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Abstract: The Lovozero Alkaline Massif intruded through the Archaean granite-gneiss and Devonian
volcaniclastic rocks about 360 million years ago, and formed a large (20 × 30 km) laccolith-type body,
rhythmically layered in its lower part (the Layered Complex) and indistinctly layered and enriched
in eudialyte-group minerals in its upper part (the Eudialyte Complex). The Eudialyte Complex
is composed of two groups of rocks. Among the hypersolvus meso-melanocratic alkaline rocks
(mainly malignite, as well as shonkinite, melteigite, and ijolite enriched with the eudialyte-group
minerals, EGM), there are lenses of subsolvus leucocratic rocks (foyaite, fine-grained nepheline
syenite, urtite with phosphorus mineralization, and primary lovozerite-group minerals). Leucocratic
rocks were formed in the process of the fractional crystallization of melanocratic melt enriched in
Fe, high field strength elements (HFSE), and halogens. The fractionation of the melanocratic melt
proceeded in the direction of an enrichment in nepheline and a decrease in the aegirine content.
A similar fractionation path occurs in the Na2O-Al2O3-Fe2O3-SiO2 system, where the melt of the
“ijolite” type (approximately 50% of aegirine) evolves towards “phonolitic eutectic” (approximately
10% of aegirine). The temperature of the crystallization of subsolvus leucocratic rocks was about
550 ◦C. Hypersolvus meso-melanocratic rocks were formed at temperatures of 700–350 ◦C, with a
gradual transition from an almost anhydrous HFSE-Fe-Cl/F-rich alkaline melt to a Na(Cl, F)-rich
water solution. Devonian volcaniclastic rocks underwent metasomatic treatment of varying intensity
and survived in the Eudialyte Complex, some remaining unchanged and some turning into nepheline
syenites. In these rocks, there are signs of a gradual increase in the intensity of alkaline metasomatism,
including a wide variety of zirconium phases. The relatively high fugacity of fluorine favored an
early formation of zircon in apo-basalt metasomatites. The ensuing crystallization of aegirine in the
metasomatites led to an increase in alkali content relative to silicon and parakeldyshite formation.
After that, EGM was formed, under the influence of Ca-rich solutions produced by basalt fenitization.

Keywords: Lovozero Alkaline Massif; fractional crystallization; fenitization; nepheline; alkali feldspar;
clinopyroxene; amphibole; eudialyte

1. Introduction

Alkaline igneous rocks are among the rarest magmatic rocks. These rocks contain either (1) modal
feldspathoids or alkali amphiboles or pyroxenes or (2) normative feldspathoids or aegirine [1]. Based
on the molar ratios of Na2O, K2O, and CaO relative to Al2O3, these rocks can be subdivided into
metaluminous {(Na2O + K2O) < Al2O3 < (Na2O + K2O + CaO)}, peraluminous {Al2O3 > (Na2O + K2O
+ CaO)} and peralkaline {(Na2O + K2O) > Al2O3} types [2].
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Alkaline rocks are extraordinary rich in large ion lithophile elements (LILE), such as Na and K,
and in high field strength elements (HFSE), such as Ti, Zr, Hf, Nb, Ta, rare-earth elements (REE), U and
Th, forming economically important deposits of these elements [3,4]. Primary magmatic minerals of
HFSE in alkaline rocks form two main mineral associations. Minerals with relatively simple crystal
structures (in terms of topological complexity of crystal structures [5]), such as zircon/baddeleyite and
titanite/perovskite, ilmenite and titanomagnetite (depending on the SiO2 activity), which belong to the
miaskite association [3]. Complex Na-Ca-HFSE-REE silicates (e.g., minerals of the eudialyte group,
rinkite, aenigmatite, lamprophyllite, astrophyllite, etc.) form agpaitic assemblages. Hyperagpaitic
assemblages include ussingite, naujakasite, steenstrupine-(Ce), members of the lovozerite and
lomonosovite groups, and partly water-soluble minerals (e.g., villiaumite, natrosilite, natrophosphate,
and thermonatrite). Transitional agpaitic rocks contain HFSE minerals that are typical of all three types
of alkaline rocks (for example, titanite and eudialyte or eudialyte and lovozerite).

The field occurrence of agpaitic rocks is variable. The Lovozero Alkaline Massif, together with
the nearby Khibiny Massif and the Ilímaussaq Complex of Greenland, is one of the sites with the
world’s largest occurrences of agpaitic nepheline syenite intrusions. The causes of the enrichment of
agpaitic rocks in HFSE and REE are studied in detail. Agpaitic nepheline syenites form by extensive
differentiation of parental mafic magmas at low oxygen fugacity [6]. Such conditions determine the
presence of CH4-rich fluids [7–9] instead of H2O–CO2 fluid mixtures typical of less reduced rock
types. Since Na, Cl, and F are well soluble in water, these elements do not pass into the fluid, but
remain in the melt [10,11]. In addition, the chlorine fluid/melt partition coefficient decreases with
growth of fluorine content, and vice versa [10]. As HFSE and REE have high solubilities in Na-, Cl-
and F-rich melts [12,13], they will eventually form agpaitic minerals such as the eudialyte-group
minerals (EGM), rinkite, aenigmatite, (baryto)lamprophyllite and astrophyllite. Agpaitic rocks can be
extremely rich in EGM; for example, the upper part of the Lovozero Massif is composed of alkaline
rocks with rock-forming EGM (up to 90 mod. %), due to which it received the name of “the Eudialyte
Complex” [14]. The EGM-rich rocks are represented here by foid syenite, foidolite, and alkaline
metasomatite and pegmatite. In this article, based on the petrography of these rocks and data on the
chemical composition of rock-forming minerals, we present estimations of conditions and mechanisms
of the Lovozero “Eudialyte Complex” formation.

2. Geological Setting

The laccolith-type Lovozero Alkaline Massif was emplaced 360–370 million years ago [15–17] into
Archean granite gneisses covered by Devonian volcaniclastic rocks [18]. According to geophysical
studies [19], alkaline rocks are traced to a depth of 7 km, the lower limit of their distribution is not
detected. The laccolith has a size 20 × 30 km on the day surface, and about 12 × 16 km on a 5 km
depth [14]. In the upper part, the intrusion contacts with host rocks are almost vertical. On the plane,
the massif has the shape of a quadrilateral with rounded corners (Figure 1a).

The Lovozero Massif is a layered intrusion composed of two macro units: the Eudialyte Complex
and the Layered Complex. The Eudialyte Complex is located at the top of the massif, accounts for
18% of its volume and is not layered. The Layered Complex, with the layering clearly manifested,
occupies 77% of the volume of the massif. The elementary unit of layering here is a sequence
(“rhythm” or “pack”) of alkaline rocks (from the bottom up): urtite–foyaite–lujavrite (Figure 1b,c).
In this series, there is a gradual transition from almost monomineral nepheline or nepheline-kalsilite
foidolite (urtite) to leucocratic nepheline (±sodalite) syenite (foyaite), and then to lujavrite (meso-
and melanocratic nepheline syenite of the malignite–shonkinite rock series). The textures of these
rocks change from massive in urtite to semi-trachytoid in foyaitеand trachytoid in lujavrite due
to the gradual ordering of the feldspar plates. The sequence urtite–foyaite–lujavrite is repeated
regularly [14,20]. The contact between the underlying lujavrite and the overlying urtite is sharp and
marked by rich loparite impregnation in both nepheline syenite and foidolite (50–80 cm thick loparite
maligite–ijolite ore-horizons [21,22]). The thickness of the individual rhythm is 5 to 100 m-they lie
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sub-horizontally (the dip is 5–15◦ towards the center of the massif) and have nearly uniform thickness.
The rhythms of the Layered Complex are combined into seven series, denoted by Roman numerals,
and the series, in turn, are grouped into three zones. The upper zone (up to 370 m) consists of
packs of urtite–foyaite–lujavrite. The middle zone, with a thickness of 640–670 m, is composed of
monotonous lujavrite with sparse interlayers of foyaite. The lower zone consists predominantly of
foyaite-lujavrite packs [14]. The boundaries of the zones are the urtite horizons II (series) -5 (rhythm)
and III-1 (Figure 1c).
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Figure 1. The geology of the Lovozero Alkaline Massif: schematic geological map, after [20] (a) and
stratigraphic column [14] (b), with principal scheme of layering [21] (c).

Other rock types of the Lovozero Massif are subordinate to their layering and form sub-horizontal
layers or lenses in the Eudialyte Complex and the Layered Complex (Figure 1a). Xenoliths of volcaniclastic
rocks are ubiquitous. Unchanged xenoliths are composed of interbedded olivine basalts, basalt tuffs,
tuffites, sandstones, and quartzites. However, usually these lithologies are deeply metasomatized [18].
Numerous lenses of poikilitic nepheline and sodalite-nepheline (sometimes with nosean) syenite, as
well as alkaline pegmatites and hydrothermal veins, are located within the eudialyte and layered
complexes [23–25].

The thickness of the Eudialyte Complex in different parts of the massif ranges from 100 to 800 m.
According to [14,20], Zr-rich melts break through and overlap the previously formed Layered Complex.
The cutting of the upper rhythms of the urtite–foyaite–lujavrite is visible; the plane of the contact of the
complexes falls to the center of the massif, with the angle of dip increasing in the same direction from
10 to 40◦. In fact, the Eudialyte Complex can be regarded as part of the giant Lovozero Eudialyte Deposit
that includes several rich sites, in particular, the Karnasurt, Kedykvyrpakhk, Alluaiv, Angvundaschorr,
Sengischorr and Parguaiv sites, and the Alluaiv site is the best explored of them [4].

3. Materials and Methods

As the Alluaiv site (Figure 2) is the best explored, it was chosen for detailed study of the Eudialyte
Complex, whose thickness varies here from 280 to 350 m. There is a wide diversity of EGM-rich
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alkaline rocks–a dense drill grid and numerous outcrops display the rock relations and their contacts
with the underlying rocks of the Layered Complex. As a whole, we used 275 thin polished sections of
rocks selected from cores of 27 exploration boreholes and the day surface (Figure 2a).
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Figure 2. The Alluaiv site of the Lovozero Eudialyte Deposit (see Figure 1a): (a)—scheme of drill
holes; (b)—the modal composition of alkaline rocks of the Alluaiv site. Rocks with fine-grained (blue
diamonds), metasomatic (green triangles) and poikilitic (red triangles) textures are highlighted with
special icons; (c)—section along the I–II line (see Figure 2a). The rock legend corresponds to Figure 2b.
Rock with fine-grained, metasomatic, and poikilitic textures are highlighted by hatching.

The thin polished sections were analyzed using the scanning electron microscope LEO-1450
(Carl Zeiss Microscopy, Oberkochen, Germany), with energy-dispersive microanalyzer Röntek to
obtain BSE (Back Scattered Electron) images and pre-analyze all detected minerals. The chemical
composition of rock-forming minerals was analyzed with a Cameca MS-46 electron microprobe
(Cameca, Gennevilliers, France) operating in WDS-mode at 22 kV with beam diameter 10 µm, beam
current 20–40 nA and counting times 20 s (for a peak) and 2 × 10 s (for background before and after the
peak), with 5–10 counts for every element in each point. The analytical precision (reproducibility) of
mineral analyses is 0.2–0.05 wt. % (2 standard deviations) for the major element and about 0.01 wt. %
for impurities. The standards used, the detection limits, and the analytical accuracy values are given in
Table S1 in Supplementary Materials. The systematic errors were within the random errors.

