 1 from Yunnan and northern Indochina and belong to the T. verrucosus species complex (Figure 2). Our analyses suggest sister relationships of closely related T. verrucosus and T. shanjing but only with support from BI (1.0/-), suggesting that the taxonomic status of T. shanjing might need to be reconsidered. Finally, in our tree, the recently described Myanmar species T. ngarsuensis is nested within differentiation of T. shanorum, rendering the latter paraphyletic.

Sequence divergence: The uncorrected *P*-distances among and within the studied mtDNA fragments for the examined *Tylototriton* species are shown in Table 2 (data for ingroup only). The interspecific uncorrected genetic *P*-distances between the *Tylototriton* sp. from Kachin State of Myanmar and other congeners varied from 5.3% (between *Tylototriton* sp. and its sister species *T. himalayanus*) to 14.6% (between *Tylototriton* sp. and *T. lizhenchangi*) for the *ND2* gene; and from 2.4% (between *Tylototriton* sp. and its sister species *T. himalayanus*) to 5.9% (between *Tylototriton* sp. and *T. liuyangensis* and *T. dabienicus*, lineage 1) for the 16S rRNA gene (Table 2). This degree of pairwise divergence is quite high, notably greater than the genetic divergence observed between many recognized species of *Tylototriton* (see Table 2 and Grismer et al., 2018a; Wang et al., 2018).

Taxonomy

Our mtDNA genealogy analyses based on the ND2 and 16S rRNA genes indicated that the newly discovered population of Tylototriton sp. nov. from the Indawgyi Lake area belongs to clade 1 of the subgenus Tylototriton s. str. and is clustered with two other species of the genus known from Myanmar, T. ngarsuensis and T. shanorum, and with T. himalayanus from Nepal (Figure 2). The lineage of Tylototriton sp. nov. from Indawgyi Lake is clearly distinct and notably divergent from all other congeners with the uncorrected genetic distance for interspecific comparisons exceeding P=5.3% in the ND2 gene and P=2.4% in the 16S rRNA gene. The observed differences in mtDNA sequences are congruent with evidence from diagnostic morphological characters (see "Comparisons"). These results support our hypothesis that the newly discovered population of Tylototriton sp. nov. from Indawgyi Lake represents a previously unknown species, which we describe herein.

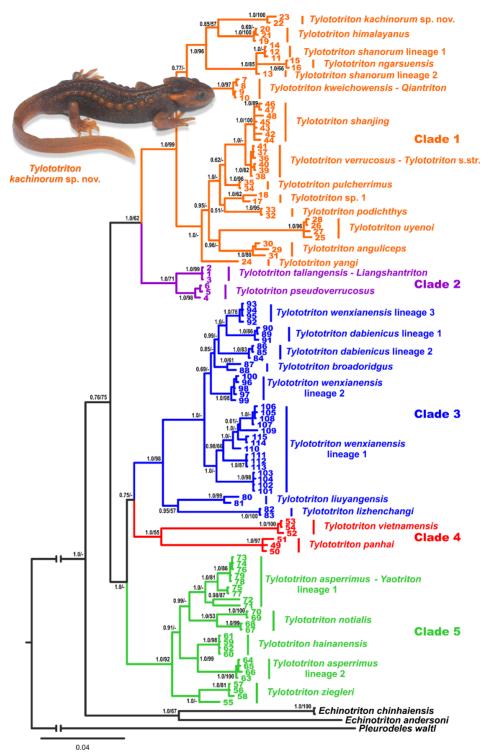


Figure 2 Bayesian inference consensus tree of genus *Tylototriton* derived from analysis of 1 157 bp *ND2* and 508 bp 16S rRNA gene fragments

Specimen numbers (1–115), corresponding voucher specimen information, and GenBank accession Nos. are given in Table 1. Color denotes five major clades revealed within genus *Tylototriton* (clades 1–5). Information on type species of subgeneric-level taxa *Tylototriton* s. str., *Qiantriton*, *Liangshantriton*, and *Yaotriton* is provided. Number at tree nodes corresponds to BI PP/ML BS support values, respectively. Photo by Nikolay A. Poyarkov.

Tylototriton species included in phylogenetic anal	naea I	•									!																		
Species	-	2		4 5	9	~	8	6	10	7	12	13	14	15	16	17	18	19	20	21	52	23	24 2	2	26 2	27 2	28 29	9 30	31
1 T. kweichowensis	I	0.	0.0	3.3 2.	0	4		5.6	8 2.4	1 2.7	2.5	4.0	2.4	2.8	3.8	0.0	3.4	3.8		4.4	4.2	4.0	3.8 3	ø.	4.7	3.7 3	4.3	4	1
2 T. shanorum 1	5.9	 	I	1			1	Ι	Ι	I	Ι	I	I	I	Ι	I	I	· I		'	'	'	1		1	I	I	Ι	Ι
3 T. shanorum 2	5.6	0.6 –	I	1	I		1	Ι	Ι	Ι	Т	Ι	Ι	I	I	I	I	· I		'	' 1	'				1	I	I	Ι
4 T. himalayanus	5.2	5.1 4.	4.9	1	.3	Ω.	1	3.7	7 3.7	7 3.5	2.4	3.8	4.3	4.5	4.1	3.3	4.5	4.5	I	4.7	5.2	4.3 4	4.3 4.	ς.	4.5	3.9 4.	.5	ا ا	Ι
5 T. yangi	6.1	6.6 6.	6.4 6	6.5 –	~	9	1	1.	6 2.0	0 1.8	3.2	3.5	2.4	2.8	3.8	2.0	2.8	3.2		3.6	3.2	3.2	2.8	õ	3.3	2.3 2.	8	۔ 2	Ι
6 T. uyenoi	8.1	9.2 9.	9.1 8	8.5 7	7.5 –		1	3.1	1 3.1	1 3.2	5.2	6.2	4. 4	4.8	4.8	4.4	4.8	4.8		5.1	5.3	5.5	5.1 4	4.6 5	5.6	5.0 5.	4	ا ∞	Ι
7 T. anguliceps	6.3	7.0 6.	6.8 7	7.0 4	4.5 7	ı 9		Ι	Ι	I	I	I	I	I	I	I	I	I		'		'				1	I	Ι	Ι
8 T. podichthys	5.8	7.2 6.	6.9	6.7 5	5.0 8	8.7 5	5.4 –	Ι	Ι	I	I	I	I	I	I	I	I	· I		'	'	'	1			1	I	I	Ι
9 T. pulcherrimus	5.3	6.4 6.1		6.3 3	3.8	ø.	4.2 3.	ю. Г	1.6	3 1.0	3.9	4.8	2.2	2.6	4.2	2.8	3.4	3.6	-	4.0	3.8	3.6	3.6 3.	0	4.5	3.5 3.	8.	ဂ	Ι
10 T. verrucosus	5.6	6.2 6.	6.0	6.4 3.	6	6 4	9.3	.6 2.1	I L	0.7	3.9	5.3	2.0	2.6	4.4	2.4	3.6	3.8		4.2	4.2	3.8	4.2 3	8.	►.	3.7 4.	.0	ا 9	Ι
11 T. shanjing	5.9	6.6 6.	6.4	6.2 4	4.5 7	6 4	Ø	4.0 2.6	5.1.	۱ 	3.7	5.2	2.3	2.5	4.3	2.7	3.5	3.7	I	4.1	4.0	3.7 4	4.0 3	3.7 4	4.5	3.6 3.	6.0	ا ا	Ι
12 T. kachinorum sp. nov. 6.5		7.6 7.	7.1 5	5.3 8	8.2 1	11.6 8.	ς.	8.0 7.7	7 7.3	3 7.9	I	5.2	4.1	4.3	4.7	2.5	5.2	5.2		5.5	5.9	5.0 5	5.0 5	5.0 5	5.9 5	5.0 5.	4	। 6	Ι
13 T. panhai	10.7	10.7 12.2 12.1 11.9 12.7	2.1	11.9 1		14.3 1	13.3 12	12.4 11	11.8 12.	.7 13.0	13.	3 3	5.1	4.8	4.4	4.0	4.4	4.8	-	4.7	4.7	4.2	4.2 4	4.2	4.7 3	3.6 4	4.0 3.	ا ∞	Ι
14 T. taliangensis	6.3	8.2 8.	8.0 7	7.6 7	7.9 9.	Γ.	8.8 7.	7.9 7.3	3 7.4	t 7.5	7.3	10.5	I	1.2	4.2	2.4	3.2	3.6	-	4.0	3.8	3.2	4.0 3.	9	4.5	3.5 3.	.6	N 1	Ι
15 T. pseudoverrucosus	5.7	7.9 7.	7.7 7	7.1 7	7.4 9.	2	8.6 7.	7.4 6.6	6 7.4	t 7.7	7.1	10.3	3 2.7	ı	4.0	2.8	3.2	3.6	1	3.8	3.8	3.8	4.4	0	4.9	3.9 3.	Э	ا 9	Ι
16 T. vietnamensis	11.8	11.8 12.5 12.2 12.7 12.2	2.2	12.7 1		5.0 13.4	13.4 12.	9	12.0 12.1	.1 12.5	5 13.1	1 11.0	11.2	11.7	I	3.8	4.0	4.0		3.8	4.5	4.2	4.2 3.	ω	4.3 4	4.2 4	4.0 4	4.0 –	Ι
17 T. ziegleri	9.4	11.1 11.1 11.2 10.2	1.1	11.2 1		3.4 1	11.2 10	10.9 10	10.6 11.3	.3 11.4	4 11.8	3 10.3	3 9.7	9.3	11.3	ı	3.4	3.8		4.4	4.2	4.0	3.8 3	3.8 4	4.7 3	3.7 3	3.4 3	3.4 –	Ι
18 T. hainanensis	8.5	9.9 9.	9.8	9.9	9.6 1	2.6 10.3	o.	.9 9.5	5 10.2	.2 10.3	3 11.9	9.6	8.6	8.4	10.8	4.4	I	0.8	I	4.	3.1	5 8 1 8	3.4 3.	0	3.9	2.9 2.	9	2.7 –	Ι
19 T. asperrimus 2	9.3	10.2 10.0 10.0 9.3	0.0	10.0 9	~	3.2 10.0	10.01	10.1 10	10.0 10	10.5 10.7	7 13.0	0 11.4	. 9.3	9.1	11.6	5.6	3.6	ī	I	4.	3.5	5 8 10 10	3.4 3.	0	3.9	3.0 3.	0	3.0 –	Ι
20 T. notialis	9.7	10.7 10.7 10.6 10.3	0.7	10.6 1		2.7 1	10.9 10	10.7 10	10.2 10.9	.9 11.0	12	.4 10.5	5 9.2	8.9	11.6	4.9	4.7	5.9	, T		1	1	1		1	1	1	Ι	Ι
21 T. asperrimus 1	10.0	10.0 11.2 11.2 11.4 10.2	1.2	11.4 1		3.4 1	11.4 10	10.8 10.	.9 11.4	7	.5 13.1	1 11.4	. 9.4	9.5	10.9	4.5	4.9	5.7	4.8	1	3.9	3.0	3.9 3.	4	4.3	3.4 3.	\sim	3.4 –	Ι
22 T. liuyangensis	9.4	10.3 10.3 10.1 9.5	0.3	10.1 9	~	2.7 10.4	10.4 10.	0.5 9.9		10.3 10.7	7 12.3	3 9.5	9.1	9.0	10.9	8.5	7.8	8.5	8.6	8.6	1	2.4	1.9 1	1.5 2	2.4	2.0 1	1.3 1	1.7 –	Ι
23 T. lizhenchangi	10.7	11.9 11.8 11.5 11.1	1.8	11.5 1	~	3.2 12.6	12.6 1	11.9 10	10.9 11	11.5 11.7	7 14.6	3 <u>9</u> .8	9.5	9.8	11.7	10.0	8.7	9.6	9.7	10.4	7.1 -	1	2.0 1	1.6 2	2.5	2.0 1	1.8	1.6 –	Ι
24 T. dabienicus 2	9.7	10.8 10.8 10.9 10.1	0.8)	10.9 1		2.7 11.1		9.9 9.9		10.6 10.	10.5 10.9	9 9.7	9.0	9.4	10.8	8.3	7.9	8.0	8 2	6.1	7.3	8.3	O	ω	1.3	0.9 1	1.2 1	1.3 –	I
25 T. broadoridgus	9.1	10.3 10.2 10.5 9.9	0.2	10.5 9	~	2.3 1	.3 11.0 9.	9.9 9.7		10.1 10.2	7	.2 9.5	9.1	9.0	10.7	8.0	7.5	8.00	7.9	8.0	7.0	6.7	3.4 I		0.9 0	0.9 0	0.8 1	1.1	Ι
26 T. dabienicus 1	10.2	11.0 11.1 11.2 11.0	1.1	11.2 1	~	3.0 1	12.2 10	10.9 10.	.5 10.9	.9 11.1	1 11.6	3 9.7	9.2	9.6	10.9	9.1	8.9	9.6	6.9	0.0	7.4 8	8.0	3.9 3.	4		1.0 1	.7 1	1.9	Ι
27 T. wenxianensis 3	9.1	10.2 10.2 10.3 9.	0.2	10.3 9	9	2.0 11.2		10.0 9.6		10.3 10.4	4 10.8	8 9.2	8.8	8.9	10.7	7.8	7.5	8.5	7.8	8.2	7.0 7	7.8 3	3.2 2	N	2.5	-	1.2 1	1.3 –	I
28 T. wenxianensis 2	9.5	10.3 10.4 10.7 9.7	0.4	10.7 9	~	2.5 11.0		10.1 9.7		10.0 10.2	2 11.7	7 10.3	3 9.0	9.2	11.0	8.6	8.2	9.0	8.2	8.5	7.2	8.0	3.3 2	õ	3.6	2.9	-	1.1	I
29 T. wenxianensis 1	9.9	11.0 11.1 10.9 10.0	1.1	10.9 1		2.7 1	11.4 10	10.0 9.6	6 10.1	.1 10.3	3 11.9	9 10.5	5 9.1	9.4	10.7	9.3	8.9	9.5	8.9	0.0	7.3 8	8.3	4.4	4.1 4	4.6 4	4.0 4.	і 0	I	I
30 T. ngarsuensis	6.6	1.8 1.	1.5 6	6.2 6.	6.0	.3 7	5 7	.6 6.8	8 6.7	7 7.0	8.0	12.5	5 9.1	8.6	13.1	11.9	10.6	10.5	11.8	11.9	11.3	12.6	11.7 1	11.3 1	12.5 1	11.5 11	1.6 11	1.9 –	I
31 Tylototriton sp. 1	5.7	6.7 6.	6.4 6	6.7 4.	2 7	.7 4	4.7 3.	5 2.	8 2.5	5 3.2	9.9	12.5	5 7.5	7.3	12.1	10.8	10.1	10.1	10.8	10.9	10.2 1	11.4	10.2 1	10.01	10.5 1	10.2 1	10.01	10.1 6.	и 8

