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Abstract

Dendrolimus houi is one of the most common caterpillars infesting Gymnosperm trees, and

widely distributed in several countries in Southeast Asia, and exists soley or coexists with

several congeners and some Lasiocampidae species in various forest habitats. However,

natural hybrids occasionally occur among some closely related species in the same habitat,

and host preference, extreme climate stress, and geographic isolation probably lead to their

uncertain taxonomic consensus. The mitochondrial DNA (mtDNA) of D. houi was extracted

and sequenced by using high-throughput technology, and the mitogenome composition and

characteristics were compared and analyzed of these species, then the phylogenetic rela-

tionship was constructed using the maximum likelihood method (ML) and the Bayesian

method (BI) based on their 13 protein-coding genes (PCGs) dataset, which were combined

and made available to download which were combined and made available to download

among global Lasiocampidae species data. Mitogenome of D. houi was 15,373 bp in length,

with 37 genes, including 13 PCGs, 22 tRNA genes (tRNAs) and 2 rRNA genes (rRNAs).

The positions and sequences of genes were consistent with those of most known Lasiocam-

pidae species. The nucleotide composition was highly A+T biased, accounting for ~80% of

the whole mitogenome. All start codons of PCGs belonged to typical start codons ATN

except for COI which used CGA, and most stop codons ended with standard TAA or TAG,

while COI, COII, ND4 ended with incomplete T. Only tRNASer (AGN) lacked DHU arm, while

the remainder formed a typical “clover-shaped” secondary structure. For Lasiocampidae

species, their complete mitochondrial genomes ranged from 15,281 to 15,570 bp in length,

and all first genes started from trnM in the same direction. And base composition was biased

toward A and T. Finally, both two methods (ML and BI) separately revealed that the same

phylogenetic relationship of D. spp. as ((((D. punctatus + D. tabulaeformis) + D. spectabilis)

+ D. superans) + (D. kikuchii of Hunan population + D. houi) as in previous research, but

results were different in that D. kikuchii from a Yunnan population was included, indicating

that different geographical populations of insects have differentiated. And the phylogenetic
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relationship among Lasiocampidae species was ((((Dendrolimus) + Kunugia) + Euthrix) +

Trabala). This provides a better theoretical basis for Lasiocampidae evolution and classifica-

tion for future research directions.

Introduction

Dendrolimus houi Lajonquiere (Lepidoptera: Lasiocampidae), being one of the most abundant

phytophagous caterpillar in southern China and some countries in Southeast Asia, voraciously

feeds on about 12 species of coniferous trees, including Cryptomeria fortunei, Pinus yunnanen-
sis, Platycladus orientalis, P. kesiya var.langbianensis and Cupressus funebris, causing thousands

hectares of dead or dying forests, and it tends to be continuously spreading rapidly [1]. Biolog-

ically, different geographical populations of D. houi have different life cycles, host preference

and adaptation to local extreme climatic factors [2,3], which might lead to population differen-

tiation or taxonomic controversy based on previous reasearches on D. kikuchii [4] and D.

punctatus [5].

Moreover, insects in the family Lasiocampidae are some of the most serious phytophagous

pests worldwide, causing the host withering and rapid death, having serious impact on the eco-

logical environment during their outbreaks [6–15]. Examples include such D. pini infesting

Scots pines in Europe [16], D. houi in Yunnan, Sichuan, Fujian and Zhejiang province [2,9–

10], and D. punctatus at fifteen provinces in the south of China [11]. Other speices like D. tabu-
laeformis, D. kikuchii, D. spectabilis, Euthrix laeta and Trabala vishnou guttata often occur in

China as well [8,11], and thus face the stress of multiple and complex host and environmental

factors. Consequently, they could potentially evolve in two directions: firstly, some Dendroli-
mus species may inevitably share the same host species and tend to inhabit the same forest,

which might lead to taxonomically mis-discrimination [9] and hybridization [8]. (For exam-

ple, D. tabulaeformis and D. spectabilis are the subspecies of D. punctatus probably due to

hybridization of these three species [11,12]). Or different populations of same species might

differentiated and evolved into separate species as a result of long-term adaptation to different

hosts and other climatic factors [2]. (For example, D. kikuchii and D. houi is thought to have

evolved from ta commmon ancestor, and evolved separately into different species as revealed

by phylogenetic analysis [9]). Transcriptome analysis of antenna still showed that they still

have high similarity and close phylogenetic relationship, however, they have different sex pher-

omone components [13], indicating somehow interspecific reproductive isolation. However,

how do we identify and evaluate their ecological function and phylogenetic relationship? For-

tunately, many previous studies have focused on the taxonomic relationship of Lasiocampidae,

especially the taxonomic relationship within genera [5–15], but there are still some species

whose taxonomic status is controversial and without a complete consensus [5–15]. Currently,

some taxonomic relationships focus on the comparison with Lepidoptera [16–19], however

very few reports have focused on the phylogenetic relationship among Lasiocampidae genera,

so the taxonomy remains unclear.

