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abstract

Firstly, the classification of finite subgroups of SL(2,C), a result of Felix Klein in 1884, is presented.
The polynomial invariant subrings of these groups are then found. The generators of these subrings
satisfy a polynomial relation in three variables, which can be realised as a hypersurface in C3. Each
of these surfaces have a singularity at the origin; these are the Kleinian singularities. These
singularities are blown-up, and their resolution graphs are shown to be precisely the Coxeter-
Dynkin diagrams ADE. The target readership of this project is intended to be undergraduates with
a foundational knowledge of group theory, topology and algebraic geometry.
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1 Classifying the Finite Subgroups of SL(2,C)

1.1 Important Subgroups of the General Linear Group

Recall: The general linear group of a vector space V over a field F is given by

GL(V ) = {f : V −→ V | f is linear and invertible}.

In particular, we denote GL(Fn) by GL(n,F). Since we can view linear maps as matrices, GL(n,F)
can also be viewed as the set of invertible n× n matrices with entries in F.

The next few definitions include important subgroups of GL(n,F).

Definition 1.1. The special linear group over F is given by

SL(n,F) = {A ∈ GL(n,F) | det A = 1}.

Definition 1.2. The orthogonal group over F is given by

O(n,F) = {A ∈ GL(n,F) | AAT = I}

where AT denotes the transpose of A, and I denotes the n× n identity matrix.
Note that if F = R we simply refer to O(n,R) as the orthogonal group and denote it by O(n).

Additionally, if F = C we have the unitary group, given by

U(n) = {A ∈ GL(n,C) | AA∗ = I}

where A∗ denotes the conjugate transpose of A.

Definition 1.3. The special orthogonal group over F is given by

SO(n,F) = {A ∈ O(n,F) | det A = 1}.

Moreover, if F = R we refer to SO(n,R) as the special orthogonal group, denoted SO(n), and if
F = C we have the special unitary group, given by

SU(n) = {A ∈ U(n) | det A = 1}.

Remark 1.4. Routine calculations prove that the sets defined in Definitions 1.1-1.3 are indeed
subgroups of the general linear group under matrix multiplication.

In this project we are especially interested in SL(2,C), the set of complex 2× 2 matrices with
determinant equal to 1.

1.2 Platonic Solids and the Finite Subgroups of SO(3)

To present the classification of finite subgroups of SL(2,C), we will make use of the classification of
finite subgroups of SO(3). The latter arises as a consequence of there existing exactly five platonic
solids. We will construct these now.
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Definition 1.5. A half-space is either of the two parts into which a plane divides R3. A convex
polyhedron in R3 is the intersection of finitely many half-spaces. Loosely speaking then, a polyhe-
dron is a solid in three dimensions such that its faces are flat and its edges are straight. By convex
we mean that for any two points inside (including on the boundary of) the polyhedron, all of the
points on the line joining them are also contained inside the polyhedron.

Definition 1.6. Let P be a polyhedron. A flag of P is a triple (v, e, F ) consisting of a vertex v,
an edge e and a face F such that v is one of the endpoints of e, and e is one of the sides of F . We
now say that P is regular if for any two flags of P there is a symmetry (rotation or reflection) of P
mapping one to the other.

Theorem 1.7. (The Platonic Solids) Let P be a regular convex polyhedron. By the regularity
of P , each face must be a regular polygon and an equal number of them must meet at each vertex.
Suppose that the faces of P are p-gons and that q faces meet at each vertex. The pair {p, q} is
then called the Schläfli symbol of P . Let v be a vertex of P . We know that at v, the total of the
angles between each pair of edges connecting to v must be less than 2π. Since q faces meet at v,
there are q such angles and since each face is a regular p-gon, these angles are all of size π − 2π/p.
Thus we have the condition

q(π − 2π/p) < 2π

which simplifies to
(p− 2)(q − 2) < 4.

Together with the natural condition that p, q > 3, we have that the only integer solutions are {3,3},
{4,3}, {3,4}, {5,3}, {3,5}. These pairs identify the five platonic solids and are illustrated below.
The table below that gives the number of vertices, edges and faces of each.

Figure 1: The Platonic Solids [1]
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Polyhedron Vertices Edges Faces Schläfli symbol

Tetrahedron 4 6 4 {3,3}
Cube 8 12 6 {4,3}
Octahedron 6 12 8 {3,4}
Dodecahedron 20 30 12 {5,3}
Icosahedron 12 30 20 {3,5}

�

The classification of finite subgroups of SO(3) is now given, although the proof is not. A full
proof given from first principles and perfect for undergraduate reading can be found in [2, pp.
10-15].

We say that a pair of solids are dual if one can be constructed from the other by connecting
vertices placed at the centres of the faces of its dual. An example of this can be seen using the
cube and octahedron below.

Figure 2: Illustration of the duality of the cube and octahedron [3]

Essentially then, dual solids are solids with their faces and vertices interchanged. Due to this,
the symmetry groups of dual solids are the same.

Below is a table of the symmetry groups of the platonic solids. Note that the tetrahedron is
self-dual.

Platonic Solid Isomorphic to: Order

Tetrahedron A4 12

Cube and Octahedron S4 24

Dodecahedron and Icosahedron A5 60

Recall that transformations in R3 that preserve orientation and distance from the origin are
precisely rotations about the origin; these are the matrices comprising SO(3).
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The classification: All finite subgroups of SO(3) are isomorphic to either:

• a cyclic group Zn, order n. We can view Zn as a cyclic group of rotations around a particular
axis. It is generated by a rotation a satisfying an = 1.

• a dihedral group Dn, order 2n. We can view Dn as the rotations of a prism based on a regular
n-gon. It is generated by two rotations a and b that satisfy the relations an = 1, b2=1, and
bab−1 = a−1.

Figure 3: Octagonal Prism. Its rotational symmetry group is Dn, n = 8. [4]

• the rotational symmetry group of a platonic solid, either:

– the tetrahedron T ∼= A4, order 12.

– the octahedron O ∼= S4, order 24.

– the icosahedron I ∼= A5, order 60.

1.3 From SL(2,C) to SO(3)

Definition 1.8. Let G be a group. We say that two subgroups H1, H2 of G are conjugate subgroups
if ∃g ∈ G such that gH1g

−1 = H2.

Lemma 1.9. Every finite subgroup of SL(n,C) is conjugate to a subgroup of SU(n).

Proof. Let G be a finite subgroup of SL(n,C). Denote the usual inner product on Cn by 〈 , 〉 (so
〈u, v〉 = u · v =

∑n
j=1 ujvj). We will need a new inner product ( , ) on Cn that is unitary with

respect to G, i.e. (Au,Av) = (u, v) ∀A ∈ G and ∀u, v ∈ Cn. The inner product

(u, v) :=
1

|G|
∑
A∈G
〈Au,Av〉

will do. It is easy to check that this is an inner product on Cn and the fact that AG = G ∀A ∈ G
implies that it is unitary.
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Now, since Cn with ( , ) is a finite dimensional inner product space, there exists an orthonormal
basis B for ( , ) by the Gram-Schmidt process. Let ρ : Cn −→ Cn be the change of basis operator
taking B to the standard basis. Then ρ ∈ GL(n,C) and ρGρ−1 is a subset of SU(n) as

〈ρAρ−1u, ρAρ−1v〉 = (Aρ−1u,Aρ−1v) = (ρ−1u, ρ−1v) = 〈u, v〉

∀A ∈ G and ∀u, v ∈ Cn. Moreover, ρGρ−1 is a subgroup of SU(n) as it is the image of the
conjugation map A 7−→ ρAρ−1 which is a homomorphism. By construction, G is conjugate to the
subgroup ρGρ−1.

Remark 1.10. Lemma 1.9 tells us that in order to classify all finite subgroups of SL(2,C), it is
enough to classify all finite subgroups of SU(2) (up to conjugacy).

Lemma 1.11. There exists a natural surjective group homomorphism π : SU(2) −→ SO(3) with
kernel {±I}.

Proof. For this proof we make use of the fact that the quaternions, denoted by H, of norm equal
to 1 can be used to describe rotations in R3, as can matrices in SO(3) (see page 4).

Recall that quaternions are of the form a+bi+cj+dk, where a, b, c, d ∈ R and i2 = j2 = k2 = −1
and ij = k. Notice that we can write a quaternion q ∈ H as q = z1 + z2j, where z1 = a + bi and
z2 = c+ di are complex numbers. Hence we have

|q|2 = a2 + b2 + c2 + d2 = |z1|2 + |z2|2,
q̄ = a− bi− cj − dk = z̄1 − z2j.

A quaternion q is invertible if and only if |q| 6= 0, in which case q−1 = 1
|q| q̄. Remember that

multiplication of quaternions is not commutative!
Recall from the definition that SU(n) = {A ∈ U(n) | det A = 1}. In the case n = 2, we have

SU(2) = {
(
z1 z2
−z̄2 z̄1

)
: z1, z2 ∈ C, |z1|2 + |z2|2 = 1}.

Thus we have a group isomorphism (a routine calculation to check)

Φ : SU(2) −→ H1,

(
z1 z2
−z̄2 z̄1

)
7→ z1 + z2j

where H1 is the group of quaternions of norm 1 (H1 is a subgroup of H∗ = H\{0}. It is closed
under multiplication, has identity 1 and inverses as described above).