Table 2 Uncorrected P-distance (percentage) between sequences of 1 157 bp ND2 gene fragment (below diagonal) and 508 bp 16S rRNA gene fragment (above diagonal) of

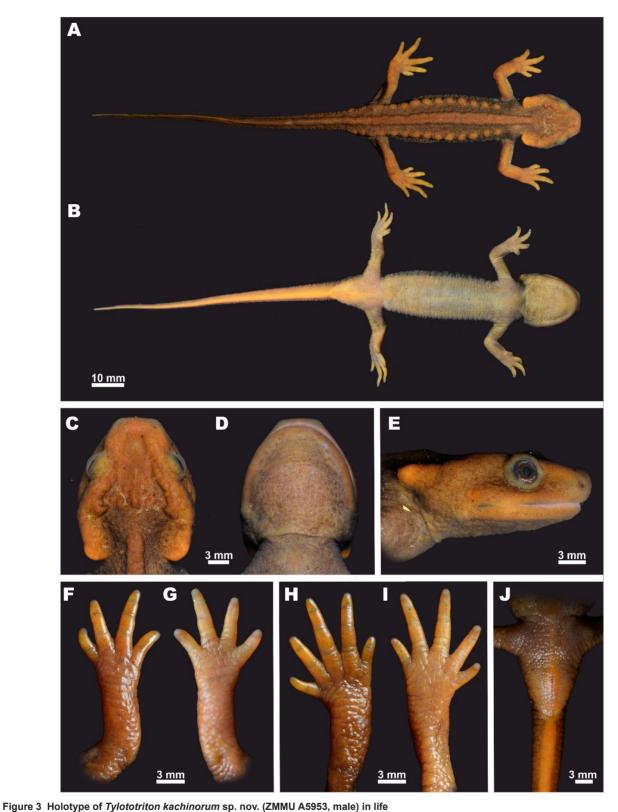
Tylototriton kachinorum **sp. nov.** Tables 3–4; Figures 3–6.

Holotype: ZMMU A5953 (field number NAP-08318), adult male from a swamp in a forest clearing surrounded by montane evergreen tropical forest, Ingyin Taung Mountain, Indawgyi Lake area, Mohnyin Township, Kachin State, Myanmar (approximate coordinates N25.09°, E96.28°; elevation 1 000 m a.s.l.), collected on July 18, 2018 at 2100 h by Than Zaw, Paw Lay, Parinya Pawangkhanant, Vladislav A. Gorin, and Nikolay A. Poyarkov.

Paratypes: ZMMU A5954 (field number NAP-08320), ZISP 13721 (field number NAP-08324), ZDUM-0101-0105 (field numbers NAP-08325, NAP-08322, NAP-08319, NAP-08326 and NAP-08317, respectively), seven adult males from the same locality and with the same collection information as the holotype; and ZMMU A5955-A5956 (field numbers NAP-08323 and NAP-08321, respectively), two adult females from the same locality and with the same collection information as the holotype.

Referred specimens: ZMMU A5957 (field number NAP-08305), a larva (Grosse (2013) stage 40) from the same locality and with the same collection information as the holotype.

Diagnosis: The new species is assigned to the genus Tvlototriton based on molecular data and by the following combination of morphological attributes: (1) presence of dorsal granules, (2) dorsolateral bony ridges on head, (3) presence of dorsolateral series of knob-like warts (rib nodules); and (4) absence of quadrate spine (Figure 2). Tylototriton kachinorum sp. nov. is distinguished from all other congeners by a combination of the following morphological attributes: (1) medium body size, adult SVL 62.3-74.1 mm in males, 72.5-84.8 mm in females; (2) tail thin and long, longer than body in both sexes, lacking lateral grooves; (3) skin rough with fine granules; (4) snout truncate in dorsal view; (5) supratemporal bony ridges on head wide, protruding, beginning at anterior corner of orbit; (6) sagittal ridge on head very weak, almost indistinct; (7) limbs long and thin, tips of forelimb and hindlimb broadly overlapping when adpressed along body; (8) vertebral ridge distinct, wide, non-segmented; (9) rib nodules weakly distinct, 13-14 along each side of body; (10) background coloration brown to dark-brown; (11) labial regions, parotoids, rib nodules, whole limbs, vent, ventral tail ridge with dull orange-brown to yellowish-brown markings.