Major elements in rocks were determined by a wet chemical analysis in the Geological Institute
of KSC RAS. The accuracy limits of the wet chemical analysis are given in Table S1 (Supplementary
Materials). Cation contents were calculated using the MINAL program of D. Dolivo-Dobrovolsky [26].
The amphibole-group mineral formulae were calculated based on O + OH + F = 24 atoms per
formula unit and OH = 2 – 2Ti. The formula calculation was performed following the IMA 2012
recommendations [27] using the Excel spreadsheet of Locock [28]. Statistical analyses were carried
out using the STATISTICA 13 [29] and TableCurve 2.0 [30] programs. For the statistics, resulting
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values of the analyses below the limit of accuracy (see Table S1 in Supplementary Materials) were
considered ten times lower than the limit. Geostatisical studies and 3D modeling were conducted
with the MICROMINE 16.1 program (Micromine Pty Ltd., Perth, Australia). Interpolation was
performed by ordinary kriging. The ImageJ program (US National Institutes of Health) was used to
generate digital images from the thin polished sections images and determinate modal proportion of
rock-forming minerals.

The mineral abbreviation used include Aeg—aegirine-(augite), Ab—albite, All—alluaivite,
Ap—fluorapatite, Aq—aqualite, Di—diopside, Eud—minerals of eudialyte group (EGM), Fo—forsterite,
Ilm—ilmenite, Kap—kapustinite, Kent—kentbrooksite, Ks—kalsilite, Lmp—lamprophillite,
Lom—lomonosovite, Lop—loparite, Mag—magnetite, Marf—magnesioarfvedsonite, Mc—microcline
(-perthite), Nph—nepheline, Ntr—natrolite, On—oneillite, Or—orthoclase, Phl—phlogopite,
Pkl—parakeldyshite, Prv—perovskite, Ras—raslakite, Rct—richterite, Sdl—sodalite, Sp—sphalerite,
Tas—taseqite, Ttn—titanite, Umb—umbozerite, Zir—zirsilite.

4. Results

4.1. Petrography

The basis of the petrographic classification of plutonic alkaline rocks of the Alluaiv site is the QAPF
(Q—quartz, A—alkali feldspar, P—plagioclase, F—feldspathoid) classification of the International
Union of Geological Sciences [1], which takes into account the ratio of K-Na feldspar (A), feldspathoids
(F) and mafic minerals (color index M′) in the rock (Table S2 in Supplementary Materials). Within the
AFM′ triangle, the rock points are located mainly in the center, do not form isolated groups and are
divided into foid syenite (shonkinite, malignite and foyaite) and foidolite (melteigite, ijolite and urtite)
(Figure 2b).

The most common rocks of the Alluaiv site are coarse- to medium-grained trachytoid malignites
(Figure 2b,c and Figure 3a). In these rocks, euhedral plates of microcline-perthite are oriented
subparallel one to another. The feldspar crystals have the most intensely developed faces of pinacoid
(010), are elongated along [001] up to 3 cm, with the average side ratio a:b:c = 6:1:10 (data on 82 crystals).
Microcline-perthite crystals are often slightly bent and fractured. Albites concentrate usually around
the fractures (Figure 3b), making them well visible under the microscope. In addition, small albite
perthites are evenly distributed within microcline crystals. In sections perpendicular to the pinacoid
(010), albite occupies 5% to 37% (median is 17%) of the microcline-perthite grain. As a rule, the albite is
intensively replaced by natrolite (Figure 3b,d).

Feldspathoids fill interstices between the microcline-perthite plates. The most common of them,
nepheline, forms grains of two morphological types. Nepheline-I occurs as euhedral crystals with
numerous small inclusions of aegirine and microcline (Figure 3a,c). Aegirine inclusions are presented
by randomly oriented short-prismatic crystals (up to 200 µm long), long-prismatic crystals (up to
600 µm long) oriented parallel to nepheline grain faces, as well as irregular intergrowths of small
needles (on average 3 × 8 µm). Nepheline-II forms lens-like anhedral grains with small inclusions of
aegirine-(augite) on the periphery (Figure 3b). Sodalite and natrolite, except for pseudomorphs after
nepheline (Figure 3c) and albite (Figure 3d), form primary grains, similar in morphology to nepheline-II
and coexisting with it. Inside the grains of primary sodalite, natrolite or natrolite–sodalite aggregates
occur (Figure 3d). Primary natrolite often contains numerous small (up to 20 µm) boehmite inclusions.

The feldspar and feldspathoid grains are surrounded by “streams” of subparallel-oriented crystals
of mafic minerals (Figure 3a–f), represented by alkaline clinopyroxenes (aegirine and aegirine-augite)
and amphiboles (mainly magnesioarfvedsonite), as well as lamprophyllite. The marginal parts of
the “streams” consist of small (50 × 200 µm in the average) long-prismatic clinopyroxene crystals,
and the axial zones is composed of larger anhedral amphibole grains (Figure 3b–d). The edge parts
of the amphibole crystals usually contain clinopyroxene inclusions oriented according to the general
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direction of the “stream”. Lamprophyllite forms either poikilitic crystals (Figure 3c) or individual
plates (Figure 3d) located between grains of clinopyroxenes and amphiboles.
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Interstices between grains of above-mentioned mafic minerals of the “streams” are filled with
natrolite. If the proportion of natrolite is large, clinopyroxenes and amphiboles form euhedral
short-prismatic crystals (Figure 3c). Similar to amphiboles, EGM grains are in the axial parts of the
“streams”. They usually form rounded or lenticular grains (in the average, 2.3 mm in diameter), while
their euhedral crystals (up to 7 mm long) with rhombic prismatic and rhombohedral faces occur
much more rarely. The marginal parts (up to 200 µm) of EGM grains are saturated with inclusions
of aegirine-(augite) and, in smaller quantities, magnesioarfvedsonite. The inclusions are oriented
according to the general direction of the “stream” (Figure 3b–d). The length of common boundaries
between EGM and clinopyroxene + amphibole grains significantly exceeds that between EGM and
leucocratic minerals (9:1 ratio).

The accessory minerals of malignite are in the interstices between clinopyroxene and amphibole
crystals. The most common (found in more than 50% of samples) accessory minerals include
the perovskite group minerals (loparite, lueshite), sulfides (sphalerite, pyrrhotite, chalcopyrite),
stronadelphite, pyrochlore group minerals, baritolamprophillite, chlorbartonite, thorite, and thorianite.
Arsenopyrite, löllingite, cobaltine, lorenzenite, and rinkite are less common. Secondary minerals
are presented by lovozerite (after EGM), rhabdophane-(La/Ce), bastnaesite-(Ce), strontianite, barite,
witherite, hanneshite, and cerussite.

With an increase of feldspathoid content at the expense of microcline-perthite, the malignite transits
to ijolite (Figure 3e). The trachytoid texture is lost in this case, but the “streams” of mafic minerals
remain, which are now oriented arbitrarily. In this rock, there are also two morphological types of
nepheline, primary natrolite and primary sodalite with natrolite cores. Again, EGM form here rounded,
oval, or irregularly shaped grains with aegirine-(augite) inclusions on the periphery. Less widespread
are well-formed EGM crystals and their poikilitic grains within aegirine-(augite) segregations.

An increase in the total content of mafic minerals in malignite, with its formal transition to
shonkinite (Figures 2b and 3f), results from an increase in the EGM proportion. At the same time,
the content of all mafic minerals excluding EGM (i.e., M’ minus EGM, modal %) never exceeds
34–38 modal %. The average EGM content in shonkinites is 22.4 modal %. In fact, there are no
differences between malignite and shonkinite besides EGM contents.

With a decrease in total content of mafic minerals (including EGM), mesocratic rocks (malignite and
ijolite) turn into foyaite or, with an increase in the proportion of feldspathoids, into urtite (Figure 4a).
Both these transitions are gradual, occur in narrow (1–3 cm) intervals and result in rock texture
isotropization. The next important change is the appearance of primary albite (Figure 4a), which
increases the total content of this mineral to 29 modal %.

In foyaite and urtite, mafic minerals do not form a communicating system of “streams”:
fine-grained aggregates of prismatic aegirine-(augite) and rounded EGM grains fill interstices between
microcline-perthite, albite and nepheline grains (Figure 4a), while amphiboles form poikilitic crystals.
When the color index M’ of the rock decreases (apart from amphiboles) first clinopyroxenes and
then EGM form poikilitic crystals. Nepheline forms euhedral crystals with or without inclusions of
microcline and aegirine. Natrolite replaces nepheline also forms primary grains in association with
unchanged nepheline. Primary sodalite is present too. The set of accessory minerals in foyaite and
urtite is similar to that in malignite, but phosphorus-rich minerals are much more widely spread in the
leucocratic rocks. Stronadelphite, fluorapatite, lomonosovite (Figure 4b), vuonnemite, bornemanite,
monazite-(Ce), xenotime-(Y), nastrophite and nabaphite are characteristic of these rocks as well as
lovozerite-group minerals (lovozerite, kapustinite, litvinskite). The latter not only replace EGM, but
also occur as primary minerals (Figure 4d).

Fine-grained nepheline syenite constitutes a significant part of the studied samples (Figure 2b).
The basis of their texture is formed by euhedral albite crystals (up to 32 modal %; in the average,
25 modal %). Between the albite crystals, anhedral grains of microcline (without perthites) and
nepheline occur. Aegirine(-augite) forms prismatic crystals, which are either uniformly dispersed
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in the rock or form small lenses in aggregates of leucocratic minerals. Rounded grains of EGM are
uniformly disseminated in the rock (Figure 4c,d).
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In terms of modal composition, most samples of fine-grained nepheline syenite correspond to
foyaite (Figure 2b); the transition to malignite and shonkinite occurs due to the appearance of poikilitic
crystals of (magnesio)arfvedsonite (Figure 4g), murmanite, lomonosovite, the lovozerite-group minerals,
and lamprophyllite. Microcline-perthite and nepheline form large phenocrysts (content up to 40 modal
%, size up to 1 cm) in fine-grained mass (Figure 4c,e–g). In the narrow (up to 100 µm) marginal zone of
the phenocrysts, there are small inclusions of aegirine(-augite) and EGM oriented usually subparallel to
the phenocryst faces (Figure 4c). With an increase in the content of microcline-perthite and/or nepheline
phenocrysts, fine-grained nepheline syenite transforms into medium- to coarse-grained foyaite or
urtite (Figure 4f). It should be noted that the co-existence of primary lovozerite-group minerals and
unchanged EGM is characteristic of fine-grained nepheline syenite. Lovozerite-group minerals form
either small rounded grains (Figure 4d) or large poikilitic crystals.

Usually, the contact between fine-grained nepheline syenite and malignite is sharp and concordant
with orientation of microcline plates in the malignite, i.e., trachytoid plane. In fine-grained rock,
long-prismatic clinopyroxene crystals and albite plates are also co-oriented with the contact (Figure 4g).
Fine-grained nepheline syenite form various lens-like bodies (5 mm to 100 m thick, Figures 2c and 4g)
among the coarse- and medium-grained rocks of the Eudialyte Complex.

