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ABSTRACT 

Understanding variation of species richness along latitudinal gradients, with more species toward the tropics, represents a 

challenge for ecologists. Species richness also varies according to the available area, with more species in larger regions, with 

area and latitude posited as major drivers of richness variations. However, species richness does not fully capture the 

evolutionary history behind those patterns. Phylogenetic diversity can provide insights on the role of time and evolutionary 

drivers of environmental gradients. We analyzed here the latitudinal gradient of endemic snakes from the Atlantic Forest of South 

America, a megadiverse and highly threatened portion of the Neotropics. We assessed the effect of area and average clade age on 

species richness and phylogenetic diversity, testing whether species richness and phylogenetic diversity increase with area 

availability and in lower latitudes. We found that area can predict species richness, but not phylogenetic diversity. Brazilian 

southeastern mountain ranges include larger patches of Atlantic Forest and the highest richness levels, but generally harboring 

snakes from relatively recent clades (neoendemics). There is a negative relationship between species richness and average clade 

age along the latitudinal gradient, with older clades found mainly in northern portions, increasing phylogenetic diversity at lower 

latitudes. Different dimensions of diversity, species richness and phylogenetic diversity, are thus affected in different ways by 

area and time for speciation in the Atlantic Forest, and this may be a trend in highly diverse tropical regions. 
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INTRODUCTION 

Biodiversity distribution can be influenced by geographical extent, position and evolutionary time. Species richness can be 

strongly affected by available area, with larger regions tending to contain more species (Hortal et al., 2009; Parent, 2012). One of 

the reasons is that more habitat diversity can be present in larger areas, where more species can co-occur (Hortal et al., 2009). 

Richer areas tend to harbor older clades due to more time for speciation and/or higher diversification rates (Wiens & Donoghue, 

2004; Pyron & Burbrink, 2009; Wiens, 2012). Richer areas are also often found close to the equator, at lower latitudes, resulting 

in a latitudinal gradient of species richness, a general biogeographical pattern across the globe. Latitudinal gradient of species 

richness, or the increase of richness with decreasing latitude, is one of the most largely explored biogeographical patterns 

(MacArthur, 1972; Gaston, 2000; Brown, 2014; Kerkhoff, Moriarty & Weiser, 2014). Explanations for megadiverse tropical 

biotas may depend on complex interactions among latitude, time for speciation and available area, with tropical environments in 

lower latitudes being often larger and older than temperate environments (Wiens & Donoghue, 2004; Wiens, 2012).  

However, the number of species alone does not encompass all factors driving biogeographical patterns. Additional 

components of diversity, such as phylogenetic diversity, can reveal how phylogenetic relationships and evolutionary time affect 

species richness across environmental gradients. Phylogenetic diversity can be considered as the sum of branch lengths of 

phylogenetic relationships in ecological communities or biotas (Faith, 1992). Thus, phylogenetic diversity can enhance our 

understanding of drivers of biodiversity across space and evolutionary history (Wiens & Donoghue, 2004; Pyron & Burbrink, 

2009; Qian et al., 2015). 

One of the explanations for the distribution of clades along latitudinal gradients is the “tropical niche conservatism” 

hypothesis (Wiens & Donoghue, 2004). This hypothesis is based on the assumption that most clades have tropical origins and 

phylogenetic niche conservatism would be prevalent. The phylogenetic niche conservatism is the trend for each phylogenetic 

lineage to retain adaptive traits along their evolutionary history (Holt & Gomulkiewicz, 2004; Wiens et al., 2010). It can 
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constrain the range of a given lineage to ancestral latitudes of that particular clade, due to adaptive traits related to specific 

climatic conditions (Wiens & Donoghue, 2004; Pyron & Burbrink, 2009). Under the same scenario, inverse latitudinal gradients 

are present when clades have a temperate origin (see Pyron & Burbrink, 2009; Rivadeneira et al., 2011; Morinière et al., 2016), 

retaining a temperate range along its evolutionary history.  

