
2. Planetary System Dynamics 

If you want to know 
about planetary system 
dynamics, read this 
book! 



Newton’s Law of Gravitation 

•  The force between two massive 
bodies, M1 and M2 is given by 
      F = GM1M2/r2, 
where G=6.672x10-11 Nm2kg-2 

•  Expressing in terms of vector offset of 
M2 from M1, r gives the equation of 
motion as 

d2r/dt + µr/r3 = 0, 
where µ=G(M1+M2) 

•  Which can be solved to show that the 
orbit of M2 about M1 is given by an 
ellipse with M1 at the focus (or a 
parabola) 
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Orbits in 2D 
•  The orbit is given by: 
      r = a(1-e2)/[1 + e cos(f)], 
  a=semimajor axis, 
  e=eccentricity, 
  f=true anomaly 

•  Angular momentum integral: 
      h= r2df/dt = [µa(1-e2)]0.5 = const 
   Orbital period tper = 2π(a3/µ)0.5 

•  Energy integral: 
      0.5v2 - µ/r = const = C = -0.5µ/a 
      Vp = [(µ/a)(1+e)/(1-e)]0.5 

      Va = [(µ/a)(1-e)/(1+e)]0.5 

tper=(a3/M*)0.5 yrs and vk=30(M*/a)0.5 km/s, 
where M* is in Msun and a in AU 
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•  Mean angles: 
Mean motion:    n = 2π/tper 
Mean anomaly:  M = n(t-τ) 
Mean longitude: λ = M + ϖ 

•  Eccentric anomaly, E 
      tan(E/2) = [(1-e)/(1+e)]0.5tan(f/2) 
      M = E – e sin(E) 



Barycentric Orbits 
•  Each of the two objects orbits 
the centre of mass of the system 
in a path described by the same 
conic section reduced in scale: 

 For M1 by M2/(M1+M2) 
 For M2 by M1/(M1+M2) 

•  While eccentricities of the 
barycentric orbits are the same, 
the pericentres of the two objects 
are in opposite directions 

Total orbital angular momentum 
of system is 

L = hM1M2/(M1+M2) 

Total energy of the system referred to 
barycentric coordinate system is 

 E = CM1M2/(M1+M2) 
    = -GM1M2/2a 
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Orbits in 3D 
•  In 3D just need to define the 
orbital plane, which is done with: 
I = inclination 
Ω = longitude of ascending node 

•  Also need to define the direction to 
pericentre: 
ω = argument of pericentre 
ϖ = longitude of pericentre = Ω+ω 

•  So, the orbit is defined by five variables: a, e, I, Ω and ϖ (or ω) 

•  One time dependent variable describes location in orbit: λ (or f, M or E) 

•  Method for converting between [X,Y,Z,Vx,Vy,Vz] and [a,e,I,Ω,ϖ,λ] is 
given in MD99, and is used for example in N-body codes 



Perturbed orbits 

Consider a small disturbing force 
dF = Rr + Tθ  +Nz 

Change in energy, dC/dt = dr/dt . dF, 
and angular momentum, dh/dt = r x dF, 
gives: 

      da/dt = 2a1.5µ-0.5(1-e2)-0.5 [R e sin(f) + T (1+e cos(f)] 
      de/dt = a0.5 µ-0.5(1-e2)0.5[R sin(f) + T (cos(f) + cos(E))] 

      dI/dt = a0.5 µ-0.5(1-e2)0.5(1+e cos(f))-1 N cos(ω+f) 
      dΩ/dt = a0.5 µ-0.5(1-e2)0.5(1+e cos(f))-1 N sin(ω+f)/sin(I) 
      dω/dt = e-1a0.5 µ-0.5(1-e2)0.5[-R cos(f) + T sin(f)(2+ecos(f))(1+e cos(f))-1] 
                  – cos(I) dΩ/dt 
      dτ/dt = f(R,T) 