Now let us identify R3 with the space of “pure quaternions”, i.e. quaternions of the form bi+cj+
dk. Recall that complex numbers of norm 1 can be written in the form z = eiθ = cos(θ) + i sin(θ).
Similarly we can write quaternions of norm 1 in the form q = eq1θ = cos(θ) + q1 sin(θ), where q1 is
a pure quaternion of norm 1 (for a thorough explanation of general quaternions in polar form, see
[5]). Akin to using eiθ to represent a rotation in the plane by θ about the origin, eq1θ can be used
to represent a rotation by θ around the axis given by the unit vector q1 in Euclidean space.

For any pure quaternion q0 (vector in R3) and any q ∈ H1 written in the form q = eq1θ, the
expression qq0q

−1 gives the resulting vector of rotating q0 by 2θ around the axis q1. A sketch proof
of this is given in [6, pp. 20-23]. Therefore we can define the map π : H1 −→ SO(3), q 7→ qq0q

−1,
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which rotates each fixed vector q0 by 2θ around the axis q1 as explained above. This map is clearly
a homomorphism (it is essentially just conjugation by q) and is surjective as any rotation in R3 can
be expressed by a unit quaternion.

To work out the kernel, suppose π(q) = qq0q
−1 = q0, i.e. qq0 = q0q. Then we are looking for

quaternions of norm 1 that commute with every pure quaternion. The only ones are {1,−1}. In
terms of SU(2), this is {I,−I}.

Since SU(2) ∼= H1, we have that π : SU(2) −→ SO(3), via the isomorphism Φ above, is the
surjective homomorphism required.

Lemma 1.12.

(
−1 0

0 −1

)
is the only element of SU(2) of degree 2.

Proof. Any element of SU(2) with degree 2 satisfies(
α β
−β̄ ᾱ

)2

=

(
1 0
0 1

)
.

This gives us the system of equations

α2 − |β|2 = 1 (1)

αβ + βᾱ = 0 (2)

−β̄α− β̄ᾱ = 0 (3)

ᾱ2 − |β|2 = 1 (4)

Note that (1) implies α 6= 0 since otherwise −|β|2 = 1. Now (1) and (4) imply that α2 = ᾱ2 so
α = ±ᾱ. Thus α = x or α = ix for some x ∈ R\{0}. If α = ix then (1) implies (ix)2 − |β|2 = 1 so
−x2 − |β|2 = 1, however −x2 − |β|2 < 0 so we cannot have α = ix. Hence α = x and (2) implies
that 2αβ = 0 so β = 0 and finally (1) gives α = ±1. Of course α = 1 gives the identity matrix,
and α = −1 gives the degree 2 matrix that we seek.

Lemma 1.13. Let G be a finite subgroup of SU(2) and let π be the map constructed in Lemma
1.11. Then either G is cyclic of odd order, or |G| is even and G = π−1(π(G)) is the preimage of a
finite subgroup of SO(3).

Proof. First suppose |G| is odd. Then there are no elements of order 2 in G so ker(π) ∩G = {I}.
By the First Isomorphism Theorem, the restriction of π to G is isomorphic to its image, so by the
classification of finite subgroups of SO(3), this can only be a cyclic group of odd order.

Now suppose |G| is even. Then by Cauchy’s Theorem, G must have an element of order 2,
which is −I by Lemma 1.12. Hence ker(π) = {±I} ⊆ G, so G = π−1(π(G)) is the preimage of a
finite subgroup of SO(3).

Remark 1.14. When |G| is even, ker(π) is of order 2 in G so π is a two-to-one surjection. A proof
of this is as follows: suppose y is an element of the codomain. By surjectivity, there exists an x
in the domain such that π(x) = y. Let e, I be the identity elements of G and SO(3) respectively.
Since π is a homomorphism and −e ∈ ker(π), then π(−x) = π(−e)π(x) = Iπ(x) = y, so at
least two elements in the domain map to y. If there was a third, say π(a) = y, then we have
π(x) = π(a) ⇒ π(x)π(a)−1 = I ⇒ π(xa−1) = I ⇒ xa−1 ∈ ker(π). We have just produced a third
element in the kernel, a contradiction.
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Therefore if |π(G)| = n, then |G| = 2n. We call G a binary polyhedral group; it corresponds to
a finite subgroup of SO(3) but has order twice that of its image. This classifies finite subgroups of
SU(2), and hence SL(2,C) up to conjugation.

Theorem 1.15. (Classification of the Finite Subgroups of SL(2,C)) The classification of
the non-trivial finite subgroups of SL(2,C), up to conjugation, are precisely the binary polyhedral
groups, which are given below. Hereafter we set εk = exp(2πik ).

An: For n ≥ 1, the cyclic group G ∼= Zm, where m = n+ 1, order m, generated by(
εm 0
0 ε−1m

)
.

Dn: For n ≥ 4, the binary dihedral group Dm, where m = n − 2, order 4m, generated by A,B
where

A =

(
ε2m 0

0 ε−12m

)
, B =

(
0 i
i 0

)
.

E6: The binary tetrahedral group T, order 24, generated by σ, τ, µ where

σ =

(
ε4 0

0 ε−14

)
, τ =

(
0 i
i 0

)
, µ =

1

1− i

(
1 i
1 −i

)
.

E7: The binary octahedral group O, order 48, generated by κ, τ, µ where

κ =

(
ε8 0

0 ε−18

)
, τ =

(
0 i
i 0

)
, µ =

1

1− i

(
1 i
1 −i

)
.

E8: The binary icosahedral group I, order 120, generated by γ, τ,Ω where

γ =

(
ε10 0

0 ε−110

)
, τ =

(
0 i
i 0

)
, Ω =

1√
5

(
ε5 − ε45 ε25 − ε35
ε25 − ε35 −ε5 + ε45

)
.

Remark 1.16. i) The generators of each group can be found via the map π, but these calculations
are skipped and only the results given here. It is worth noting however that there are other ways
of expressing the above groups using different generators.
ii) This theorem is an example of ADE Classification, which is a specific type of classification
into two infinite sets of objects indexed by the natural numbers, namely An for n ≥ 1 and Dn for
n ≥ 4 (for n = 1, 2, 3 we have An ∼= Dn), with three sporadic cases denoted E6, E7, E8. Why we
use these names will become apparent later.
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2 G-invariant Subrings

Now that we have classified all of the finite subgroups G of SL(2,C), we seek all of the G-invariant
polynomials in two variables over C.

To be explicit, let C[u, v] be the ring of polynomials in two variables with coefficients in C, let
G be a finite subgroup of SL(2,C) (one of An, Dn, E6, E7, E8 as in Theorem 1.15) and let G act on
C[u, v]. In this chapter we want to find the set of polynomials invariant under the action of G, i.e.
the set

C[u, v]G := {f ∈ C[u, v] | gf = f ∀g ∈ G}.

So what is the action we are interested in? We simply take the column vector
(
u v

)T
and

left-multiply it by a generator of G (we need only consider the generators - see below) to see how it
acts on u, v ∈ C[u, v]. Observe however that u, v generate the algebra C[u, v], so by understanding
how G acts on u, v we can understand how G acts on any f ∈ C[u, v].

This is perhaps best understood through an example. Consider the An case, so G ∼= Zm, where

m = n+ 1. Let g =

(
εm 0
0 ε−1m

)
be the generator of G. Then

(
εm 0
0 ε−1m

)(
u
v

)
=

(
εmu
ε−1m v

)
so gu = εmu and gv = ε−1m v. For example then, if f = u+v2+u2v3+1, we have gf = εmu+ε−2m v2+
ε−1m u2v3 + 1. An example of an invariant polynomial is f = uv, because gf = εmuε

−1
m v = uv = f .

Observe that we only need to check the first power of each generator. If f is invariant under a
generator g, i.e. gf = f , then it is invariant under all powers of g because g2f = g(gf) = gf = f ,
and an induction argument can be used for greater powers. A similar proof shows that we needn’t
investigate products of distinct generators either.

Lemma 2.1. Let G be a finite subgroup of SL(2,C) with action on C[u, v] as explained above.
Then C[u, v]G is a subring of C[u, v].

Proof. Clearly 1 ∈ C[u, v]G. Suppose g ∈ G and let p, q ∈ C[u, v] be monomials, i.e. p = aur1vt1 , q =
bur2vt2 where ri, ti ∈ Z are non-negative. Then gp = a(gur1)(gvt1) and gq = b(gur2)(gvt2).

Hence g(p+q) = a(gur1)(gvt1)+b(gur2)(gvt2) = gp+gq and g(pq) = a(gur1)(gvt1)b(gur2)(gvt2) =
ab(gur1+r2)(gvt1+t2) = gpgq, so g preserves addition and multiplication of monomials in C[u, v]. By
extension, g preserves addition and multiplication of every polynomial in C[u, v] because these are
just sums of finitely many monomials. Therefore if f, h are invariant under g we have

• g(−f) = −gf = −f

• g(f + h) = gf + gh = f + h

• g(fh) = gfgh = fh

and so C[u, v]G is a subring of C[u, v].
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Theorem 2.2. Let G be a finite subgroup of SL(2,C). Then the G-invariant subrings C[u, v]G are
generated by the following invariant polynomials:

An: f1 = um (m = n+ 1)
f2 = vm

f3 = uv
We have the relation fm3 = f1f2.

