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ABSTRACT
Background. Antipredator behaviors are theoretically subjected to a balance by which
their display should be minimized when their benefits do not outweigh their costs.
Such costs may be not only energetic, but also entail a reduction in the time available
for other fitness-enhancing behaviors. However, these behaviors are only beneficial
under predation risk. Therefore, antipredator behaviors are predicted to be maximized
under strong predation risk.Moreover, predation pressure can differ among individuals
according to traits such as sex or body size, if these traits increase vulnerability.
Antipredator behaviors are expected to be maximized in individuals whose traits make
them more conspicuous to predators. However, how sex, body size and antipredator
behaviors interact is not always understood.
Methods. In this work, I tested the interaction between sex, body size and antipredator
behavior in the common pill woodlouse (Armadillidium vulgare), which conglobate
(i.e., they roll up their bodies almost conforming a sphere that conceals their ap-
pendages) in response to predator attacks. Specifically, I testedwhether latency to unroll
after a standardized mechanical induction was greater in animals exposed to predator
chemical cues (toad feces) than in conspecifics exposed to cues of non-predatory
animals (rabbits) or no chemical cues whatsoever (distilled water), incorporating sex
and body mass in the analyses.
Results. In agreement with my prediction, latency to unroll was greater in individuals
exposed to predator chemical cues. In other words, these animals engage in congloba-
tion for longer under perceived predator vicinity. However, this result was only true
for males. This sexual dimorphism in antipredator behavior could result from males
being under greater predation risk than females, thus having evolved more refined
antipredator strategies. Indeed, males of this species are known to actively search for
females, which makes them more prone to superficial ground mobility, and likely to
being detected by predators. Body size was unrelated to latency to unroll. As a whole,
these results support the hypothesis that antipredator behavior is tuned to predator
cues in a way consistent with a balance between costs and benefits, which might differ
between the sexes.
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INTRODUCTION
Predators erode their prey’s fitness in various ways, thus embodying a potent selective
pressure on them (Abrams, 2000; Lima, 2002). First and foremost, successful predatory
events involve the annihilation of the prey’s life, and consequently of any potential future
fitness it might have had (Barbosa & Castellanos, 2005; Beauchamp, Wahl & Johnson,
2007). However, predators also exert non-lethal effects on their prey that are also pivotal
in multifarious ways (Lima, 1998; Preisser, Bolnick & Benard, 2005; Wirsing et al., 2021).
After consumption, the second gravest damage predators inflict on their prey is probably
represented by physical injury following failed attacks (Laha & Mattingly, 2007; Bowerman,
Johnson & Bowerman, 2010), which frequently entail infections (Aeby & Santavy, 2006)
as well as impaired locomotion, growth, and ultimately fitness (Archie, 2013; Zamora-
Camacho & Aragón, 2019; Zamora-Camacho & Calsbeek, 2022). Even in the absence of
an actual attack, preys are bound to face the harmful effects of predators. Some animal
species innately possess physical (Mukherjee & Heithaus, 2013) or chemical defenses
(Glendinning, 2007), occasionally remarkably sophisticated (Zamora-Camacho, 2023),
which can dissuade predators (Brown et al., 2016). Moreover, most prey are equipped
with sensory systems capable of detecting predator vicinity (Leavell & Bernal, 2019). Such
perceived predator proximity oftentimes elicits the expression of inducible morphological
or chemical defenses of different types (Kishida et al., 2010; Yamamichi et al., 2019). In
either case, whether innate or inducible, these defenses can be costly, given the energy
diverted to their production (Hamill, Rogers & Beckerman, 2008; Gilbert, 2013; Hermann
& Thaler, 2014; Zvereva et al., 2017), and the fact that the metabolic processes involved in
these responses may even trigger oxidative stress (Janssens & Stoks, 2013).

