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ABSTRACT
Background. The corallum is crucial in building coral reefs and in diagnosing
systematic relationships in the order Scleractinia. However, molecular phylogenetic
analyses revealed a paraphyly in a majority of traditional families and genera among
Scleractinia showing that other biological attributes of the coral, such as polyp
morphology and reproductive traits, are underutilized. Among scleractinian genera, the
Euphyllia, with nine nominal species in the Indo-Pacific region, is one of the groups
that await phylogenetic resolution. Multiple genetic markers were used to construct
the phylogeny of six Euphyllia species, namely E. ancora, E. divisa, E. glabrescens,
E. paraancora, E. paradivisa, and E. yaeyamaensis. The phylogeny guided the inferences
on the contributions of the colony structure, polyp morphology, and life history traits
to the systematics of the largest genus in Euphylliidae (clade V) and, by extension, to
the rest of clade V.
Results. Analyses of cytochrome oxidase 1 (cox1), cytochrome b (cytb), and β-
tubulin genes of 36 colonies representing Euphyllia and a confamilial species, Galaxea
fascicularis, reveal two distinct groups in the Euphyllia that originated from different
ancestors. Euphyllia glabrescens formed a separate group. Euphyllia ancora, E. divisa,
E. paraancora, E. paradivisa, and E. yaeyamaensis clustered together and diverged from
the same ancestor as G. fascicularis. The 3′-end of the cox1 gene of Euphyllia was able
to distinguish morphospecies.
Discussion. Species of Euphyllia were traditionally classified into two subgenera,
Euphyllia and Fimbriaphyllia, which represented a dichotomy on colony structure. The
paraphyletic groups retained the original members of the subgenera providing a strong
basis for recognizing Fimbriaphyllia as a genus. However, colony structure was found
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to be a convergent trait between Euphyllia and Fimbriaphyllia, while polyp shape and
length, sexuality, and reproductive mode defined the dichotomy better. Species in a
genus are distinguished by combining polyp morphology and colony form. The cluster
of E. glabrescens of the Euphyllia group is a hermaphroditic brooder with long, tubular
tentacles with knob-like tips, and a phaceloid colony structure. The Fimbriaphyllia
group, with F. paraancora, F. paradivisa, F. ancora, F. divisa, and F. yaeyamaensis, are
gonochoric broadcast spawners with short polyps, mixed types of tentacle shapes, and
a phaceloid or flabello-meandroid skeleton. Soft-tissue morphology of G. fascicularis
and Ctenella chagius were found to be consistent with the dichotomy.
Conclusions. The paraphyly of the original members of the previous subgenera justify
recognizing Fimbriaphyllia as a genus. The integrated approach demonstrates that
combining polyp features, reproductive traits, and skeletal morphology is of high
systematic value not just to Euphyllia and Fimbriaphyllia but also to clade V; thus,
laying the groundwork for resolving the phylogeny of clade V.

Subjects Marine Biology, Taxonomy
Keywords Phylogeny, Taxonomy and systematics, Integrative systematics

INTRODUCTION
Systematics of the Scleractinia are traditionally based on features of the skeleton (also called
the corallum) (Dana, 1846; Edwards & Haime, 1857; Edwards & Haime, 1860; Vaughan &
Wells, 1943; Veron & Pichon, 1980; Veron, 2000). Despite the convenience of relying on the
corallum, the skeleton is plagued with taxonomic ambiguities brought about by plasticity
and convergence, which is a weakness in the traditional systematics of the Scleractinia.
Lang (1984) proposed searching for other biological attributes for identification such as
polyp or soft-tissue morphology and anatomy, mode of reproduction, behaviors, and
ecological and physiological aspects of corals. These traits or a combination of any number
of them are thought to have greater systematic value than adhering strictly to skeletal
features (Daly, Fautin & Cappola, 2003). Recent advancements in molecular phylogenetic
construction of the evolutionary history of scleractinian corals echo this proposal along
with proposed major deviations from traditional classification schemes. The first deviation
was the discovery of two major lineages within the order, now referred to as the robust
and complex clades (Romano & Palumbi, 1996; Romano & Palumbi, 1997; Romano &
Cairns, 2000; Chen, Wallace & Wolstenholme, 2002; Fukami et al., 2008; Huang et al., 2009;
Kitahara et al., 2010; Okubo, 2016). The second deviation showed that paraphyly was
found in 11 traditional families of the Scleractinia (Fukami et al., 2008; Huang et al., 2009;
Huang et al., 2011; Huang et al., 2014a; Huang et al., 2014b; Arrigoni et al., 2012). These
findings further suggested that skeletal features (colony formation, corallite diameter,
and characteristics of the septa and costae) that are widely used in identifying species
of corals are not fully reflective of evolutionary relationships within families and even
between conspecific populations from the Atlantic, Pacific, and Indian Oceans (Chen et
al., 1995; Romano & Palumbi, 1996; Romano & Palumbi, 1997; Romano & Cairns, 2000;
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Fukami et al., 2004; Fukami et al., 2008; Budd & Stolarski, 2009; Kitahara et al., 2010; Kerr,
2005; Arrigoni et al., 2012; Arrigoni et al., 2014a; Arrigoni et al., 2014b; Arrigoni et al., 2016).
These deviations have challenged systematists to reexamine phylogenetic groupings in
contrast with the traditional families and to discern and propose characteristics, apart
from the skeleton or other aspects of the skeleton, that are systematically informative and
diagnostic of species in the new groupings. This integrated approach to systematics has
led to remarkable resolutions in some scleractinian families. The Family Acroporidae, for
example, one of the largest families in the Scleractinia, traditionally classified Acropora
and Isopora as the two major subgenera in the family. Morphological characteristics and
reproductive traits that were found to reflect the phylogenetic relationships in the family
led to the recognition of Acropora and Isopora as independent genera (Fukami, Omori
& Hatta, 2000; Van Oppen et al., 2001; Wallace et al., 2007). The characteristics and the
attributes that were identified through the integrated approach have been demonstrated to
be operationally useful in subsequent classifications in the group as in the example of Isopora
togianensis (Wallace et al., 2007). Currently, the Mussidae, Merulinidae, Pectiniidae, and
a new family, Lobophylliidae, are nearly completely phylogenetically resolved and revised
(Huang et al., 2009; Huang et al., 2011; Huang et al., 2014a; Huang et al., 2014b; Arrigoni et
al., 2012;Arrigoni et al., 2014a;Huang et al., 2016; Budd et al., 2012), but other groups, such
as the family Euphylliidae (clade V), still lack their respective phylogenetic investigations.

The family Euphylliidae originally had 14 species classified into five genera namely
the Euphyllia, Catalaphyllia, Plerogyra, Physogyra, and Nemenzophyllia (Veron, 2000). The
Euphyllia, the largest genus in the family, was classified in earlier systematic schemes under
the subfamily Eusmilinae of the Family Caryophylliidae (Vaughan & Wells, 1943; Veron &
Pichon, 1980). Veron & Pichon (1980) recognized a dichotomy in the genus Euphyllia that
is based on colony structure and represented this dichotomy as the subgenera Euphyllia
and Fimbriaphyllia. The subgenus Euphyllia included species with a phaceloid growth
form, which listed E. glabrescens and E. cristata in the group. The subgenus Fimbriaphyllia,
on the other hand, included species with a flabello-meandroid growth form namely,
E. ancora and E. divisa. The subgenera were eventually synonymized as Euphyllia; however,
Veron (2000) retained the dichotomy based on colony structure as more species were
discovered and classified under the genus Euphyllia (Veron, 1990). Eight species were then
recognized and classified into two groups based on colony structure. One group, with
phaceloid skeletons, included E. glabrescens, E. cristata, E. paraancora, E. paradivisa, and
E. paraglabrescens; and the other group, with flabello-meandroid skeletons, included E.
yaeyamaenesis, E. divisa, and E. ancora (Veron, 2000; Table 1). A ninth species, E. baliensis,
with a phaceloid colony structure, was recently discovered from Bali, Indonesia (Turak,
Devantier & Erdmann, 2012). Corallite features and tentacle shapes are both considered
when classifying Euphyllia because dried skeletons that have the same colony structure are
difficult to tell apart without viewing the live form (Veron & Pichon, 1980; Veron, 2000).
Yet, an overlap in skeletal and tissue characteristics was also observed between species from
different groups (Table 1). Recently, reproductive traits were recognized as an excellent
guide for systematic affinities among the Scleractinia (Kerr, Baird & Hughes, 2011; Baird,
Guest & Willis, 2009). For example, the phaceloid species, E. glabrescens, is hermaphroditic
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with a reproductive mode of brooding, while the flabello-meandroid species, E. ancora and
E. divisa, are gonochoric with a reproductive mode of broadcast spawning (Table 1; Baird,
Guest & Willis, 2009).

Scleractinian phylogeny constructed using mitochondrial cytochrome oxidase I (cox1),
cytochrome oxidase b (cytb), and nuclear β-tubulin showed that the family Euphylliidae
is polyphyletic, with its members diverging from each other into the robust and complex
clades (Fukami et al., 2008). Physogyra lichtensteni and Plerogyra sinuosa were clustered
under clade XVI of the robust clade together with Plesiastrea versipora (incertae sedis)
and Blastomussa wellsi (incertae sedis) (Fukami et al., 2008; Arrigoni et al., 2012; Budd et
al., 2012; Benzoni et al., 2014). The genus Euphyllia, on the other hand, had some of its
members cluster under clade V, which was still designated by Fukami et al. (2008) as the
family Euphylliidae, of the complex clade. A paraphyletic pattern in the genus was already
observed when E. glabrescens grouped with Ctenella chagius (Meandrinidae), and E. ancora
and E. divisa grouped with Galaxea fascicularis (Oculinidae) (Fukami et al., 2008).