Dn: f1 = uv(u2m − 2umvm + v2m), (m = n− 2)
For n odd, f2 = u2m − v2m, f3 = u2v2.

We have the relation f̂1
2

= f3f
2
2 + 4fm+1

3 , where f̂1 = f1 + 2f
m+1

2
3 .

For n even, f2 = u2m − 2umvm + v2m, f3 = uv(u2m − v2m).

E6: f1 = 2(u12 − 33u8v4 − 33u4v8 + v12)
f2 = u8 + 14u4v4 + v8

f3 = uv(u4 − v4)
We have the relation f21 = f43 + 4f32 .

E7: f1 = uv(u8 − v8)(u8 + v8 − 34u4v4)
f2 = u8 + 14u4v4 + v8

f3 = (u5v − uv5)2
We have the relation f21 = f3f

3
2 − 108f33 .

E8: f1 = u30 + v30 + 522(u25v5 − u5v25)− 10005(u20v10 + u10v20)
f2 = −(u20 + v20) + 228(u15v5 − u5v15)− 494u10v10

f3 = uv(u10 + 11u5v5 − v10)
We have the relation f21 + f32 = 1728f53 .

Proof. We only prove the An case here. Unfortunately it is beyond the scope of this project to
reproduce the entire proof. For this, see [7, pp. 6-13].

So let G ∼= Zm. As explained in the example on page 9, our lone generator g =

(
εm 0
0 ε−1m

)
acts

on u, v as follows: gu = εmu and gv = ε−1m v. Since the action of g in this case simply multiplies u
and v by a constant, a polynomial will be invariant if and only if each of its terms are invariant.
Hence, in this case, C[u, v]G will be generated by monomials so we only need to consider them.

Suppose a monomial f = uavb is invariant. Then gf = g iff εamu
aε−bm vb = uavb iff εa−bm = 1 iff

m divides a − b. Assume without loss of generality that a ≥ b. Then since uavb = (uv)bua−b we
have that uavb must be a product of a power of uv and um. Similarly if b ≥ a then we have that
uavb must be a product of a power of uv and vm. This shows that um, vm, uv generate the ring of
invariants, and so C[u, v]G = C[um, vm, uv].

Remark 2.3. i) In the Dn case the relation between the invariant polynomials for n even is
omitted. This is because the ring of invariants is isomorphic to the n odd case (proof omitted) so
will not be needed for Theorem 2.4.
ii) Observe that in every case C[u, v]G is generated by 3 homogeneous (no constant term) polyno-
mials, and that there exists a relation between them. The relations F are homogeneous polynomials
in three “variables”; using the An example again, we have F = xy − zm, where x = f1 = um, y =
f2 = vm, z = f3 = uv.
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Theorem 2.4. Let G be a finite subgroup of SL(2,C) and let f1, f2, f3 generate the ring of in-
variants, i.e. C[u, v]G = C[f1, f2, f3]. Let F (x, y, z) = 0 be the homogeneous polynomial relation
between f1, f2, f3 as given in Theorem 2.2. Then C[u, v]G ∼= C[x, y, z]/〈F (x, y, z)〉.

Proof. First of all note that when writing down F (x, y, z), we can scale the relation between f1, f2, f3
so that all of the coefficients are equal to 1 simply by multiplying the invariants by appropriate
constants (they will still be invariant and generate C[u, v]G). Unfortunately, only half of a proof of
the An case can be given; the rest is beyond the scope of this project.

We have G ∼= Zm, C[u, v]G = C[um, vm, uv], and F (x, y, z) = xy − zm. Let φ : C[x, y, z] −→
C[um, vm, uv] be the map taking x, y, z to um, vm, uv respectively. Clearly φ is a surjective ring
homomorphism. It’s also clear that the ideal generated by F , i.e. 〈xy − zm〉 is contained in the
kernel of φ. What’s true but not so trivial is that ker(φ) ⊆ 〈xy−zm〉. Armed with this fact, we have
ker(φ) = 〈xy− zm〉 and so by the First Isomorphism Theorem, C[u, v]G ∼= C[x, y, z]/〈xy− zm〉.

The results of Theorem 2.4 are as follows:

An: C[u, v]G ∼= C[x, y, z]/〈xy − zn+1〉, n ≥ 1

Dn: C[u, v]G ∼= C[x, y, z]/〈x2 + zy2 + zn−1〉, n ≥ 4

E6: C[u, v]G ∼= C[x, y, z]/〈x2 + y3 + z4〉

E7: C[u, v]G ∼= C[x, y, z]/〈x2 + y3 + yz3〉

E8: C[u, v]G ∼= C[x, y, z]/〈x2 + y3 + z5〉

The Final Goal: The last step of this journey is to take the generators of the ideals in each
of the above quotient rings above and realise them as hypersurfaces in C3. We will see that these
hypersurfaces have exactly one singularity at the origin. Our aim is to blow-up these singularities
and show that their resolution graphs (explained through example later) match those given by
Figure 4. These singularities define a special class of surface singularities called the Kleinian
singularities, named after Felix Klein (1849-1925) who first determined the classification of finite
subgroups of SL(2,C) in 1884. These singularities also go by the names of du Val singularities or
simple surface singularities.

Figure 4: We want to show that the resolution graphs of the surfaces described above match the
Coxeter-Dynkin diagrams of type ADE [8]
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3 Blow-up

3.1 Definitions and Properties

First let us recall some definitions. Let An and Pn−1 denote n-dimensional affine and projective
space respectively. The field in question will always be C, unless otherwise specified.

Definition 3.1. Suppose S ⊆ C[x1, . . . , xn] is a set of polynomials in n variables. The algebraic
variety, or just variety, defined by S is the locus given by

V(S) = {p ∈ An | f(p) = 0 ∀f ∈ S}.

Definition 3.2. The Zariski topology on affine or projective space is the topology such that al-
gebraic varieties are precisely the closed sets. We will always assume this topology on An and
Pn−1.

Definition 3.3. Let X ∈ An, Y ∈ Am be algebraic varieties. A polynomial map φ : X → Y is
an isomorphism if there exists another polynomial map ψ : Y → X satisfying ψ ◦ φ = idX and
φ ◦ ψ = idY .

Definition 3.4. Let f ∈ C[x1, . . . , xn] be irreducible and nonconstant. A point p ∈ V(f) is singular

if
∂f

∂xi
(p) = 0 ∀i = 1, . . . , n. If a variety has no singular points then we say that it is smooth.

So what exactly is blow-up? Intuitively, it’s a process whereby we “pull apart” a variety at
a singular point according to the different directions of lines through that point. An example of
this is given by Example 3.8. If the resulting variety is smooth, then we are said to have achieved
a resolution of singularities, i.e. we have smoothed the singular variety. Sometimes this process
requires several iterations of blowing-up, as we shall see later.

To begin with, we will define the blow-up of the origin O = (0, . . . , 0) ∈ An. Consider the
Cartesian product An × Pn−1. Denote the coordinates of An by (x1, . . . , xn) and the homogeneous
coordinates of Pn−1 by [y1 : . . . : yn]. Note that the closed subsets (i.e. varieties) of An × Pn−1 are
defined by polynomials in xi, yj which are also homogeneous with respect to the yj .

Definition 3.5. The blow-up of An at the point O is the closed subset

X = V(xiyj − xjyi | i, j = 1, . . . , n) ⊂ An × Pn−1

There is an important natural morphism ϕ : X → An obtained by simply restricting the
inclusion map from X into An × Pn−1 to the affine part. Hereafter X and ϕ will always refer to
this variety and map.