The new species is also markedly distinct from all congeners for which comparable sequences are available of ND2 ($P \ge$ 5.3%) and 16S rRNA ($P \ge$ 2.4%) mitochondrial DNA genes.

Description of holotype: A medium-sized specimen in a good state of preservation (Figures 3–4).

Head: Head longer than wide (HW/HL ratio 89.3%) (Figure 3C), head wider than body; angularly hexagonal in shape in dorsal view, slightly depressed, gently sloping in profile (Figure 3E); snout comparatively long, three times longer than eye (UEW/

SL ratio 33.9%), sharply truncate in dorsal view (Figure 3C), slightly rounded in lateral view (Figure 3E), slightly projecting beyond lower jaw; nostrils on anterior margin of snout located notably closer to snout tip than to eye (NSD/ON ratio 58.8%), facing anterolaterally, not visible from dorsal view; labial folds absent; tongue oval, attached to anterior floor of mouth but free posteriorly and laterally; vomerine teeth arranged in inverted V-shaped almost straight series, converging and narrow anteriorly, gradually widening posteriorly, notably longer than wide (VTW/VTL ratio 77.7%), anteriorly reaching beyond level of choanae but not in contact with them, vomerine teeth 95 (47/48 in right and left branches, respectively), upper jaw teeth 93, and lower jaw teeth 110; parotoids distinct, comparatively large, crescent-shaped, notably projecting posteriorly (Figure 3E); dorsolateral supratemporal bony ridges on head wide, notably protruding, from anterior corner of orbit to anterior end of parotoid, forming medially recurved projection on its posterior end (Figure 3C); sagittal bony ridge on head very weak, almost indistinct (Figure 3C); gular fold present (Figure 3D).

Body: Body habitus comparatively slender (Figure 3A); costal folds absent; vertebral middorsal ridge wide, non-segmented, running from occiput region to anterior one fifth of tail length, separated from sagittal head ridge on head with wide gap (Figure 3C); rib nodules weakly distinct, small, forming knoblike glandular warts, arranged in two longitudinal lines on dorsolateral surfaces of dorsum, 14 on both sides of body from area posterior to axilla to level of posterior vent margin (base of tail) (Figure 3A); rib nodules almost of same size, rounded, those in posterior third of dorsum slightly ovalshaped, those on sacral area notably elongated, decreasing in size posteriorly on sacrum and tail basis. Limbs: Limbs comparatively long, slender (Figure 3A); forelimbs slightly shorter than hindlimbs; relative length of forelimb FLL/SVL ratio 26.2%, relative length of hindlimb ratio 28.0%; fore- and hindlimbs largely overlapping when adpressed towards each other along sides of body; fingers and toes well developed (Figure 3F–I), free of webbing; fingers four, comparative finger lengths: 1FL<4FL<2FL<3FL; toes five, comparative toe lengths: 1TL<5TL<2TL<3TL<4TL. Tail: Tail very long, notably exceeding body length (TAL/SVL ratio 114.9%); tail laterally compressed along entire length, tapering posteriorly, lateral grooves on tail absent; dorsal tail fin starting at anterior one fifth of tail length, more distinct posteriorly, with maximal tail height at posterior two thirds of tail length, dorsal tail fin slightly serrated; ventral tail fin smooth; tail tip pointed. Skin texture and skin glands: Skin rough, small granules present on dorsal surfaces of head and dorsum (Figure 3A, C), lateral sides of body and tail; on ventral surface granules become smaller, arranged in transverse striations (Figure 3B); small, sparse granules regularly arranged on throat (Figure 3D); head ridges with rough surface; skin on volar and plantar surfaces of hands and feet with tiny grooves forming reticulated pattern; metacarpal or metatarsal tubercles absent. Cloacal region notably swollen, vent as longitudinal slit (Figure 3J), vent edges with numerous transverse folds.

A: Dorsal view; B: Ventral view; C: Head, dorsal view; D: Head, ventral view; E: Head, lateral view; F: Opisthenar view of right hand; G: Volar view of right hand; H: Opisthenar view of right foot; I: Plantar view of right foot; J: Ventral view of cloacal area. Photos by Nikolay A. Poyarkov.

Color of holotype in life: Dorsal ground color of dorsal surfaces of head and trunk dark brown(Figure4); dorsal surfaces of limbs and lateral surfaces of tail light yellowish-brown (Figure 3A); iris brown with tiny bronze speckles along outer margins (Figure 3E); gular region, belly, and ventral surfaces of limbs

light yellowish-gray (Figure 3B); anterior parts of head and parotoids light orange-brown; rib nodules and vertebral ridge yellowish-brown to orange-brown, barely discernable from dark brown trunk coloration; upper and lower lips, posteriormost corners of parotoids, palms, and soles light-orange to yellowish.

Figure 4 Holotype of Tylototriton kachinorum sp. nov. (ZMMU A5953, male) in situ (Photo by Nikolay A. Poyarkov and Than Zaw)

Color of holotype in preservative: After preservation in ethanol for six months, coloration pattern of holotype resembles that observed in life, however yellowish and orange tints faded to light brownish-gray.

Measurements and counts of holotype: Morphometric characters (all in mm): SVL 67.2; RHL 18.1; RHW 16.2; RMXHW 16.6; RIND 5.4; RAGD 34.1; RTRL 50.4; TAL 77.3; RVL 6.3; RFLL 26.2; RHLL 28.0; RVTW 6.0; RVTL 7.7; RLJL 13.5; RSL 6.8; RIOD 7.2; RUEW 2.3; RUEL 4.4; ROL 3.3; RBTAW 9.0; RMTAW 3.2; RMXTAH 10.8; RMTAH 7.0; RON 4.6; ICD 9.6; CW 11.5; NSD 2.7; 1FL 2.9; 2FL 4.8; 3FL 5.5; 4FL 3.0; 1TL 2.5; 2TL 5.4; 3TL 7.0; 4TL 7.7; 5TL 3.6. Meristic characters: UJTN 93; LJTN 110; VTN 47/48 (right/left).


Variation: All individuals in the type series were generally similar in morphology and agreed with the holotype description in body proportions and coloration; variation of morphometric characters within the type series is shown in Table 3. The variation of dorsal coloration in seven male and two female paratypes in life is presented in Figure 5. In general, males had more robust and slender bodies than females. The males were notably smaller in body size (SVL 62.3–74.1 mm, mean 68.6 ± 2.9 mm) than the two females (SVL 72.5–84.8 mm) (Table 3). Body of the largest female (ZMMU A5956) was notably swollen and was wider than head width (Figure 5). Male paratypes ZDUM-0105 and ZISP 13721 had notably shorter tails than other type specimens (Table 4) due to regeneration of tail tip after damage (Figure 5). Coloration within the type series slightly varied, from specimens lighter than the holotype, which appeared light-brown to yellowish-orange (ZDUM-0102), to darker specimens, which appeared dark-brown with duller orange-brown light markings (male ZISP 13721 and female ZMMU A5956) (Figure 5).

Eggs and clutch: The clutch size is unknown. The diameter of ripe eggs in the ovaries of a female paratype (ZMMU A5956) ranged from 1.6 to 1.7 mm (*n*=5, mean=1.7 mm). The animal pole was dark brown and the remaining area of ova was cream.

Larval morphology: Description of larval morphology is based on a single larval specimen (ZMMU A5957, Grosse (2013) stage 40) (see Referred specimens for details). Details of larval morphology are presented in Figure 6.

Larval measurements (all in mm): SVL 10.5; HL 3.8; HW 3.4; OL 0.8; AGD 5.9; TAL 9.7; FLL 3.6; HLL 2.8; MXTAH 2.6.

Larval external morphology: Body elongated, higher than wide. Head large, trapezoidal in shape, wide and slightly depressed with short, flattened snout, comprising 37% of snout-vent length (SVL), gently sloping in lateral view, two times wider than body in dorsal view. Snout truncate in dorsal

Figure 5 Variation of dorsal coloration in paratypes of *Tylototriton kachinorum* **sp. nov.** Scale bar: 10 mm. Photos by Nikolay A. Poyarkov.