Comparatively fresh olivine basalt is a rare rock of the Alluaiv site (Figures 2c and 5a,b). In this
rock, forsterite crystals (up to 1.3 mm wide), phlogopite (up to 0.6 mm in diameter) and diopside/augite
(up to 0.8 mm wide) are disseminated into the main fine-grained diopside (augite)-phlogopite mass
(the average size of individual grains is about 30 µm). Often, diopside (augite) grains are resorbed by
phlogopite, and forsterite is serpentinized. Magnetite forms skeletal crystals and small (8 µm on the
average) rounded grains, perovskite constitutes chains of cubic crystals, and fluorite, fluorapatite and
pectolite are located within phlogopite-diopside (augite) aggregate and inside the skeletal magnetite
crystals. Accessory minerals are barite, djerfisherite, and pyrrhotite. High-temperature fenitization
of olivine basalt and its tuff produced numerous metasomatic rocks [18], up to formation of fine- to
medium-grained nepheline syenites with relics of earlier minerals and metasomatic textures.

Rocks that modally correspond to foyaite and urtite but have a metasomatic texture, are highlighted
in Figure 2b separately. They form inclined layers (Figure 2c) and small individual lenses in the
Eudialyte Complex and consist mainly of large orthoclase crystals, which can be both homogeneous
and perthite-bearing. Orthoclase is intensively resorbed by nepheline that often includes small
irregularly shaped orthoclase relics (Figure 5c). Moreover, nepheline forms large (up to 1 cm) euhedral
crystals that contain magnesioarfvedsonite inclusions and symplectic intergrowths (Figure 5c,d) and
are rimmed by aegirine. Also, in this rock, there is a large number of resorbed augite relics surrounded
by zonal rims of richterite, ferri-katophorite and eckermannite), then aegirine-augite and marginal
aegirine. In addition to these rims, aegirine occurs as fan-shaped aggregates among orthoclase-perthite
and nepheline. Characteristic accessory minerals located mainly among aegirine include parakeldyshite,
titanite, ilmenite, zircon, baddeleyite, fluorapatite, and EGM. These minerals usually form various
zonal segregations (Figure 5d): zircon + baddeleyite (inside)–parakeldyshite (outside), parakeldyshite
(inside)–EGM (outside), titanite + fluorapatite (inside)–EGM (outside); ilmenite (inside)–titanite (outside).

The rocks with poikilitic texture (Figure 2b) correspond modally to feldspar-bearing urtite
consisting of large (up to 8 cm in diameter) orthoclase crystals with numerous inclusions of sodalite,
natrolite and nepheline (Figure 5e,f). Aegirine(-augite) is the main mafic mineral, but its content does
not exceed 18 modal %. EGM form rare poikilitic crystals with inclusions of surrounding minerals.
Such rocks are rare (1% of the studied samples) and were found only in one drill hole (154, interval
999–931 m).
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4.2. Whole-Rock Chemistry

Data on the concentrations of petrogenic elements in rocks of the Lovozero Eudialyte Complex
are shown in Figure 6 and in Table S3 (Supplementary Materials). The most important changes in
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the chemical composition of rocks occur with an increase in the proportion of mafic minerals in their
composition. During the transitions from foyaite to malignite and from urtite to ijolite, when the
color index M’ exceeds 30% (Figure 2b), content of Al2O3 in the rock composition gradually decreases,
while the contents of Na2O and K2O do not change. This leads to the predominance of the sum of
these alkalis over aluminum. The proportion of samples with Ka = (Na2O + K2O)/Al2O3 > 1 (agpaitic
coefficient) among the malignite, ijolite and shonkinite is 48%. As concentrations of ZrO2, TiO2, Fe2O3,
MnO, MgO and SrO increase with Ka growth (Figure 7) at the expense of P2O5, the more melanocratic
rocks are EGM-richer and phosphate-poorer.

Minerals 2017, 7, x FOR PEER REVIEW  11 of 32 

4.2. Whole-Rock Chemistry 

Data on the concentrations of petrogenic elements in rocks of the Lovozero Eudialyte Complex 
are shown in Figure 6 and in Table S3 (Supplementary Materials). The most important changes in the 
chemical composition of rocks occur with an increase in the proportion of mafic minerals in their 
composition. During the transitions from foyaite to malignite and from urtite to ijolite, when the color 
index M’ exceeds 30% (Figure 2b), content of Al2O3 in the rock composition gradually decreases, while 
the contents of Na2O and K2O do not change. This leads to the predominance of the sum of these 
alkalis over aluminum. The proportion of samples with Ka = (Na2O + K2O)/Al2O3 > 1 (agpaitic 
coefficient) among the malignite, ijolite and shonkinite is 48%. As concentrations of ZrO2, TiO2, Fe2O3, 
MnO, MgO and SrO increase with Ka growth (Figure 7) at the expense of P2O5, the more melanocratic 
rocks are EGM-richer and phosphate-poorer.  

 
Figure 6. Variations in the chemical composition of rocks of the Alluaiv site. The rocks are divided 
into two groups by the value Ka = (Na2O + K2O)/Al2O3. Red arrows show the median contents. 
Figure 6. Variations in the chemical composition of rocks of the Alluaiv site. The rocks are divided into
two groups by the value Ka = (Na2O + K2O)/Al2O3. Red arrows show the median contents.



Minerals 2019, 9, 581 12 of 31

Minerals 2017, 7, x FOR PEER REVIEW  12 of 32 

 
Figure 7. Content of ZrO2 in rocks as a function of their agpaitic coefficient, Ka. 

The composition of fine-grained nepheline syenite is generally similar to that of foyaites, except 
for CaO and Fe2O3, whose content in fine-grained rocks is higher. Urtite is relatively rich in Al2O3, 
Na2O, and Cl, but it contains the smallest amounts of divalent cations, TiO2, K2O, and SiO2. 
Metasomatic rocks have the highest concentrations of P2O5; their CaO and MgO contents are the 
highest among leucocratic rocks (Figure 6).  

4.3. Mineral Chemistry 

4.3.1. Alkali Feldspars 

Representative analyses of alkali feldspars are presented in Table 1, and all analyses are in Table 
S4 (Supplementary Materials). 

The compositions of alkali feldspar of coarse- and medium-grained rocks do not depend on 
whether or not a primary (not perthitic) albite is present in the rock. In any case, alkali feldspar is 
exsolved into pure albite and microcline, whose composition is Or94–99Ab1–6 (lines 3–7 in Figure 8a) 
with permanent impurities of Fe (up to 0.01 apfu) and Ba (up to 0.01 apfu).  

Table 1. Representative microprobe analyses of alkali feldspar, wt. %. 

Rock Malignite Ijolite 
Shonkinite, 
Melteigite 

Foyaite Urtite 
Fine-Grained 
Nph-Syenite 

Metasomatic 
Rock 

Drill 
hole 

29 117 153 160 153 222 154 224 117 147 160 157 156 156 

Deep, m 37.5 102 143 120 36 123 271 102 208 85 172 36 77 * 77 ** 
SiO2 63.98 64.90 65.32 65.88 65.28 65.08 64.24 65.14 63.92 65.74 65.53 63.80 64.98 64.40 

Al2O3 16.95 18.04 18.32 18.43 17.34 18.03 18.38 18.33 17.88 18.18 17.61 17.54 19.62 19.15 
Fe2O3 0.05 0.06 b.d. 0.03 b.d. 0.09 0.02 0.04 b.d. 0.08 0.51 0.65 0.38 0.45 
BaO 0.14 b.d. b.d. b.d. b.d. 0.12 b.d. 0.08 0.13 b.d. 0.12 b.d. 1.60 1.32 

Na2O 0.30 0.26 0.35 0.38 0.30 0.32 0.43 0.34 0.39 0.39 1.74 0.64 5.00 4.41 
K2O 16.72 16.19 16.43 15.89 16.89 16.32 16.15 16.07 16.04 16.20 14.05 15.72 6.75 7.52 
Sum 98.14 99.45 100.42 100.61 99.81 99.96 99.22 100.00 98.36 100.59 99.56 98.35 98.33 97.25 

Formula based on 8 oxygen atoms, apfu 
Si 3.03 3.01 3.01 3.01 3.03 3.01 2.99 3.01 3.01 3.02 3.02 3.00 2.97 2.98 
Al 0.95 0.99 0.99 0.99 0.95 0.98 1.01 1.00 0.99 0.98 0.96 0.97 1.06 1.04 

Fe3+ - - - - - - - - - - 0.02 0.02 0.01 0.02 
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Figure 7. Content of ZrO2 in rocks as a function of their agpaitic coefficient, Ka.

The composition of fine-grained nepheline syenite is generally similar to that of foyaites, except for
CaO and Fe2O3, whose content in fine-grained rocks is higher. Urtite is relatively rich in Al2O3, Na2O,
and Cl, but it contains the smallest amounts of divalent cations, TiO2, K2O, and SiO2. Metasomatic
rocks have the highest concentrations of P2O5; their CaO and MgO contents are the highest among
leucocratic rocks (Figure 6).

4.3. Mineral Chemistry

4.3.1. Alkali Feldspars

Representative analyses of alkali feldspars are presented in Table 1, and all analyses are in Table S4
(Supplementary Materials).

Table 1. Representative microprobe analyses of alkali feldspar, wt. %.

Rock Malignite Ijolite Shonkinite,
Melteigite Foyaite Urtite Fine-Grained

Nph-Syenite
Metasomatic

Rock

Drill hole 29 117 153 160 153 222 154 224 117 147 160 157 156 156

Deep, m 37.5 102 143 120 36 123 271 102 208 85 172 36 77 * 77 **

SiO2 63.98 64.90 65.32 65.88 65.28 65.08 64.24 65.14 63.92 65.74 65.53 63.80 64.98 64.40
Al2O3 16.95 18.04 18.32 18.43 17.34 18.03 18.38 18.33 17.88 18.18 17.61 17.54 19.62 19.15
Fe2O3 0.05 0.06 b.d. 0.03 b.d. 0.09 0.02 0.04 b.d. 0.08 0.51 0.65 0.38 0.45
BaO 0.14 b.d. b.d. b.d. b.d. 0.12 b.d. 0.08 0.13 b.d. 0.12 b.d. 1.60 1.32

Na2O 0.30 0.26 0.35 0.38 0.30 0.32 0.43 0.34 0.39 0.39 1.74 0.64 5.00 4.41
K2O 16.72 16.19 16.43 15.89 16.89 16.32 16.15 16.07 16.04 16.20 14.05 15.72 6.75 7.52
Sum 98.14 99.45 100.42 100.61 99.81 99.96 99.22 100.00 98.36 100.59 99.56 98.35 98.33 97.25

Formula based on 8 oxygen atoms, apfu

Si 3.03 3.01 3.01 3.01 3.03 3.01 2.99 3.01 3.01 3.02 3.02 3.00 2.97 2.98
Al 0.95 0.99 0.99 0.99 0.95 0.98 1.01 1.00 0.99 0.98 0.96 0.97 1.06 1.04

Fe3+ - - - - - - - - - - 0.02 0.02 0.01 0.02
Ba - - - - - - - - - - - - 0.03 0.02
Na 0.03 0.02 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.03 0.16 0.06 0.44 0.39
K 1.01 0.96 0.97 0.93 1.00 0.96 0.96 0.95 0.96 0.95 0.83 0.94 0.39 0.44

Sum 5.02 4.98 5.00 4.96 5.01 4.98 5.00 4.99 5.00 4.98 4.99 4.99 4.90 4.89

Mol. % endmembers

Or 97 98 97 96 97 97 96 97 96 96 82 92 44 50
Ab 3 2 3 4 3 3 4 3 4 4 16 6 51 45
Csn - - - - - - - - - - - - 3 3
For - - - - - - - - - - 2 2 2 2

*—point A of Figure 8; **—point B of Figure 8; Or—orthoclase, Ab—albite, Csn—celsian, For—ferriorthoclase
(KFe3+Si3O8).
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The compositions of alkali feldspar of coarse- and medium-grained rocks do not depend on
whether or not a primary (not perthitic) albite is present in the rock. In any case, alkali feldspar is
exsolved into pure albite and microcline, whose composition is Or94–99Ab1–6 (lines 3–7 in Figure 8a)
with permanent impurities of Fe (up to 0.01 apfu) and Ba (up to 0.01 apfu).
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In fine-grained nepheline syenite, phenocrysts of alkali feldspar are also exsolved into pure
albite and microcline Or91–98Ab2–9 (line 2 in Figure 8a). In the fine-grained mass, the composition of
perthite-free microcline is Or80–92Ab6–17, with the same Ba amount (up to 0.01 apfu) and a higher Fe
content (up to 0.03 apfu).