X An × Pn−1

An

ϕ

12



Lemma 3.6. (Properties of X and ϕ)
i) If O 6= p ∈ An, then ϕ−1(p) consists of a single point.
Proof. We show that ϕ gives an isomorphism between X\ϕ−1(O) and An\{O}, i.e. we need to
find an inverse morphism of ϕ. So let p = (x1, . . . , xn) ∈ An with some xi 6= 0. If p × [y1 :
. . . : yn] ∈ ϕ−1(p), then by definition of X we must have yj =

xj
xi
yi ∀j = 1, . . . , n. But this

uniquely determines [y1 : . . . : yn] ∈ Pn−1 (up to a scalar multiple at least, so without loss of
generality we can take yi = xi ∀i = 1, . . . , n). Hence ϕ−1(p) consists of a single point and defining
ψ(p) = (x1, . . . , xn)× [x1 : . . . : xn] gives an inverse morphism of ϕ, thus X\ϕ−1(O) ∼= An\{O}.

ii) ϕ−1(O) ∼= Pn−1.
Proof. ϕ−1(O) consists of all points of the form O× q, where q ∈ Pn−1 is subject to no constraints.

iii) The points of ϕ−1(O) are in one-to-one correspondence with the set of lines through O in An.
Proof. Let L be a line through O in An, given parametrically by xi = ait, i = 1, . . . , n, t ∈ A1, ai ∈ C
not all 0. Let L′ be the line ϕ−1(L\{O}) in X\ϕ−1(O). This line is given by the equations
xi = ait, yi = ait, t ∈ A1\{O}. But since the yi are homogeneous coordinates in Pn−1, we can
describe L′ by xi = ait, yi = ai, and these equations now make sense for all t ∈ A1; this gives the
closure of L′ in X. Now L′ meets ϕ−1(O) at the point O× [a1 : . . . : an] where [a1 : . . . : an] ∈ Pn−1.
Hence the map sending L to [a1 : . . . : an] gives a one-to-one correspondence between lines through
O in An and points of ϕ−1(O).

iv) X is irreducible.
Proof. We have X = (X\ϕ−1(O)) ∪ (ϕ−1(O)). By i), the first piece is isomorphic to An\{O} and
thus irreducible. As for the second piece, we know from iii) that every point of ϕ−1(O) is in the
closure of some subset (L′ as constructed in iii)) of X\ϕ−1(O). Hence X\ϕ−1(O) is dense in X and
thus (X\ϕ−1(O)) = X = X (where the latter equality comes from the fact that X is a variety).
But the closure of an irreducible set is irreducible, therefore X is irreducible. �

Definition 3.7. If Y is an algebraic variety in An passing through the origin O, the blow-up of Y
at the point O is Ỹ = (ϕ−1(Y \{O})) ⊂ X ⊂ An × Pn−1. To blow up any other point P ∈ Y , we
make a linear change of coordinates sending P to O.

Example 3.8. Let Y = V(y2 − x2(x + 1)) ⊂ A2. This variety has one singularity at the origin,
which we will blow up. Let the projective coordinates of A2 × P1 be given by [t : u]. Then the
blow-up of (0, 0) ∈ Y is given by Ỹ = Y ∩X = V(xu− yt, y2 − x2(x+ 1)) ⊂ A2 × P1.

Observe that the result looks like our curve in A2 except that the origin has been replaced by
a P1, see Figure 5. We call this P1 the exceptional divisor and denote it by E.

Figure 5: Blow-up of (0, 0) ∈ Y = V(y2 − x2(x+ 1)) [9]
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Recall that A2×P1 is covered by two affine open sets given by t 6= 0 and u 6= 0, denoted Ut and
Uu respectively. We will look at Ỹ in the affine chart Ut. Denote this by Ỹt, i.e. Ỹt = Ut ∩ Ỹ . Then
we can divide our projective coordinates by t and use u

t as an affine coordinate, and so study Ỹt

as if it lived in A3 with coordinates (x, y, ut ). Therefore we have Ỹt = V(y − xut , y
2 − x2(x+ 1)) ⊂

Ut ∼= A3. Plugging the first equation into the second yields x2(ut )2−x2(x+ 1) = 0 which factors as
x2((ut )2 − x− 1) = 0.

We must have either x2 = 0 or (ut )2 = x + 1. The first condition forces y = 0 and leaves u
t

arbitrary; this of course corresponds to E (or at least the t 6= 0 affine part of it). The second
condition is (ut )2 = x + 1. This is Ỹt. Observe that at Ỹt ∩ E we must have (x, y) = (0, 0) in this
equation. This leaves (ut )2 = ±1. These two points, (x, y, ut ) = (0, 0,±1) correspond to the slopes
of the two branches of Y at the origin. Note that with respect to Figure 5, t has been set equal to
1, as opposed to dividing through by it in the above calculations. ♦

The surfaces we want to blow-up are defined by the polynomials generating the ideals on page
11. Here they are again for convenience:

An: xy − zn+1 = 0, n ≥ 1

Dn: x2 + zy2 + zn−1 = 0, n ≥ 4

E6: x
2 + y3 + z4 = 0

E7: x
2 + y3 + yz3 = 0

E8: x
2 + y3 + z5 = 0

Lemma 3.9. Each of these surfaces has exactly one singularity, which can be found at the origin.

Proof. The An, E6 and E8 cases are easy as taking the partial derivatives with respect to each
variable and setting them equal to 0 forces each variable in turn to be equal to zero, thus giving a
singularity at (0, 0, 0) as required.

For E7, let f be the polynomial given. Firstly ∂f
∂x = 0 forces x = 0. Now ∂f

∂z = 0 implies 3yz2 = 0

and ∂f
∂y = 0 implies 3y2 + z3 = 0. The only simultaneous solution to both of these equations is

y = 0 = z, giving the desired singularity (0, 0, 0). The Dn case is similar.

We are now ready to calculate the blow-ups of each of these surfaces at the origin and find their
resolution graphs. These calculations will take us to the end of the project. Note that in Example
3.8 we were working in R2, and hence able to get nice pictures. Such pictures are impossible for
blow-ups of surfaces in C3, although guiding diagrams have been attempted.

Notation: Denote the coordinates of A3 × P2 by (x, y, z; a : b : c), i.e. we use x, y, z for the
affine part and a, b, c for the projective part. X is given by V(xb − ya, xc − za, yc − zb). In each
case, denote the surface in question by the variety Y = V(f), where f is the defining polynomial.
Let the blow-up of the surface at the origin be given by Ỹ = V(xb − ya, xc − za, yc − zb, f) ⊂ X.
Let Ua ⊂ A3 × P2 be the open subset where the the a-coordinate is non-zero. Observe Ua ∼= A5

and that the coordinates in this space are (x, y, z, ba ,
c
a). We define Ub, Uc similarly. Denote the

affine charts of Ỹ , for example Ỹ ∩ Ua, by Ỹa. Denote the exceptional divisor of each blow-up
by E. For cases requiring several blow-ups, we will alternate between the coordinates above and
(A,B,C;α : β : γ) ∈ A3 × P2.

14



3.2 The An Case

The strategy will be to show that A1 and A2 have the desired resolution graphs and then complete
an induction argument on the general An case.

3.2.1 A1

We have f = xy − z2 and Ỹ = V(xb− ya, xc− za, yc− zb, xy − z2).

First consider Ỹa = V(x ba − y, x
c
a − z, y

c
a − z

b
a , xy − z

2) ⊂ Ua ∼= A5. Substituting the first two

equations into the last one yields x2 ba − x
2( ca)2 = 0, i.e. x2( ba − ( ca)2) = 0.

This last equation has two irreducible parts, namely x2 and b
a − ( ca)2. If we set x2 = 0, the

other equations in Ỹa force y = 0 = z. This part is the exceptional divisor E. It is the set
that φ maps to the singularity (0, 0, 0) ∈ Y . Observe that in X, E is the set with coordinates
{(0, 0, 0; a : b : c)} ∼= P2. This is in accordance with Lemma 3.6.ii, which is reassuring.

The other part, b
a−( ca)2, tells us more about Ỹa. Using b

a = ( ca)2 and the equations y = x ba , z = x ca ,

we can construct a polynomial isomorphism (x, y, z, ba ,
c
a) = (x, x( ca)2, x( ca), ( ca)2, ca) 7→ (x, ca) ∈ A2,

i.e. we achieve Ỹa ∼= A2. Since A2 is smooth, we know that Ỹa must be smooth. The following
diagram represents Ỹa as A2 with coordinate axes x, ca .

The red squiggle along the c
a -axis corresponds to where Ỹa meets E, as x = 0 forces y = 0 = z.

The calculations for Ỹb are almost identical to the ones above. The important thing is that we get
another isomorphism (x, y, z, ab ,

c
b) = (y( cb)

2, y, y( cb), (
c
b)

2, cb) 7→ (y, cb) ∈ A2, thus showing that Ỹb is
also smooth. Below we have another similar diagram. The red squiggle again corresponds to where
Ỹb meets E.

Finally, in the same manner again, considering Ỹc yields the equation z2(ac
b
c−1) = 0. The interesting
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irreducible part of this is a
c
b
c = 1. Observe that this implies both a 6= 0 and b 6= 0, but these two

conditions are precisely those considered by looking in the charts Ua and Ub. Hence we have
Ỹc ⊂ Ỹa ∪ Ỹb, so there is nothing new to be found in this chart. It is superfluous.

The next step is to “glue” our two charts (or diagrams) together. Remember that affine charts collec-
tively cover the same space and overlap each other almost entirely. In fact Ỹa\{ ca = 0} ∼= Ỹb\{ cb = 0}
via the map (x, ca) 7→ (x( ca)2, ( ca)−1) = (y, cb), which has inverse (y, cb) 7→ (y( cb)

2, ( cb)
−1) = (x, ca).

Importantly, note that in this case we have c
b = c/a

b/a = c/a
(c/a)2

= ( ca)−1 = a
c , so that the original axes

c
a and c

b coincide almost entirely (we can see this by joining the diagrams together). The c
a axis

doesn’t quite reach the y-axis in Ỹb as this would correspond to a
c = 0 i.e. a = 0 (this is why when

gluing Ỹa to Ỹb we must omit the line { ca = 0} in the domain). However by treating this as the
“point at infinity”, we actually see that this unified axis is a projective line P1. We thus have the
following diagram, where the red squiggle is a P1.