Specimen	ZMMU A5953	ZMMU A5954	ZDUM- 0101	ZDUM- 0102	ZDUM- 0103	ZDUM- 0104	ZDUM- 0105*	ZISP 13721*			ZMMU A5955	ZMMU A5956	F
Type status	Holotype	Paratype	Paratype	Paratype	Paratype	Paratype	Paratype		M		Paratype	Paratype	г
Sex	М	Μ	М	Μ	М	М	М	Μ	Mean ±SD	(Min–Max)	F	F	Mean ±SD
SVL	67.2	74.1	74.0	68.3	66.9	69.3	62.3	66.3	68.6±2.9	(62.3–74.1)	72.5	84.8	78.7±6.2
ΗL	18.1	20.7	20.7	18.6	19.6	19.7	16.9	17.3	18.9±1.2	(16.9–20.7)	18.1	20.3	19.2±1.4
ΗW	16.2	19.2	18.5	17.0	16.7	17.7	15.8	16.4	17.2±1.0	(15.8–19.2)	18.4	21.4	19.9±1.
MXHW	16.6	19.6	18.6	17.5	17.6	18.4	16.6	16.7	17.7±0.9	(16.6–19.6)	19.4	23.0	21.2±1.8
ND	5.4	6.4	5.7	5.4	5.2	5.6	4.2	4.8	5.3±0.4	(4.2–6.4)	5.8	6.8	6.3.±0.5
AGD	34.1	36.6	36.6	34.0	33.1	33.9	30.8	33.2	34.0±1.3	(30.8–36.6)	40.5	48.2	44.4±3.9
TRL	50.4	56.2	55.1	51.3	50.4	52.9	47.1	49.4	51.6±2.3	(47.1–56.2)	58.4	69.0	63.7±5.3
ΓAL	77.3	89.6	96.3	79.2	79.2	85.2	57.0	67.8	78.9±8.7	(57.0–96.3)	82.7	85.2	84.0±1.
/L	6.3	7.4	9.7	6.8	6.2	7.4	5.7	6.5	7.0±0.9	(5.7–9.7)	4.9	4.8	4.9±0.1
-LL	26.2	29.3	29.1	26.5	26.1	28.2	24.1	26.4	27.0±1.4	(24.1–29.3)	26.1	29.9	28.0±1.
HLL	28.0	31.0	31.6	28.0	27.3	29.7	26.6	27.5	28.7±1.5	(26.6–31.6)	29.0	32.2	30.6±1.
/TW	6.0	6.7	6.6	6.2	6.1	6.3	5.6	5.9	6.2±0.3	(5.6–6.7)	6.4	7.4	6.9±0.5
/TL	7.7	9.1	9.4	8.8	8.9	9.2	8.4	8.8	8.8±0.4	(7.7–9.4)	8.4	9.7	9.1±0.6
_JL	13.5	16.0	14.1	13.9	13.7	14.4	12.3	13.4	13.9±0.7	(12.3–16.0)	14.5	16.9	15.7±1.
SL	6.8	7.6	8.1	7.3	7.0	7.5	6.2	6.5	7.1±0.5	(6.2–8.1)	7.3	8.7	8.0±0.7
OD	7.2	8.4	8.1	7.3	8.0	7.9	7.2	7.3	7.7±0.4	(7.2–8.4)	7.7	8.7	8.2±0.5
JEW	2.3	2.5	2.6	2.4	2.4	2.4	2.2	2.2	2.4±0.1	(2.2–2.6)	2.3	2.8	2.6±0.2
JEL	4.4	5.0	4.9	4.6	4.4	4.6	4.1	4.4	4.5±0.2	(4.1–5.0)	4.3	5.3	4.8±0.5
CL	3.3	3.6	3.6	3.3	3.2	3.4	3.1	3.2	3.3±0.1	(3.1–3.6)	3.6	4.2	3.9±0.3
BTAW	9.0	9.7	9.5	10.0	9.7	9.6	8.8	9.6	9.5±0.3	(8.8–10.0)	8.5	9.8	9.2±0.7
MTAW	3.2	3.3	3.9	3.4	3.6	3.7	3.3	3.6	3.5±0.2	(3.2–3.9)	3.8	4.2	4.0±0.2
MXTAH	10.8	11.8	10.8	10.7	10.1	10.2	9.0	10.9	10.5±0.6	(9.0–11.8)	11.6	11.9	11.7±0.
ИТАН	7.0	9.0	7.3	7.5	7.8	7.7	7.7	8.4	7.8±0.5	(7.0–9.0)	9.3	9.7	9.5±0.2
NC	4.6	5.1	5.1	4.7	4.7	4.7	4.2	4.7	4.7±0.2	(4.2–5.1)	5.0	5.2	5.1±0.1

Table 3 Measurements of type series of Tylototriton kachinorum sp. nov. (all in mm)

Character abbreviations: SVL: Snout-vent length; HL: Head length; HW: Head width; MXHW: Maximum head width; IND: Internarial distance; AGD: Axilla-groin distance; TRL: Trunk length; TAL: Tail length; VL: Vent length; FLL: Forelimb length; HLL: Hindlimb length; VTW: Vomerine tooth series width; VTL: Vomerine tooth series length; LJL: Lower jaw length; SL: Snout length; IOD: Interorbital distance; UEW: Upper eyelid width; UEL: Upper eyelid length; OL: Orbit length; BTAW: Basal tail width; MTAW: Tail width at mid-level of tail; MXTAH: Maximum tail height; MTAH: Tail height at mid-level of tail; ON: Orbitonarial distance. M: Male. F: Female. For other abbreviations see "Materials and Methods". Asterisk (*) denotes damaged and regenerated tail.

view (Figure 6B), rounded in lateral view (Figure 6A). Tail subequal to body length comprising 93% of SVL; myotomes on body and tail not discernable in lateral view. Nostrils rounded, small, oriented anterolaterally, located much closer to snout tip than to eye. Eyes large, rounded, with lateral orientation but still visible in dorsal view (Figure 6B). Limbs thin, forelimbs longer than hindlimbs, HLL/FLL ratio 79.1%. Forelimbs with four well-developed elongated fingers; forelimb turned, palm facing ventrally; relative finger lengths: 4FL<3FL< 1FL<2FL. Hindlimbs with knee joint already formed and four

well-developed toes, fifth toe as nub; relative toe lengths: 5TL< 4TL<3TL<1TL<2TL. Orbit diameter (OL) 7.7% of SVL. Short longitudinal slit for vent. Height of tail musculature at highest portion comprises 50%–60% of tail height. Maximum height of dorsal tail fin 45%–55% of maximum tail height. Ventral tail fin two times lower than dorsal tail fin. Ventral tail fin roughly at level of vent, dorsal fin lower than head, at level of axilla and reaching maximum height mid tail. Tail tip sharply pointed (Figure 6A). Skin completely smooth; lateral line organs visible on ventral side of head; mouth open with well-developed

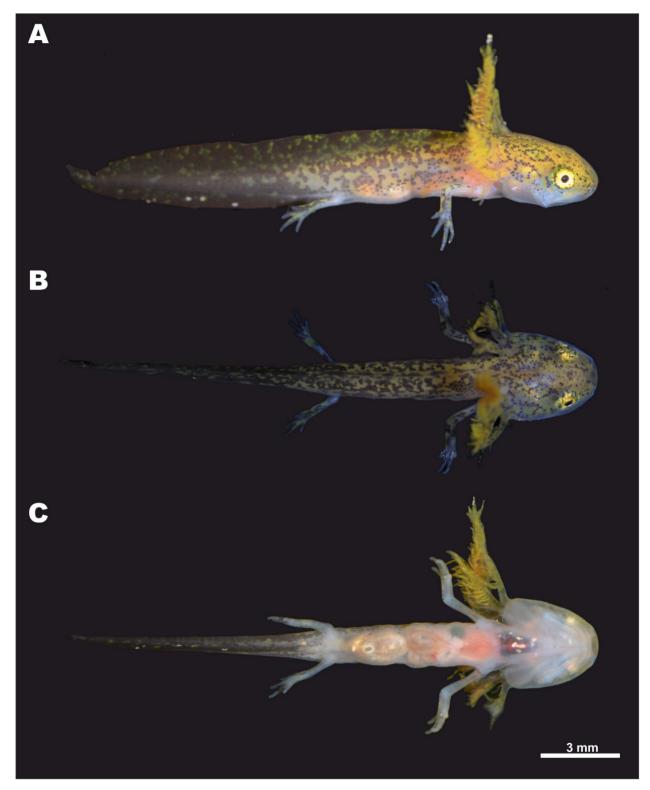


Figure 6 Lateral (A), dorsal (B), and ventral (C) views of larval specimen (ZMMU A5957; Grosse (2013) stage 40) of Tylototriton kachinorum sp. nov. in life

Scale bar: 3 mm. Photos by Nikolay A. Poyarkov.

teeth; no remains of yolk (Figure 6C); gills well-developed, much higher than body, with fimbriae clearly visible.

Larval coloration in life: In life body background color ochre to golden (Figure 6A, B), ventral surfaces pinkish, translucent (Figure 6C). Body, tail, and head pigmented dorsally: tail almost uniform purple-gray with rare golden speckles, pigmentation forms tortoise-shell golden-dark-gray pattern on body and dorsal fin, head pigmentation less dense, reduced to grayish spots and dots. Few dark spots on ventral fin and limbs. Eyes, except for pupil, fully pigmented, iris golden (Figure 6A).

Position in mtDNA genealogy and sequence divergence: According to our mtDNA data, *Tylototriton kachinorum* **sp. nov.** belongs to clade 1 of the subgenus *Tylototriton* s. str. (Figure 2) and is grouped with *Tylototriton* species from the Shan Plateau of Myanmar (*T. shanorum*, *T. ngarsuensis*) and Himalaya (*T. himalayanus*). Uncorrected genetic *P*-distances between *Tylototriton kachinorum* **sp. nov.**, 16S rRNA sequences, and all homologous sequences of congeners available included in our analyses varied from 5.3% (with sister species *T. himalayanus*) to 14.6% (with *T. lizhenchangi*) (Table 2).

Distribution and biogeography: To date, *Tylototriton kachinorum* **sp. nov.** is known only from a single locality on the slopes of Ingyin Taung Mountain, Kachin State, Myanmar (Figure 1) at elevations from 900 to 1 050 m a.s.l. The Ingyin Taung Mountain belongs to the southernmost part of the Kachin Hills – a heavily forested group of highlands in the extreme northeastern area of Kachin State, consisting of a series of mountain ranges running mostly in a north-to-south

direction. The actual distribution of *Tylototriton kachinorum* **sp. nov.** may be wider: it is anticipated that the new species occurs in the montane forests of adjacent mountains surrounding the largest inland lake of Kachin State, Indawgyi Lake, and possibly further northwards along the Kumon Bum subrange of the Kachin Hills.

Natural history notes: Our knowledge on the biology of Tylototriton kachinorum sp. nov. is scarce. Adult animals were encountered at night after 1900 h in flooded areas of shallow slow-moving streams and artificial ponds in forest clearings, which were used by local Kachin farmers as a watering place for cattle (Figure 7). Surrounding areas were covered by secondary bamboo forest and primary mixed evergreen tropical forest. Adult male newts were observed slowly moving along the clay bottom in clear water 20-40 cm deep; both females and the larval specimen were collected in deeper areas (60-100 cm deep) from dense water vegetation using a dip-net. Courtship behavior of male newts was observed in July. Local Kachin farmers reported that they often find adult newts walking in dense vegetation far from waterbodies, especially after rain; they are also often encountered in wells they construct. The new species is known to local Kachin people as "Lan Yan" literally meaning "water agama" in their native language.