On a different note, prey can also tune their behavior to the threat represented by
potential predators (Lima & Dill, 1990; McGhee, Pintor & Bell, 2013) and the level of
risk involved (Kavaliers & Choleris, 2001). The most immediate antipredator behavior is
oftentimes spatial circumvention, which prevents an actual encounter (Palmer et al., 2022;
Suraci et al., 2022). Also, prey typically respond to predator proximity by diminishing the
conspicuousness of their activities (Moll et al., 2020; Balaban-Feld et al., 2022). When the
encounter is imminent, however, prey can decide whether to face or avoid the predator
depending on the chances of success of each strategy (Reichmuth et al., 2011; Zhang et
al., 2020). A particularly common reaction of prey to such encounters is flight (Møller &
Erritzøe, 2014; Basille et al., 2015). In addition, more refined behaviors against predation
are likewise common, such as postural strategies that facilitate the deflection of the attack
towards a non-vital (Myette, Hossie & Murray, 2019) or well protected body region (Crofts
& Stankowich, 2021), that make it difficult for the predator to handle and subdue the
prey (Kowalski, Sawościanik & Rychlik, 2018), or that invoke death feigning or thanatosis
(Humphreys & Ruxton, 2018). This wide array of antipredator behaviors can coexist in the
same individual and be subjected to complex interactions (Lind & Cresswell, 2005).

In any case, antipredator behavior is not devoid of costs. Besides the energy demands of
strategies such as flight, which involves a frequently intense muscular exertion (Biewener
& Patek, 2018), a cost in terms of fitness is expected given that antipredator behaviors
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are time-consuming (Lima & Dill, 1990) and thus reduce the time devoted to foraging,
mating and reproducing (Langerhans, 2007; Gulsby et al., 2018). The final decision of a
prey regarding whether and to which extent to engage in antipredator behaviors should
be made considering a balance between their costs and benefits (Herberholz & Marquart,
2012). Indeed, antipredator defenses are expected to be selected against in the absence of
predators (Reznick, Ghalambor & Crooks, 2008; Palkovacs, Wasserman & Kinnison, 2011),
at least to a certain extent (Blumstein, 2006), which could release the bearer from the
costs associated to such behaviors if they are no longer beneficial. In fact, the success of
a given antipredator behavior depends on diverse circumstances, and can vary according
to predatory pressure and the qualitative and quantitative expressions of the antipredator
behaviors adopted by other potential preys (Menezes, 2021).

Indeed, prey are predicted to adjust their antipredator behavior to the actual intensity
of predator pressure, responding strongly when predators are an actual threat, but
mildly when that threat is lesser (Sih, Ziemba & Harding, 2000; Ferrari, Sih & Chivers,
2009). Also, even at the intraspecific level, some individuals can be at higher risk than
others, depending on differences in morphology (Zamora-Camacho, 2022) and personality
(Sommer & Schmitz, 2020) that can make some individuals more or less prone to succumb
to predator attacks. Given that, probably as a part of their mating strategies, males
are often morphologically (Williams & Carroll, 2009) or behaviorally (Schuett, Tregenza
& Dall, 2010) more conspicuous than females, males can be subjected to a stronger
predation pressure than females (Husak et al., 2006; Kojima et al., 2014), thus responding
with stronger antipredator strategies (Husak & Fox, 2008; Zamora-Camacho, 2022).