In this study, we utilized multiple genetic markers to construct the phylogeny of
Euphyllia collected from the Philippines andTaiwan, including E. paraancora, E. paradivisa,
E. yaeyamaensis, E. divisa, E. ancora, and E. glabrescens. The former three species do not
have a clear phylogenetic status and/or have not yet been analyzed from the molecular
perspective before. The phylogeny was used in examining the internal relationships in
Euphyllia and in identifying the relevant morphological and reproductive traits to the
systematics of the genus. The Euphyllia is currently the largest genus in clade V and the
inferred traits from the internal phylogeny was extended to infer the external relationships
of the genus to the other members of the clade; thus, laying the groundwork for the
resolution of clade V.

METHODOLOGY
Sample collection and specimen identification
In total, 36 colonies representing six species of Euphyllia and G. fascicularis were collected
and sampled from two areas of western Luzon, the Philippines and in Kenting National
Park, Taiwan (Table S1). These two locations in the Philippines included Talim Bay,
Lian, Batangas and Bolinao, Pangasinan; the latter is where Veron (1990) first found and
described E. paraancora. All coral samples from the Philippines were collected through
permissions granted by the Bureau of Fisheries and Aquatic Resources (BFAR) permit
number FBP-0021-08. The sample from Taiwan was collected through permissions granted
by the Kenting National Park Headquarters as part of a long-term monitoring program
(Project 673202-LTER). All specimens were identified in the field using Veron (1990),
Veron (2000), and Veron & Pichon (1980). Specimens were photographed underwater with
a Canon A710 camera. After collection and tissue sampling, coral colonies were bleached,
and skeletons were examined and kept at the Coral Museum of The Marine Science
Institute, University of the Philippines.

The electronic version of this article in Portable Document Format (PDF) will represent
a published work according to the International Commission on Zoological Nomenclature
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Table 1 Characteristics of Euphyllia,Galaxea, and Ctenella. Colony structure, corallites, tentacle morph, sexuality, and reproductive mode of Eu-
phyllia spp, Galaxea sp., and Ctenella chagius. Data were modified from Veron & Pichon (1980)a, Veron (2000)b, Sheppard, Dinesen & Drew (1983)c,
and Baird, Guest & Willis (2009)d. Species names listed in Group 1 and Group 2 that are in bold are the original members of the subgenera Euphyllia
and Fimbriaphyllia in groups 1 and 2 respectively.

Speciesa,b,c Colony
structurea,b

Corallitesa,b,c Tentacle morphb,c Sexualityd Reproductive
moded

Group 1
E. glabrescens Phaceloid First and second order

septa plunge steeply
near the centre of the
corallite. Columella is
absent.

Long tubular tentacles
with knob-like tips

Hermaphroditic Brooding

E. cristata* Phaceloid First and second order
septa plunge steeply
near the centre of the
corallite. Columella is
absent.

Long tubular tentacles
with knob-like tips

Unrecorded Unrecorded

E. paraglabrescens* Phaceloid Skeletons are almost
identical to those of E.
glabrescens.

Tentacles are short and
bubble-like

Unrecorded Unrecorded

E. paraancora Phaceloid Skeletons are like those
of E. glabrescens with
corallites 20–40 mm in
diameter.

Tentacle tips form con-
centric circles and are
shaped like an anchor,
bean, or a kidney

Unrecorded Unrecorded

E. paradivisa Phaceloid Skeletons are like those
of E. glabrescens.

Branching tentacles al-
most identical to those
of E. divisa

Unrecorded Unrecorded

E. baliensis*,# Phaceloid Corallites are sub-
circular, with non-
budding corallites av-
eraging 3.1 mm diam-
eter and ranging from
2–4.1 mm, with very
thin walls

Tentacles are shaped
like an anchor, kidney,
or hammer at their
tips, occasionally with
additional smaller bul-
bous protuberances,
the latter resembling
mittens or gloves.

Unrecorded Unrecorded

Group 2
E. divisa Flabello-

meandroid
There are three or-
ders of septa, which are
exsert and plunge near
the valley centre. Col-
umella is absent.

Polyps have large
tubular tentacles
with smaller tubular
branches. All branches
have knob-like tips

Gonochronic Broadcast
spawning

E. ancora Flabello-
meandroid

Colonies have the same
skeletal structure as E.
divisa

Polyps have large tubu-
lar tentacles with few
or no branchlets but
with tips shaped like an
anchor, bean, kidney,
hammer, or a letter ‘T’

Gonochronic Broadcast
spawning

(continued on next page)
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Table 1 (continued)

Speciesa,b,c Colony
structurea,b

Corallitesa,b,c Tentacle morphb,c Sexualityd Reproductive
moded

E. yaeyamaensis Phaceloid/
Flabello-
meandroid
(with short
valleys)

Septa occur in three
orders and are usually
compact. Columella is
absent.

Tentacles are short and
fleshy and covered with
short uniform branch-
lets, each with a termi-
nal knob

Unrecorded Unrecorded

Group 3
Galaxea fasicularis Plocoid Corallites are of mixed

sizes, usually less than
10 mm diameter with
numerous septa reach-
ing the corallite centre.
Columella is absent.

Tubular tentacles with
white tips, usually ex-
tended during the day

Pseudogynodiecious Broadcast
spawning

Group 4
Ctenella chagius Meandroid Two orders of septa

with thick primary
septa. Septa have small
denticles and minute
spinules. Columella is
present.

Tubular tentacles ex-
tended during the day

Unrecorded Unrecorded

Notes.
*not analyzed in this study.
#species described by Turak, Devantier & Erdmann (2012).

(ICZN), and hence the new names contained in the electronic version are effectively
published under that Code from the electronic edition alone. This published work
and the nomenclatural acts it contains have been registered in ZooBank, the online
registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be
resolved and the associated information viewed through any standard web browser by
appending the LSID to the prefix http://zoobank.org/. The LSID for this publication
is: urn:lsid:zoobank.org:pub:EBF69BA0-897E-4AC8-ADF5-4A7115CA1353. The online
version of this work is archived and available from the following digital repositories: PeerJ,
PubMed Central and CLOCKSS.

DNA extraction and purification
A minimum of 1 cm3 of a coral colony, includes both tissue and skeleton, was pruned
off a sample with an orthopedic bone cutter. The pruned tissue with the skeleton was
stored in pre-labeled 15 ml conical tubes containing CHAOS (Chaotropic solution: 4 M
guanidine thiocyanate, 0.5% N-lauroyl sarcosine sodium salt, 25 mM Tris at pH 8, and
0.1 M 2-mercaptoethanol) (Fukami et al., 2004) that was 3∼5-times the volume of the
sample taken (i.e., 1 cm3 of tissue entailed 3∼5 mL of CHAOS). The tubes were kept in
the dark for five days at room temperature. After the five-day period, DNA was obtained
through the standard phenol/chloroform purification method with phenol extraction
buffer (100 mM Tris-Cl at pH 8, 10 mM EDTA, and 0.1% sodium dodecylsulfate) (Chen &
Yu, 2000; Chen et al., 2000). Purified DNA was quantified through spectrophotometry with
Nanodrop 1000 by Thermo Fisher Scientific (Waltham, MA, USA) and through agarose
gel electrophoresis (0.5% Seakem R© LE agarose; Lonza, Basel, CH). The molecular weight

Luzon et al. (2017), PeerJ, DOI 10.7717/peerj.4074 6/38

https://peerj.com
http://zoobank.org/
http://dx.doi.org/10.7717/peerj.4074


of each sample was estimated using the lambda ladder of Protech Technology Enterprise
(Taipei, Taiwan).

DNA sequencing
The cytb gene was amplified using newly developed primer pairs that were designed
especially for Euphyllia. The cytb primer pairs have the following sequences: Eu4500F-1
(5′-CTG TCT AGT TTG GGA GTT AA-3′) and Eu4500R (5′-ATC ACT CAG GCT
GAA TAT GC-3′) (set 1); and Eu4500F (5′-GAC AGA TGT TGT GCA ATG AG-3′)
and Eu4500R-1 (5′-AAT AAG GCT ACC ATA AGC C-3′) (set 2). The expected product
sizes of the amplicon for each pair were 1.0 and 1.5 kb, respectively. Two sets of primer
pairs, developed by Lin et al. (2011), that amplified the 3′-end region of scleractinian cox1
were utilized: Cs-F17-a (5′-CCA TAA CCA TGC TTT TAA CGG ATA-3′) and Cs-R17-a
(5′-TGC TAA TAC AAC TCC AGT CAA ACC-3′); and Cs-F18 (5′-GGA CAC AAG AGC
ATA TTT TAC TG- 3′) and Cs-R18 (5′-CTA CTT ACG GAA TCT CGT TTG A-3′). The
expected product sizes of the amplicon from each pair were 1,400 and 950 bp, respectively.
The β-tubulin gene was amplified using a primer pair developed by Fukami et al. (2004):
forward (5′-GCA TGG GAA CGC TCC TTA TTT-3′) and reverse (5′-ACA TCT GTT GAG
TGA GTT CTG-3′). The β-tubulin gene was expected to yield multiple gene copies with
base pair lengths of 0.6, 1.5, and 2.0 kb (Fukami et al., 2004).