In this way, the term “biogeographical niche conservatism” (sensu Pyron & Burbrink, 2009) could integrate both tropical 

and temperate origin of the clades, with the same premises of evolutionary time effect (Pyron & Burbrink, 2009; Rivadeneira et 

al., 2011; Morinière et al., 2016). Thus, area availability and age of clades are important factors driving species richness and 

phylogenetic diversity along latitudinal gradients (Wiens & Donoghue, 2004; Pyron & Burbrink, 2009). Thus, species richness 

and phylogenetic diversity would be higher near the region of origin (majoritarily in the tropics) due to older age and higher 

diversification rates in these areas (Wiens & Donoghue, 2004; Romdal, Araújo & Rahbek, 2013; Kerkhoff, Moriarty & Weiser, 

2014). 

The distinct geographical origins of different clades have been suggested to influence snake diversity in the Neotropical 

region (see Cadle & Greene, 1993). The Atlantic Forest is one of the richest areas in the Neotropics, harboring one quarter of the 

endemic species of the 25 global biodiversity conservation hotspots (Myers et al., 2000). The Atlantic Forest is highly threatened 

by habitat loss, having lost around 90% of its original forest cover (see Myers et al., 2000; Ribeiro et al., 2009; Ribeiro et al., 

2011), and spans around 29 degrees of latitude in are area around 150.000.000 ha (Ribeiro et al., 2009).  

We tested here how area and evolutionary time are related to endemic snake richness and phylogenetic diversity along the 

latitudinal gradient of the Atlantic Forest. We first assessed whether species richness decreases with increasing latitude. We then 

tested premises of “biogeographical niche conservatism” hypothesis, assessing the role of area and average clade age on species 

richness and phylogenetic diversity. Our major aim is to promote a better understanding of the ecological and evolutionary 
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drivers of biodiversity in the Atlantic Forest of South America, and to provide clues on the evolution of megadiverse tropical 

ecosystems. 

 

MATERIALS & METHODS 

We used a dataset of Neotropical snake records housed in museums during the last 150 years, encompassing 147.515 records of 

886 species with maps of one degree resolution (Guedes et al., 2018). We selected endemic snakes of the Atlantic Forest region 

(sensu Olson et al., 2001). We then summed raster files to calculate species richness of endemic snakes in the Atlantic Forest of 

South America.  

Evolutionary relationships were estimated from 100 phylogenetic trees derived from a fully sampled phylogeny for 

Squamate reptiles, available in Tonini et al. (2016). In this way, all phylogenetic approaches were implemented 100 times, and 

mean values were used. The only missing Atlantic Forest endemic species in phylogenies (Thamnodynastes cf. nattereri) was 

excluded from subsequent analyses. Phylogenetic diversity was calculated as the standardized diversity metric of Faith (1992), 

which is independent of species richness, in R package ‘PhyloMeasures’ (Tsirogiannis & Sandel, 2017).  

To calculate average clade age, we pruned the phylogenies including only species found in each latitudinal degree, with 

function prune.sample of ‘picante’ R package (Kembel et al., 2018). We then determined the average age of endemic lineages in 

each latitudinal degree. Area was measured as the sum of raster cells in each degree of latitude across the Atlantic Forest (sensu 

Olson et al., 2001). We analyzed relationships among species richness, phylogenetic diversity, average clade age and area across 

the latitudinal gradient by linear and quadratic regressions (Wiens & Donoghue, 2004; Buckley et al., 2010; Kerkhoff, Moriarty 

& Weiser, 2014). All analyses were performed in R software (R Core Team, 2018). 
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RESULTS 

We recovered 69 endemic snakes belonging to eight families in the Atlantic Forest region (Table 1). Species richness was lower 

in lower latitudes, being concentrated in the Southeastern portion of Atlantic Forest. Richness presented a unimodal pattern with 

a peak between 22 and 24° degrees south (Fig. 1; Fig. 2A), fitted to a quadratic model (R² = 0.67, p < 0.01; Fig. 2A). Average 

clade age presented an inverse pattern, also fitted to a quadratic model (R² = 0.66, p < 0.01), with lower values between 25 and 

29° degrees south (Fig. 2B). The relationship between area and species richness was also fitted by a quadratic model across the 

latitudinal gradient (R² = 0.51, p < 0.01), with highest richness between 21 and 24° degrees south (Fig. 2C). Northern areas 

presented higher values of phylogenetic diversity, despite lower values of species richness (Fig 1). Phylogenetic diversity 

increased at lower latitudes (R² = 0.30, p < 0.01), with highest values in 7, 8, 14, 15 and 17 degrees south (Fig. 2D).  