So what is the resolution graph? Whenever we have a P1 we draw a node, and we connect two
nodes with a line if the two projective lines they represent intersect. Since here we only have one
P1, our graph is just a single node, which is the desired result (see Figure 4 on page 11).

♦

3.2.2 A2

Now we have f = xy − z3 and Ỹ = V(xb− ya, xc− za, yc− zb, xy − z3).

As before, we consider Ỹ in each of the three affine charts. Ỹa and Ỹb will be very similar, but this
time Ỹc will have a much more important role.

Now in Ỹa, we have y = x ba , z = x ca again and substituting these into xy − z3 = 0 yields x2 ba −
x3( ca)3 = 0, i.e. x2( ba − x( ca)3) = 0. Again the x2 part will give us E and the other part gives us
b
a = x( ca)3. Just like before, we have an isomorphism (x, y, z, ba ,

c
a) = (x, x2( ca)3, x( ca), x( ca)3, ca) 7→

(x, ca) ∈ A2. Hence this chart is smooth and we get a diagram identical to the first of those given
in the A1 case.
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Similarly, considering Ỹb yields the isomorphism (x, y, z, ab ,
c
b) = (y2( cb)

3, y, y( cb), y( cb)
3, cb) 7→ (y, cb) ∈

A2. We thus have smoothness and a diagram identical to the second of those given in the A1 case.

In Ỹc, we have x = z ac and y = z bc . Plugging these into xy − z3 = 0 yields z2(ac
b
c − z) = 0, from

which the interesting irreducible part gives z = a
c
a
b . This time our isomorphism Ỹc to A2 will make

all three affine coordinates redundant: (x, y, z, ac ,
b
c) = ((ac )2 bc ,

a
c ( bc)

2, ac
b
c ,
a
c ,

b
c) 7→ (ac ,

b
c) ∈ A2. We

still get a smooth result but with a different diagram. Here both coordinate axes have preimage in
E.

Now we’re ready to look at the big picture. We glue our three affine charts together and achieve
the digram below. Note that we need to bend the coordinate axes of Ỹc to do this on paper - the
angle between the a

c , bc axes is still a right angle.

The glue between these charts are the following maps.

• Ỹa\{ ca = 0} ∼= Ỹc\{ac = 0} via (x, ca) 7→ (( ca)−1, x( ca)2) = (ac ,
b
c). The latter coordinate in the

image comes from the fact that in Ỹa,
b
a = x( ca)3, so b

c = b/a
c/a = x(c/a)3

c/a = x( ca)2.

• Ỹc\{ bc = 0} ∼= Ỹb\{ cb = 0} via (ac ,
b
c) 7→ (( bc)

−1, ac ( bc)
2) = ( cb , y).

So what is the resolution graph? We have two distinct projective lines intersecting in a single point
(the orange dot), thus we have the following Coxeter-Dynkin diagram, representing A2! We are
done. ♦
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3.2.3 An

The A1 and A2 cases will be our base cases for an induction argument. Consider then the An case,
i.e. f = xy − zn+1 and Ỹ = V(xb− ya, xc− za, yc− zb, xy − zn+1), and suppose that for all k < n
we have that the resolution graph of Ak is k nodes in a line as shown below.

The results of looking in the Ua and Ub charts are exactly the same as before; we get that Ỹa ∼= A2

and Ỹb ∼= A2 via the isomorphisms listed below, and so the diagrams we get are the same as the
first two given in the A1 case.

• Ỹa. (x, y, z, ba ,
c
a) = (x, xn( ca)n+1, x ca , x

n−1( ca)n+1, ca) 7→ (x, ca)

• Ỹb. (x, y, z, ab ,
c
b) = (yn( cb)

n+1, y, y cb , y
n−1( cb)

n+1, cb) 7→ (y, cb)

For Ỹc we will get the equation z2(ac
b
c − z

n−1) = 0. Here we cannot make the z variable redundant

and get a polynomial isomorphism Ỹc ∼= A2. In fact, the equation a
c
b
c − z

n−1 = 0 does not even

define a smooth variety. By renaming the variables a
c 7→ A, b

c 7→ B, z 7→ C, it defines the singular

variety V(AB − Cn−1) ⊂ A3. Hence Ỹc ∼= V(AB − Cn−1) ⊂ A3. But look! This variety describes
the An−2 singularity (the green dot on the diagram below), so by induction it has resolution graph
n− 2 nodes in a line.

The glue between the charts is:

• Ỹc\{A = 0} ∼= Ỹa\{ ca = 0} via (A,B,C) 7→ (AC,A−1) with inverse (x, ca) 7→ (( ca)−1, xn−1( ca)n, x ca)

• Ỹc\{B = 0} ∼= Ỹb\{ cb = 0} via (A,B,C) 7→ (BC,B−1) with inverse (y, cb) 7→ (yn−1( cb)
n, ( cb)

−1, y cb)

Hence the coincidence of the c
a -axis and the A-axis in Ỹc forms a P1, call it Γ0, and similarly the

c
b and B axes form another, call it Γ1. Thus Γ0,Γ1 will contribute two extra nodes to the resolution

graph representing the An−2 singularity in Ỹc; we just need to make sure that these two nodes
join the rest in the correct place. Using the new coordinates (A,B,C) with projective coordinates
[α : β : γ] we blow-up Y ′ := V(AB −Cn−1) and, like we’ve already seen, we will get smoothness in
the Ỹ ′α and Ỹ ′β charts via the following isomorphisms to A2:
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• Ỹ ′α. (A,B,C, βα ,
γ
α) = (A,An−2( γα)n−1, A γ

α , A
n−3( γα)n−1, γα) 7→ (A, γα)

• Ỹ ′β. (A,B,C, αβ ,
γ
β ) = (Bn−2( γβ )n−1, B,B γ

β , B
n−3( γβ )n−1, γβ ) 7→ (B, γβ )

For Ỹ ′γ , after throwing away the irreducible part with preimage in E we will get the equation
α
γ
β
γ − C

n−3 = 0, a singularity of An−4 type. Like above, the coincidence of the γ
α ,αγ axes and the

γ
β ,βγ axes will create another two P1s that intersect in this An−4 singularity. Meanwhile, Γ0,Γ1 will

intersect these P1s also. See the diagram below.

This whole process of gaining two extra P1s repeats with each blow-up, overall yielding the
desired n nodes in a straight line for An.

♦
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3.3 The Dn Case

Like An, we first study D4 and D5 and then complete an induction argument on the general case
Dn. From hereafter the calculations for checking whether a chart may be smooth or not are skipped
(these are easily done by taking partial derivatives).

3.3.1 D4

We have f = x2 + zy2 + z3 and Ỹ = V(xb − ya, xc − za, yc − zb, x2 + zy2 + z3). Substituting the
blow-up equations into f and looking in each affine chart, we have:

• Ỹa: x2(1 + x( ba)2 ca + x3( ca)3) = 0.

• Ỹb: y2((ab )2 + y cb + y( cb)
3) = 0.

• Ỹc: z2((ac )2 + z( bc)
2 + z) = 0.

The irreducible parts x2, y2, z2 of the respective charts above each have preimage entirely contained
in E. In fact, we will get these factors every time we blow-up Kleinian singularities. Since we are
not interested in these parts of the preimage, they will hereafter simply be omitted when listing
the equations of the affine charts of Ỹ .

Hence, now disregarding them and focussing on the other irreducible parts, which collectively
describe the proper transform of Ỹ , we have:

• Ỹa: 1 + x( ba)2 ca + x3( ca)3 = 0. This chart is smooth and does not intersect E (since in Ỹa ∩E
we must have x = 0 which leaves 1 = 0 in the equation above. Thus Ỹa ∩ E = ∅).

• Ỹb: (ab )2 +y cb +y( cb)
3 = 0. This chart has a singular point at (ab , y,

c
b) = (0, 0, 0) and intersects

E when a = 0, i.e. with affine coordinates (x, y, z, ab ,
c
b) = (0, 0, 0, 0, cb).

• Ỹc: (ac )2 + z( bc)
2 + z = 0. This chart has two singular points at (ac ,

b
c , z) = (0,±i, 0) and

intersects E when a = 0, i.e. when (x, y, z, ac ,
b
c) = (0, 0, 0, 0, bc).

First of all, the intersection of E with Ỹb is isomorphic to A1, as it just the line with coordinates
(0, 0, 0, 0, cb). Similarly, Ỹc ∩E is another A1 with coordinates (0, 0, 0, 0, bc). We see then that these
two lines are actually just the two affine charts of the same P1. This is the same idea as used in
the A1 case on page 16. We will denote this particular P1 by Γ0.