Technically, mitochondrial genes and genomes have been generally adopted as an informa-

tive molecular marker for diverse evolutionary research of animals [5–21], and the complete

and nearly complete mitogenome from hundreds of insect species has currently been deter-

mined. Generally, the length of most animal mitogenomes is 15.4–18.3 Kb [16]. It is usually a

highly compact and covalently bonded closed-ring molecule composed of 37 genes, including

13 PCGs, 22 tRNAs, 2 rRNAs and a non-coding control region (D-loop region) [15–20]. In
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addition, animal mtDNA displays maternally inheritance, and mitogenomes have a very com-

pact gene arrangement, high coding efficiency and overlap among some genes. Furthermore,

there are no gene recombinations, translocations or inversion mutations in the genetic pro-

cess. Therefore, mitogenomes have been widely used in the classification, identification, inter-

specific molecular evolution, population genetic and phylogenetic evolution relationships [16–

23].

In this study, we obtained the complete mitogenome of D. houi and downloaded the avail-

able mtDNA data of nine species (four genera in Lasiocampidae) from the public database,

containing some other congenetic species of D. spp., Kunugia undans, E. laeta and T. vishnou
guttata to compare mitogenome composition and structure. Then, we reconstructed phyloge-

netic tree and analyzed phylogenetic relationship between D. houi and other Lasiocampidae

species.

Materials and methods

Ethics statement

There is no endangered or protected species involved in this study, no specific permissions

were required for this serious and widespread forest pest, feeding on leaves of Cryptomeria for-
tunei and causing thousands hectares of dying and dead forests. Additionally, this study is

sponsored and permitted by NSFC (National Natural Science Foundation of China). We con-

firm that the locations are not privately owned or otherwise protected.

Samples collection mitochondria DNA extraction

Samples of D. houi were collected in Yongtai, Fuzhou, Fujian Province, China. Mitochondrial

DNA of D. houi was extracted from muscle tissue using the GENMED Mitochondrial DNA

Extraction kit (Genmed Scientifics Inc., Arlington, MA, USA). Muscle tissue of D. houi was

crushed under ice bath condition following instruction of Extraction kit. The quality of DNA

was assessed using NanoDrop2000, qubit3.0, and 1% agarose gel electrophoresis.

Sequencing and assembling of the mitochondrial genome

After DNA isolation, 1 μg of purified DNA was fragmented and used to construct short-insert

libraries (430 bp) according to the manufacturer’s instructions (Illumina, Hercules, CA, USA),

and then sequenced on the Illumina Hiseq 4000 platform [24]. In order to obtain high quality

clean reads, the raw reads were filtered to remove adaptors, the reads containing unknown

nucleotide “N” over 10% and the duplicated sequences. Then, the clean reads were assembled

into contigs using SOAPdenovo2.04 [25].

Gene annotation and analysis

13 PCGs of D. houi mitogenome were annotated by utilizing the online program ORF, while 2

rRNAs and 22 tRNAs were annotated using the online software MITOS2 Web Server (http://

mitos2.bioinf.uni-leipzig.de/index.py). The unpredicted tRNA genes used tRNAscan-SE [26]

to predict secondary structure. We determined the location of each gene, and corrected the

annotation based on data from the reported related species mitogenomes. Then, the genome

was aligned with the Nr (non-redundant protein sequence), Swiss-Prot (a manually annotated,

non-redundant protein sequence), COG (clusters of orthologous groups of proteins), GO

(gene ontology) and KEGG (kyoto encyclopedia of genes and genomes) databases by BLAST

v2.2.31 with a cut-off e-valve of 10−5 [2].
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Comparative mitogenome analyses of lasiocampidae

We downloaded available mtDNA data of nine species (four genera in Lasiocampidae) from the

public database, containing D. punctatus (DP) NC_027156.1, D. tabulaeformis (DT) NC_027157.1,

D. spectabilis (DSP) KJ913816.1, D. superans (DSU) NC_039841.1, D. kikuchii (DK1) NC_036347.

1, D. kikuchii (DK2) MF100138.1, K. undans (KU) KX822016.1, E. laeta (EL) NC_031507.1 and T.

vishnou guttata (TVG) KU884483.1) (Table 1). To obtain the information of gene loss, duplication,

rearrangement, and horizontal transfer in Lasiocampidae, multiple genome alignments were con-

ducted using Mauve software [27]. The base composition, codon usage and relative synonymous

codon usage (RSCU) frequency within these 10 species of mitogenomes were analyzed by MEGA

7.0 software. The formula for calculating the composition skew in mitogenomes was as follows,

AT-skew = (A-T) / (A+T), GC-skew = (G-C) / (G+C).