In this context, this work aims to contextualize the display of an unusual antipredator
behavior, conglobation in common pill woodlice (Armadillidium vulgare), as a function
of extrinsic factors, such as predator cues, and intrinsic traits, such as body mass and
sex, which relationships are poorly understood. Conglobation is a particular behavior by
which these animals coil up into a ball when disturbed, concealing their appendages within
their dark grey cuticle (Cazzolla Gatti et al., 2020). This position makes them not only
difficult to handle, but also resemble a pebble rather than edible animals (Tuf & Ďurajková,
2022), which has been interpreted as tonic immobility or even as thanatosis (Horváth et
al., 2019; Cazzolla Gatti et al., 2020). Therefore, this behavior can be particularly efficient
against non-gape limited predators, especially those which detect their prey through their
movements, such as amphibians. Specifically, I studied the time spent by male and female
A. vulgare in the conglobated position in the presence and the absence of olfactory predator
(toads) cues after conglobation was mechanically induced in a standardized way (poking
the animals with a stick), using chemical cues of non-predatory animals (rabbits) as well as
no odor as controls. In line with the aforementioned rationale that antipredator behavior
is costly, I predict that the conglobated position will be abandoned earlier in the absence of
predator cues, when its potential benefits are lower. Also, I expect that, if one of the sexes
is under greater predation pressure (which might be the case of males, which seem to be
more active according to certain evidence Dangerfield & Hassall, 1994), this risk will have
selected for a stronger reaction to predator cues.
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MATERIALS & METHODS
Study species
The common pill woodlouse (A. vulgare) is a terrestrial isopod, native to theMediterranean
region but introduced worldwide (Schmalfuss, 2003), that occupies a variety of temperate
habitats. It shows a preference for a certain degree of moisture (Bonuti et al., 2021), which
can determine some extent of small-scale seasonal migration in search of sufficient yet not
excessive humidity (Paris, 1963). Reproduction takes place in the summer in cold regions
(Dangerfield & Hassall, 1992), but in spring in more temperate areas (Sorensen & Burkett,
1977). Females possess a ventral marsupium where eggs are deposited until hatching
(Suzuki, 2001; Suzuki & Futami, 2018). As a macrodecomposer, it feeds on a variety of
dead organic matter sources (Paris, 1963) which it selects according to its quality (Tuck &
Hassall, 2005). In turn, a wide array of invertebrates, amphibians and reptiles have been
cited as predators of this species (Paris, 1963). Against these predators, A. vulgare can resort
to numerous morphological and behavioral defenses, such as crypsis, immobility, escape
or sheltering, among which conglobations is particularly common (Horváth et al., 2019).
However, males could be more active than females (Dangerfield & Hassall, 1994), which
might lead to greater predation pressure (Yli-Renko, Pettay & Vesakoski, 2018), with the
concomitant sexual divergence in antipredator responses and success (Yli-Renko, Vesakoski
& Pettai, 2014). Also, larger individuals tend to take greater risks in this species (Horváth
et al., 2019).

Animal capture and management
Fieldwork took place in Pinares de Cartaya (SW Spain; 37◦ 21′ N, 7◦ 11′ O), an 11,000-ha
Pinus pinea grove with an undergrowth dominated by Rosmarinus officinalis, Pistacia
lentiscus and Cistus ladanifer. In this forest, I collected 43 adult A. vulgare (19 females
and 24 males) by hand, searching under rocks, decaying logs, and other potential refugia
at appropriate sites. However, to diminish the chances of capturing genetically related
individuals, only one specimen was caught at a given site, and at least 50 m were left among
sites (Horváth et al., 2019; Beveridge et al., 2022). Sampling took place in February 2022,
immediately before the onset of the mating season (which beings in the early spring in
this area, pers. obs.), because parental care can affect antipredator behavior in females,
involving a difficulty in the adoption of the conglobated position, which could affect the
results (Suzuki & Futami, 2018).

The animals captured were transferred to the laboratory, where they were assigned an
ID number, weighed to the nearest 0.01 g with a CDS-100 scale, and individually housed
in cylindric plastic terraria (6 cm diameter × 15 cm height) with wet peat as a substrate, a
piece of fresh carrot as nourishment, and a wet cotton disk (4 cm diameter × 1 mm thick)
above it as a shelter. The terraria were randomly set in a shelve in the laboratory, and their
position was changed every 24 h. A window let daylight in, which permitted the adjustment
of circadian rhythms. Room temperature was not manipulated, and fluctuated naturally
between 10 ◦C at night and 20 ◦C during the day.