Other species of amphibians recorded syntopically with the new species at the type locality include *Microhyla heymonsi* Vogt, *Microhyla mukhlesuri* Hasan, Islam, Kuramoto, Kurabayashi & Sumida, *Microhyla butleri* Boulenger, *Limnonectes limborgi* (Sclater), *Limnonectes* sp., *Fejervarya* sp., *Kurixalus* sp., *Feihyla vittata* (Boulenger), *Rhacophorus bipunctatus* Ahl, *Polypedates mutus* (Smith), and *Raorchestes parvulus* (Boulenger).

Figure 7 Breeding habitats of *Tylototriton kachinorum* sp. nov. at type locality Temporary swamps in forest clearings within montane tropical forest on Ingyin Taung Mountain, Indawgyi Lake area, Kachin State, Myanmar, where larva and adult specimens were collected. Photos by Parinya Pawangkhanant.

Comparisons: According to phylogenetic analyses, *Tylototriton kachinorum* **sp. nov.** falls into clade 1 of the subgenus *Tylototriton* s. str. and morphological comparisons with members of this group appear to be the most pertinent. The new species can be easily distinguished from members of the subgenus *Yaotriton* (clades 3–5 in Figure 2) by having light color markings on parotoids, lips, vertebral ridge, rib nodules, limbs, and ventral tail ridge (vs. dark body coloration except for palms and soles, vent region, and ventral ridge of tail in most members of the subgenus *Yaotriton*, with the exception of *T. panhai*). The new species can be further distinguished from *T. panhai* by having light color markings on entire limbs (vs. distinct light markings only on palms, soles, and fingers).

Morphometric comparisons and morphological differences in several diagnostic characters between Tylototriton kachinorum

sp. nov. and the closely related species of the subgenus *Tylototriton* are summarized in Table 4. In particular, the new species can be distinguished from *T. taliangensis* (in clade 2 of the subgenus *Tylototriton*, sometimes regarded as a separate subgenus or full genus *Liangshantriton*; see Gong et al., 2018) by having distinct rib nodules, light markings on rib nodules, lips, and parotids (vs. lack of distinct rib nodules, mostly dark charcoal-black body coloration with light orange to red markings only on posterior part of parotoids, digits, palms, soles, vent, and ventral tail ridge). From *T. pseudoverrucosus* (clade 2) and *T. kweichowensis* (clade 1 of the subgenus *Tylototriton*, sometimes regarded as a separate subgenus *Qiantriton*), *Tylototriton kachinorum* **sp. nov.** can be distinguished by having isolated light markings on rib nodules (vs. connected markings forming light dorsolateral lines).

Table 4	Morphological comparison between	Tylototriton species found	in Myanmar and adjacent territories
---------	----------------------------------	----------------------------	-------------------------------------

Species	Tylototriton k	achinorum sp. nov.	T. shanorum		T. ngarsuensis	
	Μ	F	М	F	М	F
Character	8	2	1	2	2	1
SVL	68.6±2.9	72.5–84.8	76.0	76.5-87.9	74.9–76.4	102.3
RHL	27.6	23.9–24.9	22.4	24.3–25.7	24.0-26.0	21.5
RHW	25.1	25.3–25.4	25.4	24.8–26.3	24.5–28.2	26.6
RIND	7.7	8.0	6.7	6.0–6.3	8.0-8.8	7.7
RAGD	49.6	55.9–56.8	49.6	49.4–51.9	48.2–49.9	51.2
RTRL	75.3	80.5–81.4	77.6	74.3–75.7	74.2–75.5	77.5
RTAL	120.5	100.5–114.0	111.2	97.0–97.8	98.0–103.5	104.6
RVL	10.2	5.6-6.8	9.3	3.4–3.5	10.7–12.3	8.0
RFLL	39.3	35.3–36.0	34.7	31.7–32.5	39.7–39.9	35.5
RHLL	41.9	37.9–39.9	37.2	35.6–37.0	41.9–47.1	38.7
RMXHW	25.8	26.8–27.1	25.9	25.7–27.1	_	-
RVTW	9.0	8.7–8.8	6.1	6.1–7.5	_	-
RVTL	12.8	11.4–11.6	10.7	11.4–12.0	_	-
Snout	Truncate		Blunt to trund	cate	Rounded to blunt	
Supratemporal ridge	Wide, protruc ner of orbit	ling, begins at anterior cor-	Wide, protru region	uding, begins in loreal	Wide, not protrud terior to orbit	ing, begins pos-
Sagittal ridge	Very weak, ir	ndistinct	Very weak		Very weak, in mal	es
Surface of head ridges	Rough		Rough		Very rough	
Adpressed limbs	Overlapping		Overlapping		Overlapping	
Vertebral ridge	Wide, non-se	gmented	Narrow, wea	kly segmented	Wide, weakly seg	mented
Rib nodules	Weakly distin	ict, 13–14	Distinct, 14		Distinct, 15	
Ground color	Brown to dar	k brown	Dark brown t	to black	Nearly black	
Color of light markings	Orange-brow	n to yellowish-brown	Yellow to red	ldish brown	Dark yellow	
Location of light markings	Parotoids, ri vent, ventral	b nodules, palms, soles, tail ridge		bral ridge, rib nodules, imbs and tail	Labial regions, p vent, ventral tail ri	
Lateral grooves on tail	Absent		Absent		Absent	

						Continued
Species	T. himalayaı	านร	T. verrucos	us	T. shanjing	
	Μ	F	Μ	Μ	F	М
Character	32	13	3	32	13	3
SVL	71.92±6.1	76.06±7.5	70.7±4.7	71.92±6.1	76.06±7.5	70.7±4.7
RHL	24.5	25.9	24.3	24.5	25.9	24.3
RHW	23.0	23.6	23.7	23.0	23.6	23.7
RIND	8.4	8.2	7.0	8.4	8.2	7.0
RAGD	53.6	51.6	50.7	53.6	51.6	50.7
RTRL	79.9	77.1	75.7	79.9	77.1	75.7
RTAL	98.0	100.6	104.9	98.0	100.6	104.9
RVL	11.8	12.5	7.0	11.8	12.5	7.0
RFLL	36.2	36.1	34.3	36.2	36.1	34.3
RHLL	37.5	38.1	37.3	37.5	38.1	37.3
RMXHW	_	_	25.3	_	_	25.3
RVTW	_	_	7.7	_	_	7.7
RVTL	_	_	9.8	_	_	9.8
Snout	Blunt		Truncate		Rounded	
Supratemporal ridge	Very wide, p	protruding	Narrow, ste	ер	Narrow, steep	
Sagittal ridge	Weak, gland	dular	Weak		Short, weak	
Surface of head ridges	Very rough		Smooth		Smooth	
Adpressed limbs	Overlapping	1	Overlappin	q	Overlapping	
Vertebral ridge	Non-segme		Well segme	-	Well segmente	d
Rib nodules	Large, prom		-	tinct, 14–15	Distinct, 14	
Ground color	Brown to da		Blackish		Blackish	
Color of light markings	Light brown		Orange		Bright to dark	orange
Location of light markings	Ventral surf	face of limbs, vent, ventral	Ũ		U	al ridge, rib nodules
Lateral grooves on tail	tail ridge Very distinct		Absent		Weak	ibs and tail
-				20		
Species	T. uyenoi		T. angulice		T. podichthys	
o , <i>i</i>	M	F	M	F	M	F
Character	9	2	2	5	2	2
SVL	68.1±3.8	69.3–78.3	61.1-62.5	70.6±3.4	56.5-60.2	73.4-78.3
RHL	24.7	25.8-26.9	26.2-29.5	23.4	32.6-34.3	28.1-29.3
RHW	25.0	23.1–24.0	22.7–23.4	22.7	26.4-28.0	24.8-25.9
RIND	7.0	7.0-7.1	6.6-7.4	6.5	8.3-8.7	7.5-7.9
RAGD	48.8	47.9-50.7	47.2–47.8	52.8	48.0-50.7	52.1-53.5
RTRL	75.3	73.1–74.2	70.5–73.8	76.6	65.7-67.4	70.7–71.9
RTAL	115.0	88.0-97.0	97.1–102.3		80.2-104.8	79.2-81.4
RVL	7.4	1.7-1.9	7.2–7.2	2.5	14.2-14.8	6.3-7.7
RFLL	34.3	30.6-32.7	32.7-34.9	30.2	39.4-40.5	34.0-36.2
RHLL	37.5	37.4-37.4	36.8-37.3	33.3	38.2-40.2	35.8–36.1
RMXHW	25.9	23.6-25.0	23.7–24.1	23.3	-	-
RVTW	7.6	6.6-7.0	6.4–7.8	6.9	-	-
RVTL	10.3	8.8–10.2	9.9–10.8	9.2	-	-

			Continued
Species	T. uyenoi	T. anguliceps	T. podichthys
Snout	Rounded	Truncate	Rounded
Supratemporal ridge	Narrow, steep	Narrow, very steep	Very wide, protruding
Sagittal ridge	Short, weak	Long, protruding	Weak, glandular
Surface of head ridges	Smooth	Rough	Very rough
Adpressed limbs	Overlapping	Overlapping	Touching
Vertebral ridge	Weakly segmented	Weakly segmented	Non-segmented
Rib nodules	Prominent, 14–15	Prominent, 15	Large, prominent, 15–16
Ground color	Dark brown to black	Blackish	Blackish
Color of light markings	Dark-orange to red	Bright-orange	Orange to dark-red
Location of light markings	Head, vertebral ridge, rib nodules, vent, whole limbs and tail	Head, vertebral ridge, rib nodules, vent, whole limbs and tail	Head, vertebral ridge, rib nodules, vent, dorsal surface limbs, ventral tail ridge
Lateral grooves on tail	Absent	Absent	Absent

Character abbreviations: SVL: Snout-vent length; RHL: Relative head length; RHW: Relative head width; RIND: Relative internarial distance; RAGD: Relative axilla-groin distance; RTRL: Relative trunk length; RTAL: Relative tail length; RVL: Relative vent length; RFLL: Relative forelimb length; RHLL: Relative hindlimb length; RMXHW: Relative maximum head width; RVTW: Relative vomerine tooth series width; RVTL: Relative vomerine tooth series length. M: Male. F: Female. For abbreviations see "Materials and Methods".