Phylogenetic analysis

The dataset of 13 PCGs, from these ten species plus Bombyx mori as the reference outgroup,

were used to reconstructed the phylogenetic tree. Sequences blast was conducted by MAFFT

of Translator X online server, the empty spaces and fuzzy sites were removed by GBlocks, and

the single genes were combined to obtain the mitochondrial gene datasets, then an optimal

evolution model was calculated by Modeltest 3.7 for the subsequent phylogenetic analysis. We

also used RAXML 7.2.6 [28] to build a ML tree (bootstrap value is 1000), and BI analysis was

carried out by using Mr Bayes 3.2.2 [29] (Markov chains were run for 1×105 generations, sam-

pling every 100 generations) to construct the phylogenetic tree of Lasiocampidae.

Results

Genome structure and nucleotides composition of D. houi
The complete mitogenome of D. houi was 15,373 bp in length (Fig 1), which contained 37

genes (13 PCGs, 22 tRNAs, 2 rRNAs) and a non-coding control region (A+T-rich region)

related to replication and transcription. The gene sequences were similar to that of some

known related species. Among them, 23 genes were located in J-strand, including 9 PCGs

(COI-COIII, ATP6, ATP8, ND2, ND3, ND6, CYTB) and 14 tRNAs, while the remaining 14

genes were located in the N-strand.

The genes in the mitogenome were closely arranged with overlapping and interval phenom-

ena. Typically, there were 7 overlapping regions with total length of 25 bp, and the longest

Table 1. Comparative analysis of mitogenomes and phylogenetic relationship of Lasiocampidae species information.

Family Genus Species Size( bp) GenBank accession no. Sample sources

Lasiocampidae Dendrolimus Dendrolimus punctatus (DP) 15,411 NC_027156.1 -

Dendrolimus tabulaeformis (DT) 15,411 NC_027157.1 -

Dendrolimus spectabilis (DSP) 15,410 KJ913816.1 Taian, Shandong

Dendrolimus superans (DSU) 15,417 NC_039841.1 -

Dendrolimus kikuchii (DK1) 15,422 NC_036347.1 Puer, Yunnnan

Dendrolimus kikuchii (DK2) 15,385 MF100138.1 Zhuzhou, Hunan

Dendrolimus houi (DH) 15,373 This study Fuzhou, Fujian

Kunugia Kunugia undans (KU) 15,570 KX822016.1 -

Euthrix Euthrix laeta (EL) 15,368 NC_031507.1 Jiujiang, Jiangxi

Trabala Trabala vishnou guttata (TVG) 15,281 KU884483.1 Jiujiang, Jiangxi

Bombycidae Bombyx Bombyx mori (BM) 15,635 AB083339.1 -

https://doi.org/10.1371/journal.pone.0232527.t001
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overlapping region was 8 bp, while there were 23 intergenic spacers with a total length of 372

bp, with the longest one 60 bp between COI and tRNATyr, followed by another one with 57 bp

between tRNAHis and ND5. Six regions did not have overlaps or intervals (S1 Table), and the

mitogenome structure of D. houi was basically similar to those of most species within

Lasiocampidae.

The number of A, T, G and C in the mitogenome within D. houi were 6,321 (41.12%), 5,954

(38.73%), 1,175 (7.64%) and 1,923 (12.51%) respectively, and the content of A was the highest

while G was lowest; A+T accounted for 79.85%, while G+C was 20.15%; AT skewness was

Fig 1. Mitochondrial genomic structure of D. houi.

https://doi.org/10.1371/journal.pone.0232527.g001
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0.0299 and GC skewness was -0.2417 (S2 Table). Furthermore, the A+T content at codon site

2 of PCGs (79.70%) was slightly higher than that at the first site (79.43%), while the A+T con-

tent at site 3 was the highest (80.43%). The non-coding region was especially A+T -rich, with

the total content was as high as 91.85%. AT skewness was negative, which indicated that the

content of T was higher than A.

The PCGs sequence was 11,091 bp, accounting for 72.15% of the complete mitogenome. A,

T, G, C bases were 3,749 (33.8%), 4,924 (44.4%), 1,239 (11.17%), 1,179 (10.63%), respectively.