A polymerase chain reaction (PCR) was carried out in 50 µl reactions with either
Pro-taq polymerase (Protech Technology Enterprise, Taipei, Taiwan) or InvitrogenTM taq-
polymerase (Thermo Fisher Scientific, Waltham, MA, USA). Amplifications performed
with the Invitrogen taq-polymerase contained a final concentration of the following: 2.0
mM of each base of dNTP, 3.0 mM of MgCl2, 1× Invitrogen buffer (200 mM Tris-Cl at pH
8.4), 0.4 µM of primers, 1 unit of taq-polymerase, 2% DMSO, and at least 20 ng/µl of the
DNA template. Amplifications performed with the Protech taq-polymerase, on the other
hand, contained a final concentration of 2.0 mM of each base of dNTP, 1× Protech buffer
(with MgCl2), 0.4 µM of the primers, 5 units of the taq-polymerase, 2% DMSO, and at
least 20 ng/µl of the DNA template. The PCR was carried out with a PxE Thermal Cycler
by Thermo Fisher Scientific (Waltham, MA, USA). Amplification of the mitochondrial
genes began with an initial denaturation temperature of 95 ◦C for 3 min, followed by 30
cycles of denaturation at 94 ◦C for 30 s, annealing at 50 ◦C for 1 min, and elongation
at 72 ◦C for 90 s, with one final extension step at 72 ◦C for 10 min. The β-tubulin gene
was amplified with an initial denaturation step at 94 ◦C for 2 min; followed by 30 cycles
of denaturation at 94 ◦C for 45 s, annealing at 60 ◦C for 45 s, and elongation at 72 ◦C
for 90 s, with one final extension step at 72 ◦C for 5 min. Among multiple copies of the
β-tubulin gene of Euphyllia, the 600-bp band was selected for cloning because it was found
to be present in all samples. Ligation and transformation of the β-tubulin amplicons was
performed with a pGEM R©-T Easy Vector System kit from Promega (Madison, WI, USA).
Transformants were cultured in LB/ampicillin/IPTG/X-Gal plates, and five pure-white
colonies were selected per sample. PCR products from all markers were purified with the
PCR-MTM Clean-Up System of Viogene (New Taipei City, Taiwan) prior to sequencing.
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Phylogenetic analyses
Contiguous sequences (contigs) were assembled and annotated with Genious Pro vers.
4.6.1 software (Drummond et al., 2011). Each of the contigs was searched for in the database
of NCBI BLAST to determine if the sequences matched a member of the Scleractinia. The
search was also utilized to check for the direction of the sequences in the scleractinian
sequences that they matched, especially with the clones of the β-tubulin gene. Sequences
of a gene were then aligned using the CLUSTAL W plug-in of the software MEGA 5
(Tamura et al., 2011). Cytb and cox1 segments from the complete mitochondrial genome
of E. ancora (GenBank accession nos. NC015641 (cytb) and JF825139 (cox1); Lin et al.,
2011) were used to guide the mitochondrial gene alignments. Available sequences of E.
glabrescens, E. ancora, E. divisa, G. fascicularis, C. chagius, and other scleractinians were also
gathered from the NCBI database.

Phylogenetic trees were then generated for each set of genes and combinedmitochondrial
genes (cox1 and cytb) using the Bayesian inference (BI) and maximum likelihood (ML)
methods. The Bayesian inferencewas performedwith the softwareMr. Bayes 3.2.2 (Ronquist
et al., 2012). Two runs were carried out with four Markov chains in 2 million generations,
and the first 25% of trees were discarded as burn-in. Convergence of the BI analyses was
determined by the average standard deviation (SD) of split frequencies (<0.01). ML trees
were generated with 1,000 bootstrap replicates in MEGA versions 5 and 6 (Tamura et al.,
2011). The best-fit models of evolution for the BI and ML analyses were obtained with
jModeltest software (Guindon & Gascuel, 2003; Posada, 2008) (Table S2). The best-suited
model was determined with a 95% confidence level using the Akaike information criterion
(AIC) (Posada & Buckley, 2004).

RESULTS
Both mitochondrial (cytb and cox1) and nuclear (β-tubulin) gene trees were congruent
in terms of the general topologies, which showed strong statistical support for the
clustering of all species of Euphyllia with other new members of the family Euphylliidae
(C. chagius and G. fascicularis) (Figs. 1 and 2). Our mitochondrial and β-tubulin sequences
were analyzed with the available sequences of E. ancora (JF825139 from Lin et al., 2011;
AB441289 and AB441290 from Fukami et al., 2008), E. divisa (AB441288; Fukami et al.,
2008), E. glabrescens (ABB441291, ABB441292, and ABB441377; Fukami et al., 2008),
G. fascicularis (AB441286, AB441287, AB441374, AB441375; Fukami et al., 2008), and
C. chagius (AB441378 and AB441379; Fukami et al., 2008) from clade V. From a wider
context of scleractinian phylogeny, the gene trees of Fukami et al. (2008) consistently
showed that clade VI and VII are the closest groups to clade V as they all share the
same ancestor (Fig. S1). Sequences of Pavona cactus (AB441384 and AB441385 from
Fukami et al., 2008), Pavona clavus (NC008165; Medina et al., 2006), and Agaricia humilis
(AB441386 from Fukami et al., 2008; NC008160 from Medina et al., 2006) from clade
VII were included to serve as the outgroup for our analyses (Fukami et al., 2008; Lin et
al., 2011). A separate phylogenetic tree was generated with the mitochondrial sequences
(combined cox1 and cytb) of Acropora tenuis (AF338425, NC003522; Van Oppen et al.,
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Figure 1 Phylogenetic trees of the cox1, cytb, and the combined cox1 and cytb genes with sequences
from clade VII as an outgroup. The phylogenetic trees of the (A) cox1 gene; (B) combined cox1 and cytb
genes; and (C) cytb gene. Bootstrap values of BI (black)/ML (red) are indicated before the nodes of the
clusters. # indicates a difference in topologies between the BI and ML gene trees. Species names in blue
font were analyzed herein for the first time. Distinct clusters in the tree are distinguished with vertical lines
and labeled chronologically.

Full-size DOI: 10.7717/peerj.4074/fig-1

2002), Anacropora matthai (AY903295, NC006898; Tseng, Wallace & Chen, 2005), and
Montipora cactus (AY903296, and NC006902; Tseng, Wallace & Chen, 2005) from clade VI
(Fig. S2). The combined mitochondrial gene tree generated with clade VII as the outgroup
produced the same topology as when clade VI is the outgroup (Fig. S2). Unfortunately,
β-tubulin sequences of members of clade VI were not sequenced in the study of Fukami et
al. (2008) and are not available at NCBI. Hence, gene trees generated with clade VII will be
presented and referred to, mostly, for consistency.
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Figure 2 Phylogenetic trees of β-Tubulin. The phylogenetic trees of β-tubulin gene showing (A) the un-
rooted tree of Euphyllia, Fimbriaphyllia, Galaxea, and Ctenella; and (B) the gene tree of clade V with clade
VII as the outgroup. Bootstrap values for BI (black)/ML (red) are indicated before the nodes of each clus-
ter. # indicates a difference in topologies between the BI and ML gene trees. Species names in blue font
were analyzed herein for the first time. Distinct clusters in the tree and the clades are distinguished with
vertical lines and labeled accordingly.

Full-size DOI: 10.7717/peerj.4074/fig-2

A summary of the gene trees, gene lengths, and the model used to generate the tree is
provided in Table S2. All our gene trees exhibited fourmajor groups within the Euphylliidae
with the available sequences (Figs. 1 and 2). Euphyllia ancora, E. divisa, E. paraancora,
E. paradivisa, and E. yaeyamaensis were consistently clustered together (group V-A) and
diverged from the same ancestor as G. fascicularis (group V-B), which formed a separate
cluster of its own. All samples of E. glabrescens clustered together in group V-C, except for
one instance where an E. glabrescens sequence (AB441377) clustered under group V-A in
the β-tubulin gene tree (Fig. 2A). This may be accounted for by the multi-copy-nature of
the β-tubulin gene. It is possible that among the many copies of β-tubulin, the sequence
that is AB441377 is an ancient gene copy that may have similarities with the gene sequences
of group V-A. Gene introgression poses another possibility; however, this may not be
plausible because of the difference in mode of reproduction of E. glabrescens and members
of group V-A, which will be discussed further later. The cluster of E. glabrescens mainly
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Figure 3 Phylogenetic tree of the 3′-end of the cox1 gene. Bootstrap values of BI (black)/ML (red) trees
are indicated before the nodes of the clusters. Major groups in the tree are represented by V-A and V-C.
Group V-A has five sub-groups (V-A1 to V-A5). All groups were distinguished with vertical lines and la-
beled chronologically. Species names in blue font were analyzed herein for the first time.

Full-size DOI: 10.7717/peerj.4074/fig-3

shares the same node with C. chagius, but the latter formed a group of its own that is highly
divergent from E. glabrescens (group V-D).

Among the 22 complete scleractinian mitochondrial genomes examined by Lin et al.
(2011), an extra 699 bp at the 3′-end of the cox1 gene was observed only in the whole
mitochondrial genome sequence of E. ancora (NC015641). This extra region of the cox1
gene was also found to occur in all samples of Euphyllia in the present study, but was
not found in G. fascicularis and has not yet been reported in any other member of the
Euphylliidae (clade V) as well as in other Scleractinia. Hence, a separate tree was generated
for the 3′-end of the cox1 gene to further examine the internal phylogeny within the genus
(Fig. 3). The gene tree generated from the 3′-end of the cox1 gene showed strong support
for two general clusters, groups V-A and V-C, which is congruent with gene trees of
β-tubulin, cytb, cox1, and the combined mitochondrial genes. More importantly, the gene
tree demonstrated finer clustering with high supporting values for five distinct sub-clusters
under group V-A. These sub-clusters were identified as E. ancora (V-A1), E. divisa (V-A2),
E. paraancora (V-A3), E. paradivisa (V-A4), and E. yaeyamaensis (V-A5). It was, however,
observed that one sample of E. ancora (JF825139) grouped in the sub-cluster of E. divisa
(V-A2). Euphyllia ancora and E. yaeyamaensis each have their own distinct group. Euphyllia
divisa, E. paraancora, and E. paradivisa, however, grouped separately from each other under
one major cluster.