Tylototriton kachinorum sp. nov. can be distinguished from T. uyenoi, T. pulcherrimus, T. shanjing, and T. yangi by having dull orange-brown to yellowish-brown light markings (vs. much brighter orange to bright-yellow light markings). In particular, T. pulcherrimus has a series of bright-orange glandular spots located ventrolaterally and on flanks (vs. dark-brown coloration of flanks lacking light spots in new species); T. yangi has contrasting charcoal-black coloration of head and lips with only posteriormost part of parotoid colored bright orange, and no light ventral markings on body and tail (vs. all head dull orange-brown with slightly lighter lips and parotoids, light markings present on ventral tail ridge and vent in new species). Tylototriton kachinorum sp. nov. can be distinguished from T. uyenoi by relatively longer head in males (RHL 27.6 vs. 24.7), greater internarial distance (RIND 7.7-8.0 vs. 7.0-7.1 for both sexes), and longer tail in both sexes (RTAL 120.5 vs. 115.0 for males; 100.5-114.0 vs. 88.0-97.0 for females) (Table 4). Males of the new species can be further diagnosed from males of T. shanjing by having comparatively wider head (RHW 25.1 vs. 22.2), longer tail (RTAL 120.5 vs. 104.4), greater internarial distance (RIND 7.7 vs. 7.1), comparatively wider (RVTW 9.0 vs. 6.7) and longer vomerine tooth series (RVTL 12.8 vs. 8.8) (Table 4). The new species can be further differentiated from T. shanjing by non-segmented vertebral ridge (vs. well-segmented) and brown to dark-brown background coloration of body (vs. blackish background coloration).

Tylototriton kachinorum **sp. nov.** can be distinguished from *T. verrucosus* by having light ventral markings on body and tail (vs. no ventral markings on body and tail), comparatively longer head (RHL 27.6 vs. 24.3 in males, RHL 23.9–24.9 vs 21.7 in females), comparatively wider head in both sexes

(RHW 25.1–25.4 vs. 20.5–23.7), greater internarial distance in both sexes (RIND 7.7–8.0 vs. 6.2–7.0), longer tail in both sexes (RTAL 120.5 vs. 104.9 for males; 100.5–114.0 vs. 102.5 for females) (Table 4), non-segmented vertebral ridge (vs. well-segmented), and brown to dark-brown background coloration of body (vs. blackish background coloration).

The new species can be distinguished from *T. podichthys* by having comparatively shorter head in both sexes (RHL 23.9–27.6 vs 28.1–34.3), much longer tail in both sexes (RTAL 100.5–120.5 vs. 79.2–104.8), truncate snout (vs. rounded), comparatively smoother skin on parotoids and dorsal surface of head, comparatively longer limbs (limbs widely overlap when adpressed to body in the new species vs. digit tips touch when limbs are adpressed to body in *T. podichthys*), 13–14 rib nodules (vs. 15–16 rib nodules), and duller coloration with orange-brown light markings and brown to dark-brown background (vs. orange to dark-red light markings and blackish background) (Table 4).

Tylototriton kachinorum **sp. nov.** can be distinguished from *T. anguliceps* by having larger body size in both sexes (SVL 68.6±2.9 mm in males and 72.5–84.8 mm in females of new species vs. 61.1–62.5 mm and 70.6±3.4 mm in *T. anguliceps*), comparatively wider head in both sexes (RHW 25.1–25.4 vs. 22.7–23.4), greater internarial distance in both sexes (RIND 7.7–8.0 vs. 6.5–7.4), longer tail in both sexes (RTAL 100.5–120.5 vs. 91.2–102.3), and comparatively wider (RVTW 8.8–9.0 vs. 6.4–7.8) and longer vomerine tooth series (RVTL 11.4–12.8 vs. 9.2–10.8) (Table 4). The new species can be further diagnosed from *T. anguliceps* by having wide protruding supratemporal ridges (vs. narrow and steep supratemporal ridges), very small and almost indiscernible sagittal ridge (vs.

long and notably protruding sagittal ridge), wide and nonsegmented vertebral ridge (vs. narrow and weakly segmented vertebral ridge), less distinct 13–14 rib nodules (vs. rib nodules more distinct and protruding, not less than 15), and duller coloration with orange-brown light markings and brown to dark-brown background (vs. bright-orange light markings and blackish background) (Table 4).

Phylogenetically and morphologically, Tylototriton kachinorum sp. nov. is most closely related to other species of Tylototriton inhabiting Myanmar (e.g., T. shanorum and T. ngarsuensis) from the Shan Plateau and T. himalayanus from Nepalese Himalaya (Table 4). The new species can be readily distinguished from T. shanorum by having longer head in males (RHL 27.6 vs. 22.4), greater internarial distance in both sexes (RIND 7.7-8.0 vs. 6.0-6.7), notably longer tail in both sexes (RTAL 120.5 vs. 111.2 in males, 100.5-114.0 vs. 97.0-97.8 in females), wider vomerine tooth series in both sexes (RVTW 8.7-9.0 vs. 6.1), longer vomerine tooth series in males (RVTL 12.8 vs. 10.7) (Table 4), supratemporal bony ridges beginning at anterior corner of orbit (vs. supratemporal bony ridges beginning at loreal region), and wide, non-segmented vertebral ridge (vs. narrow, weakly segmented vertebral ridge). Tylototriton kachinorum sp. nov. has generally lighter coloration than T. shanorum: brownish ground color with orange-brown light markings (vs. more contrasting dark brown to black background color with yellow to reddish-brown light markings) and light markings present only on ventral tail ridge (vs. lateral sides of tail with light markings) (Table 4).

Tylototriton kachinorum sp. nov. can be easily distinguished from T. ngarsuensis by having generally smaller body size in males (SVL 68.6±2.9 mm vs. 74.9-76.4 mm) and females (SVL 72.5-84.8 mm vs. 102.3 mm), comparatively longer head in males (RHL 27.6 vs. 24.0-26.0) and females (RHL 23.9-24.9 vs. 21.5), longer tail in males (RTAL 120.5 vs. 98.0-103.5), generally longer tail in females (RTAL 100.5-114.0 vs. 104.6), and comparatively shorter vent length (in males RVL 10.2 vs. 10.7-12.3, in females 5.6-6.8 vs. 8.0) (Table 4). The new species can be further distinguished from T. ngarsuensis by having truncate snout (vs. rounded snout), supratemporal ridges starting at anterior corner of orbit (vs. supratemporal bony ridges beginning posterior to orbit), non-segmented vertebral ridge (vs. weakly segmented), and 13-14 weakly distinct rib nodules (vs. 15 well-distinct rib nodules) (Table 4). Tylototriton kachinorum sp. nov. also has much lighter and duller colorationthan T. ngarsuensis: background color brown to light brown (vs. nearly black) with light orange-brown markings on rib nodules, parotids, and whole limbs (vs. no light markings on rib nodules or parotids, dark-yellow coloration present only on palms and soles) (Table 4).

Morphologically, *Tylototriton kachinorum* **sp. nov.** most resembles its sister species, *T. himalayanus* from Nepal; however, it can be readily distinguished by the following morphological attributes: comparatively longer head in males (RHL 27.6 vs. 24.5), notably wider head in both sexes (RHW 25.1–25.4 vs. 23.0–23.6), shorter internarial distance in both sexes (RIND 7.7–8.0 vs. 8.2–8.4), and longer tail in both sexes (RTAL 100.5–120.5 vs. 98.0–100.6) (Table 4). The new

species has generally smoother skin than *T. himalayanus* and can be distinguished from the latter species by having weakly distinct 13 - 14 rib nodules (vs. large and prominent 16 rib nodules) and absence of lateral grooves on tail (vs. very distinct). Coloration of the new species is similar to *T. himalayanus*, but light markings are also present on labial regions, parotoids, rib nodules, and whole limbs (vs. no light markings on head and rib nodules, on limbs only on ventral surfaces) (Table 4).

Etymology: The specific name "*kachinorum*" is a Latin adjective in the genitive plural (masculine gender), derived from the name of the Kachin people who inhabit the montane areas of northern Myanmar and adjacent territories (Kachin Hills), including the type locality of the new species.

Recommended vernacular name: We recommend the following name in English: *Kachin Crocodile Newt*. Recommended vernacular name in Burmese (Myanmar) language: *Kachin Yae Poke Thin*.