In metasomatic rocks, feldspar is exsolved into orthoclase and albite unevenly. There occur nearby
grains of homogeneous feldspar Or44–58Ab55–41 and grains with small amounts of perthite (3–15 vol. %).
The composition of such grains is Or58–66Ab42–34 + Ab100. An increase in the perthite quantity (up to
38 vol. %) leads to a decrease in Na content in the matrix (up to Or98Ab2). Sometimes, within the same
grain, there are separated areas of homogeneous and perthite-bearing potassium feldspar (Figure 8a,b).

Albite lamellae in alkali feldspar from all types of rocks have the same composition: Ab100.
The composition of primary albite ranges as Ab94–99Or1–6 and does not depend on the type of rock.
An impurity of Fe2O3, which reaches maximum values (up to 0.30 wt. %) in albite from fine-grained
nepheline syenite, is characteristic.

4.3.2. Nepheline

Representative analyses of nepheline are shown in Table 2, while all available compositions are
shown in Figure 9 in the coordinates of Nph (nepheline)–Ks (calsilite)–Qtz (SiO2) and in Supplementary
Materials (Table S5). Morphological types of nepheline are clearly separated by the content of Qtz
endmember. The composition of nepheline-I is Nph67–78Ks15–23Qtz1–12, while nepheline-II contains
more Qtz-component: Nph61–74Ks13–21Qtz9–23. In these intervals, the compositions of nepheline
from most rocks of the Eudialyte Complex are evenly distributed, except for poikilitic rocks and
fine-grained nepheline syenite, where nepheline is enriched with SiO2. In fine-grained nepheline
syenite, the compositions of nepheline from fine-grained mass and phenocrysts do not differ.
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Table 2. Representative microprobe analyses of nepheline, wt. %.

Rock Malignite Ijolite Shonkinite,
Melteigite Foyaite Urtite Fine-Grained

Nph-syenite
Metasomatic

Rock

Drill hole 117 154 153 44 117 153 117 157 230 117 147 160 156 156

Deep, m 121 85 178 108 111 36 217 164 239 208 1 148 137 157

SiO2 44.76 41.79 42.71 45.72 43.14 44.58 42.38 44.74 43.12 41.45 42.20 43.61 44.35 45.81
Al2O3 30.65 32.38 32.73 31.08 31.15 30.78 32.79 29.88 33.38 32.78 33.62 29.40 31.69 30.78
Fe2O3 1.44 0.16 0.18 1.63 1.53 1.25 0.16 1.87 0.26 0.15 0.12 1.91 1.77 1.09
CaO b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. 0.03
K2O 5.44 6.63 6.71 6.08 5.85 5.81 6.51 5.42 6.62 6.67 7.25 5.36 5.47 5.35

Na2O 16.23 16.23 16.36 15.95 16.54 16.16 15.23 16.13 15.56 15.27 15.14 15.69 15.91 15.17
Sum 98.52 97.19 98.68 100.45 98.21 98.58 97.08 98.04 98.93 96.31 98.32 95.97 99.20 98.24

Formula based on 8 oxygen atoms, apfu

Si 4.35 4.15 4.18 4.37 4.24 4.34 4.19 4.38 4.18 4.14 4.14 4.36 4.28 4.43
Al 3.51 3.79 3.77 3.50 3.61 3.53 3.82 3.45 3.82 3.86 3.88 3.47 3.61 3.51

Fe3+ 0.11 0.01 0.01 0.12 0.11 0.09 0.01 0.14 0.02 0.01 0.01 0.14 0.13 0.08
K 0.67 0.84 0.84 0.74 0.73 0.72 0.82 0.68 0.82 0.85 0.91 0.68 0.67 0.66

Na 3.06 3.13 3.10 2.95 3.15 3.05 2.92 3.06 2.93 2.96 2.88 3.04 2.98 2.85
Sum 11.71 11.93 11.90 11.67 11.84 11.73 11.76 11.70 11.77 11.82 11.81 11.70 11.67 11.53

Mol. % endmembers

Nph 70 75 74 68 74 70 70 70 70 71 69 70 69 64
Ks 16 20 20 17 17 17 19 15 20 21 22 16 16 15
Qtz 14 5 6 15 9 13 11 15 10 8 9 14 15 21

Nph—nepheline; Ks—kalsilite; Qtz—quartz.Minerals 2017, 7, x FOR PEER REVIEW  14 of 32 
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Al 3.51 3.79 3.77 3.50 3.61 3.53 3.82 3.45 3.82 3.86 3.88 3.47 3.61 3.51 

Fe3+ 0.11 0.01 0.01 0.12 0.11 0.09 0.01 0.14 0.02 0.01 0.01 0.14 0.13 0.08 
K 0.67 0.84 0.84 0.74 0.73 0.72 0.82 0.68 0.82 0.85 0.91 0.68 0.67 0.66 

Na 3.06 3.13 3.10 2.95 3.15 3.05 2.92 3.06 2.93 2.96 2.88 3.04 2.98 2.85 
Sum 11.71 11.93 11.90 11.67 11.84 11.73 11.76 11.70 11.77 11.82 11.81 11.70 11.67 11.53 

Mol. % endmembers 
Nph 70 75 74 68 74 70 70 70 70 71 69 70 69 64 
Ks 16 20 20 17 17 17 19 15 20 21 22 16 16 15 
Qtz 14 5 6 15 9 13 11 15 10 8 9 14 15 21 

Nph—nepheline; Ks—kalsilite; Qtz—quartz. 
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has showed also that compositions corresponding to different types of rocks were divided into two 
almost isolated groups, in accordance with the main isomorphism scheme (Figure 10). Nepheline 
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Figure 9. Nepheline compositions in the nepheline (Nph)–kalsilite (Ks)–quartz (SiO2) triangle
(on a mol. % basis) for the rocks of the Alluaiv site. The isotherms are from [31].

Fe3+ (up to 0.16 apfu) is a permanent impurity in nepheline composition, and rare impurities,
found in only 1% of the samples, are Ca (up to 0.01 apfu) and Ba (up to 0.004 apfu). According to the
results of factor analysis of data on the nepheline composition (Figure 10), the main isomorphism
scheme in this mineral can be written as:

2B + (Si4+ + Fe3+)T � K+
B + 2Al3+

T,

(if the composition of nepheline is expressed by the formula A4B4Т8О16).
The same substitution is characteristic of nepheline of the Khibiny Massif [32,33]. Factor analysis

has showed also that compositions corresponding to different types of rocks were divided into two
almost isolated groups, in accordance with the main isomorphism scheme (Figure 10). Nepheline from
fine-grained nepheline syenite and metasomatic rocks are enriched with iron. In malignite, ijolite,
shonkinite, and melteigite, nepheline-I is rich in K and Al, while nepheline-II is enriched with iron.
Most nepheline samples from foyaite and urtite are relatively rich in K and Al.
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in coexisting nepheline from fine-grained nepheline syenite. Black and empty dots indicate significant 
(p ≤ 0.05) and insignificant correlation coefficients, respectively. 

4.3.3. Clinopyroxenes 

Representative chemical analyses of clinopyroxenes from the rocks of the Eudialyte Complex 
are presented in Table 3, and all analyses are in Table S6 (Supplementary Materials) and generated 
in Figure 12. In all types of rock, except for metasomatic varieties, clinopyroxenes are presented by 
aegirine and aegirine-augite with high contents of Ti (up to 0.16 apfu), Zr (up to 0.05 apfu) and Al (up 
to 0.05 apfu).  

Figure 10. Results of factor analyses of data on the composition of nepheline from the Alliaiv site.
Points on a gray background correspond to nepheline with inclusions of microcline and aegirine.
Var.—variables; Expl.var.—Explained variance; Prp.totl—proportion of total variance. Factor loadings
> |0.5| are shown in bold.

In meso- and melanocratic rocks (malignite, ijolite, shonkinite, and melteigite), contents of Si, Fe3+,
Al, K in nepheline-I correlate with Fe3+ amount in coexisting microcline (Figure 11a). Interrelations
between other components are weak because their ratio in the feldspar changed when perthites were
formed. Also, there are no significant correlations between the compositions of nepheline-II and
coexisting microcline. In foyaite and urtite, contents of Si, Fe3+, Al, K in nepheline correlate with
Fe3+ amount in coexisting microcline. The compositions of coexisting nepheline and microcline from
fine-grained nepheline syenite are interrelated, with positive correlations between the same elements
(Figure 11b).
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Figure 11. Correlation coefficients (r): (a)—between the content of Fe3+ in microcline and cations in
coexisting nepheline-I and nepheline-II; (b)—between cations in microcline (color lines) and cations in
coexisting nepheline from fine-grained nepheline syenite. Black and empty dots indicate significant
(p ≤ 0.05) and insignificant correlation coefficients, respectively.

4.3.3. Clinopyroxenes

Representative chemical analyses of clinopyroxenes from the rocks of the Eudialyte Complex
are presented in Table 3, and all analyses are in Table S6 (Supplementary Materials) and generated
in Figure 12. In all types of rock, except for metasomatic varieties, clinopyroxenes are presented by
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aegirine and aegirine-augite with high contents of Ti (up to 0.16 apfu), Zr (up to 0.05 apfu) and Al
(up to 0.05 apfu).

Table 3. Representative microprobe analyses of clinopyroxenes, wt. %.