DISCUSSION
Recalling the subgenus Fimbriaphyllia and Euphyllia
Veron & Pichon (1980) classified four Euphyllia species into two subgenera under the
subfamily Eusmilinae of the family Caryophylliidae. The two subgenera, namely
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Fimbriaphyllia and Euphyllia, respectively represented a dichotomy based on colony
structure. E. ancora and E. divisa, being flabello-meandroid in growth form were grouped
separately from E. glabrescens and E. cristata, which had a phaceloid growth form (Fig. 4A,
Table 1). Species within a subgenus were identified through polyp shapes as previous
classification schemes did not reportmicrostructure characteristics that distinguish between
species (Veron & Pichon, 1980; Table 1, Fig. 4A). In all the gene trees, the Euphyllia has
two distinct paraphyletic groups that are concordant with Fukami et al. (2008) and the
phylogenetic tree from the 3′-end of the cox1 of Euphyllia by Lin et al. (2011). Group
V-A represents the subgenus Fimbriaphyllia with the cluster of E. ancora and E. divisa,
while group V-C represents the subgenus Euphyllia with a cluster of E . glabrescens. The
paraphyly of the two groups with the original members of the subgenera retained in
their respective clusters calls for a proposal to elevate the subgenus Fimbriaphyllia to
genus. Consequentially, the proposal also calls for a revision of the previously established
dichotomy between Euphyllia and Fimbriaphyllia, when they were still subgenera, especially
since, based on phylogeny, Fimbriaphyllia gained new members. From here on, species
in group V-A will bear the genus name Fimbriaphyllia when they are referred to in the
succeeding discussion.

Revising the dichotomy between Euphyllia and Fimbriaphyllia
While the subgenera were eventually synonymized as Euphyllia, the dichotomy based on
colony structure was retained in the field guide of Veron (2000) as new species of Euphyllia
were discovered and added to the genus (Veron, 1990). The present gene trees for Euphyllia
still exhibit twomajor clusters as in the gene trees presented early on by Fukami et al. (2008)
and Lin et al. (2011). However, in contrast with the dichotomy of Veron & Pichon (1980)
and Veron (2000), the clustering of the phaceloid species of Fimbriaphyllia paraancora and
Fimbriaphyllia paradivisa with the Fimbriaphyllia group effectively refutes the dichotomy
based on colony structure. This finding is, in part, congruent with Lin et al. (2011), where
F. paraancora has already been observed to cluster with E. ancora and E. divisa. With the
inclusion of Euphyllia species which were not analyzed before, the gene trees now support a
dichotomy that is primarily determined by polyp shapes and polyp length instead (Fig. 4B).
Furthermore, the phaceloid species, F. paraancora (group V-A), F. paradivisa (group V-A),
andE. glabrescens (groupV-C), were found to originate fromdifferent ancestral nodes in the
family, suggesting that the phaceloid colony structure is a convergent trait. The clustering
of Fimbriaphyllia yaeyamaensis, a species with both phaceloid and flabello-meandroid
growth forms, with Fimbriaphyllia (group V-A) strengthens the dichotomy based on polyp
morphology.

Members of Fimbriaphyllia are now characterized with polyps that have projections
that are either anchor-shaped or branched (divided). These shapes are the bases of their
species names. Fimbriaphyllia ancora and F. paraancora have anchor-shaped polyps, while
Fimbriaphyllia divisa, F. paradivisa, and F. yaeyamaensis have branched (divided) polyps
(Fig. 4B). Polyps in the Fimbriaphyllia group are also significantly shorter compared with
polyps of the Euphyllia group. Polyp length, in this study, refers to the observed length
of the polyps when they are fully inflated. This means that, polyps of corals from the
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Figure 4 Dichotomous trees of Euphyllia and Fimbriaphyllia. (A) A dichotomous tree of Euphyllia
based on Veron & Pichon (1980) and Veron (2000). The species names in blue text are the original mem-
bers of the subgenera Euphyllia and Fimbriaphyllia (Veron & Pichon, 1980). The dichotomy corresponds to
the phaceloid and flabello-meandroid groups respectively, which Veron (2000) retained even with the syn-
onymy of the subgenera to Euphyllia and as new species (in black font) were added to the genus. (B) The
phylogenetic-based dichotomous tree, on the other hand, groups species according to polyp morphology
and reproductive traits. Photographs of the polyps while fully inflated were taken carefully on field so as
not to induce retraction. * species not analyzed in this study. # species with no known records of sexuality
or reproductive mode.

Full-size DOI: 10.7717/peerj.4074/fig-4

Fimbriaphyllia group are still shorter than the polyps of the Euphyllia group even when
they are fully inflated (Fig. 4B). Likewise, the length only refers to the regular polyps and
not to sweeper tentacles that are, naturally, capable of extending to extreme lengths (i.e.,
as far as it can extend until it comes in contact with the coral/s beside it) for the purpose
of defense. Euphyllia glabrescens (group V-C), on the other hand, has polyps that are aptly
characterized as long, club-shaped, and glabrous because of the lack of protrusions or
projections like branches or branchlets. Among species included in this study, this polyp
shape was observed only in E. glabrescens and may be diagnostic for group V-C.

Veron & Pichon (1980) classified E. cristata under the subgenus Euphyllia and Veron
(2000) classified E. paraglabrescens, together with E. cristata and E. glabrescens, with the
phaceloid group. We were unable to obtain samples of E. cristata, E. paraglabrescens, and
E. baliensis because of their rarity and limited range especially for E. paraglabrescens and
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E. baliensis, which are known to occur only in Japan (Veron, 1990) and Indonesia (Turak,
Devantier & Erdmann, 2012) respectively. Euphyllia cristata has the same polyp shape as
E. glabrescens, but it is distinct from E. glabrescens in having relatively shorter polyps and
an exsert primary septa, which can easily be observed when the polyps retract in the field.
Given the polyp shape and polyp length of E. cristata, we predict from our inferences from
the phylogeny presented here that E. cristata will cluster under group V-C. As the present
study is undergoing review, our prediction has been confirmed with the recently published
work of Akmal et al. (2017), that also made use of the same universal primers from Lin
et al. (2011), which were also utilized in the present study. Euphyllia paraglabrescens and
E. baliensis, on the other hand, are predicted to cluster with the Fimbriaphyllia group on
account of having short polyps.

Morphospecies in the Euphyllia and the Fimbriaphyllia and the
systematic hierarchy
The phylogeny of the 3′-end of the cox1 gene also supports two major groups (V-A and
V-C) that represent the two genera and the dichotomy based on polyp morphology. The
distinct clusters or subgroups in the gene tree were found to represent themorphospecies of
Euphyllia and Fimbriaphyllia. In the sub-groupings of the Fimbriaphyllia group (sub-groups
V-A1 to V-A5 in Fig. 3), species with flabello-meandroid colonies, except for F. divisa,
clustered separately from each other as in F. ancora and F. yaeyamaensis. Species with a
phaceloid colony structure, as in F. paraancora and F. paradivisa, each formed their own
distinct group, but they were clustered together with the flabello-meandroid, F. divisa. In
the major cluster of group V-A, F. yaeyamaensis and F. ancora are at the base of the group,
which may mean that the phaceloid species in the group diverged later than the flabello-
meandroid species. It appears that species with the same polyp shape have a phaceloid or
a flabello-meandroid counterpart. For example, F. ancora, a flabello-meandroid species
with anchor-shaped polyps, has F. paraancora as its phaceloid counterpart. Fimbriaphyllia
yaeyamaensis, a species with branched polyps, has both flabello-meandroid and phaceloid
colony structures. As suggested in the tree, the flabello-meandroid counterpart of F.
yaeyamaensis with branched polyps may be F. divisa, and the phaceloid counterpart is
F. paradivisa. However, F. divisa was also found to have both flabello-meandroid and
phacelo-flabellate or phaceloid corallite structures. Our findings support the possibility
that Fimbriaphyllia is still a young group and that introgression may still be occurring
amongst its members; hence, reciprocal monophyly may not have been fully achieved yet.
This phenomenon may also explain the grouping of E. ancora (JF825139) from Taiwan
with F. divisa from the Philippines. Nevertheless, among the markers we used, the 3′-end of
the cox1 gene exhibited the best resolution as evidenced by the distinct clusters of species of
the Euphyllia and the Fimbriaphyllia group in the gene tree. Apart from the capability to the
resolve species phylogeny in Euphyllia and Fimbriaphyllia, as predicted by Lin et al. (2011),
the ability to tease-out sequences up to the species level and the uniqueness of the gene
region to species of these genera shows potential for barcoding. So far, these characteristics
are uncommon for the gene markers tested for Scleractinia; furthermore, it was established
in the study of Huang et al. (2008) that the mitochondrial gene of anthozoans is slowly

Luzon et al. (2017), PeerJ, DOI 10.7717/peerj.4074 14/38

https://peerj.com
http://www.ncbi.nlm.nih.gov/nuccore/JF825139
http://dx.doi.org/10.7717/peerj.4074


evolving and is not suitable for the purposes of DNA barcoding. The 3′-end of the cox1
gene of Euphyllia and Fimbriaphyllia may be an exception to the rule.

The phylogeny of the 3′-end of the cox1 gene shows that it not only supports the
dichotomy based on polyp morphology, but it also shows the combination of polyp and
skeletal traits that are relevant in distinguishing species of Fimbriaphyllia and Euphyllia
(Fig. 4B). As E. glabrescens is the only member of the Euphyllia group, so far as our study
supports, tubular polyps and phaceloid colony structure is a combination of traits that have
been found to be unique to the species. Euphyllia cristata shares the same combination
of traits but its septal morphology has been described to be distinct from E. glabrescens
(Veron & Pichon, 1980; Table 1). The finer clustering supporting the morphospecies and
the distinction between E. glabrescens and E. cristata at the miscrostructure level opens the
possibility that there may be microstructures that may also be able to diagnose species of
Fimbriaphyllia.

External relationships of the Euphyllia and Fimbriaphyllia with the
new members of Euphylliidae (clade V)
Veron & Pichon (1980) and Veron (2000) described features of the Euphylliidae that
we found to be shared features with G. fascicularis and C. chagius. The euphylliids,
G. fascicularis, and C. chagius, are usually dome-shaped and massive, and yet coralla
are light-weight with a blistery coenosteum. Colony structures of the Euphylliidae include
phaceloid, flabello-meandroid, and meandroid. Septa are round or lobe-shaped with
granulated or glabrous sides and margins. Walls are septothecal or parathecal. Galaxea
fascicularis (Veron & Pichon, 1980) and C. chagius (Sheppard, Dinesen & Drew, 1983) also
have granulated septa with variable costae that may be striated or ornamented with lobes
or spines.