Restricted 3 body problem 

•  The most common perturbing force in planetary systems is the 
gravity of other objects 
•  Numerically this can be solved using N-body codes which apply the 
gravitational forces directly to the equation of motion 
•  However, the problem can also be simplified to get some analytical 
solutions 

M1 

Simplest form is the circular restricted 
3 body problem which considers the 
motion of a particle in gravitational field 
of two objects which orbit their centre of 
mass on a circular orbit 
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Equations of motion 
Convert from the sidereal reference 
frame (ξ,η,ζ) to the synodic reference 
frame (x,y,z) which is centred on the 
centre of mass and rotates with the 
mean motion of the orbit 

This gives: 
  d2x/dt2 – 2n dy/dt = ∂U/∂x 
  d2y/dt2 + 2n dx/dt = ∂U/∂y 
                  d2z/dt2 = ∂U/∂z 
where U = 0.5n2(x2+y2) + µ1/r1 + µ2/r2  is the pseudo-potential 

Which can be combined to give 
  CJ = 2U – v2 = Jacobi constant 
(not energy, as energy and angular momentum not conserved in this problem; 
note that v is velocity in the rotating frame) 



Zero velocity curves 
Since v2>0, the Jacobi constant is useful to show regions where 
a particle is excluded for a given CJ 

Locations where v=0 are called zero velocity surfaces (3D) or 
curves (2D) and indicate locations where the particle cannot go: 
n2(x2+y2) + 2µ1/r1 + 2µ2/r2 = CJ 

Hill’s stability: particles with certain CJ cannot escape M1 or M1 
and M2 



Lagrange Equilibrium Points 
There are five locations where a particle has zero 
velocity and acceleration in the rotating frame 
(dx/dt=dy/dt=d2x/dt2=d2y/dt2=0): 

•  Triangular equilibrium points, L4 and L5 
      at x=0.5-µ2 and y=±√3/2 

•  Collinear equilibrium points, L1 L2 L3 

•  Linear stability analysis shows that L1-3 are 
unstable whereas L4,5 are stable 

•  L1 is boundary between orbits bound to M1 and 
M2 (also L1 stable with special starting conditions) 

•  Some particles will remain confined to regions 
close to L4 or L5 or even region encompassing L3-5 

µ2 = 0.2 

µ2 = 0.01 



Tadpole/Horshoe Orbits 

•  Jupiter’s Trojans are an example of objects 
orbiting one of the L4 and L5 points which are 
tapole orbits  

•  Janus and Epimetheus are examples of objects 
orbiting the L3-5 points, although since they are 
similar in mass they switch at encounter 

•  These are examples of 1:1 resonance, also 
known as co-rotational resonance 

•  These orbits may be important during planet 
formation because of corotational torque 



Hill’s Approximation 
•  Assuming that M2 << M1 and rewriting the equations of motion in terms of 
the offset of the particle from M2 gives Hill’s equations (good for studying 
motion near a planet, or moon etc): 
  d2x/dt2 – 2dy/dt = (3 - µ2/Δ3)x 
  d2y/dt2 + 2dx/dt = -(µ2/Δ3)y 
where Δ2 = x2 + y2 

•  Hill’s sphere radius ΔH = (µ2/3)1/3 is location where radial force vanishes 
(where tidal force and mutual attraction are in equilibrium). In this 
approximation L1 and L2 both lie on Hill’s sphere 

•  Shows the effect of encounters 
between particle and planet, 
explaining why in planet formation, 
oligarchs form at 5 Hill’s radii 
separation 



Disturbing Function 
The disturbing function is a method of calculating perturbations to an 
object’s elliptical orbit by calculating the acceleration caused by a 
perturbing potential (the gravitational force of another body) 

Equation of motion for Mi is: d2ri/dt2 = ∇i(Ui + Ri ) 
where Ui = G(Mc+Mi)/ri is the 2 body potential 
and    Ri  = GMj/|rj-ri| - GMjri.rj/rj