The behavioral tests began 24 h after capture. These tests were conducted in individual
cylindric plastic terraria (4 cm diameter × 10 cm height) with a cotton disk lining (4 cm
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diameter× 1mm thick) at the bottom. This species interprets chemical cues to identify dead
conspecifics (Yao et al., 2009), potential mates (Beauché & Richard, 2013) and predators
(Pniewski, 2014), and tunes its conglobation behavior to diverse environmental factors
(Horváth et al., 2019). Therefore, I used different chemical cues (or the absence thereof)
in three separate tests. In the experimental tests, the cotton disk at the bottom of the
terrarium was soaked with a 1-mL aliquot extracted from a preparation of 0.5 L of distilled
water where 50 g of a mix of fresh feces from two male and two female adult common
toads (Bufo spinosus), captured in the same habitat as the woodlice, had been diluted.
These toads are abundant and widespread generalist predators of invertebrates, including
isopods (Ortiz-Santaliestra, 2014). In the control tests, the cotton disk at the bottom of
the terrarium was soaked with a 1-mL aliquot extracted from a preparation of 0.5 L of
distilled water where 50 g of a mix of fresh feces from four different European rabbit
(Oryctolagus cuniculus) latrines (separated by at least 600 m) from the same habitat as
the woodlice, had been diluted. These rabbits are abundant and widespread generalist
herbivores (Gálvez-Bravo, 2017). Feces of both toads and rabbits, these originated from
natural, uncontrolled diets, thus representing what the isopods are likely to find in nature.
In the manipulation control tests, the cotton disk at the bottom of the terrarium was
soaked with one mL of distilled water. In this way, humidity was constant across tests,
which avoided a potential effect of moisture on conglobation behavior, as conglobation
can also be a behavioral strategy against water loss in these animals (Smigel & Gibbs, 2008).

For these tests, each individual was placed alone in one arena as described above. After
5 min for habituation, I gently poked the animal with a wooden stick until it adopted the
fully conglobated position. The test ended when the individual abandoned this position. All
individuals underwent all three tests, with a 24-h resting period in between. Every time, the
cotton disks were replaced and the arenas were rinsed thoroughly. Conglobation behavior
in these animals is affected by previous experience (Matsuno & Moriyama, 2012). For that
reason, the sequence in which the tests involving the different stimuli were conducted was
random for each individual.

All tests were recorded with a Canon EOS 550D video camera. The resulting footages
were then studied using the software Tracker v 6.0.8, which allows frame-by-frame
analyses. Specifically, I measured latency to unroll as the time each individual spent in the
conglobated position, by recording the time elapsed since the frame in which this position
was adopted until it was abandoned. After the tests, the woodlice were sexed, based on the
presence of the marsupium in the ventral side of the pereion in females after the parturial
mold prior to reproduction (Surbida & Wright, 2001; Suzuki, 2002), and released in the
same habitat where they had been captured.

Statistics
Latency to unroll needed to be ln-transformed in order to meet the assumptions of
homoscedasticity and residual normality needed for parametric statistics (Quinn & Keough,
2002). After that, a mixed model was conducted where latency to unroll (ln-transformed)
was the response variable, sex, treatment and their interactions were included as factors,
body mass was included as a covariate, and ID was a random factor. Sum of squares
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Table 1 Tukey post-hoc test performed on the Sex× Treatment interaction. t - and P-values for each
pairwise comparison are indicated. Significant results are in bold.

Pairwise comparison t -value P-value

Female Rabbit vs Male Rabbit 1.213 0.830
Female Rabbit vs Female Toad 0.376 0.999
Female Rabbit vs Male Toad −1.414 0.719
Female Rabbit vs Female Water 1.722 0.521
Female Rabbit vs Male Water 1.646 0.570
Male Rabbit vs Female Toad −0.856 0.956
Male Rabbit vs Male Toad −3.107 0.030
Male Rabbit vs Female Water 0.424 0.998
Male Rabbit vs Male Water 0.512 0.996
Female Toad vs Male Toad −1.771 0.489
Female Toad vs Female Water 1.347 0.758
Female Toad vs Male Water 1.289 0.791
Male Toad vs FemaleWater 3.050 0.033
Male Toad vs MaleWater 3.619 0.007
Female Water vs Male Water 0.009 1.000

was type III. A Tukey post-hoc test was applied on the interaction term. These tests were
conducted with the package lmerTest (Kuznetsova, Brockhoff & Christensen, 2017) in the
software R v. 4.1.2 (R Core Team, 2021). A similar test but excluding sex can be found as
Supplementary Material.