The A+T content was 78.20%, which was 1.65% lower than that of the whole mitogenome. The

complementary G+C content accounted for 21.80%, which was different from the whole mito-

genome, with the highest T content and the lowest C content. AT skewness was -0.1356, GC

skewness was 0.0248. A total of 4,617 codons (excluding stop codon) were encoded by 13

PCGs within the mitogenome. The most frequently encoded amino acids were Leu (13.26%),

Ile (10.83%), Asn (10.66%), Phe (9.75%), and Lys (9.18%) respectively. The frequency of rela-

tive synonymous codons showed that the mitogenome of D. houi had obvious bias towards A

and T, for example when it encoded the same amino acid, it was preferred to use UUU(Phe),

UUA(Leu), AUU(Ile), AUA(Met), GUA(Val), UCU(Ser), CCU(Pro), ACU(Thr), GCA(Ala),

UAU(Tyr), CAU(His), CAA(Gln), AAU(Asn), AAA(Lys), GAU(Asp), GAA(Glu), UGU(Cys),

UGG(Trp), AGA(Arg), GCA(Gly). Most bases within each codon were composed of A and U,

and the RSCU values of each codon varied significantly, which indicated that the codon fre-

quency was biased in the mitogenome of D. houi (S1 Fig).

Mitogenome of D. houi contained 22 tRNA genes with total length 1,475 bp, and the

sequences lengths were between 64–71 bp. Twenty-two secondary structures of tRNA genes

were basically similar to those of other species of Lepidoptera, and twenty-one of them had

typical clover structures consisting of amino acid receiving arms, DHU arm, anticodon arm,

variable ring and TCC arm. Only tRNASer (AGN) could not form a complete structure due to

absence of dihydrouridine (DHU) arm. Based on the predicted 22 tRNA secondary structures,

there were also nonstandard T-C, G-T and T-T in additional to mismatches except for the

standard A-T and G-C matches (S2 Fig). Two rRNAs (rRNAL and rRNAS) of mitogenome

between tRNALeu (CUN) and control region (CR) were encoded by L-strand and separated by

tRNAVal gene. The length of rRNAL was 1,365 bp, A+T content was 83.51%, AT skewness

value was -0.0470. The length of rRNAS was 776 bp, A+T content was 85.70%, AT skewness

value was 0.0345.

The A+T -rich region was the main non-coding region of mitogenomes, located between

rRNAS and tRNAMet genes, with a total length of 319 bp. The A+T content was 91.85%, which

was significantly higher than other genes of the mitogenome (S2 Table). There were also typi-

cal structural features of Lepidopteran mitogenomes in the CR. The results also showed that

there was a 14 bp poly-T stretch with motif ATAGA that was 15,075–15,093 bp downstream of

rRNAS gen, and 4 microsatellite-like repeat sequences containing AT, AAT and AAT in this

region. Additionally, there were also multiple poly-T stretch in this region (S3 Fig) except for

the poly-T stretch at the beginning of replication.

Comparative analysis of mitogenomes of lasiocampidae species

Complete genome alignment using Mauve software was done for 10 species of Lasiocampidae

(Dendrolimus spp., 1 Kunugia, 1 Euthrix and 1 Trabala) (Table 1, Fig 2). Generally, most of the

genes within these ten species maintain a consistent position and direction, and no rearrange-

ment or inversion events were found in the locally-collinear blocks (LCBs). Interestingly, there

were two specific tRNAArg (Fig 3A) within the mitogemone of K. undans, which was absent

among Lasiocampidae (Fig 3B).
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The complete mitochondrial genomes of Lasiocampidae ranged from 15,281 to 15,570 bp

in length, TVG was 15,281 bp and KU was 15,570 bp (Table 2). The first genes of these species

all started from trnM, and had same direction. Moreover, there was base composition bias

toward A and T in these mitogenomes. The A+T content of these mitogenomes ranged from

78.64% to 80.87%, KU was 78.64% and TVG was 80.87% (Table 3).

Start and stop codon usage is an important characteristic in the annotation of PCGs. We

compared the start and stop codons across the 10 species of Lasiocampidae (Table 4). The start

Fig 2. Mauve (multiple alignment of sequence with rearrangements) alignment of mitogenomes of ten species. The D. houi mitogenome was shown at the top as the

reference genome. Within each of the alignments, local collinear blocks are represented by blocks of the same color connected by lines.

https://doi.org/10.1371/journal.pone.0232527.g002

Fig 3. Arrangement of mtDNA genes in Lasiocampidae species. A: Arrangement of Kunugia undans mtDNA, B:

Arrangement of Lasiocampidae mtDNA.

https://doi.org/10.1371/journal.pone.0232527.g003
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Table 2. Genome organization of ten species.