3 is the disturbing function 
              = direct + indirect terms, 
and similarly for Mj 

The disturbing function can be expanded in terms of standard orbital 
elements to an infinite series: 

           Ri = µj Σ S(ai,aj,ei,ej,Ii,Ij)cos(j1λi+j2λj+j3ϖi+j4ϖj+j5Ωi+j6Ωj) 



Different Types of Perturbations 

Luckily for most problems we can take just one or two terms from the 
disturbing function using the averaging principle which states that most 
terms average to zero over a few orbital periods and so can be ignored by 
using the averaged disturbing function 〈R〉 

Terms in the disturbing function can be divided into three types: 

•  Secular 
   Terms that don’t involve λi or λj which are slowly varying 

•  Resonant 
   Terms that involve angles φ = j1λi+j2λj+j3ϖi+j4ϖj+j5Ωi+j6Ωj 
   where j1ni+j2nj = 0, since these too are slowly varying. 

•  Short-period 
   All other terms 



Lagrange’s Planetary Equations 
•  The disturbing function can be used to determine the orbital variations of 
the perturbed body due to the perturbing potential 

•  These are given in Lagrange’s planetary equations: 

  da/dt = (2/na)∂R/∂ε 
   de/dt = -(1-e2)0.5(na2e)-1(1-(1-e2)0.5)∂R/∂ε - (1-e2)0.5(na2e)-1∂R/∂ϖ 
  dΩ/dt = [na2(1-e2)sin(I)]-1∂R/∂I 
  dϖ/dt = (1-e2)0.5(na2e)-1∂R/∂e + tan(I/2)(na2(1-e2))-1∂R/∂I 
  dI/dt = -tan(I/2)(na2(1-e2)0.5)-1(∂R/∂ε + ∂R/∂ϖ) – (na2(1-e2)0.5sin(I))-1∂R/∂Ω 
  dε/dt = -2(na)-1∂R/∂a + (1-e2)0.5(1-(1-e2)0.5)(na2e)-1∂R/∂e + 
              tan(I/2)(na2(1-e2))-1 ∂R/∂I 

where ε = λ - nt = ϖ - nτ 

•  As with all equations, these can be simplified by taking terms to first order 
in e and I 



Secular Perturbations 
•  To second order the secular terms of the disturbing function for the jth planet  in 
a system with Npl planets are given by: 

   Rj = njaj
2[0.5Ajj(ej

2-Ij
2) + ΣNpl

i=1, i≠j Aijeiejcos(ϖi-ϖj) + BijIiIjcos(Ωi-Ωj)] 

where Ajj = 0.25nj ΣNpl
i=1,i≠j (Mi/M*)αjiαjib1

3/2(αjj) 
          Aji = -0.25nj(Mi/M*) αjiαjib2

3/2(αji) 
          Bji = 0.25nj(Mi/M*) αjiαjib1

3/2(αji) 
          αji and αji are functions of ai/aj and bs

3/2(αji) are Laplace coefficients 

•  Converting to a system with zj = ej exp(iϖj) and yj = Ij exp(iΩj) and combining 
the planet variables into vectors z = [z1,z2,…,zNpl]T and for y gives for Lagrange’s 
planetary equations 
   daj/dt = 0, dz/dt = iAz, dy/dt = iBy, where A,B are matrices of Aji,Bji 

•  This can be solved to give: 
            zj = ΣNpl

k=1 ejk exp(igk+iβk)     and     yj = ΣNpl
k=1 Ijk exp(ifkt+iγk) 

   where gk and fk are the eigenfrequencies of A and B and βk γk are the constants 



Gauss Averaging 

•  Gauss averaging method calculates 
the effect of perturbations from a 
wire ring made up by spreading the 
perturbing object around its orbit 
(with density inversely proportional 
to orbital velocity) 