RESULTS
Body mass had no significant effect on latency to unroll (F1,122= 0.698; β =−2.843;P =
0.409). The effect of sex on latency to unroll was non-significant (F1,122= 0.073; P = 0.789),
but that of treatment was significant (F2,122= 5.823; P = 0.004). According to the Tukey
post-hoc test applied on the marginally non-significant Sex × Treatment interaction
(F2,122= 2.786; P = 0.068), males exposed to toad scent had greater latency to unroll than
males exposed to rabbit scent and to water, and than females exposed to water, with every
other pairwise comparison being non-significant (Table 1; Fig. 1). When sex was excluded
from the model, treatment had a significant effect on latency to unroll, where the only
significant pairwise comparison was between the treatments with water and toad cues
according to the Tukey post-hoc test (Supplementary Material).

DISCUSSION
Some of these results were in agreement with my predictions. In the first place, latency
to unroll was greater in the presence of predator chemical cues than in the absence
of it. According to theory, predator vicinity can trigger a fear response on the prey,
which is not devoid of costs (Wang & Zoy, 2018; Qiao et al., 2019; Tripathi et al., 2022).
Previous research supports that, in behavioral terms, most prey reduce their susceptibility
to predators by diminishing their activity rates when threatened (Brodin & Johansson,

Zamora-Camacho (2023), PeerJ, DOI 10.7717/peerj.16696 6/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.16696#supp-1
http://dx.doi.org/10.7717/peerj.16696#supp-1
http://dx.doi.org/10.7717/peerj.16696


Figure 1 Sex and treatment differences in unrolling time (back-transformed).Vertical whiskers repre-
sent standard errors. Sample sizes are indicated.

Full-size DOI: 10.7717/peerj.16696/fig-1

2004; Laurila, Pakkasmaa & Merilä, 2006), even resorting to total immobility (Brooks,
Gaskell & Maltby, 2009) and death feigning (Konishi et al., 2020). However, by engaging
in such antipredator behavior, prey inevitably reduce the amount of time available for
other fitness-enhancing activities, such as mating, feeding, and territory defense (Persons,
Walker & Rypstra, 2002; Lind & Cresswell, 2005), which may entail negative effects, for
example on growth (Brodin & Johansson, 2004; Laurila, Pakkasmaa & Merilä, 2006) and
reproduction (Persons, Walker & Rypstra, 2002;Kempraj, Park & Taylor, 2020). These costs
can be assumed to affect A. vulgare when remaining in a conglobated position, although
little is known in this regard about this particular species. Thus, such antipredator behaviors
are allegedly subjected to a balance between these costs and their benefits, namely predator
avoidance. In this context, prey are expected to minimize antipredator behaviors when
their benefits are scarce, i.e., under low predation risk (Ferrari, Messier & Chivers, 2008;
Supekar & Gramapurohit, 2020; Batabyal et al., 2022). This prediction is supported by these
results, as latency to unroll was greater in the presence of predator chemical cues presented
in the short term. Similarly, the marine isopod Idotea balthica lowers its activity in the
presence of chemical cues from a native predatory fish (Yli-Renko et al., 2022). However,
a different study reports that A. vulgare remains unresponsive to chemical cues of an
arachnid predator (Zimmerman & Kight, 2016).