Rock Malignite Ijolite Shonkinite,
Melteigite Foyaite Urtite Fine-Grained

Nph-Syenite Metasomatic Rock

Drill hole 117 228 33 160 153 222 154 157 117 156 154 157 156 156 156 156

Deep, m 121 84 211 120 8 177 35 155 235 56 226 36 89 A** 89 B 89 C 89 D

SiO2 52.12 52.66 50.68 52.54 49.96 53.23 51.75 52.36 51.97 51.49 51.34 52.12 51.91 50.61 51.46 51.78
ZrO2 0.74 0.75 0.71 0.61 0.53 0.41 0.78 0.70 0.76 0.61 0.98 0.64 b.d. 0.27 1.05 0.90
TiO2 3.06 2.97 3.06 2.54 2.74 3.84 2.70 2.35 2.77 4.26 2.97 2.74 0.97 1.32 3.17 4.01

Al2O3 0.79 0.89 0.71 0.80 0.87 0.80 0.77 0.97 0.86 0.89 0.76 0.78 1.33 1.12 0.90 0.87
V2O3 0.05 b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d.
CaO 2.67 2.69 2.74 3.04 1.68 1.59 2.57 3.78 1.90 2.49 3.17 2.71 17.58 19.96 5.71 3.46
MgO 1.54 1.90 1.79 2.11 1.12 1.22 1.64 2.17 1.46 1.47 1.72 1.70 12.59 10.77 3.03 2.12
FeO 23.60 23.37 23.61 23.13 24.91 24.87 24.13 24.13 23.70 24.43 23.49 24.76 8.32 10.08 20.85 22.53
MnO 0.40 0.57 0.45 0.53 0.40 0.48 0.48 0.44 0.33 0.46 0.45 0.41 0.66 0.65 0.47 0.62
ZnO b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. 0.08 b.d. b.d. b.d. b.d. b.d. b.d. b.d.

Na2O 12.28 12.57 12.05 12.44 13.41 13.40 12.60 12.20 13.15 12.16 12.59 12.79 1.85 2.91 10.48 12.04
K2O b.d. b.d. b.d. b.d. b.d. b.d. 0.10 b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d.
Sum 97.25 98.37 95.81 97.72 95.61 99.83 97.50 99.08 96.97 98.27 97.47 98.62 95.21 97.69 97.12 98.32

Formula based on 4 cations and 6 oxygen atoms, apfu

Si 1.99 1.98 1.96 1.98 1.92 1.97 1.96 1.96 1.97 1.96 1.95 1.95 2.02 1.93 1.98 1.96
Zr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 – 0.01 0.02 0.02
Ti 0.09 0.08 0.09 0.07 0.08 0.11 0.08 0.07 0.08 0.12 0.09 0.08 0.03 0.04 0.09 0.11
Al 0.04 0.04 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.03 0.03 0.06 0.05 0.04 0.04
Ca 0.11 0.11 0.11 0.12 0.07 0.06 0.11 0.15 0.08 0.10 0.13 0.11 0.73 0.81 0.24 0.14
Mg 0.09 0.11 0.10 0.12 0.06 0.07 0.09 0.12 0.08 0.08 0.10 0.10 0.73 0.61 0.17 0.12
Fe2+ 0.06 0.01 0.02 - - 0.02 - - - 0.10 - - 0.27 0.09 0.10 0.04
Fe3+ 0.69 0.72 0.74 0.73 0.80 0.76 0.77 0.75 0.75 0.68 0.75 0.78 - 0.23 0.57 0.67
Mn 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.02
Na 0.91 0.92 0.91 0.91 1.00 0.96 0.93 0.88 0.97 0.90 0.93 0.93 0.14 0.22 0.78 0.88
K - - - - - - 0.01 - - - - - - - - -

Mol % endmembers

Q 13 11 12 12 6 7 10 13 8 14 11 10 100 78 25 15
Aeg 83 84 84 84 89 89 86 82 88 81 85 86 - 18 70 81
Jd 4 5 4 4 5 4 4 5 4 5 4 4 - 4 5 4

*—pyroxene compositions at points A–D correspond to Figure 12b; **—endmember composition 89A: Wo42En41Fs17.

The factor analysis of the clinopyroxene compositions (Figure 12a) revealed two main schemes of
isomorphism:

Na++ Ti4+ + Al3+� Ca2+ + Mg2+ + Zr4+;

Fe3+ + (Al, Fe)3+� Fe2+ + Si4+.

The zirconium content goes up with an increase in Ca and Mg and reaches maximum values
in aegirine-augite. High concentrations of titanium, on the contrary, are characteristic of aegirine.
The chemical composition of clinopyroxenes in rocks of the Eudialyte Complex (except for metasomatic
rocks) varies widely, but does not depend on the type of rock (Figure 12a,b).

It is important to note the constant admixture of manganese (up to 0.04 apfu) in clinopyroxenes
(see Table 3). Potassium impurity (up to 0.01 apfu) was recorded in 7% of studied samples, while
impurities of vanadium (up to 0.002 apfu) and zinc (up to 0.02 apfu) occur in 2% of the samples.

In metasomatic rocks, resorbed augite relics (point A in Figure 13b) are surrounded at first
by aegirine-augite (points B and C), and then by aegirine (point D). Factor analysis of the data
on the composition of clinopyroxenes from these rocks (Figure 13a) managed to separate relicts of
(aegirine)-augite from later aegirine enriched with titanium and zirconium.
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Figure 12. Chemical composition of clinopyroxenes from magmatic rocks of the Alluaiv site: (a)—results
of factor analyses of data on the composition of clinopyroxenes from the Alluaiv site. Points on a gray
background correspond to aegirine-augite, the other points are of aegirine; (b)—compositional variation
of clinopyroxene in triangular system Mg–(Fe2+ + Mn)–Na. Var.—variables; Expl.var.—Explained
variance; Prp.totl—proportion of total variance. Factor loadings > |0.5| are shown in bold.Minerals 2017, 7, x FOR PEER REVIEW  18 of 32 
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The lithium content determines the value of the ratio Fe3+/Fe2+ in amphiboles, because of 
following replacement: LiM3 + Fe3+ ⇆ Fe2+M3 + Fe2+ [35]. In this study, measurements of Li content in 
amphiboles were not carried out; therefore, we do not discuss the Fe3+/Fe2+ ratio in amphiboles. As an 
alternative, we considered concentrations of major and minor elements in binary diagrams (Figure 
14). Amphiboles from meso- and melanocratic rocks are characterized by an increased content of Ca 
(up to 0.28 apfu), Al (up to 0.30 apfu) and Ti (up to 0.28 apfu), while amphiboles from leucocratic rocks 
and fine-grained nepheline syenite are enriched in К (up to 0.71 apfu), Si and Mn (up to 0.52 apfu). 

Figure 13. Chemical composition of clinopyroxenes from metasomatic rocks of the Alluaiv site:
(a)—results of factor analyses. Points on a gray background correspond to augite (Au) and
aegirine-augite (Aeg-Au), with other points corresponding to aegirine (Aeg). Points A–D correspond
to Figure 13b,c. Var.—variables; Expl.var.—Explained variance; Prp.totl—proportion of total variance.
Factor loadings > |0.5| are shown in bold. (b)—relicts of augite surrounded by rims of aegirine-augite
and aegirine in a metasomatic rock 156/89. The compositions corresponding to points A–D are shown
in Figure 13a,c; (c)—compositional variation of clinopyroxenes in Mg–(Fe2+ + Mn)–Na system.
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There are significant correlations between a sodium content in nepheline (morphological types I
and II) and contents of sodium (r = 0.350), ferric iron (r = 0.354), ferrous iron (r = –0.460) and
silicon (r = –0.456) in clinopyroxenes in meso- and melanocratic rocks. Similar correlations have been
established for nepheline and clinopyroxenes from fine-grained nepheline syenite.

4.3.4. Amphiboles

Representative analyses of amphiboles are given in Table 4, and all analyses are in Table S7
(Supplementary Materials). Formula calculations for amphiboles were made on the base of 16 cations
and 23 oxygens. This calculation resulted in systematically slightly under-occupied C-sites and
over-occupied A-sites, which may be explained by significant Li contents [34] that cannot be measured
by an electron microprobe. A method of lithium content calculation proposed in [34] cannot be used,
since the discrepancy between measured and calculated Li2O is quite significant at relatively high
lithium content typical for amphiboles of the Lovozero Massif (up to 0.6 wt. % Li2O [24]). The cation
excess in C-site and deficit in A-site were not found only in 37% (80 samples) of investigated amphiboles.
The most of these amphiboles (70 samples) are magnesioarfvedsonite, the rest belong to arfvedsonite.

Table 4. Representative microprobe analyses of amphiboles, wt. %.

Rock Malignite Ijolite Shonkinite,
Melteigite Foyaite Urtite Fine-Grained

Nph-Syenite
Metasomatic

Rock

Drill hole 117 147 231 117 153 222 147 154 147 156 154 154 156 231

Deep, m 4 194 176 93 36 231 275 172 85 56 245 * 245 ** 89 *** 146

SiO2 51.81 53.78 53.10 53.32 52.33 52.50 52.30 53.82 52.90 52.44 53.12 51.10 52.56 54.65
TiO2 1.76 1.50 1.36 1.54 1.63 1.77 1.56 1.02 1.47 1.31 1.64 0.86 0.56 2.01

Al2O3 1.49 0.77 0.78 1.25 1.33 1.29 1.14 1.09 1.22 1.00 0.62 0.58 1.99 1.61
FeO 17.54 17.19 17.56 17.00 18.16 16.79 17.75 12.62 16.78 18.00 17.42 26.17 10.95 14.24
MnO 1.39 1.50 1.49 1.20 1.52 1.51 1.49 1.68 1.37 1.38 1.66 3.13 1.29 1.61
MgO 9.36 10.45 10.03 10.37 9.75 10.29 10.52 13.08 11.62 9.61 9.32 2.64 14.00 12.98
CaO 0.94 0.83 0.59 1.15 1.02 1.13 1.20 0.91 1.35 0.71 0.48 0.29 5.66 1.65
ZnO 0.07 0.05 0.06 b.d. 0.08 0.05 b.d. 0.05 b.d. b.d. 0.08 0.07 0.07 b.d.

Na2O 9.30 9.50 9.17 9.26 8.90 9.37 9.26 9.41 8.92 8.78 10.10 8.46 6.87 9.12
K2O 1.65 1.55 1.56 1.68 1.76 1.67 1.61 1.53 1.64 1.67 1.68 3.11 1.40 1.57

F b.d. b.d. 2.10 b.d. b.d. 1.50 b.d. b.d. b.d. b.d. b.d. b.d. b.d. 1.70
О=F 0.00 0.00 −0.88 0.00 0.00 −0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.72
Sum 95.31 97.12 96.92 96.77 96.48 97.24 96.83 95.21 97.27 94.90 96.11 96.41 95.35 100.42

Formula based on O + OH + F = 24 apfu and OH = 2 – 2Ti

Si (T) 7.83 7.94 7.99 7.90 7.84 7.81 7.76 7.93 7.78 7.99 7.93 8.04 7.84 7.80
Al (T) 0.17 0.05 0.01 0.10 0.16 0.19 0.20 0.07 0.21 0.01 0.07 - 0.16 0.20
Ti (T) - - - - - - 0.04 - 0.01 - - - - -

Sum T 8.00 7.99 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.04 8.00 8.00
Ti (C) 0.20 0.17 0.15 0.17 0.18 0.20 0.13 0.11 0.15 0.15 0.18 0.10 0.06 0.22
Al (C) 0.09 0.08 0.12 0.12 0.08 0.04 - 0.12 - 0.16 0.03 0.11 0.19 0.07