The clustering of G. fascicularis and C. chagius under the family Euphylliidae might not
be surprising to some systematists. Previous classification schemes and species descriptions
already suggested that Galaxea and Ctenella be grouped with Euphyllia. In the family
tree of Scleractinia, Veron (2000) showed that the family Euphylliidae diverged from the
family Oculinidae. In the same family tree, Oculinidae was shown to be grouped with
the family Meandrinidae under the suborder Meandrina, where C. chagius was classified.
Vaughan & Wells (1943) described Euphyllia and Ctenella together under the subfamily
Eusmilinae of the Caryophylliidae (suborder Caryophyllida) on the bases of having exsert
septa, intratentacular budding, septothecal walls, and a brown polyp color. Sheppard,
Dinesen & Drew (1983) also suggested a revision of Meandrinidae stating that Ctenella
be grouped under the Eusmilinae on the basis of having ‘‘smooth septal margins and a
light-weight coralla’’. Galaxea fascicularis and C. chagius also have fleshy polyps that are
usually extended during daytime. Sweeper tentacles and extracoelomic digestion were
also documented in Euphyllia, Galaxea, and C. chagius (Sheppard, Dinesen & Drew, 1983;
Hidaka, 1985; Borneman, 2001). While C. chagius is meandroid, which is already a known
trait of the Euphylliidae, the inclusion of Galaxea adds a plocoid growth form to the family
(clade V).
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The affinity of G. fascicularis and C. chagius with euphyllids is, so far, consistent with the
dichotomy based on polyp morphology. Galaxea fascicularis has short polyps as in species
of Fimbriaphyllia, while C. chagius has the same long and tubular polyps as in E. glabrescens.
Despite the shared characteristics of C. chagius with the Euphylliidae, C. chagius is highly
divergent in the Euphylliidae (clade V). This divergence may indicate differences in the
skeletal morphology of C. chagius with Euphyllia and Fimbriaphyllia. Galaxea fascicularis,
Euphyllia, and Fimbriaphyllia species usually have three to four or sometimes five orders
of septa and the columella is often weakly developed or absent (Veron & Pichon, 1980;
Veron, 1990; Veron, 2000). Ctenella chagius, on the other hand, is characterized by two
orders of septa and the presence of a lamellar or continuous columella (Sheppard, Dinesen
& Drew, 1983). The high divergence may also be attributed to the limited geographical
range of C. chagius as it has only been reported to occur locally in the Chagos Archipelago
of the Indian Ocean (Sheppard, Dinesen & Drew, 1983). There have been no new records
of the species elsewhere to date (Sheppard, Turak & Wood, 2008; Carpenter et al., 2008).
In relation to having restricted species ranges, the systematic positions of Gyrosmilia and
Montigyra, monotypic genera of the family Meandrinidae that are found only in the Indian
Ocean, have not yet been analyzed from the molecular perspective. All our samples of
Euphyllia, Fimbriaphyllia, and Galaxea are from the Pacific Ocean, but their geographic
ranges extend until the Indian Ocean (Veron, 2000). Hence, the inclusion of samples of
euphylliids from the Indian Ocean may strengthen the phylogeny presented here. On the
other hand, there is a possibility that Indian Ocean specimens may also show divergence
between populations of the same species collected from the Pacific and Indian Oceans
(Fukami et al., 2004) as in Favites complanata, Dipsastraea rotumana, and D. pallida (clade
XVII) (Arrigoni et al., 2012; Budd et al., 2012).

Evolution of reproductive traits in the Euphylliidae (clade V)
Sexuality and modes of reproduction are emergent patterns that were also perceived in
the clustering in the gene trees. Fimbriaphyllia ancora, F. divisa, and F. paraancora (group
V-A), are mainly gonochoric (dioecious) broadcast spawners (Borneman, 2003; Twan,
Hwang & Chang, 2003; Twan et al., 2005; Twan et al., 2006; Fan et al., 2006). To date, there
is no scientifically published information about the reproductive mode of F. paradivisa
and F. yaeyamaensis, but we predict that they are also gonochoric broadcast-spawners as
in other species of Fimbriaphyllia. Euphyllia glabrescens (group V-C), on the other hand, is
known to be a hermaphroditic brooder (Richmond & Hunter, 1990; Baird, Guest & Willis,
2009). Sexuality and reproductivemodes are still unknown forE. cristata,E. paraglabrescens,
and E. baliensis. Galaxea fascicularis was first reported to be a hermaphroditic broadcast-
spawner (Babcock et al., 1986; Shlesinger, Goulet & Loya, 1998) but was later reported to
be a pseudo-gynodioecious broadcast-spawner instead (Guest et al., 2005; Baird, Guest
& Willis, 2009). Keshavmurthy et al. (2012) were able to resolve the sexuality of the
species by showing that G. fascicularis is gynodioecious rather than pseudo-gynodioecious.
Being gynodioecious is characterized by the existence of female colonies separate from
hermaphroditic colonies that produce viable egg and sperm (Keshavmurthy et al., 2012).
Pseudo-gynodioecious, on the other hand, is essentially the same, but hermaphroditic
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colonies are thought to produce non-viable eggs, hence ‘‘pseudo’’ (Guest et al., 2005; Baird,
Guest & Willis, 2009). The gynodioecious type of sexuality has not yet been documented
in other corals and is, to date, unique to G. fascicularis (Keshavmurthy et al., 2012). The
sexuality of G. fascicularis, being gynodioecious, appears to be an intermediate or a
‘‘transitional state’’ between Fimbriaphyllia (dioecious) and Euphyllia (hermaphroditic),
which was also mentioned by Keshavmurthy et al. (2012). This claim is supported by our
gene trees, and it may explain why G. fascicularis is in its own cluster, but its close affinity
to Fimbriaphyllia is based on being a broadcast-spawner. Unfortunately, the sexuality and
mode of reproduction of C. chagius has not yet been documented, but as the pattern in
our gene tree suggests, C. chagius is hypothesized to be a hermaphroditic brooder like
E. glabrescens.

The gene trees of Fukami et al. (2008) clustered Euphyllia, Galaxea, and Ctenella, which
are now new members of the family Euphylliidae (clade V; Fukami et al., 2008). The
general topology in our gene trees is concordant with the gene trees of Fukami et al.
(2008) and Lin et al. (2011) even with the inclusion of F. yaeyamaensis, F. paraancora, and
F. paradivisa. The inclusion of other species of Euphyllia in the phylogenetic reconstruction
of the Euphylliidae led to the recognition of the former subgenera in the Euphyllia, which
called for a proposal to recall and elevate Fimbriaphyllia as a genus. The phylogeny of
Euphyllia and the Fimbriaphyllia shows that systematics need not be limited to skeletal
traits and the distinction between morphospecies highlights the importance of combining
polyp morphology and reproductive traits with skeletal morphology, which are of higher
systematic value.

Systematic account
Family Euphylliidae Alloiteau, 1952

Euphylliidae Alloiteau, 1952
Euphyllidae Veron, 2000

Species of the family Euphylliidae have coralla that are massive, yet light-weight, with
corallites that have thin walls and meandroid, plocoid, flabello-meandroid, or phaceloid
formations. The septa are granulated and have shapes that vary between lobed, square, or
angular. There are three to five orders of septa depending on the species. The first order septa
are usually exsert. Columellae are absent in the calices of Euphyllia and Fimbriaphyllia. The
costae occur as fine striations or as a series of thickened lobes that may also have spines. The
series of thickened lobes may form rings around phaceloid corallites. These may indicate
the previous height of the branch. These thickenings are also found in flabello-meandroid
colonies. Walls are septothecal or parathecal. The coenosteum is generally smooth but it
may also be blistery and may be lined with longitudinal ridges.

Species of the family Euphylliidae are well-known for their fleshy and colourful polyps,
which makes them easily recognizable in the field. Tentacles have varied shapes, which may
be long and glabrous or short with projections that may be branched or anchor-shaped.
Sweeper tentacles have been observed in aquaria and in the field in a number of species.
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Genus Catalaphyllia Wells, 1971
Genus Ctenella Matthai, 1928
Genus Euphyllia Dana, 1846
Genus Fimbriaphyllia Veron & Pichon, 1980
Genus Galaxea Oken, 1815
Genus Gyrosmilia Milne Edwards & Haime, 1851
GenusMontigyra Matthai, 1928
Genus Simplastrea Umbgrove, 1939

Genus Euphyllia Dana, 1846

Euphyllia Dana, 1846;Matthai, 1928; Veron, 2000
Leptosmilia Milne Edwards & Haime, 1848
Botryphyllia Shirai, 1980
Euphyllia (Euphyllia) Veron & Pichon, 1980

Characters. Species of Euphyllia are characterized by phaceloid corallite formations. Septa
are granulated, and may have a lobed or angular shape. The septa are in four to five orders
and the first order septa are typically exsert. Septal margins are generally smooth but have
areas with fine serrations when examined up-close. Costae vary from fine striations to small
and short thickened lobes, sometimes, with spines. Polyps are fleshy, long, and glabrous
with knob-like tips that are extended during the day.
Type species: Euphyllia glabrescens (Chamisso & Eysenhardt, 1821)

Euphyllia glabrescens (Chamisso & Eysenhardt, 1821)
(Figs. 5A–5E)

Caryophyllia glabrescens Chamisso & Eysenhardt, 1821
Caryophyllia angulosa Quoy & Gaimard, 1824
Euphyllia glabrescens Nemenzo, 1960; Veron & Pichon, 1980; Veron, 2000
Euphyllia (Euphyllia) glabrescens (Chamisso & Eysenhardt, 1821)
Euphyllia costulata (Milne Edwards & Haime, 1849)
Euphyllia gaimardi (Milne Edwards & Haime, 1849)
Euphyllia laxa Gravier, 1910
Euphyllia rugosa Dana, 1846
Euphyllia striata (Milne Edwards & Haime, 1849)
Euphyllia turgida Dana, 1846
Leptosmilia costulata Milne Edwards & Haime, 1849
Leptosmilia gaimardi Milne Edwards & Haime, 1849
Leptosmilia glabrescens (Chamisso & Eysenhardt, 1821)
Leptosmilia rugosa Dana, 1846
Leptosmilia striata Milne Edwards & Haime, 1849
Lobophyllia glabrescens (Chamisso & Eysenhardt, 1821)