Nonetheless, this greater latency to unroll in the presence of predator chemical cues was
only observed in males, whereas females did not respond to these cues with an increase
in time to unroll. This observation is based on an interaction between sex and treatment
that was marginally non-significant, but it provides a hint of sex differences in responses
to treatments. While the possibility that females lack the ability to recognize predator
chemical cues cannot be discarded, a greater response of males as a result of a male-biased
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predation risk could be a more plausible explanation. In circumstances where both sexes
are under equivalent risk, their response to predator cues might not differ (David, Salignon
& Perrot-Minnot, 2014; Kempraj, Park & Taylor, 2020; Saavedra, Tomás & Amo, 2022).
However, whenever one sex is under greater risk than the other, it is expected to evolve
more efficient antipredator responses (Curio, Klump & Regelmann, 1983). Although in
some species females have been found to face greater predation risk (Post & Götmark,
2006) and to respond with greater intensity to predator pressure (Pärssinen et al., 2021;
Woodrow et al., 2021), in most cases males are more conspicuous to predators as a result of
more active behaviors (Tobler, Franssen & Plath, 2008), such as territory defense (Gwynne
& O’Neill, 1980), female pursuit (Fišer et al., 2019) and courtship (Whitaker et al., 2021).
Accordingly, males display a stronger behavioral response to predation risk in taxa as
disparate as mammals (Grignolio et al., 2019), birds (van den Bemt, steves Lopes & Ribeiro
Cunha, 2021), reptiles (Bohórquez Alonso et al., 2010), snails (Donelan & Trussell, 2020),
insects (Schultz, 1981), spiders (Krupa & Sih, 1998) or crabs (Jennions et al., 2003).

In the specific case of A. vulgare, sexual divergence in activity has yet to be studied,
but different lines of evidence suggest that males could be more active, and thus more
detectable by predators, which could favor a greater investment in antipredator behavior.
In the first place, genetic analyses have revealed that females are philopatric whereas males
are not, which is compatible with males being more prone to dispersal and, allegedly, to
be intercepted by predators (Durand et al., 2019). Moreover, males are known to actively
search for females based on chemical cues (Beauché & Richard, 2013) and to compete
for access to them given their multiple paternity scheme (Verne et al., 2007; Valette et al.,
2016). Also, male presence can stimulate female receptiveness (Lefebvre & Caubet, 1999).
These features could be accompanied by behavioral displays that might increase male
conspicuousness to predators. Indeed, males could be more active in the ground surface,
whereas females tend to make a greater use of underground shelters, which is a probable
consequence of the former actively competing and searching for the latter (Dangerfield &
Hassall, 1994). Nonetheless, until all of these facts are properly studied, this assumption
can be considered plausible, but speculative.

In correspondence with previous studies on this species (Beveridge et al., 2022), body
mass was uncorrelated with latency to unroll, as well as with other antipredator behaviors
(Cazzolla Gatti et al., 2020). This finding contrasts with research that indicates that
antipredator behavior depends on body size on other taxa, both vertebrates (Hoare et
al., 2000; Roth & Johnson, 2004) and invertebrates (Johnson et al., 2017; Gavini, Quintero &
Tadey, 2020), including larger crustaceans (Wahle, 1992). In this case, the relatively small
size of the focal species might make variation in body size irrelevant for most potential
predators, thus not selecting for differential antipredator strategies at varying sizes. In any
case, conglobation behavior is known to be repeatable in this species (Cornwell et al., 2023),
which advocates for consistency in the patterns described herein.

CONCLUSIONS
To conclude, latency to unroll was greater in individuals exposed to predator chemical cues,
which supports the prediction that A. vulgare can detect these cues and react accordingly,
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although these differences were led by males. Moreover, these findings (selection for
antipredator responses is stronger in males) concurs with the theoretical assumption that
antipredator behaviors are subjected to a cost-benefit balance, by which they should be
minimized when their benefits do not outweigh their costs. This supports the prediction
that males are under greater predation risk than females, thus having evolved more refined
antipredator strategies, and that there is a cost implicit in conglobation behavior that
females avoid paying by not responding to the same stimulus in the same way males do.
Antipredator behaviors are only beneficial under predation risk, which could be the reason
why males engage in conglobation for longer under perceived predator vicinity.
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