•  The resulting perturbations are 
exactly the same as those derived 
using the disturbing function which 
provides a justification for the 
averaging principle in the disturbing 
function 



Long term evolution of planets 

•  The 
secular 
evolution of 
the planets’ 
orbits is 
easy to 
work out, 
and is given 
by the sum 
of many 
periodic 
terms 



Secular perturbations on particles 
•  The secular terms of the disturbing function for a particle in a system 
with Npl planets are given by: 

   R = na2[0.5A(e2-I2) + ΣNpl
j=1 Ajeejcos(ϖ-ϖj) + BjIIjcos(Ω-Ωj)] 

where A = 0.25n ΣNpl
j=1 (Mj/M*)αjαjb1

3/2(αj) 
          Aj = -0.25n(Mj/M*) αjαjb2

3/2(αj) 
          Bj = 0.25n(Mj/M*) αjαjb1

3/2(αj) 
          αj and αj are functions of a/aj and bs

3/2(αj) are Laplace coefficients 

•  Which gives for Lagrange’s planetary equations: 
   da/dt = 0 
   dz/dt = iAz + iΣNpl

j=1 Ajzj 
   dy/dt = -iAy + iΣNpl

j=1 Bjyj 



Forced and proper elements 
•  These can be solved to give: 

    z = zf + zp = ΣNpl
k=1[{ΣNpl

j=1[Ajejk ]/(gk-A)} exp(igkt+iβk)] + ep exp(iAt+iβ0) 

    y = yf + yp = ΣNpl
k=1[{ΣNpl

j=1[BjIjk ]/(fk+A)} exp(ifkt+iγk)] +  Ip exp(-iAt+iγ0) 

•  In other words the particle’s orbital 
elements precess on circles centred 
on forced elements imposed on them 
by the planets 

•  Precession is anticlockwise for z 
and clockwise for y, but the rate is 
the same, A  

Forced Proper 



Forced elements 
•  Forced elements are imposed by the 
planetary system 

•  Forced elements in the region near a 
planet are the same as the orbital elements 
of the planet 

•  Precession rate is faster nearer a more 
massive planet 

•  At locations where the precession rate is 
the same as one of the eigenfrequencies of 
the system the forced elements are infinite = 
secular resonance and particles are 
quickly ejected from this region 



Secular Resonances 
•  Higher order theory shows there 
are many secular resonances in the 
solar system and these are called, 
e.g, υ6 etc 

•  Role of secular resonance 
sweeping when planets were 
migrating may have cleared 
primordial asteroid belt (NB inner 
edge of the asteroid belt at the 
secular resonance) 

•  Effect on planet formation 
unknown, but have to include 
secular effect of extended disk too 



Hirayama asteroid families 
•  There are methods for extracting proper 
elements from osculating orbital elements 
(see Milani et al.) 

•  When you do this, you find that proper 
elements are clustered in ap, Ip, ep 

•  This is expected for fragments created 
from the break-up of large asteroids 

•  Current dispersion can be used to date 
families (big ones Gyrs ago) and work out 
ejection velocities of impacts etc. 

•  Nowadays finding subfamilies created in 
last few Myr (Nesvorny et al. 2003) 



Resonant perturbations 
•  Resonances occur at specific locations where j1ni + j2nj ≈ 0, which 
means that the orbital periods are a ratio of two integers, from which we 
get that aj/ai = (|j1|/|j2|)2/3  = nominal resonance location 

•  The terms in the disturbing function are given by those which satisfy 
that criterion, but there are infinite number of terms that nearly satisfy 
that condition 

•  Generally it is the lowest order terms that dominate because of the 
strength of resonances: 