Gene D DP DT DSP DSU DK1 DK2 DH KU EL TVG

tRNAMet F 1–67 (-) 1–67 (-) 1–67 (-) 1–68 (-) 1–67 (-) 1–67 (-) 1–67 (-) 1–68 (-) 1–68 (-) 1–64 (-)

tRNAIle F 71–134 (3) 71–134 (3) 71–134 (3) 72–135 (3) 71–134 (3) 71–134 (3) 69–132 (1) 72–135 (3) 72–135 (3) 70–133 (5)

tRNAGln R 132–200

(-3)

132–200

(-3)

132–200

(-3)

133–201

(-3)

132–200 (-3) 132–200

(-3)

130–198

(-3)

136–205 (0) 133–201 (-3) 131–199 (-3)

ND2 F 259–1266

(58)

259–1266

(58)

259–1266

(58)

256–1266

(54)

259–1266

(58)

250–1263

(49)

230–1264

(31)

263–1276 (57) 272–1276

(70)

254–1261

(54)

tRNATrp F 1265–1333

(-2)

1265–1333

(-2)

1265–1333

(-2)

1265–1336

(-2)

1265–1333

(-2)

1263–1333

(-1)

1263–1332

(-2)

1275–1344 (-2) 1275–1342

(-2)

1260–1327

(-2)

tRNACys R 1326–1391

(-8)

1326–1391

(-8)

1326–1391

(-8)

1329–1394

(-8)

1326–1391

(-8)

1334–1391

(0)

1325–1391

(-8)

1337–1402 (-8) 1335–1400

(-8)

1320–1385

(-8)

tRNATyr R 1392–1459

(0)

1392–1459

(0)

1392–1459

(0)

1395–1460

(0)

1392–1459

(0)

1392–1459

(0)

1393–1463

(1)

1412–1479 (9) 1418–1483

(17)

1386–1448

(0)

COI F 1487–3017

(27)

1494–3024

(34)

1485–3015

(25)

1493–3023

(32)

1494–3024

(34)

1500–3030

(-10)

1524–3026

(60)

1500–3057 (20) 1490–3020

(6)

1464–2994

(15)

tRNALeu
(UUN)

F 3018–3084

(0)

3025–3091

(0)

3016–3082

(0)

3024–3090

(0)

3025–3091

(0)

3031–3097

(0)

3022–3088

(-5)

3058–3125 (0) 3021–3087

(0)

2995–3061

(0)

COII F 3085–3766

(0)

3092–3773

(0)

3083–3764

(0)

3091–3772

(0)

3092–3773

(0)

3098–3779

(0)

3089–3772

(0)

3125–3806 (-1) 3088–3769

(0)

3062–3743

(0)

tRNALys F 3767–3837

(0)

3774–3844

(0)

3765–3835

(0)

3773–3843

(0)

3774–3844

(0)

3780–3850

(0)

3774–3844

(1)

3807–3877 (0) 3770–3840

(0)

3744–3814

(0)

tRNAAsp F 3841–3908

(3)

3848–3915

(3)

3839–3906

(3)

3847–3914

(3)

3848–3915

(3)

3851–3918

(0)

3846–3912

(1)

3879–3947 (1) 3846–3912

(5)

3815–3879

(0)

ATP8 F 3909–4070

(0)

3916–4074

(0)

3907–4065

(0)

3915–4076

(0)

3916–4074

(0)

3919–4080

(0)

3913–4074

(0)

3948–4109 (0) 3913–4077

(0)

3880–4044

(0)

ATP6 F 4064–4741

(-7)

4068–4745

(-7)

4059–4736

(-7)

4070–4747

(-7)

4068–4745

(-7)

4074–4751

(-7)

4071–4745

(-4)

4103–4780 (-7) 4071–4748

(-7)

4038–4715

(-7)

COIII F 4757–5545

(15)

4761–5549

(15)

4748–5536

(11)

4760–5548

(12)

4761–5549

(15)

4758–5546

(6)

4762–5550

(16)

4787–5575 (6) 4753–5541

(4)

4735–5523

(19)

tRNAGly F 5548–5613

(2)

5552–5617

(2)

5539–5604

(2)

5551–5616

(2)

5552–5617

(2)

5549–5615

(2)

5553–5618

(2)

5578–5644 (2) 5544–5609

(2)

5526–5591

(2)

ND3 F 5614–5967

(0)

5618–5971

(0)

5605–5958

(0)

5617–5970

(0)

5618–5971

(0)

5616–5969

(0)

5619–5972

(0)

5645–5998 (0) 5610–5963

(0)

5592–5945

(0)

tRNAAla F 5967–6033

(-1)

5971–6037

(-1)

5958–6024

(-1)

5975–6041

(4)

5971–6037

(-1)

5972–6037

(2)

5971–6038

(-2)

6003–6070 (4) 5974–6039

(10)

5944–6010

(-2)

TRNAArg F 6049–6112

(15)

6053–6116

(15)

6045–6108

(20)

6055–6118

(13)

6058–6121

(20)

6064–6128

(6)

6048–6112

(9)

6084-6147/6175-

6241(13/27)

6052–6120

(12)

6024–6088

(13)

tRNAsn F 6117–6182

(4)

6121-6186

(4)

6113–6178

(4)

6120–6185

(1)

6126–6191

(4)

6150–6216

(21)

6117–6183

(4)