Conservation status: *Tylototriton kachinorum* **sp. nov.** is, to date, known from a single locality in the southern part of the Kachin Hills of northern Myanmar; the actual range of the new species is unknown. The new species is anticipated to inhabit elevations above 900 m a.s.l. on mountains surrounding the Indawgyi Lake valley and may be found in other parts of the Kachin Hills. Further research is required to estimate the actual distribution, population trends, and possible threats to the new species. *Tylototriton kachinorum* **sp. nov.** appears to be associated with montane forests and may be affected by growing anthropogenic pressure and forest destruction observed in different areas of Kachin State in Myanmar. Given the available information, we suggest *Tylototriton kachinorum* **sp. nov.** to be tentatively considered as a Vulnerable (VU) species following IUCN's Red List categories (IUCN, 2001).

DISCUSSION

Our phylogenetic data largely confirmed the phylogeny of Tylototriton as presented in the earlier studies of Phimmachak et al. (2015), Khatiwada et al. (2015), Wang et al. (2018), and Grismer et al. (2018a). In particular, our data support the subdivision of Tylototriton into two major groups, traditionally regarded as subgenera: Tylototriton s. str. (clades 1 and 2) and Yaotriton (clades 3-5). Two other subgenera recently proposed by Fei et al. (2012), namely Qiantriton and Liangshantriton are nested within the radiation of Tylototriton s. str. (Figure 2) and possibly should not be regarded as independent subgenera or even genera (see Gong et al., 2018; Hernandez, 2016). Our mtDNA-based genealogy is insufficiently resolved in a number of deeper tree nodes; however, it unambiguously suggests that clade 1 of Tylototriton s. str. is subdivided into three main subclades with prominent geographic structuring. The northernmost member of this group - T. kweichowensis, occurring in the Guizhou Plateau of China (Figure 1, samples 7–10), is distant from other members

of clade 1 and its phylogenetic position is unresolved. Most other species of clade 1, which occur in northern Indochina and Yunnan Province of China, form a monophyly (including *T. verrucosus*, *T. shanjing*, *T. uyenoi*, *T. anguliceps*, *T. podichthys*, *T. pulcherrimus*, *T. yangi*, and *Tylototriton* sp. 1) (Figure 1, samples 17–18 and 24–48). Finally, four species from the northern part of Myanmar and Himalaya form a distinct monophyletic group (including *T. shanorum*, *T. ngarsuensis*, *T. himalayanus*, and *Tylototriton kachinorum* **sp. nov**.).

Studies on the taxonomic status of Tylototriton species in Myanmar have been delayed, even though the genus has been reported from the country for long time (see Gyi, 1969). Nishikawa et al. (2014) assigned Tylototriton from the Shan Plateau of eastern Myanmar to a new species, T. shanorum, whereas Grismer et al. (2018a) recently demonstrated the presence of divergent lineages of Tylototriton within different parts of the Shan Plateau and described a second species for the country - T. ngarsuensis. Contrary to the tree of Grismer et al. (2018a), our analysis suggests that T. shanorum is paraphyletic with respect to T. ngarsuensis and is subdivided into two lineages (Figure 2). However, it is worth noting that the second lineage of T. shanorum is based on data from a single specimen, reported by Nishikawa et al. (2014) (KUHE42348), which was obtained through the pet trade and presumed to come from Myanmar. Its assignment to T. shanorum is thus tentative and this specimen possibly represents a new lineage of Tylototriton from the Shan Plateau, yet undiscovered in the wild. Hence, considering the profound morphological differences between T. ngarsuensis and T. shanorum reported by Grismer et al. (2018a), though genetic divergence between these species was low (P=1.8% for ND2 gene), we consider that T. ngarsuensis indeed represents a distinct species of Tylototriton.

Our description of Tylototriton kachinorum sp. nov. thus represents the third species of Tylototriton endemic to Myanmar. Tylototriton kachinorum sp. nov. is more closely related to T. himalayanus than to T. shanorum and T. ngarsuensis, occurring on the Shan Plateau in the eastern part of the country. This fact can be explained from a biogeographic viewpoint: the Kachin Hills represent the southernmost outcrop of the Great Himalaya ridge (Hadden, 2008) and are isolated from the Shan Plateau by the Irrawaddy (Ayeyarwaddy) River valley, which may serve as an important biogeographic border for forest-dwelling taxa. Tylototritonhimalayanus, which can be found in Nepal and possibly along the Great Himalaya Ridge, was previously reported for northern Myanmar (Hernandez, 2016, 2018), but without any information on voucher specimens or reasons for such identification. There is a possibility that these records are based on the misidentification of Tylototriton kachinorum sp. nov.

The present work indicates that *Tylototriton* diversity in Myanmar is still underestimated. Phimmachak et al. (2015) and Grismer et al. (2018a) reported sequences of *Tylototriton* cf. *verrucosus* from two regions of northern Myanmar: Sagaing Region (sample 18, see Figure 1) and the eastern part of Kachin State (sample 17, see Figure 1). Surprisingly, these populations were found to be distantly related to *Tylototriton*

kachinorum **sp. nov.**, despite the geographical proximity to the southern part of Kachin Hills where the new species occurs. Sagaing and eastern Kachin *Tylototriton* populations (indicated herein as *Tylototriton* sp. 1) were reconstructed as members of the *T.verrucosus* species complex; however, they formed an mtDNA lineage clearly distinct from all currently recognized species. These data suggest that *Tylototriton* cf. *verrucosus* from northern Myanmar might represent a currently undescribed species and further morphological and phylogenetic studies are required to evaluate its taxonomic status. In agreement with the results of Wang et al. (2018), our analysis also shows deep subdivision and the presence of several lineages of possibly full-species status within *T. asperrimus*, *T. dabienicus*, and *T. wenxianensis* of the subgenus *Yaotriton*.

Our study indicates that knowledge on amphibian diversity in montane regions of northern Myanmar is still far from complete and further diversity is likely to be revealed with additional survey efforts. A number of recent studies have shown that species diversity of amphibians and reptiles is widely underestimated across Myanmar (Grismer et al., 2017a, 2017b, 2018a, 2018b, 2018c; Mulcahy et al., 2018), and it is likely that further surveys on this geographically complex and insufficiently studied region will lead to more discoveries. Recent economic development of Myanmar has led to increasing habitat loss and modification across the country (Li & Quan, 2017). Further intensified survey efforts and biodiversity assessments are urgently required for effective conservation management of yet unrealized herpetofaunal diversity in Myanmar.

COMPETING INTERESTS

The authors declare that they have no competing interests.

AUTHORS' CONTRIBUTIONS

T.Z. and N.A.P. designed the study; T.Z., P.L., P.P., V.A.G., and N.A.P. collected study materials; T.Z., P.L., P.P., V.A.G., and N.A.P. discussed the results, T.Z., V.A.G., and N.A.P. prepared the manuscript; P.P. and N.A.P. provided study photographs; V.A.G. and N.A.P. performed molecular and phylogenetic analyses; N.A.P. provided funding for the study and revised the manuscript. All authors read and approved the final version of the manuscript.

NOMENCLATURAL ACTS REGISTRATION

The electronic version of this article in portable document format will represent a published work according to the International Commission on Zoological Nomenclature (ICZN), and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone (see Articles 8.5–8.6 of the Code). This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information can be viewed through any standard web browser by appending the LSID

to the prefixhttp://zoobank.org/. Publication LSID: urn:lsid:zoobank.org:pub:FC2F997C-2E7B-4B22-9376-E335E7A84AB1. *Tylototriton kachinorum* LSID: urn:lsid:zoobank.org:act:FF992F77-436E-4164-A1C2-3EB8D220648F.

ACKNOWLEDGEMENTS

We thank the Ministry of Natural Resources and Environmental Conservation Forest Department for the collection and export permits and the staff of the Indawgyi National Park for help with organization of fieldwork. We thank the staff of the guesthouse in Lon Ton Village for their hospitality. N.A.P. thanks Duong Van Tang and Anna S. Dubrovskaya for help during lab work and to Evgeniy Popov for help with map design. For permission to study specimens under their care and permanent support, we thank Valentina F. Orlova (ZMMU), Roman A. Nazarov (ZMMU), and Konstantin D. Milto (ZISP). We thank Natalia Ershova for proofreading. We are sincerely grateful to L. Lee Grismer and Bryan Stuart for their kind help and useful comments, which helped us to improve the previous version of this manuscript.

REFERENCES

Anderson J. 1871. Description of a new genus of newts from western Yunan. *Proceedings of the Zoological Society of London*, **1871**: 423–425.

Böhme W, Schöttler T, Nguyen TQ, Köhler J. 2005. A new species of salamander, genus *Tylototriton* (Urodela: Salamandridae) from northern Vietnam. *Salamandra*, **41**(4): 215–220.

Chen XH, Wang XW, Tao J. 2010. A new subspecies of genus *Tylototriton* from China (Cudata, Salamandridae). *Acta Zootaxonomica Sinica*, **35**(3): 666–670. (in Chinese)

Fang PW, Chang MLY. 1932. Notes on *Tylototriton kweichowensis* sp. nov. and asperrimus Unterstein. Sinensia, Nanking, **2**: 111–122.

Fei L, Ye CY, Jiang JP. 2012. Colored Atlas of Chinese Amphibians and Their Distributions. Sichuan, China: Sichuan Publishing House of Science & Technology.

Fei L, Ye CY, Yang RS. 1984. A new species and subspecies of the genus *Tylototriton* (Caudata: Salamandridae). *Acta Zoologica Sinica*, **30**: 85–91. (in Chinese)

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. *Evolution*, **39**(4): 783–791.

Felsenstein J. 2004. Inferring phylogenies. Sunderland, Massachusetts: Sinauer Associates, Inc. Publishers, **2**: 465.

Gong Y, Shu G, Huang F, He L, Li C, Xie F. 2018. Courtship behaviour and male sexual competition of the Taliang crocodile newt, *Liangshantriton taliangensis*. *Amphibia-Reptilia*, **39**(3): 275–288.