Fe3+ (C) 0.72 0.66 0.56 0.62 0.64 0.78 0.91 0.70 0.75 0.47 0.92 0.81 - 0.51
Mn (C) 0.18 0.19 0.19 0.15 0.19 0.19 0.19 0.21 0.17 0.18 0.21 0.42 0.16 0.19
Fe2+ (C) 1.49 1.46 1.65 1.49 1.64 1.31 1.29 0.86 1.31 1.83 1.26 2.64 1.36 1.19
Mg (C) 2.11 2.30 2.25 2.29 2.18 2.28 2.33 2.87 2.55 2.18 2.07 0.62 3.11 2.76
Zn (C) 0.01 - 0.01 - 0.01 - - 0.01 - - 0.01 0.01 0.01 -
Sum C 4.80 4.86 4.93 4.84 4.92 4.80 4.85 4.88 4.93 4.97 4.68 4.71 4.89 4.94
Ca (B) 0.15 0.13 0.09 0.18 0.16 0.18 0.19 0.14 0.21 0.12 0.08 0.05 0.90 0.25
Na (B) 1.85 1.87 1.91 1.82 1.84 1.82 1.81 1.86 1.79 1.88 1.92 1.95 1.10 1.75
Sum B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
Na (A) 0.88 0.85 0.77 0.84 0.74 0.88 0.85 0.83 0.76 0.71 1.00 0.63 0.89 0.77
K (A) 0.32 0.30 0.30 0.32 0.34 0.32 0.30 0.29 0.31 0.32 0.32 0.62 0.27 0.29

Sum A 1.20 1.15 1.07 1.16 1.08 1.20 1.15 1.12 1.07 1.03 1.30 1.25 1.16 1.06
OH (W) 2.00 2.00 1.00 2.00 2.00 1.29 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.23

F (W) - - 1.00 - - 0.71 - - - - - - - 0.77
Sum W 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

*—core of zonal grain; **—edge of zonal grain; ***—rim around augite relict (see Figure 13b). T,C,B,A,W—sites in
general formula AB2C5T8O22W2 [27].
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The lithium content determines the value of the ratio Fe3+/Fe2+ in amphiboles, because of
following replacement: LiM3 + Fe3+� Fe2+

M3 + Fe2+ [35]. In this study, measurements of Li content in
amphiboles were not carried out; therefore, we do not discuss the Fe3+/Fe2+ ratio in amphiboles. As an
alternative, we considered concentrations of major and minor elements in binary diagrams (Figure 14).
Amphiboles from meso- and melanocratic rocks are characterized by an increased content of Ca (up to
0.28 apfu), Al (up to 0.30 apfu) and Ti (up to 0.28 apfu), while amphiboles from leucocratic rocks and
fine-grained nepheline syenite are enriched in К(up to 0.71 apfu), Si and Mn (up to 0.52 apfu).
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Figure 14. Binary diagrams showing major and minor element concentrations in amphiboles as a
function of Al content.

In the metasomatic rocks, sodium-calcium (ferri-katophorite, richterite) and sodium (eckermannite)
amphiboles along with aegirine-augite surround the augite relics. These amphiboles stand out clearly
in binary diagrams (Figure 14) with high Ca (up to 0.46 apfu) and Al (up to 0.41 apfu) contents.
Magnesioarfvedsonite is also characteristic of these rocks, but it forms symplectic intergrowths with
nepheline (see Figure 5c,d).
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In meso- and melanocratic rocks, cations in the composition of amphiboles (only samples without
under-occupied C-sites and over-occupied A-sites) and coexisting clinopyroxenes correlate closely
with each other, with positive correlations between the same elements (Figure 15).Minerals 2017, 7, x FOR PEER REVIEW  21 of 32 
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4.3.5. Eudialyte-Group Minerals (EGM)

Representative analyses of EGM and site occupancies calculated using the method of Johnsen and
Grice [36] are given in Table 5, Table 6 and Table S8 (Suplementary Materials) according the IMA-accepted
general formula for the eudialyte-group minerals [37,38]: N15[M(1)]6[M(2)]3[M(3)][M(4)]Z3

(Si24O72)O’4X2, with N = Na, Ca, K, Sr, REE, Ba, Mn, H3O+; M(1) = Ca, Mn, REE, Na, Sr, Fe;
M(2) = Fe, Mn, Na, Zr, Ta, Ti, K, Ba, H3O+; M(3, 4) = Si, Nb, Ti, W, Na; Z = Zr, Ti, Nb; O’ = O, OH–,
H2O; X = H2O, Cl–, F–, OH–, CO3

2–, SO4
2–, SiO4

4–.
The high zirconium content (above 3 apfu) is the main feature of the most EGM samples. As a result,

there is an excess of zirconium remains after Z position filling. There remains a possibility of zirconium
to enter the M(2)-site, which is not completely filled in the majority of the samples (Figure 16) and in
the M(3)-site, where there is also a constant deficit of cations. The results of the factor analysis of EGM
compositions (Figure 17) indicate that Si is replaced by Zr; therefore, we assigned excess zirconium
to the M(3)-site. Zirconium dominates in the M(3)-site in 22% of EGM samples, Si prevails in 75%
samples, and niobium predominates in 3% samples. However, the EGM classification [37] does not
includes EGM varieties with a predominant Zr in any position other than Z, and such EGM from the
Lovozero Eudialyte Complex, of course, require an additional study. The remaining samples belong to
the eudialyte solid solution (eudialytess)–kentbrooksite series.

According to the factor analysis results (Figure 17), the main scheme of isomorphic substitutions
in eudialyte is as follows:

Zr4+ + Al3+ + Ti4+ + Fe2+ + 3Na+� Si4+ + Nb5+ + Mn2+ + REE3+ + (Ca, Sr)2+.

With an increase in the kentbrooksite endmember content, the concentrations of rare-earth
elements increase, and with an increase in eudialytess endmember fraction, the contents of Zr and Al
increase. The anomalous Zr-rich EGM (Zr-rich eudialytess) are likely to have resulted from a sharp
shift of the main equilibrium to the left. In zonal EGM grains (see Figure 3e), transition from the grain
cores to their marginal zones occurs on the following schemes: eudialytess→ kentbrooksite or Zr-rich
eudialytess→ eudialytess. Zonal EGM crystals were found only in meso-and melanocratic rocks; in
other rocks, EGM form homogeneous grains.
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There are no significant differences in the composition of EGM from meso-, melano-, and leucocratic
rocks. On average, EGM from meso- and melanocratic rocks contain more Fe2+ (median 1.18 apfu)
and less Mn (median 1.04 apfu) than EGM from leucocratic rocks (median 0.65 Fe pfu and 1.16 Mn pfu).
EGM from metasomatic rocks are enriched with Ca, Sr, Nb, and Fe.

In the meso- and melanocratic rocks, the compositions of coexisting clinopyroxenes and EGM
correlate with each other. With an increase in magnesium and calcium in clinopyroxene (diopside
endmember), the calcium content in EGM growths linearly (r = 0.444 and 0.441, respectively).

Table 5. Representative microprobe analyses of EGM, wt. %.

Rock. Malignite Ijolite Shonkinite Foyaite Urtite Fine-grained
Nph- Syenite

Metasomatic
Rock

Drill hole 28 28 117 117 44 44 117 156 147 154 154 160 154 156

Deep, m 153 * 153 ** 47 * 47 ** 50 * 50 ** 215 216 85 144 226 148 197 118

Nb2O5 0.49 0.39 0.67 0.73 0.72 0.71 0.35 1.22 0.81 0.71 0.36 1.11 0.64 1.62
SiO2 49.99 51.75 49.45 50.97 53.07 50.44 51.81 49.92 49.34 51.24 53.51 49.48 51.02 49.33
ZrO2 12.54 11.69 13.95 12.79 12.04 13.90 13.03 11.78 12.90 11.20 14.71 11.65 12.93 12.80
TiO2 0.66 0.46 0.61 0.36 0.38 0.66 0.65 0.52 0.70 0.75 1.01 0.56 0.65 0.29

Al2O3 0.22 0.15 0.16 0.10 0.07 0.22 0.17 0.23 0.22 0.10 0.14 0.21 0.24 0.16
Y2O3 b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. 0.84
La2O3 0.19 0.40 0.29 0.27 0.30 0.25 0.46 0.42 0.25 0.61 0.37 0.33 b.d. 0.25
Ce2O3 0.53 0.85 0.57 0.69 0.58 0.74 0.98 0.94 0.62 1.73 1.24 0.94 0.51 0.56
Nd2O3 0.32 0.33 0.37 0.39 0.17 0.19 0.33 0.39 0.19 0.68 0.39 0.32 b.d. 0.25

CaO 7.48 8.71 6.27 7.19 9.04 6.20 6.92 7.96 6.34 7.33 6.49 8.09 10.31 8.54
MgO 0.16 b.d. 0.08 0.03 0.09 0.12 b.d. b.d. 0.07 b.d. b.d. b.d. b.d. 0.20
FeO 3.42 1.87 2.90 3.00 3.11 3.73 1.07 5.00 3.03 0.32 2.66 4.54 1.64 4.73
MnO 2.29 2.89 1.95 2.10 2.31 1.93 2.96 1.95 2.75 4.06 2.64 2.18 1.58 2.44
SrO 1.30 1.28 2.05 1.97 1.84 1.55 3.13 2.17 1.48 2.20 2.28 2.32 1.28 3.70
BaO 0.18 0.22 b.d. b.d. 0.15 b.d. 0.76 b.d. 0.26 0.62 0.20 0.17 0.19 0.14

Na2O 16.02 15.97 15.32 13.19 12.46 16.14 13.39 15.51 14.68 15.47 9.49 14.69 12.50 11.35
K2O 0.24 0.18 0.29 0.22 0.19 0.29 0.23 0.27 0.25 0.47 0.19 0.22 0.28 0.32
Cl 1.51 1.17 1.30 1.08 1.04 1.27 1.46 1.56 1.27 0.98 1.67 1.44 1.27 1.58

О=Cl –0.34 –0.26 –0.29 –0.24 –0.23 –0.29 –0.33 –0.35 –0.29 –0.22 –0.38 –0.33 –0.29 –0.36
Total 95.71 96.86 94.63 93.75 96.27 96.76 95.91 97.93 93.58 97.26 95.28 96.47 93.48 97.15

Formula based on Si + Zr + Ti + Nb + Al + Hf = 29 apfu

Nb 0.11 0.09 0.15 0.16 0.16 0.16 0.08 0.28 0.19 0.16 0.08 0.26 0.14 0.37
Si 25.40 25.81 25.07 25.52 25.81 25.10 25.46 25.45 25.20 25.75 25.13 25.48 25.34 25.23
Zr 3.11 2.84 3.45 3.12 2.85 3.37 3.12 2.93 3.21 2.75 3.37 2.92 3.13 3.19
Ti 0.25 0.17 0.23 0.13 0.14 0.25 0.24 0.20 0.27 0.28 0.36 0.22 0.24 0.11
Al 0.13 0.09 0.09 0.06 0.04 0.13 0.10 0.14 0.13 0.06 0.08 0.13 0.14 0.10
Y - - - - - - - - - - - - - 0.23
La 0.04 0.07 0.05 0.05 0.05 0.05 0.08 0.08 0.05 0.11 0.06 0.06 0.00 0.05
Ce 0.10 0.16 0.11 0.13 0.10 0.14 0.18 0.18 0.12 0.32 0.21 0.18 0.09 0.11
Nd 0.06 0.06 0.07 0.07 0.03 0.03 0.06 0.07 0.04 0.12 0.07 0.06 0.00 0.05
Ca 4.07 4.65 3.41 3.86 4.71 3.30 3.64 4.35 3.47 3.95 3.27 4.46 5.49 4.68
Mg 0.12 0.00 0.06 0.02 0.06 0.09 - - 0.05 - - - - 0.15
Fe2+ 1.45 0.78 1.23 1.25 1.26 1.55 0.44 2.13 1.29 0.13 1.04 1.95 0.68 2.02
Mn 0.99 1.22 0.84 0.89 0.95 0.81 1.23 0.84 1.19 1.73 1.05 0.95 0.67 1.05
Sr 0.38 0.37 0.60 0.57 0.52 0.45 0.89 0.64 0.44 0.64 0.62 0.69 0.37 1.10
Ba 0.04 0.04 - - 0.03 - 0.15 - 0.05 0.12 0.04 0.03 0.04 0.03
Na 15.77 15.44 15.06 12.81 11.75 15.57 12.76 15.33 14.54 15.08 8.64 14.67 12.03 11.25
K 0.16 0.12 0.19 0.14 0.12 0.18 0.14 0.18 0.16 0.30 0.12 0.15 0.18 0.21
Cl 1.30 0.99 1.12 0.91 0.86 1.07 1.22 1.35 1.10 0.83 1.33 1.25 1.07 1.37

Sum 52.18 51.91 50.61 48.78 48.58 51.17 48.58 52.79 50.40 51.50 44.11 52.21 48.55 49.92

*—core of zonal grain; **—edge of zonal grain.
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Table 6. Site occupancies of EGM from Table 5, apfu.