6242–6308 (0) 6122–6186

(1)

6094–6159

(5)

TRNASer
(AGN)

F 6194–6261

(11)

6198–6265

(11)

6197–6264

(18)

6202–6269

(16)

6211–6276

(19)

6232–6297

(15)

6204–6269

(20)

6308–6375 (-1) 6192–6257

(5)

6160–6220

(0)

tRNAGlu F 6261–6326

(-1)

6265–6329

(-1)

6264–6328

(-1)

6269–6333

(-1)

6277–6342

(0)

6298–6361

(0)

6270–6338

(0)

6376–6440 (0) 6258–6323

(0)

6221–6286

(0)

tRNAPhe R 6331–6396

(4)

6334–6399

(4)

6337–6402

(8)

6346–6412

(12)

6351–6416

(8)

6375–6441

(13)

6347–6413

(8)

6471–6537 (30) 6328–6395

(4)

6285–6349

(-2)

ND5 R 6399–8141

(2)

6402–8144

(2)

6406–8148

(3)

6416–8158

(3)

6420–8162

(3)

6446–8185

(4)

6418–8103

(4)

6538–8275 (0) 6394–8133

(-2)

6349–8088

(-1)

tRNAHis R 8142–8209

(0)

8145–8212

(0)

8149–8216

(0)

8159–8226

(0)

8163–8230

(0)

8186–8250

(0)

8161–8224

(57)

8276–8343 (0) 8134–8197

(0)

8089–8154

(0)

ND4 R 8210–9548

(0)

8213–9551

(0)

8217–9555

(0)

8227–9565

(0)

8231–9569

(0)

8251–9592

(0)

8226–9563

(1)

8348–9682 (4) 8197–9537

(-1)

8155–9493

(0)

ND4L R 9573–9866

(24)

9576–9869

(24)

9579–9872

(23)

9604–9897

(38)

9593–9880

(23)

9625–9918

(2)

9595–9861

(31)

9688–9981 (5) 9562–9855

(24)

9503–9796

(9)

(Continued)
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codon of these ten species was the typical ATN codons except for COI (CGA), and there were

some different start codons on genes of ND2, ATP8, ND3, ND5, ND4, ND4L and ND1. The

PCGs were used the same stop codon except for ND3, ND5, ND4 and ND4L. Furthermore, we

compared codon usage and RSCU of ten available Lasiocampidae mitogenomes (S3 Table).

Examination of these ten individual Lasiocampidae mitogenomes showed that Leu2 (UUA),

Ser2 (UCU), Ala (GCU), Ser1 (AGA) were the four most frequent relatively synonymous

codons.

Table 2. (Continued)

Gene D DP DT DSP DSU DK1 DK2 DH KU EL TVG

tRNAThr F 9874–9937

(7)

9877–9940

(7)

9880–9943

(7)

9905–9970

(7)

9894–9957

(13)

9923–9987

(4)

9893–9957

(31)

9986–10050 (4) 9860–9923

(4)

9801–9864

(4)

tRNAPro R 9938–10002

(0)

9941–10005

(0)

9944–10008

(0)

9971–10035

(0)

9958–10022

(0)

9988–10052

(0)

9958–10022

(0)

10051–10115 (0) 9924–9988

(0)

9865–9929

(0)

ND6 F 10011–

10541 (8)

10014–

10544 (8)

10017–

10547 (8)

10044–

10574 (8)

10043–

10561 (20)

10061–

10591 (8)

10040–

10561 (17)

10124–10654 (8) 9997–10524

(8)

9941–10465

(11)

CytB F 10546–

11694 (4)

10549–

11697 (4)

10552–

11700 (4)

10579–

11727 (4)

10569–

11714 (7)

10595–

11743 (3)

10570–

11715 (8)

10662–11807 (7) 10537–

11685 (12)

10478–

11626 (12)

TRNASer
(UCN)

F 11698–

11764 (3)

11701–

11767 (3)

11704–

11769 (3)

11731–

11797 (3)

11718–

11783 (3)

11742–

11807 (-2)

11719–

11784 (3)

11809–11875 (1) 11688–

11754 (2)

11625–

11692 (-2)

ND1 R 11764–

12717 (-1)

11767–

12720 (-1)

11769–

12722 (-1)

11797–

12750 (-1)

11783–

12736 (-1)

11807–

12760 (-1)

11784–

12713 (-1)

11869–12825 (-7) 11753–

12709 (-2)

11691–

12647 (-2)

tRNALeu
(CUN)

R 12719–

12786 (1)

12722–

12789 (1)

12724–

12791 (1)

12752–

12820 (1)

12738–

12805 (1)

12762–

12832 (1)

12739–

12806 (25)

12827–12892 (1) 12711-12780

(1)

12648–

12718 (0)

rRNAL R 12787–

14247 (0)