 

Table 1: Species composition of endemic snakes from the Atlantic Forest ecoregion. 

Species/Family  

Tropidophiidae Dipsas albifrons (Sauvage 1884) 

Tropidophis grapiuna (Curcio, Nunes, Argolo, Skuk & Rodrigues 2012) Dipsas alternans (Fischer 1885) 

Tropidophis paucisquamis (Müller 1901) Dipsas sazimai Fernandes, Marques & Argolo 2010 

Tropidophis preciosus (Curcio, Nunes, Argolo, Skuk & Rodrigues 2012) Echinanthera amoena (Jan 1863) 

Boidae Echinanthera cephalomaculata Di-Bernardo 1994 

Corallus cropanii (Hoge 1953) Echinanthera cephalostriata Di-Bernardo 1996 

Anomalepididae Echinanthera cyanopleura (Cope 1885) 

Liotyphlops caissara Centeno, Sawaya & Germano 2010 Echinanthera melanostigma (Wagler 1824) 

Liotyphlops trefauti Freire, Caramaschi & Argolo 2007 Echinanthera undulata (Wied 1824) 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27450v1 | CC BY 4.0 Open Access | rec: 27 Dec 2018, publ: 27 Dec 2018



7 
 

Leptotyphlopidae Elapomorphus quinquelineatus (Raddi 1820) 

Trilepida salgueiroi(Amaral 1955) Elapomorphus wuchereri (Günther 1861) 

Viperidae Erythrolamprus atraventer (Dixon & Thomas 1985) 

Bothrops alcatraz Marques, Martins & Sazima 2002 Helicops carinicaudus (Wied-Neuwied 1825) 

Bothrops cotiara (Gomes 1913) Mussurana montana (Franco, Marques & Puorto 1997) 

Bothrops fonsecai Hoge & Belluomini 1959 Oxyrhopus clathratus Duméril, Bibrón & Duméril 1854 

Bothrops insularis (Amaral 1921) Oxyrhopus formosus (Wied-Neuwied 1820) 

Bothrops jararaca (Wied 1824) Philodryas arnaldoi (Amaral 1932) 

Bothrops jararacussu Lacerda 1884 Pseudoboa haasi Boettger 1905 

Bothrops leucurus (Wagler 1824) Pseudoboa serrana Morato, Moura-Leite, Prudente & Bérnils 1995 

Bothrops muriciensis Ferrarezzi & Freire 2001 Ptychophis flavovirgatus Gomes 1915 

Bothrops otavioi Barbo, Grazziotin, Sazima, Martins & Sawaya 2012 Sibynomorphus neuwiedi (Ihering 1911) 

Bothrops pirajai Amaral 1923 Siphlophis longicaudatus (Andersson 1907) 

Elapidae Siphlophis pulcher (Raddi 1820) 

Micrurus corallinus (Merrem 1820) Sordellina punctata (Peters 1880) 

Micrurus decoratus (Jan 1858) Taeniophallus affinis (Günther 1858) 

Dipsadidae Taeniophallus bilineatus (Fischer 1885) 

Atractus caete Passos, Fernandes, Bérnils & Moura-Leite 2010 Taeniophallus persimilis (Cope 1869) 

Atractus francoi Passos, Fernandes, Bérnils & Moura-Leite 2010 Thamnodynastes longicaudus Franco, Ferreira, Marques & Sazima 2003 

Atractus guentheri (Wucherer 1861) Thamnodynastes cf. nattereri (Mikan 1828) 

Atractus maculatus (Günther 1858) Tomodon dorsatum Duméril, Bibrón & Duméril 1854 