   Ri = µj Σ S(ai,aj,ei,ej,Ii,Ij)cos(j1λi+j2λj+j3ϖi+j4ϖj+j5Ωi+j6Ωj) 
  S ≈ f(α)aj

-1ei
|j4|ej

|j3|[sin(Ii/2)]|j6|[sin(Ij/2)]|j5| 
  Σ6

i=1 ji = 0 

which means that for a (p+q)λi-pλj-qϖi
 resonance, the strength is ∝eq in 

other words the q=1 resonances (first order resonances) are strongest 
and so the 3:2 term is more important than the 6:4 term or 301:200 



Geometry of resonance 

•  Resonances 
are special 
because of the 
periodic nature 
of the orbits 
and the way 
that planet and 
particle have 
encounters 



Geometry of resonance 
•  Each resonance has its own geometry; 
e.g. when the planetesimal is at 
pericentre it must be at one of p 
longitudes relative to planet 

•  But the orientation of the loopy pattern 
is not defined by the geometry, although 
this is defined by the resonant angle, e.g. 
     φr = (p+q)λr - pλpl - qϖr 
         = p[ϖr - λpl(tperi)] 
which is the appropriate term in the 
disturbing function… 

•  The stable solution can be assessed 
from a physical perspective 

2:1 

5:3 4:3 

3:2 



Physics of resonance 
•  Encounter approximation: dominant perturbations are those at encounter 

•  Analysis of perturbations in the 3-body problem shows the consequence 

•  Forces are such that φ=180o is a stable equilibrium point 

•  So, for external resonances: the encounter is at apocentre for q=1 resonances, 
and midway between pericentre and apocentre for q=2 resonances 

•  Caution about the 
encounter approximation: for 
n:1 resonances there is also 
a direct term which results in 
asymmetric libration 

•  Also, note difference 
between internal and 
external resonances 



Pendulum model 
•  Consider resonances in the circular restricted 3 body problem: 
      R = (GMpl/a)[fs,1e2 + eq[fd(α)+fi(α)/α]cos(φ)] 
     da/dt = -2(p+q)(Mpl/M*)(GM*/a)0.5eq[fd(α)+fi(α)/α]sin(φ) 
     de/dt = -q(Mpl/M*)(GM*/a3)0.5eq-1[fd(α)+fi(α)/α]sin(φ) 

•  Also, can derive an equation for the motion of φ: 
     d2φ/dt2 = -ω0

2sin(φ),             where ω0
2 = -3j22Crne|j4| 

   which is the well known equation of motion for a simple pendulum 

•  The resulting motion depends on the energy (kinetic+potential) 
     E = 0.5(dφ/dt)2 + 2ω0

2sin2(0.5φ) 

Circulation 

Separatrix 

Libration 



Libration/Circulation 

•  Resonant motion result in an oscillation of both φ and a: 
      φ = φm + Δφ sin(2πt/tφ) 

•  Actually oscillation is not always exactly sinusoidal, particularly for 
large amplitude librations 

Librations                                           Circulation 



Asymmetric libration n:1 resonance 

•  Stable libration occurs where angular 
momentum loss (gain) at conjunction 
balances the gain (loss) at pericentre 

•  For the circular restricted 3 body 
problem: 
  da/dt = -2(Mpl/M*)(GM*/a)0.5 x 

    [3.38esin(φ)+14.38e2sin(2φ)-2.52esin(φ)] 

•  Thus: cos(φm) = -0.0298/e 

•  For n:1 resonances there is also a direct term 
which results in asymmetric libration 

•  This is because the particle’s pericentre only 
occurs at one longitude relative to the planet, and 
so perturbations at pericentre are important as well 
as those at conjunction 

2:1 



Asymmetric libration - migration 
•  Libration can be asymmetric for the other 
resonances too if the planet is still migrating 

•  The stable libration occurs when the angular 
momentum imparted to the particle is the same 
as that required to make the particle migrate at 
a rate sufficient to keep it in resonance: 
    da/dt = (dapl/dt)[(p+q)/p]2/3 