Rock Malignite Ijolite Shonkinite Foyaite Urtite Fine-grained
Nph-Syenite

Metasomatic
Rock

Drill hole 28 28 117 117 44 44 117 156 147 154 154 160 154 156

Interval, m 153 * 153 ** 47 * 47 ** 50 * 50 ** 215 216 85 144 226 148 197 118

Al(M4) 0.13 0.09 0.09 0.06 0.04 0.13 0.10 0.14 0.13 0.06 0.08 0.13 0.14 0.10
Si (M4) 0.87 0.91 0.91 0.94 0.96 0.87 0.90 0.86 0.87 0.94 0.92 0.87 0.86 0.90

Sum М4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Zr (Z) 3.00 2.84 3.00 3.00 2.85 3.00 3.00 2.93 3.00 2.75 3.00 2.92 3.00 3.00
Ti (Z) - 0.16 - - 0.14 - - 0.07 - 0.25 - 0.08 - -

Nb (Z) - - - - 0.01 - - - - - - - - -
Sum Z 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Nb (M3) 0.11 0.09 0.15 0.16 0.15 0.16 0.08 0.28 0.19 0.16 0.08 0.26 0.14 0.37
Si (M3) 0.53 0.90 0.17 0.58 0.85 0.22 0.56 0.59 0.33 0.81 0.20 0.60 0.48 0.32
Ti(M3) 0.25 0.01 0.23 0.13 - 0.25 0.24 0.13 0.27 0.03 0.36 0.14 0.24 0.11
Zr (M3) 0.11 - 0.45 0.12 - 0.37 0.12 - 0.21 - 0.37 - 0.13 0.19
Sum M3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fe (M2) 1.45 0.78 1.23 1.25 1.26 1.55 0.44 2.13 1.29 0.13 1.04 1.95 0.68 2.02
Mn (M2) 0.99 1.22 0.84 0.89 0.95 0.81 1.23 0.84 1.19 1.73 1.05 0.95 0.67 0.82
Mg (М2) 0.12 - 0.06 0.02 0.06 0.09 - - 0.05 - - - - 0.15
Sum М2 2.56 2.00 2.13 2.16 2.28 2.45 1.67 2.97 2.54 1.86 2.10 2.90 1.35 3.00
Mn (M1) - - - - - - - - - - - - - 0.23
Ca (M1) 4.07 4.65 3.41 3.86 4.71 3.30 3.64 4.35 3.47 3.95 3.27 4.46 5.49 4.68

REE (M1) 0.19 0.29 0.23 0.25 0.19 0.22 0.32 0.33 0.20 0.55 0.34 0.30 0.09 0.20
Na (M1) 1.74 1.06 2.36 1.90 1.11 2.48 2.04 1.33 2.33 1.50 2.39 1.24 0.42 0.67
Y (M1) - - - - - - - - - - - - - 0.23

Sum М1 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
Na (N) 14.04 14.38 12.69 10.91 10.64 13.09 10.72 14.00 12.21 13.58 6.24 13.43 11.62 10.59
K(N) 0.16 0.12 0.19 0.14 0.12 0.18 0.14 0.18 0.16 0.30 0.12 0.15 0.18 0.21
Ba(N) 0.04 0.04 - - 0.03 - 0.15 - 0.05 0.12 0.04 0.03 0.04 0.03
Sr (N) 0.38 0.37 0.60 0.57 0.52 0.45 0.89 0.64 0.44 0.64 0.62 0.69 0.37 1.10

Sum N 14.61 14.91 13.48 11.62 11.30 13.72 11.90 14.82 12.86 14.64 7.02 14.30 12.20 11.92

*—core of zonal grain; **—edge of zonal grain.
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Oneillite; Ras—Raslakite; Tas—Taseqite; (Mn,Ca)-ord. Eud— (Mn,Ca)-ordered eudialyte. 

Figure 16. Manganese versus Fe on the M(2) site in EGM. For orientation, endmembers are
shown. All—Alluaivite; Aq—Aqualite; Ce-Zir—Ce-Zirsilite; Eud—eudialyte; Kent—Kentbrooksite;
On—Oneillite; Ras—Raslakite; Tas—Taseqite; (Mn,Ca)-ord. Eud— (Mn,Ca)-ordered eudialyte.
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5. Discussion

If apo-basalt metasomatic rocks are not taken into consideration, the Eudialyte Complex of the
Lovozero Massif is composed of igneous rocks that can be formally subdivided into nepheline syenites
(shonkinite, malignite and foyaite) and foidolites {melteigite, ijolite and urtite (Figure 2b)}. Based on
the petrochemical (Figure 6), petrographic, and mineralogical data, these rocks should be divided
into other groups. The first group includes hypersolvus meso- and melanocratic rocks (shonkinite,
malignite, melteigite and ijolite) containing 30 or more modal % of mafic minerals. These rocks contain
“streams” of dark-colored minerals (Figure 3a,b), have a trachytoid structure (Figure 3a), and are
enriched with EGM. The (Na2O + K2O)/Al2O3 ratio for these rocks ranges from 0.83 to 1.88 (Figure 7).

The second group includes subsolvus leucocratic rocks (foyaite, fine-grained nepheline syenite,
urtite), where albite appears as primary magmatic mineral that present along with microcline-perthite
(Figure 4a,c,e). This group is characterized by an elevated phosphorus content (Figure 6) responsible
for the formation of various phosphates and silico-phosphates (Figure 4b). Also, the leucocratic rocks
contain primary minerals of the lovozerite group (Figure 4d). Ratio (Na2O + K2O)/Al2O3 in these rocks
ranges from 0.71 to 0.95 (Figure 7).
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The relationships of rock-forming minerals of meso- and melanocratic rocks suggest that
felsic minerals, namely alkali feldspar and nepheline, crystallized first. The earliest mineral
was alkali feldspar (microcline) because the morphology and mutual orientation of its crystals
(Figure 3a,b) indicate crystallization under conditions of free flow of magma [39,40]. In addition,
there are inclusions of alkali feldspar in nepheline (Figures 3c and 18b), but not vice versa. It is
convenient to consider the crystallization of felsic minerals using the “petrogeny’s residua system”
NaAlSiO4-KAlSiO4-SiO2-H2O [41,42]. Phase equilibria in this system (Figure 18a) for “dry” conditions
are defined in [43], and for PH2O = 1 kbar, phase equilibria can be found in [44].
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Figure 18. (a)—phase equilibrium diagram of the system NaAlSiO4-KAlSiO4-SiO2-H2O for
PH2O = 0 kbar and PH2O = 1 kbar (univariant lines after [43,44]); m, n—points of thermal minima for
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(b)—co-crystallization of nepheline, microcline and aegirine in malignite 147/221, BSE-image.

Figurative points corresponding to the rocks of the (meso-)melanocratic group form an area
extending from the field of feldspar solid solution to nepheline–feldspar cotectic (Figure 18a). Compared
with the average composition of the Eudialyte Complex (red point in Figure 18a), the normative
composition of melanocratic rocks is enriched in feldspar. Alkaline feldspar crystallized first from
the magmatic melt that spread laterally. Its fractionation quickly changed the composition of the
melt towards cotectic and joint crystallization of nepheline-I and microcline began. The position
of this cotectic was closer to the “dry” condition (P = 1 atm) due to the initially reducing nature
of alkaline magma [7–9]. As a result, euhedral crystals of nepheline-I with small inclusions of
microcline were formed (see Figures 3c and 18b). The formation of similar nepheline–feldspar
(pseudoleucite-like) intergrowths in the process of cotectic crystallization is considered, for example,
in work of Davidson [45]. Co-crystallization of nepheline-I and microcline is supported by the
correlation of nepheline-I composition with Fe content in microcline (see Figure 11a). The constant
admixture of ferric iron in microcline and nepheline indicates a high Fe3+/Fe2+ ratio already in the early
stages of the rock crystallization. The oxidized state of iron is probably due to the “alkali-ferric-iron
effect” [46] and this effect increases with decreasing temperature.

The crystallization temperature of nepheline-I is 500–775 ◦C ([31], Figure 9). The highest
temperatures probably indicate liquidus state, whereas the lowest temperatures mark the transition
to subsolidus hydrothermal conditions. The crystallization temperature of alkali feldspar from
(meso-)melanocratic rocks is estimated below 700 ◦C (Figure 19a). However, since the rocks are
hypersolvus, the temperature of feldspar crystallization cannot be lower than 650 ± 10 ◦C [47].
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Figure 19. Compositions of felfspars and clinopyroxens from rocks of the Alluaiv site: (a)—total
range of reintegrated feldspar compositions (red line) plotted on the temperature-dependent feldspar
solvus, modified after [48] (from meso- and melanocratic rocks). (b)—total range of magmatic
clinopyroxene compositions (gray field, generalized from Figure 11a). 1–5—clinopyroxene trends
from other alkaline suites are shown for comparison: (1) Murun, Siberia [49], (2) Lovozero, Kola
Peninsula [50], (3) Uganda [51], (4) South Qoroq [52], (5) Ilímaussaq [53].

After the crystallization of microcline (and nepheline-I), the magmatic melt lost its ability to
flow freely. Microcline-perthite is the only mineral with deformed crystals (see Figure 3a), and this
deformation occurred before its exsolution into microcline and albite. Long-prismatic aegirine-(augite)
crystals are subparallel-oriented only in sections perpendicular to trachytoid plane. In sections
that are parallel to the trachytoid plane, aegirine-(augite) crystals are irregularly oriented. Thus,
after the crystallization of microcline (and nepheline-I), there was a transition from magmatic flow
(suspension-like behavior) to “submagmatic flow” (flow with less than the critical amount of melt for
suspension-like behavior) [40].