Material studied: (P1L01988), Clubhouse, Talim Bay, Lian, Batangas, Philippines, coll.
Dec. 2007, <5.0 m (Figs. 5A–5D); (P1L02018), Clubhouse, Talim Bay, Lian, Batangas,
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Philippines, coll. Apr. 2008, <5.0 m (Fig. 5E); (P1L02011, P1L02017), Clubhouse, Talim
Bay, Lian, Batangas, Philippines, coll. Apr. 2008 and Jul. 2008, <5.0 m.
Description. Colonies have phaceloid corallite formation with thin walls (Fig. 5A). Calice
diameters range from 15.80 mm to 38.25 mm and branch diameters range from 12.90 mm
to 27.35 mm (Fig. 5B). Branches have heights that range from 41.25 mm to 51.45 mm
from the main point of branching. Septa occur in four to five orders. They generally have a
lobed, sometimes angular, shape. For example, the first order septa may form a ridge first
that is approximately 80 to 90◦ to the edge of the wall (Fig. 5C). The ridge will then turn
down sharply as it reaches the center of the corallite and then plunge steeply giving the
septa a square or angular shape when the corallite is viewed at eye-level. Sides of the septa
are granulated. The septal margins are generally smooth but have areas with fine serrations
when examined up-close. Columella are absent. Costae are in the form of fine striations
that make the outer wall look smooth (Fig. 5D). Costae of this kind are observed especially
for the corallites located at the periphery of the colony and those that have long branches.
Corallites in the inner part of the colony and those that are in the process of budding or
have just successfully budded exhibit costae in the form of small, thickened lobes that may
have spines (Fig. 5C). A series of adjacent lobes may form a thickened ring around the
periphery of the corallite (Fig. 5C). As the corallite increases in height, the ring remains
and the corallite builds a coenosteum and a new ring of costae forms above the previous
ring. These thickened rings may be observed throughout the length of the branch and may
indicate the previous height of the branch. The coenosteum is generally smooth with a few
longitudinal ridges that lightly run across the branches (Fig. 5E).

Live colonies have polyps that are fleshy, long, and glabrous with knob-like tips that are
fully extended during the day. Observed polyp colors include brown and bright, fluorescent
green. The knob-like tips are white in color. Colonies possess sweeper tentacles for defense.
Colonies have a limited distribution range in the reef. They are found on the shallow parts
of the reef slope covering the depths of around 3.0 m to 6.5 m. The species has also been
observed to thrive in silty areas or reefs with turbid waters.
Comparisons with related taxa. The coralla of E. glabrescens are similar to those of the
phaceloid species of Fimbriaphyllia but differ in calice diameter, branch height, and costae
type. Colonies of Fimbriaphyllia have taller colonies compared with E. glabrescens. Calices
of Fimbriaphyllia paraancora are larger than E. glabrescens, while calices of Fimbriaphyllia
paradivisa are smaller than E. glabrescens. Polyps of E. glabrescens are significantly longer
than the fully extended polyps of Fimbriaphyllia species. E. glabrescens has glabrous polyps,
while Fimbriaphyllia species havemix types of polyp shapes (i.e., branched, anchor-shaped).

Living E. glabrescens, especially with fully extended polyps, may also be mistaken for
Heliofungia actiniformis. The polyps of both species are long and glabrous, with knob-like
tips. H. actiniformis, however, is solitary and free-living with bigger polyps that exhibit
dark meandering lines that radiate from the center of the colony to the edge of the coral.
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Figure 5 Skeletal morphology of Euphyllia and Fimbriaphyllia species. Euphyllia glabrescens exhibit (A) phaceloid corallite formation with (B)
round to oval calices bearing (C) four to five orders of septa. Septa may be lobed or angular (upper arrows). (D) Costae are fine striations and the
(E) wall may have (arrows) ridges found throughout the length of the branch. Fimbriaphyllia ancora exhibit (F) flabello-meandroid corallite forma-
tion with (G) valleys bearing two to three orders of septa. Arrows show curling of the septa along the center of the valley. (H) Septa are steep and
lobe-shaped. (I) Arrows point to costae, which may be ridges or bumps that form along the meandering parts of the wall. (J) Fine striations (ar-
rows), on the other hand, form along the walls of straight valleys giving the wall a smooth appearance Fimbriaphyllia divisa exhibit phaceloid or
phacelo-flabellate and (K) flabello-meandroid colonies with (L) valleys bearing three to four orders of septa. (M) Septal angles are less steep com-
pared with F. ancora and may exhibit (upper arrow) the lobe shape and (two lower arrows) the angular shape. (N) The arrows point to the costae,
which are lobe or blade-like protuberances that are concentrated on the upper part of the wall. (O) In some specimens, the wall may be smooth.
Fimbriaphyllia yaeyamaensis exhibit both phaceloid and (P) flabello-meandroid colonies with (Q) valleys having three to four orders of septa. Ar-
rows point to walls that form across valleys. (continued on next page. . . )

Full-size DOI: 10.7717/peerj.4074/fig-5
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Figure 5 (. . .continued)
(R) Septal angles are low especially on the flaring side of the meandering valley, while angles are steep on the opposite side (arrow on the left). (S)
Arrow points to costae in the form of long prominent ridges. (T) Some specimens have a concentration of the costae on the upper part, near the
corallite, and the rest of the wall is smooth. Fimbriaphyllia paraancora exhibit the (U) phaceloid corallite formation. (V) Calices are wide with round
to oval shape bearing four orders of septa. Arrows point to the wavy curves along the septal slope. (W) Septa steeply curve down to the center of the
corallite making the calice deep. (X) Costae are in the form of ridges or lobes. The latter may be in series forming a thickened ring (arrow) near the
calice. (Y) Arrows point to thickenings along the branch, which may indicate the previous height of the branch. Fimbriaphyllia paradivisa exhibit the
(Z) phaceloid corallite formation. (AA) Calices are small bearing three orders of septa. (AB) Septa are generally lobe-shaped but some may have an
angular shape. (AC) Costae are in the form of ridges or (AD) small lobes, which are widely-spaced from each other along the branch.

Occurrence: Philippines (Veron & Hodgson, 1989; this publication); India (Pillai, 1971);
Taiwan (Chen et al., 2005); Malaysia (Mazlan et al., 2005; Khodzori et al., 2015; Akmal et
al., 2017; Australia (Griffith, 2004), Japan (Veron, 1990).

Genus Fimbriaphyllia Veron & Pichon, 1980

Euphyllia Dana, 1846 (in part); Veron, 2000
Euphyllia (Fimbriaphyllia) Veron & Pichon, 1980

Characters.Coralla of the genus have phaceloid or flabello-meandroid corallite formations.
The septa are granulated, typically exsert, and have three or four orders. The shape of the
septa is generally lobe-shaped and/or angular, depending on the species. The margins
appear to be smooth but may have fine serrations when examined up-close. Columella are
absent. Costae may be in the form of fine striations or prominent ridges that extend down
the wall from the rim of the corallite. The coenosteum may be smooth or blistery. Ridges,
that may be prominent or light, which may, in some species, run down the length of the
wall.

Polyps are fleshy and are fully extended during day time but easily retract upon contact.
They are short relative to the polyps of Euphyllia species, even when fully extended. The
polyps of Fimbriaphyllia have a variety of shapes, which include anchor, kidney, bean,
and branched. Sweeper tentacles have been observed in a number of species in the group.
Species are widely distributed along the reef slope.
Taxonomic notes. Veron & Pichon (1980) introduced the subgenera Fimbriaphyllia and
Euphyllia under the genus Euphyllia. They did not designate a type for the new taxon
Euphyllia (Fimbriaphyllia), but classified two new species under that subgenus, Euphyllia
(Fimbriaphyllia) ancora Veron & Pichon (1980) and Euphyllia (Fimbriaphyllia) divisa Veron
& Pichon (1980). They also mentioned Euphyllia fimbriata (Spengler, 1799) as a candidate
species for the new subgenus because of its skeleton morphology, but they considered its
name a nomen dubium because the structure of the polyps was not recorded and because
the type locality was unknown. These are not sufficient reasons to declare a species name
to be a nomen dubium as long as the type is not lost, but the whereabouts of the type
was not discussed. According to Wells (1971) one of the types of Euphyllia plicata Milne
Edwards & Haime, 1848 was illustrated by Matthai (1928) as Euphyllia fimbriata. Both
species names were placed in the synonymy of Catalaphyllia plicata (Milne Edwards &
Haime, 1849) by Wells (1971). According to Veron & Pichon (1980) this was not correct
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and they considered the specimen illustrated by Matthai (1928) as a representative of the
Euphyllia (Fimbriaphyllia) group and they redesignated Pectinia jardinei Saville-Kent, 1893
as the type species of Catalaphyllia Wells, 1971.

The two subgenera, Euphyllia and Fimbriaphyllia, were synonymized by Veron (2000)
as Euphyllia. Molecular analyses show that Euphyllia ancora and Euphyllia divisa, those
that were originally classified by Veron & Pichon (1980) under the subgenus Euphyllia
(Fimbriaphyllia) cluster together. This suggests that Fimbriaphyllia may be recognized as a
genus separate from Euphyllia, which now necessitates a revision and the designation of a
type species for the new genus.
Type species: Fimbriaphyllia ancora (Veron & Pichon, 1980). Designated herein.