Grismer LL, Wood PL Jr., Thura MK, Zin T, Quah ESH, Murdoch ML, Grismer MS, Lin A, Kyaw H, Ngwe L. 2017a. Twelve new species of *Cyrtodactylus* Gray (Squamata: Gekkonidae) from isolated limestone habitats in east-central and southern Myanmar demonstrate high localized diversity and unprecedented microendemism. *Zoological Journal of the Linnean Society*, **182**(4): 862–959.

Grismer LL, Wood PL Jr., Thura MK, Zin T, Quah ESH, Murdoch ML, Grismer MS, Lin A, Kyaw H, Ngwe L. 2017b. Phylogenetic taxonomy of *Hemiphyllodactylus* Bleeker, 1860 (Squamata: Gekkonidae) with descriptions of three new species from Myanmar. *Journal of Natural History*, **52**(13–16):

881-915.

Grismer LL, Wood PL Jr., Quah ESH, Thura MK, Espinoza RE, Grismer MS, Murdoch ML, Lin A. 2018a. A new species of Crocodile Newt *Tylototriton* (Caudata: Salamandridae) from Shan State, Myanmar (Burma). *Zootaxa*, **4500**(4): 553–573.

Grismer LL, Wood PL Jr., Thura MK, Quah ESH, Grismer MS, Murdoch ML, Espinoza RE, Lin A. 2018b. A new *Cyrtodactylus* Gray, 1827 (Squamata, Gekkonidae) from the Shan Hills and the biogeography of Benttoed Geckos from eastern Myanmar. *Zootaxa*, **4446**(4): 477–500.

Grismer LL, Wood PL Jr., Thura MK, Quah ESH, Murdoch ML, Grismer MS, Herr MW, Lin A, Kyaw H. 2018c. Three more new species of *Cyrtodactylus* (Squamata: Gekkonidae) from the Salween Basin of eastern Myanmar underscore the urgent need for the conservation of karst habitats. *Journal of Natural History*, **52**(19–20): 1243–1294.

Grosse WR. 2013. Kommentierte Liste zur Bestimmung der Entwicklungsstadien von Schwanzlurchen Amphibia: Urodela. *In: Schultschik G, Grosse WR. Mannheim, Gefährdete Molch - und Salamanderarten-Richtlinien für Erhaltungszuchten. Mertensiella. Chimaira, Frankfurt am Main,* 189.

Gyi KM. 1969. The occurrence of *Tylototriton verrucosus* Anderson (1871) Urodela: Salamandridae at Taunggyi, Burma, Union of Burma. *Journal of Life Sciences*, **1969**: 23–26.

Hadden RL. 2008. The Geology of Burma (Myanmar): An Annotated Bibliography of Burma's Geology, Geography and Earth Science. Alexandria, Virginia: Topographic Engineering Center, US Army Corps of Engineers, 312.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nuclear Acids Symposium Series*, **41**: 95–98.

Hedges SB. 1994. Molecular evidence for the origin of birds. *Proceedingsof the National Academy of Sciences of the United States of America*, **91**(7): 2621–2624.

Hernandez A. 2016. Crocodile Newts – the Primitive Salamandridae of Asia (Genera Echinotriton and Tylototriton). *Edition Chimaira, Frankfurt am Main, Germany*, 416.

Hernandez A, Escoriza D, Hou M. 2018. Patterns of niche diversification in south-east Asian crocodile newts. *Zoologischer Anzeiger*, **276**: 86–93.

Hillis DM, Moritz C, Mable BK. 1996. Molecular Systematics. 2nd edition. Sunderland, Massachusetts: Sinauer Associates, Inc.

Hou M, Li P, Lü SQ. 2012. Morphological research development of genus *Tylototriton* and primary confirmation of the status of four cryptic populations. *Journal of Huangshan University*, **14**(3): 61–65. (in Chinese)

Huelsenbeck JP, Hillis DM. 1993. Success of phylogenetic methods in the four-taxon case. *Systematic Biology*, **42**(3): 247–264.

Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. *Bioinformatics*, **17**(8): 754–755.

IUCN. 2001. IUCN Red List Categories and Criteria: Version 3.

IUCN Species Survival Commission. IUCN, Gland, Switzerland and Cambridge, UK.

Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Research*, **30**(14): 3059–3066.

Khatiwada JR, Wang B, Ghimire S, Vasudevan K, Paudel S, Jiang J-P. 2015. A new species of the genus *Tylototriton* (Amphibia: Urodela:

Zoological Research 40(3): 151–174, 2019 173

Salamandridae) from eastern Himalaya. Asian Herpetological Research, 6(4): 245–256.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version7.0 for bigger datasets. *Molecular Biology and Evolution*, **33**(7): 1870–1874.

Le DT, Nguyen TT, Nishikawa K, Nguyen SLH, Pham AV, Matsui M, Bernardes M, Nguyen TQ. 2015. A new species of *Tylototriton* Anderson, 1871 (Amphibia: Salamandridae) from northern Indochina. *Current Herpetology, Kyoto*, **34**(1): 38–50.

Li SQ, Quan RC. 2017. Taxonomy is the cornerstone of biodiversity conservation-SEABRI reports on biological surveys in Southeast Asia. *Zoological Research*, **38**(5): 213–214.

Liu CC. 1950. Amphibians of western China. *Fieldiana, Zoology Memoirs*, **2**: 1–400.

Mulcahy DG, Lee JL, Miller AH, Chand M, Thura MK, Zug GR. 2018. Filling the BINs of life: Report of an amphibian and reptile survey of the Tanintharyi (Tenasserim) Region of Myanmar, with DNA barcode data. *ZooKeys*, **757**: 85–152.

Nishikawa K, Khonsue W, Pomchote P, Matsui M. 2013a. Two new species of *Tylototriton* from Thailand (Amphibia: Urodela: Salamandridae). *Zootaxa*, **3737**(3): 261–279.

Nishikawa K, Matsui M, Nguyen TT. 2013b. A new species of *Tylototriton* from northern Vietnam (Amphibia: Urodela: Salamandridae). *Current Herpetology*, **32**(1): 34–49.

Nishikawa K, Matsui M, Rao DQ. 2014. A new species of *Tylototriton* (Amphibia: Urodela: Salamandridae) from central Myanmar. *Natural History Bulletin of the Siam Society*, **60**: 9–22.

Nussbaum RA, Brodie ED Jr., Yang DT. 1995. A taxonomic review of *Tylototriton verrucosus* Anderson (Amphibia: Caudata: Salamandridae). *Herpetologica*, **51**(3): 257–268.

Okamiya H, Sugawara H, Nagano M, Poyarkov NA. 2018. An integrative taxonomic analysis reveals a new species of lotic *Hynobius* salamander from Japan. *PeerJ*, **6**: e5084.

Phimmachak S, Aowphol A, Stuart BL. 2015. Morphological and molecular variation in *Tylototriton* (Caudata: Salamandridae) in Laos, with description of a new species. *Zootaxa*, **4006**(2): 285–310.

Posada D, Crandall KA. 1998. MODELTEST: testing the model of DNA

substitution. Bioinformatics, 14(9): 817-818.

Poyarkov NA Jr., Che J, Min MS, Kuro-o M, Yan F, Li C, Iizuka K, Vieites DR. 2012. Review of the systematics, morphology and distribution of Asian Clawed Salamanders, genus *Onychodactylus* (Amphibia, Caudata: Hynobiidae), with the description of four new species. *Zootaxa*, **3465**: 1–106.

Qian L, Sun X, Li J, Guo W, Pan T, Kang X, Wang H, Jiang JP, Wu J, Zhang BW. 2017. A new species of the genus *Tylototriton* (Amphibia: Urodela: Salamandridae) from the southern Dabie Mountains in Anhui Province. *Asian Herpetological Research*, **8**(3): 151–164.

Rambaut A, Suchard M, Xie W, Drummond A. 2014. Tracer v. 1.6. Institute of Evolutionary Biology, University of Edinburgh. *Available at:* http://tree.bio. ed.ac.uk/software/tracer/.

Ronquist F, Huelsenbeck JP. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics*, **19**(12): 1572–1574.

Shen YH, Jiang JP, Mo XY. 2012. A new species of the genus *Tylototriton* (Amphibia, Salamandridae) from Hunan, China. *Asian Herpetological Research*, **3**(1): 21–30.

Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML web servers. *Systematic Biology*, **57**(5): 758–771.

Stuart BL, Phimmachak S, Sivongxay N, Robichaud WG. 2010. A new species in the *Tylototriton asperrimus* group (Caudata: Salamandridae) from central Laos. *Zootaxa*, **2650**(1): 19–32.

Unterstein W. 1930. Beiträge zur Lurch- und Kriechtierfauna Kwangsi's. 2. Schwanzlurche. *Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin*, **1930**: 313–315.

Wang B, Nishikawa K, Matsui M, Nguyen TQ, Xie F, Li C, Khatiwada JR, Zhang B, Gong D, Mo Y, Wei G, Chen X, Shen Y, Yang D, Xiong R, Jiang J. 2018. Phylogenetic surveys on the newt genus *Tylototriton* sensu lato (Salamandridae, Caudata) reveal cryptic diversity and novel diversification promoted historical climatic shifts. *Peer J*, **6**: e4384.

Yang DD, Jiang JP, Shen YH, Fei DB. 2014. A new species of the genus *Tylototriton* (Urodela: Salamandridae) from northeastern Hunan Province, China. *Asian Herpetological Research*, **5**: 1–11.

Zhao YT, Rao DQ, Liu N, Li B, Yuan SQ. 2012. Molecular phylogeny analysis of *Tylototriton verrucosus* group and description of new species. *Journal of West China Forestry Science*, **41**(5): 86–89.