•  Can equate this with resonant da/dt for the 
CR3BP to get 
    sin(φm) ∝ -(θ/µ)e-q 
    where µ = Mpl/M*, θ = (dapl/dt)(a/M*)0.5 

•  A similar offset occurs if the planet is kept at 
a constant radius, but the particle is losing 
angular momentum due to drag forces (and for 
two planets etc) 



Libration width 
•  The pendulum model shows that resonances have a finite width in 
semimajor axis, known as libration width 

•  For second order internal resonances: δamax/a = ±[16|Cr|e/3n]0.5 

•  For first order internal resonances, there is an extra contribution from 
d2ϖ/dt2 to the equation for d2φ/dt2, so that: 
    δamax/a = ±[16|Cr|e/3n]0.5[1+(27j22e3n)-1|Cr|]0.5 – 2(9j2en)-1|Cr| 

First order resonances are 
broader than second order 
resonances, and while 
width increases with 
eccentricity, the 
precessional effect causes 
first order resonances with 
low e to be broad too 



Resonance overlap 
•  Since resonances have finite width, 
and first order resonances are the 
strongest, this introduces the concept 
of resonance overlap which is 
regions of semimajor axis space close 
to a planet where the first order 
resonances overlap 

•  Such regions are chaotic and so 
unstable 

•  The size of the regions are (Wisdom 
1980, Duncan et al. 1989): 
      apl[1 ± 1.3(Mpl/M*)2/7] 
(4.26-6.14 AU for Jupiter) 

J   S       U         N 

J 



Kirkwood gaps 
•  Resonance can be a bad thing, 
i.e., chaotic and unstable 

•  The Kirkwood gaps in the 
distribution of asteroids are one 
such example: the widths of the 
gaps exactly corresponds to the 
libration widths 

•  However, the origin of the 
chaos cannot be explained in the 
circular restricted 3 body 
problem, since such resonances 
are stable 

•  Basic mechanism is chaos 
leading to high e then close 
approach to Mars or Earth 



Chaos – Lyapounov exponent 
•  It is not always possible to calculate the 
future state of a system from the equations of 
motion because of chaos 

•  This can be defined as sensitive dependence 
on initial conditions (the butterfly effect) 

•  This is characterised by the Lyapounov 
characteristic exponent (the rate of 
divergence of nearby trajectories), γ 

•  If the orbit is chaotic then: 
     d = d0 exp[ γ(t-t0) ] 
     γ = limt→∞[ ln(d/d0)/(t-t0) ] 
   where 1/γ is the Lyapounov time 

•  Regular orbits have d ≈ d0 so that γ ∝ t-1 

d0 

d 



Chaos – Surface of section 
•  In the circular restricted 3 body problem, a 
particle’s motion is described by 4 parameters: x, 
dx/dt, y, dy/dt, but because of the Jacobi 
constant, the particle’s motion is confined to a 
surface in 4D space, so that for a given CJ just 
three of the parameters are needed to define 
particle, e.g., x, dx/dt, y 

•  The Poincare surface of section considers 
location of particle when it crosses the plane y=0 
(with a positive direction of dy/dt) 

•  Regular orbits trace lines on this plot; resonant 
orbits have q islands for a p+q:p resonance 

•  Chaotic orbits fill the phase space: 
bounded chaos (limits to phase space occupied) 
resonance sticking (chaotic orbits appear 
regular) 

Fig. 9.3 from MD99 



Capture in resonance 
•  Resonance can also be a good thing, as 
testified by the large number of resonances 
between objects in the solar system (and 
extrasolar systems) 

•  While a smooth distribution of orbits would 
eventually settle down to exhibit resonant 
features, most resonances are caused by 
orbital migration: slow variations in semimajor 
axes causing pairs of objects to pass through 
resonant locations 

•  Whether the objects are captured into resonance is probabilistic, but only 
occurs in first order resonances for converging orbits  