In the rocks of the Lovozero Eudialyte Complex, the calcium content is low; for (meso) melanocratic
rocks, the average value is 1.81 wt. % CaO [14]. When alkali feldspar was fractionated, calcium
accumulated in the melt. It is known that pure aegirine is not stable at magmatic temperatures,
but even an insignificant increase in the calcium content served as a trigger for the aegirine
crystallization [53,54]. The essence of this phenomenon is described in the work of Nolan [55]
devoted to the albite-nepheline-aegirine-diopside system. This system includes two main components
of clinopyroxene solid solutions (aegirinеand diopside) and complements the region of residual
petrogenetic system, which is poor in potassium and not saturated with silica. The addition of the
diopside component to the clinopyroxene solution substantially changes the volume of the phase fields,
and the field of clinopyroxene increases significantly. This effect can be traced to the composition of
Aeg50Di50, after which the volume of the clinopyroxene solid solution remains almost unchanged.

As a result, after the formation of alkali feldspar crystals and almost simultaneously with
nepheline-I, clinopyroxene began to crystallize. Initially, aegirine-(augite) crystallized by heterogeneous
nucleation on the faces of growing nepheline crystals (but not feldspar ones). It can be assumed that
the crystallization of nepheline “consumes less oxygen” (the ratio of the sum of cations to oxygen
in nepheline is 3/4, and in the microcline is 2.5/4), and for the formation of aegirine-(augite) under
reducing conditions, an oxygen donor is needed [6].

The next stage of the formation of (meso-)melanocratic rocks was a large-scale crystallization of
aegirine-(augite) together with nepheline-II. Nepheline-II is enriched in Qtz endmember not because
of the higher temperature of its crystallization, but due to the occurrence of Fe3+ impurity during the
substitution 2B + (Si4+ + Fe3+)T � K+

B + 2Al3+
T. Therefore, nepheline-II cannot be used to estimate

the temperature. Aegirine-(augite) from meso-melanocratic and leucocratic rocks are identical in
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Mg-(Fe2++Mn)-Na ratio (see Figure 12a,b). The sum Fe2+ + Mn increases mainly due to manganese
(Table 3), i.e., all iron during the clinopyroxene crystallization was in trivalent state. Magnesium
(diopside endmember) enters clinopyroxene in the minimal amounts necessary only to stabilize it
in magmatic conditions. The reason is the low calcium content in the melt. All clinopyroxenes are
enriched with Na and Fe3+, and located at the top of the fractionation trend (Figure 19b). Obviously,
the rocks of the Eudialyte Complex are the most evolved (fractionated) among the alkaline rocks of the
Lovozero Massif.

Composition of clinopyroxenes that form “streams” in meso-melanocratic rocks cannot be used to
assess the oxygen fugacity due to the “alkali-ferric-iron effect” [46]; increased contents of Ti, Zr, Al
and Mn in the clinopyroxenes indicate their rapid crystallization [56,57] and absence of the zirconium
and titanium minerals at that time [58]. The antipathy of titanium and zirconium in clinopyroxenes
(Figure 12a) has been established in other alkaline complexes, for example, Mont Saint-Hilare [59],
Ilímaussaq [60]. Larsen [60] suggests that “ . . . these elements competed with varying success for a
limited number of lattice sites”.

The composition of amphiboles is completely correlated with the composition of coexisting
clinopyroxenes (see Figure 15), i.e., crystallization switched from clinopyroxene to amphibole, probably
because of rising PH2O. The amphiboles do not contain zirconium but include titanium (due to
crystal-chemical reasons), and the Na/Ca ratio in amphiboles is on average 24, which is twice as much as
in clinopyroxenes. The early formation of EGM is incredible, as can be seen, for example, by comparing
the compositions of the coexisting minerals: clinopyroxenes contain elevated concentrations of
manganese, while the M2 position (Fe2+, Mn, Mg) in the EGM constantly suffers from cation deficiency
(see Figure 16). This means that the zirconium and calcium minerals, including EGM, crystallized
together with amphiboles, but after clinopyroxenes. It disproves the hypothesis about early-magmatic
formation of EGM [14,61].

In meso- and melanocratic rocks, the primary natrolite and sodalite crystallized simultaneously
with amphiboles and EGM (see Figure 3c,d). Considering that sodic amphiboles are stable only at
low temperatures (below 650 ◦C) and pressures [62,63] and dehydration temperature of natrolite is
350 ◦C [64], we can conclude that the primary natrolite crystallized almost simultaneously with alkaline
amphiboles and EGM as a result of an increase in PH2O. The binding of water in the composition of
natrolite causes a decrease in the chlorine solubility and, consequently, the formation of sodalite. In this
case, zonal natrolite–sodalite segregations appear, whose core consists of natrolite, the intermediate
zone is composed of natrolite and sodalite, and the marginal zone consists of sodalite (Figure 3d).
Thus, meso-melanocratic rocks were formed at temperatures ranging from 650–700 ◦C to about 350 ◦C.
As the rocks crystallize in this temperature interval, a gradual transition from an almost anhydrous
HSFE-, Fe3+-, halogen-rich alkaline melt to the NaCl-rich water solution occurred.

Figurative points of leucocratic rocks (foyaite, urtite, fine-grained nepheline syenite) on the diagram
of the “petrogeny’s residua system”, continue the field belonging to the points of meso-melanocratic
rocks towards nepheline (see Figure 18a). The field of leucocratic rocks is located near the thermal
minimum, but unlike meso-melanocratic rocks, this minimum is not “dry” (point m), but corresponds
to PH2O = 1 bar (point n). Indeed, signs of simultaneous crystallization of microcline and nepheline
are observed in foyaites and urtites, namely the inclusion of microcline in nepheline (see Figure 4a)
and interrelation between microcline and nepheline compositions. The presence of primary albite in
these rocks together with microcline-perthite indicates a high PH2O and low temperature (≈550 ◦C) of
mineral crystallization [65,66]. Amphiboles from meso-melanocratic rocks (enriched with Ca and Al)
and leucocratic rocks (enriched with Si and Na) constitute the primary magmatic trend ([63], Figure 14).
The Mn/Fe ratio in EGM is a fractionation indicator [38,67], and early-magmatic EGM are invariably
dominated by Fe, whereas hydrothermal EGM can be virtually Fe-free and form pure Mn endmembers.
EGM from leucocratic rocks are relatively rich in manganese.

The melt, which the leucocratic rocks crystallized from, was formed in the process of fractional
crystallization of the melanocratic melt enriched in Fe and HFSE. Fractionation of the melanocratic
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melt proceeded in the direction of enrichment with nepheline and a decrease in the aegirine content.
A similar fractionation path occurs in the Na2O-Al2O3-Fe2O3-SiO2 system [68], where melt of the
“ijolite” type (approximately 50% of aegirine) evolves towards “phonolitic eutectic” (approximately
10% of aegirine). Phonolite is similar in composition to a melt that is not saturated with silica at the
minimum point of the “petrogeny’s residua system” NaAlSiO4-KAlSiO4-SiO2-H2O [41]. The residual
nature of leucocratic rocks is also indicated by the association of accessory minerals [69]. Due to an
excess of sodium silicate in these rocks, there are primary minerals of the lovozerite, lomonosovite,
and murmanite groups. All these minerals have the highest possible percentage of sodium in the total
cation number of the chemical formula.

The texture of leucocratic rocks (coarse-grained, fine-grained or porphyritic) depends on
the proximity of the melt composition to nepheline–feldspar cotectic and the crystallization rate.
The crystallization of subsolvus fine-grained nepheline syenite began with albite (see Figure 4a,b),
followed by the almost simultaneous formation of microcline, nepheline, aegirine, and EGM.
The simultaneous crystallization is indicated by correlations between compositions of coexisting
minerals (Figure 11b). The leucocratic melt crystallized in situ, forming lenses (Figure 4g), layers,
interlayers in the mass of melanocratic rocks. At slower cooling, the possibility of the formation of
relatively large microcline and nepheline appeared (Figure 4a,c,e,f), and then a rapid and simultaneous
crystallization of the main mass of the rock occurred.

Among the alkaline rocks of the Lovozero Massif, xenoliths of basic volcaniclastic rocks are widely
distributed [18]. These rocks underwent metasomatic treatment of varying intensity and survived in
the Eudialyte Complex both unchanged (see Figure 5a,b) and actually turned into nepheline syenites
(see Figure 5c,d). In these rocks, there are all signs of a gradual increase in the intensity of alkaline
metasomatism, including gradual transitions from unchanged basalt to fenite with relicts of augite
surrounded by the rims of aegirine-(augite) (see Figure 13), and characteristic intergrowth of nepheline
and magnesioarfvedsonite due to their simultaneous crystallization (see Figure 5d). This indicates
the active supply of alkalis and the redistribution of calcium that localizes in fluorapatite and titanite.
The duration of the thermal effect of alkaline melt on volcaniclastic rocks was small and, because of
rapid cooling, feldspar remains homogeneous, but not completely exsolved into albite and ortoclase
(Figure 8).

The wide variety of zirconium phases is due to the gradual increase in alkali concentration
during fenitization. Early (relative to aegirine) crystallization of magnesioarfvedsonite indicates
an elevated Si concentration and relatively low alkalinity, which also leads to the formation of
zircon [59]. The relatively high fugacity of fluorine at the initial stage of fenitization [70] is also likely
to favor the early formation of zircon, as demonstrated by the simultaneous formation of fluorapatite.
The crystallization of aegirine leads to an increase in alkali content relative to silicon [71], which
stabilizes parakeldyshite. EGM is formed later than parakeldyshite, at the final stage of fenitization.

6. Conclusions

1. The Eudialyte Complex of the Lovozero Massif is indistinctly layered. Among the hypersolvus
(meso)-melanocratic alkaline rocks (shonkinite, malignite, melteigite, ijolite) enriched with EGM,
there are layers and lenses of subsolvus leucocratic rocks (foyaite, fine-grained foyaite and urtite)
with phosphorus mineralization and primary lovozerite-group minerals.

2. Leucocratic rocks were formed in the process of fractional crystallization of melanocratic melt
enriched in Fe, HFSE, and halogens. The fractionation of the melanocratic melt proceeded in the
direction of enrichment in nepheline and a decrease in the aegirine content. In a similar way,
individual “rhythms” of the Layered Complex were probably differentiated.

3. Hypersolvus meso-melanocratic rocks were formed in the temperature range from 650–700 ◦C to
about 350 ◦C. As the rocks crystallized in this temperature range, a gradual transition from an
almost anhydrous HSFE-, Fe3+-, halogen-rich alkaline melt to the Na(Cl, F)-rich water solution
occurred. The temperature of crystallization of subsolvus leucocratic rocks was about 550 ◦C;
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4. If nepheline in alkaline rocks crystallizes simultaneously with aegirine, then it is enriched with Fe
and Si according to the scheme 2B + (Si4+ + Fe3+)T � K+

B + 2Al3+
T. The composition of such

nepheline cannot be used for thermometry purposes;
5. Devonian volcaniclastic rocks played an important role in the giant eudialyte deposit formation.

The relatively high fugacity of fluorine at first stage of the basalt fenitization causes formation of
zircon in apo-basalt metasomatites. Following aegirine crystallization and the corresponding
increase in Na/Si ratio led to parakeldyshite formation. At the final stage, EGM replaced
parakeldyshite under the influence of Ca-rich solutions produced by the basalt fenitization.
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of eudialyte-group minerals.
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