Now let’s look at the singularities in these charts. There are two important observations. Firstly,
we have that these three singularities are distinct: the singularity in Ỹb has c

b = 0 whereas the

singularities in Ỹc have b
c = ±i, which are of course inconsistent with each other. The second

observation is that all three of these singularities lie on Γ0 (where a = 0) as they have coordinates
a
b = 0 and a

c = 0 respectively. We will now prove that these singularities are all of type A1, thus
yielding the resolution graph D4. This will be achieved since each of the three A1 singularities’
blow-ups will contain a single P1 that will intersect Γ0 at a distinct point. Observe then that Γ0

will correspond to the P1 given by the centre node in the D4 resolution graph.
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So, first let’s check the (ab , y,
c
b) = (0, 0, 0) singularity in the Ỹb. Change coordinates a

b 7→ A, y 7→
B, cb 7→ C so that (ab )2 + y cb + y( cb)

3 = 0 becomes A2 +BC +BC3 = 0. We blow this up at (0, 0, 0)

as normal and, using a new set of projective coordinates [α : β : γ], get a variety Ỹ ′, that is smooth
in all three charts, as hoped. Each chart intersects E = {(A,B,C) = (0, 0, 0)} × P2 as follows:

• Ỹ ′α ∩ E = V(1 + β
α
γ
α) ⊂ {0} × A2

• Ỹ ′β ∩ E = V((αβ )2 + γ
β ) ⊂ {0} × A2

• Ỹ ′γ ∩ E = V((αγ )2 + β
γ ) ⊂ {0} × A2

It’s easy to see that these affine equations collectively yield the projective variety Ỹ ′ ∩E = V(α2 +
βγ) ⊂ {0} × P2, a non-degenerate conic in P2. Now, by Example 15.2 in [10, pp. 39-40], we know
that non-degenerate conics in P2 are isomorphic to P1. Thus the blow up of this singularity contains
exactly one P1, which is what we wanted.

Where does this P1 intersect Γ0? In Ỹb, Γ0 is the c
b -axis. Thus it’s proper transform in Ỹ ′ will be

the C-axis. The blow-up variety of Ỹ ′ is X ′ = V(Aβ − Bα,Aγ − Cα,Bγ − Cβ), so the proper
transform of Γ0 will be the variety Γ̃0 = V(Aβ − Bα,Aγ − Cα,Bγ − Cβ,A,B). We consider the
intersection of Γ̃0 and E when C is left arbitrary, yielding α = 0 = β. Hence (Ỹ ′ ∩ E) ∩ (Γ̃0 ∩ E)
contains only the point [α : β : γ] = [0 : 0 : 1]; this is where Γ0 meets the conic (or P1) we find by
blowing up the A1 singularity (ab , y,

c
b) = (0, 0, 0).

Now we must check the singularities (ac ,
b
c , z) = (0,±i, 0) in Ỹc. We only need to look at one as the

cases will be symmetric. So consider (0, i, 0) and make a linear coordinate change a
c 7→ A, bc 7→ B+i,

z 7→ C with a new set of projective coordinates [α : β : γ] so that (ac )2 + z( bc)
2 + z = 0 becomes

A2 +CB2 + 2iBC = 0. This coordinate change translates the (0, i, 0) singularity to (0, 0, 0), which
we now blow-up. An important note here is that this blow-up, denoted Ỹ ′′, is not actually smooth
in one of its affine charts. More precisely, Ỹ ′′β will contain a singularity at (αβ , B,

γ
β ) = (0,−2i, 0).

We should not be alarmed however; this singularity is just the other singularity (0,−i, 0) ∈ Ỹc
that we didn’t blow-up originally. The fact that there are no other singular points in any of the
affine charts of Ỹ ′′ means that we’ve “smoothed out” (0, i, 0) ∈ Ỹc as intended. Similar to above,
we actually have Ỹ ′′ ∩ E = V(α2 + 2iβγ), another non-degenerate conic that will give us a P1 as
desired. The intersection with Γ0 is calculated similarly.

The overall result is the resolution graph given above. We are done. ♦
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3.3.2 D5

We have f = x2+zy2+z4 and Ỹ = V(xb−ya, xc−za, yc−zb, x2+zy2+z4). Looking in each affine
chart and disregarding the irreducible part with preimage completely contained in E, we have:

• Ỹa: 1 + x ca( ba)2 + x2( ca)4 = 0, smooth and does not intersect E.

• Ỹb: (ab )2+y cb+y2( cb)
4 = 0. This chart has a singular point at (ab , y,

c
b) = (0, 0, 0) and intersects

E when a = 0, i.e. with affine coordinates (x, y, z, ab ,
c
b) = (0, 0, 0, 0, cb).

• Ỹc: (ac )2 + z( bc)
2 + z2 = 0. This chart has a singular point at (ac ,

b
c , z) = (0, 0, 0) and intersects

E when a = 0, i.e. with affine coordinates (x, y, z, ac ,
b
c) = (0, 0, 0, 0, bc).

We see that Ỹb and Ỹc each intersect E along a = 0 just like in the D4 case. We know that this
corresponds to a P1 which we will again denote by Γ0. The singularities in the latter two charts must
be distinct as they require c

b = 0 and b
c = 0 respectively. The singularity (ab , y,

c
b) = (0, 0, 0) ∈ Ỹb

is of A1 type and this can be shown in precisely the same manner as for the singularity in the Ỹb
chart in the D4 case (see page 21).

In Ỹc we have a singularity at (ac ,
b
c , z) = (0, 0, 0). We change coordinates a

c 7→ A, bc 7→ B, z 7→ C,
use a new set of projective coordinates [α : β : γ], and denote the blow-up of A2 + CB2 + C2 = 0
at (0, 0, 0) by Ỹ ′. Again, throwing away the irreducible part with preimage completely contained
in E yields the following:

• Ỹ ′α: 1 +A γ
α(βα)2 + ( γα)2 = 0, smooth and intersects E along ( γα)2 + 1 = 0.

• Ỹ ′β: (αβ )2+B γ
β +( γβ )2 = 0, singular at (αβ , B,

γ
β ) = (0, 0, 0) and intersects E along (αβ )2+( γβ )2 =

0.

• Ỹ ′γ : (αγ )2 + C(βγ )2 + 1 = 0, smooth and intersects E along (αγ )2 + 1 = 0.

Firstly, observe that the singularity in Ỹ ′β lies on Γ0: in Ỹc, Γ0 is the b
c -axis. After the coordinate

change, this corresponds to the B-axis in Ỹ ′β. The singularity at (αβ , B,
γ
β ) = (0, 0, 0) lies on this

line.

Now, amalgamating the equations where each chart of Ỹ ′ intersects E, we have Ỹ ′ ∩ E = V(α2 +
γ2) = V((α+ iγ)(α− iγ)) = V(α+ iγ) ∪V(α− iγ) ⊂ {0} × P2. This describes a pair of projective
lines, namely α + iγ = 0 and α − iγ = 0. These lines intersect at the point (A,B,C;α : β : γ) =
(0, 0, 0; 0 : 1 : 0), which of course we only find in Ỹ ′β. In fact, this point of intersection is precisely

the singularity in Ỹ ′β mentioned above. It is actually another A1; denoting its blow-up by Ỹ ′′ and
making the coordinate change α

β 7→ x,B 7→ y, γβ 7→ z with a fresh set of projective coordinates

[a : b : c], we have Ỹ ′′ = V(xb − ya, xc − za, yc − zb, x2 + yz + z2). Omitting the calculations we
have Ỹ ′′ ∩ E = V(a2 + bc+ c2), a non-degenerate conic that we know is isomorphic to P1.

We want to make sure that the two projective lines α+ iγ = 0 and α− iγ = 0 now intersect this P1

in Ỹ ′′ at distinct points. To do this we need to find the proper transform of each of these lines (i.e.
blow them up too!) and look where they intersect E, then in turn V(a2 + bc+ c2). So taking first
the line α − iγ = 0 which has affine part x − iz = 0 = y after the coordinate change, its blow-up
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is given by V(xb− ya, xc− za, yc− zb, x− iz, y) = V(xb, xc− za, zb, x− iz, y). Hence we have the
affine charts listed below. Note that y = 0 makes the b 6= 0 chart uninteresting as we would only
find the origin (x, y, z) = (0, 0, 0) there, which just gives us E.

• a 6= 0: x(1− i ca) = 0

• c 6= 0: z(ac − i) = 0

From these two charts, we see that at the intersection with E we must have a = ic. Plugging this
into V(a2 + bc+ c2) yields bc = 0. Hence in the a 6= 0 and c 6= 0 charts, we must have b = 0 and so
the point of intersection is [a : b : c] = [i : 0 : 1]. If we were to repeat this blow-up with the other
line α+ iγ = 0, i.e. x+ iz = 0 = y, we would see that the point of intersection with V(a2 + bc+ c2)
is [a : b : c] = [−i : 0 : 1], (an almost identical calculation). Hence, we see that each of the two lines
intersect the conic (or P1) at the two distinct points [±i : 0 : 1], and so have been “pulled apart”
at the singularity that they used to meet in.

Finally we check where Γ0 hits V(a2 + bc+ c2): after the second change of coordinates, Γ0 in Ỹ ′′ is
the y-axis. Subbing this into the blow-up equations V(xb− ya, xc− za, yc− zb) and seeing where
it intersects E yields the point [a : b : c] = [0 : 1 : 0], which is indeed a point on V(a2 + bc+ c2). In
summary, we have a situation portrayed by the diagram below. Each bold black line is a P1 and
the coordinates of the intersection points given in the right-hand diagram are in terms of [a : b : c]
in Ỹ ′′.