Atractus potschi Fernandes 1995 Tropidodryas serra (Schlegel 1837) 

Atractus ronnie Passos, Fernandes & Borges-Nojosa 2007 Tropidodryas striaticeps (Cope 1869) 

Atractus serranus Amaral 1930 Xenodon guentheri Boulenger 1894 
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Atractus trihedrurus Amaral 1926 Xenodon neuwiedii Günther 1863 

Atractus zebrinus (Jan 1862) Colubridae 

Caaeteboia amarali (Wettstein 1930) Chironius foveatus Bailey 1955 

Calamodontophis ronaldoi Franco, Cintra & Lema 2006 Chironius laevicollis (Wied 1824) 

Clelia hussami Morato, Franco & Sanches 2003 Dendrophidion atlantica Freire, Caramaschi & Gonçalves 2010 

Coronelaps lepidus (Reinhardt 1861)  
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Figure 1: The Atlantic Forest of South America (left). Species richness (center) and phylogenetic diversity (right) of endemic snakes 

from the Atlantic Forest in 1 degree resolution. Species richness presents higher values in the southeastern region, with maximum 

value of 39 species per grid, highlighting the coastal mountain ranges. Lower values of phylogenetic diversity are located in areas with 

more recent lineages (see details in text and Fig. 2). 
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Figure 2: Latitudinal gradient of snake species richness (A) fitted by a quadratic model with highest values between 22 and 24 latitude 

south (R² = 0.67; p < 0.01). Average clade age (B) had an inverse relationship with species richness, also fitted by a quadratic model 

(R² = 0.66, p < 0.01). Area in square degrees (C) followed the species richness, with greatest geographical extent between 21 to 24 

latitude south (R² = 0.51, p < 0.01). Phylogenetic diversity (D) of snakes was partially explained by a linear model with higher values 

generally in lower latitudes (R² = 0.30; p < 0.01). Dashed lines correspond to fitted models. 

 

Area had a strong relationship with species richness, explaining 78% of the variation of species number for endemic snakes 

throughout the Atlantic Forest (p < 0.01, Fig. 3A). In contrast, decreasing phylogenetic diversity was associated to increasing area (R² 

= 0.31, p < 0.01, Fig. 3B). Increasing area was negatively associated to average clade age across the latitudinal gradient (Fig. 3C; R² = 

0.44, p < 0.01 for the quadratic model).  
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Figure 3: Relationships between area (square degrees) and species richness (A; R² = 0.78, p < 0.01), phylogenetic diversity (B; R² = 

0.31, p < 0.01), and average clade age (C; R² = 0.44, p < 0.01) in Atlantic Forest endemic snakes.  
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DISCUSSION 

The distribution of endemism is strongly affected by climatic variation along the Atlantic Forest (Carnaval et al., 2014). Phylogenetic 

structure is variable across the latitudinal gradient of the Atlantic Forest (Moura et al., 2017). Northern areas show overdispersed 

phylogenetic structure, with more distinct lineages of snakes. Southern portions, on the other hand, have a clustered phylogenetic 

structure, with more proximally related species (Moura et al., 2017). An important gap in this context is the age of such clades. 

Variations in species richness and phylogenetic diversity along environmental gradients are expected to be related to clade age across 

space (Stephens & Wiens, 2003; Wiens, Pyron & Moen, 2011).  

The presence of older lineages should be one of the most important evolutionary factors generating higher number of species 

along latitudinal ranges (e.g. Wiens & Donoghue, 2004; Hawkins & DeVries, 2009; Pyron & Burbrink, 2009; Buckley et al., 2010; 

Stevens, 2011; Romdal, Araújo & Rahbek, 2013; Morinière et al., 2016). Surprisingly, in our results species richness of snakes was 

negatively associated to average clade age in the Atlantic Forest. However, the variation of phylogenetic diversity, with higher values 

in lower latitudes, corroborates the “tropical niche conservatism” hypothesis (see Fig. 1, and Wiens & Donoghue, 2004). Moreover, 

area explained species richness distribution (see Fig. 3), but not phylogenetic diversity of Atlantic Forest snakes.  