Fimbriaphyllia ancora (Veron & Pichon, 1980)
(Figs. 5F–5J)

Euphyllia (Fimbriaphyllia) ancora Veron & Pichon, 1980
Euphyllia ancora Veron, 2000

Material studied: (P1L02170), Reyna, Talim Bay, Lian, Batangas, Philippines, coll. Apr.
2010, 4.0 m (Figs. 5F, 5G, 5I); (P1L02184), Outer Talim, Talim Bay, Lian, Batangas,
Philippines, coll. Apr. 2010, 10.0m (Figs. 5H, 5J); (P1L01998), Talim Inner, Talim Bay,
Lian, Batangas, Philippines, coll. Jan. 2008, <5.0 m; (P1L02164, P1L02167), Reyna, Talim
Bay, Lian, Batangas, Philippines, coll. Apr. 2010, 6.0 m; (P1L02170), Layag-Layag, Talim
Bay, Lian, Batangas, Philippines, coll. Apr. 2010, 4.0 m.
Museum Repository: Coral Museum, The Marine Science Institute, University of the
Philippines
Description. Corallite formation is flabello-meandroid (Fig. 5F) with valley widths that
range from 7.45 mm to 19.00 mm in larger colonies and 5.70 mm to 15.40 mm in smaller
colonies. The length of the valley ranges from 34.50 mm to 100.80 mm from the common
point of divergence with other valleys among the larger specimens. Septa are granulated
and generally lobe-shaped. There are two to three orders of septa with the lower orders
arranged in between the first order septa (Fig. 5G). The first order septa are typically exsert.
The width of the septa from the wall to the valley center ranges from 4.90 mm to 14.30
mm in larger specimens and 4.30 mm to 7.25 mm in a smaller colony. Septa, especially
along the straight valleys of the corallum, have steep angles ranging from 37 o to 64 o from
the horizontal plane of the valley (Fig. 5H). Septa that are found along the meandering
parts of the corallum may have lower angles. The septa plunge steeply towards the center
of the valley with its edge curling parallel to the valley (Fig. 5G). Columella are absent.
The outer wall varies from being rough (Fig. 5I) or smooth depending on the form of the
costae (Fig. 5J). The costae may be in the form of longitudinal ridges and round bumps
(Fig. 5I) or fine striations (Fig. 5J). The ridges are perpendicular to the upper edge of the
wall and may extend down the height of the wall. Fine striations form along the wall of
non-meandering valleys while the ridges form along the wall of the meandering parts.

Live colonies have fully extended polyps during the day. They exhibit short and fleshy
polyps that take on the shape of anchor, kidney, or bean. The polyps are typically dark
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green in color with light-green tips but variations of brown stalks with white tips, or pink
stalks with light pink tips have also been encountered on field. A branching variant of the
anchor-shaped polyps has also been observed in situ but is rare. The species also possess
sweeper tentacles.

F. ancora colonies are distributed all over the reef from the reef edge, with a depth of
60m, to the shallow parts of the reef crest with a depth of 5m or less. Colonies that inhabit
the deeper parts of the reef were found in silty bottoms, while those in the reef slopes may
sometimes be found sheltered in concavities. Colonies found in the silty parts of the reef
are not attached to the substrate and can easily be collected.
Comparison with related taxa. F. ancora colonies have the same flabello-meandroid
formation as Fimbriaphyllia divisa and Fimbriaphyllia yaeyamaensis. F. ancora has been
found to have round or oval-shaped septa that are similar to F. divisa. However, F. ancora
has significantly steeper septal slopes compared with F. divisa. F. yaeyamaensis has less
steep slopes with broad, square-shaped septa as opposed to the steep, round or oval-shape
septa that is characteristic of F. ancora. F. ancora has anchor-shaped polyps while F. divisa
has branched polyps and F. yayamaensis has branched polyps with branchlets.

F. ancora shares similarities with Catalaphyllia and Plerogyra sinuosa. Catalaphyllia has
wider V-shaped valleys compared with F. ancora. Septa of Catalaphyllia gradually plunge
into the center of the valley from the wall, while the septa of F. ancora would flare into
a lobe shape first before plunging steeply into the center of the valley. Septa of F. ancora
are also more exsert than Catalaphyllia. P. sinuosa, septa are significantly more exsert than
those of F. ancora. The latter’s septa are also widely spaced and not as ordered as in P.
sinuosa.
Taxonomic notes. The two original syntypes of Euphyllia (Fimbriaphyllia) are Euphyllia
ancora and E. divisa. The designation of E. ancora as the type species of the genus
Fimbriaphyllia is based on its polyps having an older historical record than E. divisa.
Veron & Pichon (1980) noted under the description of E. ancora that the species has been
illustrated by Saville-Kent (1893) as Rhipidogyra. This is probably the oldest illustration of
the species. In addition, although both E. ancora and E. divisa are common within their
respective distribution ranges, E. ancora is more widespread than E. divisa (Veron, 2000).
Occurrence: Philippines (Veron & Hodgson, 1989; this publication), Taiwan (Chen et al.,
2005); Malaysia (Mazlan et al., 2005; Khodzori et al., 2015; Akmal et al., 2017), Australia
(Griffith, 2004; Richards & Beger, 2013), Japan (Veron, 1992)

Fimbriaphyllia divisa (Veron & Pichon, 1980)
(Figs. 5K–5O)

Euphyllia (Fimbriaphyllia) divisa Veron & Pichon, 1980
Euphyllia divisa Veron, 2000

Material studied: (P1L02172), Reyna, Talim Bay, Lian, Batangas, Philippines, coll. Apr.
2010, 7.9 m (Figs. 5K, 5O); (P1L02043) Clubhouse, Talim Bay, Lian, Batangas, Philippines,
coll. Apr. 2008, <5.0 m (Fig. 5L); (P1L02034), Clubhouse, Talim Bay, Lian, Batangas,
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Philippines, coll. Apr. 2008, <5.0 m (Fig. 5M); (P1L02042) Clubhouse, Talim Bay, Lian,
Batangas, Philippines, coll. Dec. 2007, <5.0 m (Fig. 5N); (P1L02177), Reyna, Talim
Bay, Lian, Batangas, Philippines, coll. Apr. 2010, 7.4 m; (P1L02181), Outer Talim, Lian,
Batangas, Philippines, coll. Apr. 2010, 10.5 m; (P1L02183), Outer Talim, Lian, Batangas,
Philippines, coll. Apr. 2010, 10 m.
Museum repository: Coral Museum, The Marine Science Institute, University of the
Philippines
Description. The colonies may have a corallite formation that is flabello-meandroid
(Fig. 5K) or phaceloid to phacelo-flabellate with short valleys that exhibit a meandering
pattern. For example, specimen P1L02172 has a length, width, and height of approximately
90 mm, 67 mm, and 55 mm. Lengths of valleys in all specimens studied range from 18.95
mm to 47.95 mm and valley widths range from 4.70 mm to 18.95 mm. Septa occur in three
to four orders in specimens with widths that range from 5.30 mm to 18.15 mm (Fig. 5L).
The first order septa are typically exsert. Septa are granulated and shapes may be lobed,
square, or angular, with smooth margins. Some specimens show a mix of the lobed and
square-shaped septa, while other specimens exhibit an angular shape (Fig. 5M). The septa
have relatively low angles that range from 12◦ to 55◦ from the horizontal plane of the valley
(Fig. 5M). Columella are absent. The costae are lobed or blade-like protuberances that are
mostly found at upper edge of the wall (Fig. 5N); otherwise the wall is smooth (Fig. 5O).
A few of these protuberances are also found scattered in other parts of the wall away from
the upper edge; otherwise, the wall is smooth.

Polyps are branched with knob-like tips that are fully extended during day time. They
are typically translucent but may also be fleshy. Polyp color is commonly bright green or
brown and the knob-like tips of the branches are usually white or bright green. The general
appearance of the polyps is the basis for the common name ‘‘frogspawn’’. Colonies typically
co-occur with F. ancora colonies along the reef slope. However, a majority of the F. divisa
colonies are usually found in the deeper parts of the slope near the reef edge. They have
been observed to thrive in silty and turbid environments. Those found in silty substrates
are not usually attached or are weakly attached and are easy to collect.
Comparisons with related taxa. Polyps of F. divisa resemble F. yaeyamaensis in having
branched polyps. Branches in the polyps of F. divisa are longer and widely-spaced in
comparison with F. yaeyamaensis, which has branchlets that crowd along the main branch.
Translucent polyps are a characteristic of F. divisa while, F. yaeyamaensis has fleshy,
dark-colored polyps .The phacelo-flabellate coralla of F. divisa may be similar to the
flabello-meandroid coralla of F. ancora and F. yaeyamaensis. However, their valleys are
shorter compared with the valleys of F. ancora and F. yaeyamaensis. Septal angles of
F. divisa are lower than F. ancora. F. ancora has the steepest angles amongst the three,
followed by F. divisa, and then by F. yaeyamaensis.
Occurrence: Philippines (Veron & Hodgson, 1989; this publication), Malaysia (Mazlan et
al., 2005; Khodzori et al., 2015), Australia (Griffith, 2004), Japan (Veron, 1992)

Fimbriaphyllia yaeyamaensis (Shirai, 1980)
(Figs. 5P–5T)
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Botryphyllia yaeyamaensis Shirai, 1980
Euphyllia yaeyamaensis (Shirai, 1980)

Material studied: (P1L02036), Clubhouse, Talim Bay, Lian, Batangas, Philippines, coll.
Apr. 2008, <5 m (Figs. 5P, 5Q, 5S); (P1L02208), Clubhouse, Talim Bay, Lian, Batangas,
Philippines, coll. May 2010, 11.4 m (Figs. 5R, 5T); (P1L02037, P1L02038), Clubhouse,
Talim Bay, Lian, Batangas, Philippines, coll. Apr. 2008, <5 m; (P1L02186), Outer Talim,
Lian, Batangas, Philippines, coll. Apr. 2010, 17 m.
Museum repository: Coral Museum, The Marine Science Institute, University of the
Philippines
Description. Colonies may have a flabello-meandroid, phaceloid or phacelo-flabellate
corallite formation. Colonies have short valleys with lengths that range from 24.85 mm
to 87.55 mm with valley widths that range from 6.20 mm to 25.10 mm. Walls have been
observed to form across valleys in specimens with longer valley lengths (Fig. 5Q). There
are three orders of septa (Fig. 5Q) that primarily have square or angular shape with sharp
or round corners (Fig. 5R). The lobe shape may still be observed in some specimens but
a majority of the septa are angular in shape. Widths from the edge of the wall to the
valley center range from 4.80 mm to 21.90 mm. The sides of the septa are granulated. The
margins, generally, have a smooth appearance but may exhibit sharp corners down the
slope. Septa may have relatively steep or low angles that depend on their position along the
meandering valleys. Septa along the curved, round, or flaring sides of the valley have low
angles compared with the septa that are directly on the opposite side and along straight
valleys (Fig. 5R). Septal angles range from 8◦ to 55◦ (Fig. 5R). Columella are absent. The
costae are in the form of long, prominent ridges that line the height of the wall (Fig. 5S).
In some specimens, the costae are found only near the valleys or the upper part of the wall
and the rest of the wall is smooth (Fig. 5T).