Finally, adding on the A1 lying on Γ0 in the original Ỹb yields the resolution graph for D5. The
node for Γ0 has been labelled. ♦
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3.3.3 Dn

We have f = x2 + zy2 + zn−1 and Ỹ = V(xb − ya, xc − za, yc − zb, x2 + zy2 + zn−1). Looking in
each affine chart and disregarding the irreducible part with preimage completely contained in E,
we have:

• Ỹa: 1 + x ca( ba)2 + xn−3( ca)n−1 = 0, smooth and does not intersect E.

• Ỹb: (ab )2 + y cb + yn−3( cb)
n−1 = 0. This chart has a singular point at (ab , y,

c
b) = (0, 0, 0) and

intersects E when a = 0, i.e. with affine coordinates (x, y, z, ab ,
c
b) = (0, 0, 0, 0, cb).

• Ỹc: (ac )2 + z( bc)
2 + zn−3 = 0. This chart has a singular point at (ac ,

b
c , z) = (0, 0, 0) and

intersects E when a = 0, i.e. with affine coordinates (x, y, z, ab ,
b
c) = (0, 0, 0, 0, bc).

The analysis we need to do here has largely been done before. We see that Ỹb and Ỹc intersect E
along a = 0, which we already know corresponds to a P1 that we will again denote by Γ0. The
singularities in the latter two charts must be distinct as they require c

b = 0 and b
c = 0 respectively.

The singularity (0, 0, 0) ∈ Ỹb is of A1 type and this can be shown in precisely the same manner as
for the Ỹb chart in the D4 case (see page 21). Finally, the singularity (0, 0, 0) ∈ Ỹc is of Dn−2 type,
which we can see by its defining equation. We just need to make sure that Γ0 will intersect any
P1s and singularities we find in the first blow-up of this Dn−2 singularity in the desired manner.

So perform the coordinate change a
c 7→ A, bc 7→ B, z 7→ C in Ỹc with new projective coordinates

[α : β : γ] and denote the blow-up of this Dn−2 singularity by Ỹ ′. It has the following affine charts:

• Ỹ ′α: 1 +A γ
α(βα)2 +An−5( γα)n−3 = 0, smooth and does not intersect E.

• Ỹ ′β: (αβ )2 +B γ
β +Bn−5( γβ )n−3 = 0. This chart has a singular point at (αβ , B,

γ
β ) = (0, 0, 0) and

intersects E when α = 0, i.e. with affine coordinates (A,B,C, αβ ,
γ
β ) = (0, 0, 0, 0, γβ ).

• Ỹ ′γ : (αγ )2 + C(βγ )2 + Cn−5 = 0. This chart has a singular point at (αγ ,
β
γ , C) = (0, 0, 0) and

intersects E when a = 0, i.e. with affine coordinates (A,B,C, αβ ,
γ
β ) = (0, 0, 0, 0, βγ ).

As we would expect, the singularity in Ỹ ′γ is of Dn−4 type. Denote the P1 we get from α = 0 by Γ1

and denote the A1 singularity in the Ỹ ′β chart by A′1.

In Ỹ ′, Γ0 is the affine line (A,B,C) = (0, B, 0). By studying the blow-up equations X ′ = V(Aβ −
Bα,Aγ − Cα,Bγ − Cβ), we see that it intersects E at the point [α : β : γ] = [0 : 1 : 0]. Of course,
we only find this point in the Ỹ ′β chart; it is in fact the singularity A′1. Γ1 also intersects A′1; it is
the point where Γ1 and Γ0 meet. We can summarise this with the diagrams below. On the left
is the situation described above, and on the right will be what happens when blowing-up A′1 and
thus pulling apart Γ0 and Γ0.
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This process of course iterates with each blow-up, producing A′′1 and Γ2 etc. along the way,
ending in either the D4 or D5 case where we get a branch at the end. Therefore we achieve the
desired Dn resolution graph as shown below. We are done.

♦

3.4 The E6 Case

We have f = x2 + y3 + z4 and Ỹ = V(xb− ya, xc− za, yc− zb, x2 + y3 + z4). Looking in each affine
chart and disregarding the irreducible part with preimage completely contained in E, we have:

• Ỹa: 1 + x( ba)3 + x2( ca)4 = 0, smooth and does not intersect E.

• Ỹb: (ab )2 + y + y2( cb)
4 = 0, smooth and intersects E along a = 0.

• Ỹc: (ac )2 + z( bc)
3 + z2 = 0, singular at (ac ,

b
c , z) = (0, 0, 0) and intersects E along a = 0.

We get a P1 from the intersection of E along a = 0 just like in the Dn cases, which we will again
denote by Γ0. This Γ0 intersects the singularity in Ỹc which we will need to blow up. We change
coordinates a

c 7→ A, bc 7→ B, z 7→ C with a new set of projective coordinates [α : β : γ] and denote

the blow-up of A2 + CB3 + C2 = 0 at (0, 0, 0) by Ỹ ′. We have:

• Ỹ ′α: 1 +A2 γ
α(βα)3 + ( γα)2 = 0, smooth and intersects E along ( γα)2 + 1 = 0.

• Ỹ ′β: (αβ )2+B2 γ
β+( γβ )2 = 0, singular at (αβ , B,

γ
β ) = (0, 0, 0) and intersects E along (αβ )2+( γβ )2 =

0.

• Ỹ ′γ : (αγ )2 + C2(βγ )3 + 1 = 0, smooth and intersects E along (αγ )2 + 1 = 0.

What comes out of all this looks similar to the D5 case. Sure enough, we have Ỹ ′∩E = V(α2+γ2) =
V(α+ iγ)∪V(α− iγ) ⊂ {0}× P2, describing the pair of projective lines α+ iγ = 0 and α− iγ = 0
that intersect at the point [α : β : γ] = [0, 1, 0] ∈ Ỹ ′β. This is the point where Γ0, here the B-axis,

also meets the singularity in Ỹ ′β. The difference however is that their intersection, occurring at the
singularity (αβ , B,

γ
β ) = (0, 0, 0) is now a D3

∼= A3 type singularity as can be seen from the equation

describing Ỹ ′β. So far we have this picture:
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Denote the blow up of the A3 singularity in Ỹ ′β by Ỹ ′′. Make the coordinate change α
β 7→ x,B 7→

y, γβ 7→ z, so that we are considering the blow-up of Y ′′ = V(x2 + y2z + z2) with the projective

coordinates [a : b : c]. Ỹ ′′ has the following charts:

• Ỹ ′′a : 1 + x( ba)2 ca + ( ca)2 = 0, smooth and intersects E along ( ca)2 + 1 = 0.

• Ỹ ′′b : (ab )2+y cb+( cb)
2 = 0, singular at (ab , y,

c
b) = (0, 0, 0) and intersects E along (ab )2+( cb)

2 = 0.

• Ỹ ′′c : (ac )2 + z( bc)
2 + 1 = 0, smooth and intersects E along (ac )2 + 1 = 0.

The proper transform of Γ0 is the y-axis, and the proper transforms of the affine part of the lines
α ± iγ = 0 from Ỹ ′β are the lines x ± iz = 0 = y. Furthermore we have Ỹ ′′ ∩ E = V(a2 + c2) =

V(a + ic) ∪ V(a − ic) ⊂ {0} × P2, another pair of projective lines a ± ic = 0 meeting at the A1

singularity in the Ỹ ′′b chart. Consider now only the line x − iz = 0 = y. We see from the D5 case
(see page 23) that it intersects E at the point [a : b : c] = [i : 0 : 1]. This point cannot lie therefore
in the Ỹ ′′b chart and so this line doesn’t intersect the A1 singularity. The line x− iz = 0 = y does
however intersect the projective line a − ic = 0 at the point [a : b : c] = [i : 0 : 1]. Similarly the
other line x+ iz = 0 = y will intersect the line a+ ic = 0 at the point [a : b : c] = [−i : 0 : 1]. We
thus have the following picture:

All that’s left to do is check that the final blow-up of this A1 singularity pulls apart Γ0 and the
lines a ± ic = 0 in a manner that will ultimately give us the resolution graph for E6. Make the
coordinate change a

b 7→ A, y 7→ B, cb 7→ C with new projective coordinates [α : β : γ] and denote

the blow-up of this A1 singularity by Z. We’ve done this calculation before: it is Ỹ ′′ from the D5

case (see page 23). We know it intersects E in the conic Z̃ := V(α2 + βγ + γ2), giving us our sixth
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projective line. We’ve seen from D5 that Γ0 intersects Z̃ at the point [α : β : γ] = [0 : 1 : 0] (see
page 23) and that the lines a± ic = 0, which become A± iC = 0 = B after the coordinate change,
intersect Z̃ at the points [α : β : γ] = [±i : 0 : 1].

The following picture summarises how all of our lines now intersect (for spatial efficiency it has
been rotated from the one above).

Hence we achieve the resolution graph E6. Γ0 is labelled.

♦

3.5 The E7 Case

We have f = x2+y3+yz3 and Ỹ = V(xb−ya, xc−za, yc−zb, x2+y3+yz3). Looking in each affine
chart and disregarding the irreducible part with preimage completely contained in E, we have:

• Ỹa: 1 + x( ba)3 + x2( ca)3 ba = 0, smooth and does not intersect E.