•  Semimajor axis variations can arise from planetesimal scattering, planet-gas 
disk interactions, planet oblateness, tidal forces, P-R drag 



Adiabatic Invariance 

•  Resonance capture requires adiabiticity (Henrard 1982): 

•  The libration period must be shorter than the time it takes for the 
resonance to cross the libration width 
      dapl/dt << Δa/tφ 

•  While it is possible to work out Δa and tφ for the CR3BP, this condition 
does not necessarily imply that capture will occur, for which more 
detailed studies are required (Friedland 2001; Wyatt 2003; Quillen et al. 
2006) 

•  Different approaches: numerical, or analytical – both are required 



Capture by migrating planet 
Probability of capture into a 
resonance as it passes is a function 
only of (Wyatt 2003) 
    µ = Mpl/M* 
    θ = (dapl/dt)(a/M*)0.5 

    P = [1+(Xµ-uθ)Yµ^v]-1 

Mpl 
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dapl/dt Start 

End (0% trapping) 

End (90% trapping) 

a 

Planetesimals are 
captured into the 
resonances of a 
migrating planet 



Several objects in the Kuiper Belt are in 
resonance with Neptune, including the 3:2, 
2:1, 5:3, 4:3, 5:4, 1:1, 7:5, … resonances 

The origin of this configuration is thought to be 
the outward migration of Neptune 

This scenario explains the high eccentricities of 
the resonant populations, since da/dt and de/
dt for the CR3BP combine thus: 
  da/de = 2(1+p/q)ae 
  e       = [e0

2 + [p/(p+q)]ln(a/a0)]0.5 
(this is how a 23-30 AU migration for Neptune 
was inferred) 

Resonance in the Kuiper Belt 

However, this cannot explain the high order resonances, for which trapping 
probability is low unless the planetesimals had high e (since libration width is 
larger): possibly these originated in the scattered disk population 



Close encounters: scattering 

•  The short period terms in the 
disturbing function become important 
when the resulting change in orbital 
elements is so quick that the averaging 
principle is no longer valid 

•  During a close encounter, the orbit of 
a particle is significantly altered 

•  In the circular restricted 3 body 
problem, there is a parameter which is 
conserved: 

Tisserand parameter 

   0.5(a/apl)-1 + [(a/apl)(1-e2)]0.5cos(I) ≈ const 



Close encounters: migration 
•  Scattering of a planetesimal also affects 
the orbit of the planet (scatterer) due to 
conservation of angular momentum 

•  If a large mass of planetesimals is 
scattered, this can cause significant orbital 
migration of the planet 

•  This is usually studied numerically 

•  Planetesimals are passed from Neptune 
-> Uranus -> Saturn -> Jupiter then 
ejected causing NUS to move out and J to 
move in 

•  The same process still passes Kuiper 
belt objects to the inner solar system to 
become Jupiter family comets 

Time, years 

Se
m

im
aj

or
 a

xi
s,

 A
U

 

Numerical issues: 
timestep, stochastic/non-
adiabatic migration 



Collision probability 
•  If the encounter is close enough then objects can collide 

•  In simulations, objects are usually treated as point masses 

•  The outcome of the collision depends on the energy (basically relative 
velocity of impact, but also incidence angle) 

•  The probability of colliding with an object is calculated using Opik’s formula: 
     Rcol = vrel 0.25π(D1+D2)2 / V, 
where vrel is relative velocity of encounter, V=volume 

•  Gravitational focussing: there is an additional factor of [1+(vesc/vrel)2] where 
vesc

2
 =(2/3)πGρ[D1

3+D2
3]/(D1+D2) is the escape velocity 

M1 

M2 vrel 

M1 

M2 vrel 



Perturbing forces: radiation forces 
•  Small grains are affected by their interaction 
with stellar radiation field 