Ecological factors can affect species diversity (Jenkins, Pimm & Joppa, 2013; Mannion et al., 2014), restricting clades to 

climatic zones associated to latitudinal variation (Wiens & Donoghue, 2004; Kozak & Wiens, 2007; Pyron & Burbrink, 2009). Climate 

regimes can determine “biogeographical affinities” of species groups in latitudinal ranges, limiting clade dispersion across such 

gradients (Harrison & Grace, 2007). Snakes could be largely influenced by ecological factors such as temperature, solar radiation, 

productivity, and resource availability (Morales-Castilla et al., 2011). However, different clades might respond in different ways to 

these factors across habitats (see Currie, 1991).  

Higher environmental heterogeneity can promote rapid divergence among populations, as observed in tropical mountain 

regions (Janzen, 1967; MacArthur, 1972; Pyron et al., 2015). We found that endemic species richness is concentrated in coastal ranges 

of southeastern Atlantic Forest, especially along the “Serra do Mar” and “Serra da Bocaina” ranges. The latitudinal ranges with highest 
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values of species richness include these complex mountain ranges harboring many endemic species. These areas encompass the higher 

geographical extent in the Atlantic Forest latitudinal gradient, and are an important stronghold of ombrophilous dense forests (see also 

Olson et al., 2001), with high numbers of endemic snakes. However, species richness alone does not fully capture all processes driving 

snake diversity in the Atlantic Forest, and phylogenetic diversity provides additional clues on the drivers of endemic species 

distribution.     

The Atlantic forest can be considered as a complex mosaic with different ecological constraints among different habitats 

(Ribeiro et al., 2011). Its northern portion could present phylogenetic relationships with Amazonian clades, which was already detected 

with data on mammals (Costa, 2003). If the “tropical niche conservatism” hypothesis (sensu Wiens & Donoghue, 2004) is prevalent, 

the northern fauna should present higher average clade age, as we show here for snakes. The relative age of clades influences 

phylogenetic diversity values throughout the Atlantic Forest snakes. Furthermore, the presence of younger and phylogenetically 

clustered clades suggest that southeastern mountain ranges act as a current cradle of snake diversity in the Atlantic Forest (Moura et 

al., 2017). 

The prevalence of recent clades in the larger portions of the Atlantic Forest is probably a result of higher diversification rates in 

regions where area is not a limiting factor. The trend of snake specialization regarding habitat use, including the restriction to forested 

areas and microhabitats (see Cadle & Greene, 1993; Greene & Greene, 1997), could result in reduced faunal interchange with adjacent 

non forested areas. Species distribution patterns are the result of the evolutionary history and ecological affinities of their ancestors 

(Wiens, 2004; Wiens & Graham, 2005; Losos, 2008; Pyron & Burbrink, 2009; Cooper, Jetz & Freckleton, 2010; Rivadeneira et al., 

2011; Peterson, 2011; Giehl & Jarenkow, 2012; Ulrich et al., 2012; Romdal, Araújo & Rahbek, 2013; Kerkhoff, Moriarty & Weiser, 

2014; Pyron et al., 2015). Thus, phylogenetic niche conservatism might favor geographical restrictions of a given clade to ancestral 

latitudinal ranges (see also Wiens & Donoghue, 2004; Pyron & Burbrink, 2009) and to particular habitats, which could explain the 

patterns found here.  
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CONCLUSIONS 

Higher average clade age was not related to species richness along the Atlantic Forest latitudinal gradient. Species richness was 

positively related to area, a possible result of higher carrying capacity and resource availability (Holt, 1993). Larger areas could also 

reduce stochastic extinctions (Kadmon & Allouche, 2007). Thus, area effect should be considered the most significant driver of species 

richness in the Atlantic Forest snakes. Furthermore, the “tropical niche conservatism” can explain the presence of many different 

lineages in lower latitudes, but not the number of species, indicating that clade history and age is also an important factor in 

understanding current biodiversity distribution.  
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