• Ỹb: (ab )2 + y + y2( cb)
3 = 0, smooth and intersects E along a = 0.

• Ỹc: (ac )2 + z( bc)
3 + z2 bc = 0, singular at (ac ,

b
c , z) = (0, 0, 0) and intersects E along a = 0.

Like the Dn cases, we get a P1 from the intersection of E along a = 0 which we will again denote by
Γ0. This Γ0 intersects the singularity in Ỹc which we will need to blow-up. We change coordinates
a
c 7→ A, bc 7→ B, z 7→ C with a new set of projective coordinates [α : β : γ] and denote the blow-up

of A2 + CB3 + C2B = 0 at (0, 0, 0) by Ỹ ′. We have:

• Ỹ ′α: 1 +A2 γ
α(βα)3 +A( γα)2 βα = 0, smooth and does not intersect E.

• Ỹ ′β: (αβ )2 +B2 γ
β +B( γβ )2 = 0, singular at (αβ , B,

γ
β ) = (0, 0, 0) and intersects E along α = 0.
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• Ỹ ′γ : (αγ )2 + C2(βγ )3 + C β
γ = 0, singular at (αγ ,

β
γ , C) = (0, 0, 0) and intersects E along α = 0.

Firstly, denote the P1 gained by α = 0 (à la a = 0 in previous cases) by Γ1. Now the singularities
in Ỹ ′β and Ỹ ′γ are distinct (as they respectively require γ

β = 0 and β
γ = 0) and both lie on Γ1. The

singularity (αγ ,
β
γ , z) = (0, 0, 0) ∈ Ỹ ′γ can easily shown to be of type A1; its blow-up, call it W with

projective coordinates [a : b : c], contains three smooth charts and we have W ∩ E = V(a2 + bc), a
conic which is isomorphic to P1 (see D4 case on page 21).

In Ỹc, Γ0 is the b
c -axis. Blowing this up under the new coordinates it is B-axis, and using the

blow-up equations X ′ = V(Aβ −Bα,Aγ − Cα,Bγ − Cβ), we see that the proper transform of Γ0

intersects E at the point [α : β : γ] = [0 : 1 : 0]. This intersection therefore only lies in the Ỹ ′β
chart, and in fact it is the point at which the singularity in that chart lies on Γ1 (since Γ1 in this
chart is the γ

β -axis). So far then we have the following picture:

The red dot is the singularity W shown above to be of type A1. The green dot is the singularity
(αβ , B,

γ
β ) = (0, 0, 0) ∈ Ỹ ′β situated at the intersection of Γ0 and Γ1. We will blow this up now. Make

the change of coordinates α
β 7→ x,B 7→ y, γβ 7→ z with a new set of projective coordinates [a : b : c]

and denote the blow-up of x2 + y2z + yz2 = 0 at (0, 0, 0) by Ỹ ′′. We have:

• Ỹ ′′a : 1 + x( ba)2 ca + x( ca)2 ba = 0, smooth and does not intersect E.

• Ỹ ′′b : (ab )2+y cb +y( cb)
2 = 0, singular at two points, (ab , y,

c
b) = (0, 0, 0), (0, 0,−1), and intersects

E along a = 0.

• Ỹ ′′c : (ac )2 +z( bc)
2 +z bc = 0, singular at two points, (ac ,

b
c , z) = (0, 0, 0), (0,−1, 0), and intersects

E along a = 0.

Again, denote the P1 gained by the intersection of E along a = 0 by Γ2. The singularities with
coordinates (0, 0, 0) in Ỹ ′′b and Ỹ ′′c must be distinct as they require c

b = 0 and b
c = 0 respectively.

Observe however that (ab , y,
c
b) = (0, 0,−1) ∈ Ỹ ′′b and (ac ,

b
c , z) = (0,−1, 0) ∈ Ỹ ′′c are the same

singularity. Hence in total we have three distinct singularities that all lie on Γ2. It is easy to show
that all three of these singularities are of A1 type, just like when studying the three singularities
lying on the Γ0 of the D4 case (see page 21).

So what do Γ0 and Γ1 look like in this blow up? Recall that in Ỹ ′β, Γ0 is the B-axis and Γ1 is the
γ
β -axis. After the coordinate change, these are the y and z axes respectively. Using the blow-up
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equations X ′′ = V(xb − ya, xc − za, yc − zb), their proper transforms intersect E at the points
[a : b : c] = [0 : 1 : 0] and [0 : 0 : 1] respectively. We of course only find these points in one of
the three, in particular distinct, affine charts. These are actually the coordinates of the respective
origins in Ỹ ′′b and Ỹ ′′c , where we already know lies an A1 singularity as explained above. The third

singularity with coordinates (ab , y,
c
b) = (0, 0,−1) in Ỹ ′′b for example, lies in both Ỹ ′′b and Ỹ ′′c and

doesn’t intersect either of Γ0 or Γ1. We thus finally arrive at the following picture:

When finally blowing up each of these A1 singularities and remembering to add on the A1 denoted
by W found in Ỹ ′β, we achieve at last the resolution graph representing E7. Each node has been
labelled.

♦

3.6 The E8 Case

The final case relies very heavily on the analysis done in the E7 case; in fact we will find an E7

singularity in our first blow-up of E8. To stay consistent with the names of varieties and chain of
coordinate changes used in the E7 case, we will begin by using the coordinates (A,B,C;α : β : γ).
So instead of f = x2 +y3 +z5, consider the variety Ỹ 0 = V(Aβ−Bα,Aγ−Cα,Bγ−Cβ,A2 +B3 +
C5). Looking in each affine chart and disregarding the irreducible part with preimage completely
contained in E, we have:

• Ỹ 0
α : 1 +A(βα)3 +A3( γα)5 = 0, smooth and does not intersect E.

• Ỹ 0
β : (αβ )2 +B +B3( γβ )5 = 0, smooth and intersects E along α = 0.

• Ỹ 0
γ : (αγ )2 + C(βγ )3 + C3 = 0, singular at (αγ ,

β
γ , C) = (0, 0, 0) and intersects E along α = 0.

We see from the Ỹ 0
γ equation that the singularity in this chart is of type E7. Hence we have a

P1 given by α = 0 (like in all previous cases) which we will call Γ3. In Ỹ 0
γ it is the β

γ -axis and
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intersects the E7 singularity at the point [α : β : γ] = [0 : 0 : 1] ∈ E. All we need to do is find
the proper transforms of Γ3 through the blow-ups of E7 to see where it fits onto the E7 resolution
graph, hopefully giving us the graph for E8.

So denoting the blow-up of this E7 singularity by Ỹ and making the coordinate change α
γ 7→ x,C 7→

y, βγ 7→ z with projective coordinates [a : b : c], we will get precisely what we saw at the start of the
E7 case:

• Ỹa: 1 + x( ba)3 + x2( ca)3 ba = 0, smooth and does not intersect E.

• Ỹb: (ab )2 + y + y2( cb)
3 = 0, smooth and intersects E along a = 0.

• Ỹc: (ac )2 + z( bc)
3 + z2 bc = 0, singular at (ac ,

b
c , z) = (0, 0, 0) and intersects E along a = 0.

In Ỹ 0
γ , Γ3 was the β

γ -axis so in Ỹ its proper transform is the z-axis. In the Ỹc chart, it intersects

Γ0, which is the b
c -axis here, at the singularity (ac ,

b
c , z) = (0, 0, 0). So far then we have this:

We already know what happens when we blow up this singularity (the blue dot): we get the diagram
on page 28. But what happens to Γ3? Here are the charts from this blow-up for convenience:

• Ỹ ′α: 1 +A2 γ
α(βα)3 +A( γα)2 βα = 0, smooth and does not intersect E.

• Ỹ ′β: (αβ )2 +B2 γ
β +B( γβ )2 = 0, singular at (αβ , B,

γ
β ) = (0, 0, 0) and intersects E along α = 0.

• Ỹ ′γ : (αγ )2 + C2(βγ )3 + C β
γ = 0, singular at (αγ ,

β
γ , C) = (0, 0, 0) and intersects E along α = 0.

In Ỹ , Γ3 was the z-axis, so in Ỹ ′ it is the C-axis. Using the blow-up equations X ′ = V(Aβ −
Bα,Aγ −Cα,Bγ −Cβ), it intersects E at the point [α : β : γ] = [0 : 0 : 1] which of course we only
find in Ỹ ′c . Continuing to use the names from E7, at this point is the A1 type singularity denoted
W . We hence have the following picture:
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Of course, blowing up W will pull apart the lines Γ1 and Γ3. We have already seen what happens
when blowing up the singularity in the Ỹ ′β chart (the green dot), so we’re done! The resolution
graph with all nodes labelled, like the E7 case, is given below.

♦

This concludes the blowing-up of all of the Kleinian singularities, which have been shown to have
the resolution graphs ADE. �

Figure 6: ADE Coxeter-Dynkin diagrams [8]

Interesting Note: It turns out that as well as finite subgroups of SL(2,C), Kleinian surface
singularities and simply-laced Dynkin diagrams, ADE can be used to classify several other diverse
objects in mathematics that experience seemingly unrelated properties. More examples can be
found at [11].
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