Live colonies have polyps with branchlets with knob-like tips. The branchlets are short
and may be crowded along the main branch. Polyps are fleshy and are typically colored
bright green or lime with white tips. Colonies are distributed along the shallow to the deep
parts of the reef slope and co-occur with F. ancora and F. divisa.
Comparison with related taxa. Live colonies of F. yaeyamaensis resemble F. divisa. Polyps
of F. divisa are translucent and the branches are usually long and widely-spaced, while
colonies of F. yaeyamaensis have fleshy polyps with branchlets that crowd along the main
branch. Flabello-meandroid colonies of F. yaeyamaensis have similarities with skeletons
of F. ancora and flabello-meandroid skeletons of F. divisa. F. yaeyamaensis has lower
septal angles compared with F. ancora and F. divisa. Walls forming across the valleys of F.
yaeyamaensis are also unique to the species.
Occurrence: Philippines (Veron & Hodgson, 1989; this publication), Malaysia (Mazlan et
al., 2005), Japan (Veron, 1992)

Fimbriaphyllia paraancora (Veron, 1990)
(Figs. 5U–5Y)
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Euphyllia sp.2 Veron & Hodgson, 1989
Euphyllia paraancora Veron, 1990; Veron, 2000

Material studied: (P1L02025),Malilnep, Bolinao, Pangasinan, Philippines, coll. May, 2008,
<5.0 m (Figs. 5U, 5V, 5Y); (P1L02021), Malilnep, Bolinao, Pangasinan, Philippines, coll.
May, 2008, <5.0 m (Figs. 5W, 5X).
Museum repository: Coral Museum, The Marine Science Institute, University of the
Philippines
Description. Colonies exhibit a phaceloid corallite formation (Fig. 5U). The calices have
diameters that range from 10.94 mm to 36.21 mm (Fig. 5V). Branch heights range from
68.29 mm to 90.62 mm from the main point of branching. Branches are wider near the
calice and in parts along the branch where the costae are thicker. Calices are round to
oblong (Fig. 5V). There are four orders of septa arranged with the second and third order
in between the first order septa (Fig. 5V). The septa are lobed or are angular in shape and,
generally, have smooth margins. Occasional wavy curves may be observed along the septal
slope (Fig. 5V). The septa are not as exsert as in the septa of F. ancora. The septa curve
down the center of the corallite creating a depression. Calices are deep and columella are
absent (Fig. 5W). The costae are in the form of long, prominent ridges that line the length
of the branch (Fig. 5X). Costae may be thickened near the calice and along the length of
the branch, which manifests as a bulging ring around the branch (Figs. 5X–5Y). These
thickenings may indicate prior positions of the calice along the branch during growth.

Live colonies have fleshy polyps that resemble the shapes of an anchor, kidney, or bean.
Polyps are typically brown, pink, or green with the tips exhibiting the same color but may
be shades lighter than the rest of the colony. Colonies inhabit the shallower parts of the
reef slope but, although rare, may also be observed in the deeper parts of the reef slope.
Comparison with related taxa. Polyps of F. paraancora resemble the polyps of the flabello-
meandroid colonies of F. ancora. Skeletons resemble the phaceloid colonies of E. glabrescens
and F. paradivisa. Calices of F. paraancora have the largest diameter among the three
phaceloid species. Calices of F. paraancora are also deeper compared with the calices of
E. glabrescens and F. paradivisa. E. glabrescens generally exhibit costae in the form of fine
striations and small lobes, while F. paraancora has long, prominent ridges as costae. F.
paradivisa may have costae in the form of widely-spacsed ridges compared with the more
crowded costae of F. paraancora.
Occurrence: Philippines (Veron, 1990; this publication), Taiwan (Chen et al., 2005);

Fimbriaphyllia paradivisa (Veron, 1990)
(Figs. 5Z–5AD)

Euphyllia sp.1 Veron & Hodgson, 1989
Euphyllia paradivisa Veron, 1990; Veron, 2000

Material studied: (P1L02166), Reyna, Talim Bay, Lian, Batangas, Philippines, coll. Apr.
2010, 6 m (Figs. 5Z–5AC); (P1L02045), Clubhouse, Talim Bay, Lian, Batangas, coll. Apr.
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2008, <5 m (Fig. 5AD); (P1L02182) Outer Talim, Lian, Batangas, Philippines, coll. Apr.
2010, 11m.
Museum repository: The Marine Science Institute, University of the Philippines
Description. Colonies exhibit a phaceloid corallite formation (Fig. 5Z). Calices may be
round or oblate with diameters that range from 10.75 mm to 24. 35 mm (Fig. 5AA). Branch
diameters range from 11. 85 mm to 20.10 mm. Branches have heights that range from
55.90 mm to 126. 80 mm from the main point of branching. There are three orders of septa
(Fig. 5AA). The second and the third order septa are in between the first order septa. The
first order septa are exsert and lobe-shaped with smooth margins. The septa are granulated
on the sides. Septa are lobe-shaped to angular, with margins that generally have a smooth
appearance (Fig. 5AB). Columella are absent. The costae occur as prominent ridges along
the height of the branch. These are widely spaced from one another and sometimes have
lobes (Figs. 5AC–5AD).

Live colonies have branched polyps with knob-like tips that are fully extended during
day time. Polyps are usually green or brown with white tips. Colonies are distributed along
the shallow and deep parts of the reef slope but they are most abundant in the shallow parts.
The species has been reported to occur in abundance in mesophotic depths, i.e., beyond
30 m, in the Gulf Eilat, Red Sea, but are absent in the shallow areas (Eyal et al., 2016).
Comparisons with related taxa. Polyps of F. paradivisa resemble those of the phaceloid
and flabello-meandroid colonies of F. divisa. F. divisa skeletons with the phaceloid corallite
formation exhibit short valleys as opposed to round calices with small diameters, which
are characteristic of F. paradivisa. Coralla of F. paradivisa resemble the phaceloid colonies
of F. paraancora and E. glabrescens. F. paraancora has the largest calice diameter, while F.
paradivisa has the smallest. However, in terms of branch height, F. paradivisa has the tallest
colonies compared with F. paraancora and E. glabrescens. The shortest F. paradivisa among
the samples is taller than the tallest E. glabrescens specimen in the collection (Fig. 6). The
costal ridges of F. paradivisa are widely spaced compared with that of F. paraancora.
Occurrence: Philippines (Veron, 1990; this publication), Israel (Eyal et al., 2016)

CONCLUSIONS AND RECOMMENDATIONS
The presence of two distinct andwell-supported groups of Euphyllia in all the gene trees that
retained the original members of the previous subgenera of Euphyllia and Fimbriaphyllia
supports the recognition of Fimbriaphyllia as a genus. While the two subgenera previously
represented a dichotomy that is based on colony structure, the dichotomy between the
genera of Euphyllia and Fimbriaphyllia is now defined by polyp shapes, polyp length,
sexuality, and mode of reproduction. The finer clustering of the 3′-end of the cox1 gene
exhibiting the distinct morphospecies of Euphyllia and Fimbriaphyllia shows that species
are best identified through combining polyp morphology and colony structure. In the
Euphyllia group, septal morphology appears to distinguish between species; thus, opening
the possibility that there may be microstructures of the skeleton that may also be able to
distinguish between species of Fimbriaphyllia.

The morphological characteristics and other biological attributes that were identified
through the integrated approach on the, previously, largest genus in the Euphylliidae
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Figure 6 Height comparisons between F. paradivisa and E. glabrescens. (A) Tallest and (B) shortest
colonies of F. paradivisa. The shortest colony of F. paradivisa, among the specimen collection, is still taller
than the tallest colony of (C) E. glabrescens.

Full-size DOI: 10.7717/peerj.4074/fig-6

(clade V) have shown patterns that are consistent with the other members of the clade as in
G. fascicularis and C. chagius each diverged from the same ancestral node as Fimbriaphyllia
and Euphyllia respectively. Apart from some similarities in skeletal traits, the polyp
features that were identified for Fimbriaphyllia and Euphyllia were also found to be
applicable to G. fascicularis and C. chagius. The pseudo-gynodioecious broadcast spawning
trait of G. fascicularis, which was previously hypothesized as a transitional state between
Fimbriaphyllia and Euphyllia, has been confirmed in this study. These findings show that the
phylogenetic-based systematic scheme of Euphyllia, Fimbriaphyllia, Galaxea, and Ctenella
are potentially operationally useful for the rest of clade V. Thus, laying the groundwork
for fully resolving the phylogeny of the family Euphylliidae (clade V) as there are still
species that still lack in molecular analyses. These species include two more species of
Euphyllia, namely E. paraglabrescens and E. baliensis, which are of limited biogeographic
range.Gyrosmilia interrupta andMontigyra kenti, species from the same family asC. chagius
and also limited to the Indian Ocean, are also still unresolved. The inclusion of species of
Euphyllia, Fimbriaphyllia, and Galaxea that are also found in the Indian Ocean and are
within the geographic range of C. chagius is recommended for future studies.
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