•  This is caused by the fact that grains remove 
energy from the radiation field by absorption and 
scattering, and then re-radiate that energy in the 
frame moving with the particle’s velocity: 
   Frad=(SA/c) Qpr [ [1-2(dr/dt)/c]r – r(dθ/dt)θ ] 
        = radiation pressure (r) + 
           Poynting-Robertson drag (θ) 

•  The drag forces are defined by the parameter β 
which is a function of particle size (D): 
  β=Frad/Fgrav=Cr(σ/m)〈Qpr〉T*(L*/Lsun)(Msun/M*), 
where Cr = 7.65x10-4 kg/m2 

•  For large spherical particles: 
   β = (1150/ρD)(L*/Lsun)(Msun/M*)  

Qabs 

S 

S 

v 

Qsca 

Qpr=Qabs+Qsca[1-〈cos(α)〉] 

α 



Radiation pressure 

Probably the most important consequence is 
the change in orbital elements for particles 
released from a large object (can be derived 
from the 2body problem by setting position 
and velocity the same): 
     anew=a(1-β)[1-2β[1+ecos(f)][1-e2]-1 ]-1 
     enew=[e2+2βecos(f)+β2]0.5/(1-β) 
     ϖnew-ϖ =f-fnew=arctan[βsin(f)[βcos(f)+e]-1] 
which means particles are unbound if β>0.5 

•  The radial component is 
called radiation pressure, 
and essentially causes a 
particle to “see” a smaller 
mass star by a factor (1-
β), so that particles with 
β>1 are not bound and 
leave the system on 
hyperbolic trajectories 

•  This means that a small 
particle orbiting at “a” has 
a different orbital period to 
that of larger objects: tper 
= [a3/M*(1-β)]0.5 which 
also moves the locations 
of resonances etc 



Poynting-Robertson drag 
•  Poynting-Robertson drag causes dust grains to spiral into the star while at 
the same time circularising their orbits (dIpr/dt=dΩpr/dt=0): 
    dapr/dt = -(α/a) (2+3e2)(1-e2)-1.5  ≈ -2α/a   
    depr/dt = -2.5 (α/a2) e(1-e2)-0.5     ≈ -2.5eα/a2 
    where α = 6.24x10-4(M*/Msun)β  AU2/yr 

•  So time for a particle to migrate in from a1 to a2 is 
    tpr = 400(Msun/M*)[a1

2 – a2
2]/β   years 

•  Also, considering continuity equation, the number density n(a) ∝ a which 
translates into constant surface density 

•  On their way in particles can become trapped in resonance with interior 
planets, or be scattered, or accreted, or pass through secular resonances… 

•  Large particles move slower, and so suffer no migration before being 
destroyed in a collision with another large particle 



Perturbing forces: Yarkovsky 
•  Caused by the fact that the warmer evening 
hemisphere radiates more energy and momentum 
than the cooler morning hemisphere 

•  For objects larger than dust, FY > FPR, however 
the direction of the force depends on the direction 
of rotation: 
   prograde spin -> spirals out 
   retrograde spin -> spirals in 

•  Dominates evolution of m-km sized objects in 
the asteroid belt 

•  Responsible for origin of NEA by moving them 
into the Kirkwood gaps where chaos puts them on 
Earth-crossing orbits, and Yarkovsky force 
detected by radar imaging of NEA Golevka 
(Chesley et al. 2003)  
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Numerical Techniques 
While an analytical treatment of planetary system dynamics is essential, 
many of the problems of interest are highly non-linear and do not admit 
analytical solutions 

In this case numerical study is the best approach 

Off the shelf numerical integrators: 

•  N body maps (treat forces directly and integrate equations of motion) 
•  Symplectic integrators (Wisdom & Holman, Symba, Mercury) 
•  Gauss-Radau integrator (Everhart 1986) 
•  Other (see Sverre) 

•  Approximate maps 
•  Encounter maps (assumes all perturbations occur at conjunction) 
•  Resonance maps (includes impulses from resonant terms in the 
disturbing function) 