12790–

14248 (0)

12792–

14245 (0)

12821–

14253 (0)

12907–

14263 (101)

12831–

14214 (-2)

12847–

14211 (40)

12893–14406 (0) 12766–

14155 (-15)

12704–

14057 (-15)

tRNAVal R 14248–

14312 (0)

14249–

14313 (0)

14246–

14311 (0)

14254–

14319 (0)

14260–

14325 (-4)

14216–

14280 (1)

14211–

14278 (1)

14407–14471 (0) 14155–

14220 (-1)

14056–

14120 (-2)

rRNAS R 14313–

15091 (0)

14314–

15091 (0)

14312–

15090 (0)

14320–

15101 (0)

14326–

15102 (0)

14282–

15062 (1)

14279–

15054 (0)

14472–15253 (0) 14221–

14996 (0)

14121–

14898 (0)

Control
region

F 15092–

15411

15092–

15411

15091–

15410

15102–

15417

15103–

15422

15063–

15382

15055–

15373

15254–15570 14997–

15368

14936–

15281

The value in parentheses: the positive number indicates interval base pairs between genes, while the negative indicates the overlapping base pairs between genes. “D”

means that “Direction”.

https://doi.org/10.1371/journal.pone.0232527.t002

Table 3. A+T content of Lasiocampidae.

Species Size (bp) A+T content (%)

Whole genome 1st codon positions 2nd codon positions 3rd codon positions

DP 15411 79.5 80.5 75.4 81.7

DT 15411 79.5 77.7 79.8 82.3

DSP 15410 79.38 80.42 78.45 79.26

DSU 15417 80.13 82.72 79.47 78.21

DK1 15422 79.20 76.62 82.01 78.97

DK2 15383 78.70 78.35 83.01 74.74

DH 15373 79.85 79.43 79.70 80.43

KU 15570 78.64 79.23 81.43 75.26

EL 15368 80.19 83.12 77.57 79.89

TVG 15281 80.87 81.94 82.69 77.97

https://doi.org/10.1371/journal.pone.0232527.t003
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Phylogenetic relationship

The result showed that the best model of ML and BI trees was GTR+I+G, where 1nL value was

-163,261.5358, AIC value was 326,791.0716, and ΔAIC value was 0. Two types of phylogenetic

trees were constructed by using the 13 PCGs dataset having the same structure as Fig 4, which

indicate that both methods (ML and BI) and results were consistent and reliable. The phyloge-

netic relationship among four genera was ((((Dendrolimus) + Kunugia) + Euthrix) + Trabala).

Interestingly, we found two different phylogenetic trees can be constructed by using two

groups data of D. kikuchii. When we use the data of DK1 to construct tree, the relationship

was ((((D. punctatus + D. tabulaeformis) + (D. spectabilis + DK1)) + D. superans) + D. houi)
(Fig 4A). However, the relationship have changed as ((((D. punctatus + D. tabulaeformis) + D.

spectabilis) + D. superans)+ (DK2 + D. houi) (Fig 4B) by using the data of DK2. If two groups

of D. kikuchii data were used simultaneously to construct phylogenetic tree, their phylogenetic

relationship demonstrated that those two groups of DK data have different genetic relationship

with D. houi (Fig 4C).

Discussion

In this study, the complete mitogenome of D. houi was obtained, with a total length of 15,373

bp. The mitogenome of D. houi had similar structural composition and gene arrangement,

which indicated that the mitogenome was stable and suitable for the study of phylogenetic

relationships. Technically, we obtained the mitogenome by using high-throughput sequencing

which was different from previous research [30–33]. The traditional mitogenome sequencing

is mainly Sanger sequencing method based on PCR amplification products [34]. However, this

method requires primer information of each segment of the genome, and the experimental

process is complex, time-consuming and laborious. With the development of next generation

sequencing technology (NGS) [33–35], the use of high-throughput sequencing technology has

provided great convenience for the rapid acquisition of mitogenome [35–37], and the sequenc-

ing cost has also been significantly reduced in recent years, which provides an alternative

choice for the sequencing of small genomes such as animal mitochondria [37].

Mitogenomes are more comprehensive and accurate in species identification and phylog-

eny, avoiding artificial biases caused by blindness of a single gene [38–43], and even the differ-

ences among species can be determined based on genes structure and arrangement, which has

higher reliability [31,43]. Methodologically, using the 13 PCGs in the sequencing genome was

superior in obtaining reliable results compared with clustering analysis by using individual

genes [44–50], while both two clustering trees by using both methods were consistent, and the

Table 4. Start codon and stop codon of 13 PCGs in Lasiocampidae species.

Species ND2 COI COII ATP8 ATP6 COIII ND3 ND5 ND4 ND4L ND6 CytB ND1
DP ATT/TAA CGA/T ATA/T ATT/TAA ATG/TAA ATG/TAA ATG/TAA ATT/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA

DT ATT/TAA CGA/T ATA/T ATT/TAA ATG/TAA ATG/TAA ATG/TAA ATT/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA

DSP ATT/TAA CGA/T ATA/T ATC/TAA ATG/TAA ATG/TAA ATC/TAA ATT/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA

DSU ATC/TAA CGA/T ATA/T ATT/TAA ATG/TAA ATG/TAA ATC/TAA ATT/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA

DK1 ATT/TAA CGA/T ATA/T ATC/TAA ATG/TAA ATG/TAA ATT/TAA ATT/TAA ATG/T ATT/TAA ATA/TAA ATA/TAA ATG/TAA

DK2 ATT/TAA CGA/T ATA/T ATA/TAA ATG/TAA ATG/TAA ATT/TAA ATA/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA

DH ATA/TAA CGA/T ATA/T ATT/TAA ATG/TAA ATG/TAA ATT/TAG ATA/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA

KU ATT/TAA CGA/T ATA/T ATC/TAA ATG/TAA ATG/TAA ATC/TAA ATT/T ATG/TAG ATG/TAG ATA/TAA ATG/TAA ATG/TAA

EL ATA/TAA CGA/T ATA/T ATC/TAA ATG/TAA ATG/TAA ATT/TAA ATT/TAA ATG/TAA ATA/TAA ATA/TAA ATG/TAA ATG/TAA

TVG ATT/TAA CGA/T ATA/T ATC/TAA ATG/TAA ATG/TAA ATT/TAA ATT/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATT/TAA

https://doi.org/10.1371/journal.pone.0232527.t004
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Fig 4. Lasiocampidae phylogenetic tree. A: using the data of DK1, B: using the data of DK2, C: using the data of DK1 and DK2.

https://doi.org/10.1371/journal.pone.0232527.g004
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phylogenic relationship among 4 genera in Lasiocampidae was consistent with some previous

studies [15,50–52]. In this study, the mitogenome total lengths of D. houi from two geographi-

cal populations (Yongtai and Jingdong [10]) were various, which may be caused by individual

differences of samples. Furthermore, two original data of D. kikuchii were used to compare

mitogenome structures and construct phylogenetic trees. Interestingly, we obtained the differ-

ent phylogenetic trees concerning the relationship between D. houi and D. kikuchii. The phylo-

genetic relationship between D. kikuchii and D. spectabilis was closer than that between D.

kikuchii and D. houi by using DK1 data (Fig 4A), which was different from previous research

[7–8,10]. However, we obtained the same result as previous reports [10] by utilizing DK2 data

(Fig 4B), and show D. houi and D. kikuchii have a close relationship (Fig 4B) and evolved ear-

lier than the other four pine caterpillar species. Obviously, some populations of D. kikuchii
from different locations can not be clustered as one group (Fig 4C) whereas DK1 and DK2

data were clustered simultaneously, indicating differentiation occurred due to geographical

isolation [4].

These differences were thought to be mostly caused by individual differences or geographic

population variation, because the samples of DK1 and DK2 were originally collected originally

from Yunnan and Hunan Province respectively [6,14], and some previous studies have shown

that insects have generated genetic variation after long-term living in different geographical

habitats or from feeding on different hosts [4,5,53]. The degree of genetic differentiation and

gene exchange within and between populations have an impact on the geographical popula-

tions’ genetic diversity of insects. However, even now, little is known about the different geo-

graphical populations genetic diversity of D. houi. Effective molecular markers should be used

to prove whether there is differentiation among different populations, or to better determine

the genetic relationship and variation at the genus level.

In this study, all species looked at have the start codon CGA with COI gene, which were

reported in previous research [11–19,54,55]. Theoretically, it is considered a typical trait due

to it being high conservation in Lepidoptera specicies. Similarly, the stop codon ended with

TAA in the majority of PCGs, which was also consistent with the results of most Lepidoptera

species [6–10]. Currently, there was only one trnR within the mitochondrial structure of D.

houi, which is similar to most species of Lasiocampidae speices, and different from that of K.

undans with two trnRs. Therefore, we presume that the structure of two trnRs is unique in

Kunugia spp., which requires further clarification because more species’ genomes are not avail-

able at this time.

Currently, the sequencing of animal mitogenomes is rapidly increasing, but the data of

insect mitogenomes are obviously still insufficient. Actually, several species of pine caterpillars

periodically occur and outbreak [1–3,9,10], endangering local coniferous forests in China [56]

under the reasonable climate. Their phylogenetic relationship might be complicated because

of homogenization or hybrid of congeneric species. Therefore, the acquisition of the complete

mitogenome of D. houi and comparison to Lasiocampidae species may provide more genetic

varieties for future research.
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