Modeling Subtilin Production in Bacillus subtilis
Using Stochastic Hybrid Systems*

Jianghai Hu, Wei-Chung Wu, and Shankar Sastry

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley - Berkeley CA 94720, USA
{jianghai,wcwu,sastry}Qeecs.berkeley.edu

Abstract. The genetic network regulating the biosynthesis of subtilin
in Bacillus subtilis is modeled as a stochastic hybrid system. The con-
tinuous state of the hybrid system is the concentrations of subtilin and
various regulating proteins, whose productions are controlled by switches
in the genetic network that are in turn modeled as Markov chains. Some
preliminary results are given by both analysis and simulations.

1 Background of Subtilin Production

In order to survive, bacteria develop a number of strategies to cope with harsh
environmental conditions. One of the survival strategies employed by bacteria is
the release of antibiotics to eliminate competing microbial species in the same
ecosystem [15]. It is observed that the production of antibiotics in the cells is
affected by not only the environmental stimuli (e.g. nutrient levels, aeration,
etc.) but also the local population density of their own species [12]. Therefore,
the physiological states of the cell and the external signals both contribute to the
regulation of antibiotic synthesis. Our study focuses on the subtilin, an antibiotic
produced by Bacillus subtilis ATCC 6633, because the genetics of subtilin is
known and its biosynthetic pathways are well characterized [2,7,11].

We briefly describe the production process of subtilin in B. subtilis. It is
shown in [19] that the production is controlled by two independent mechanisms.
When the foods are abundant, the population proliferates and the cells produce
very little amount (non-lethal dose) of subtilin. However, when the foods become
scarce, the production of subtilin picks up as follows. First, sigma-H (SigH), a
sigma factor that regulates gene expression, enables the production of SpaRK
(SpaR and SpaK) proteins by binding to the promoter regions of their genes
(spaR and spaK). The membrane-bound SpaK protein senses the extracellular
subtilin accumulating in the environment as the cell colony becomes large, and
activates the SpaR protein. The activated SpaR (SpaR~p) in turn directs the
productions of the subtilin structural peptide SpaS, the biosynthesis complex
SpaBTC which modifies SpaS to yield the final product subtilin, and the im-
munity machinery SpalFEG which protects the cell against the killing effect of
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Fig. 1. Schematic representation of subtilin biosynthesis, immunity, and regulation in
Bacillus subtilis. Subtilin prepeptide SpaS is modified, cleaved, and translocated across
the cell membrane by the subtilin synthetase complex SpaBTC. The genes of subtilin
are organized in an operon-like structure (spaBTC, spaS, spalFEG, and spaRK) so
that each functional unit is transcribed together. The extra-cellular subtilin functions
as pheromone that regulates its own synthesis via an autoinduction feedback pathway.

subtilin. See Fig. 1 for a schematic representation of the biosynthesis process
of subtilin in B. subtilis. In this work, a simplified version of the production
process is adopted for ease of study. Namely, we ignore the dynamics in the
post-translational processing of SpaS by SpaBTC to form mature subtilin and
the signal transduction between SpaK and SpaR. Hence, the amount of SpaS is
assumed to be equivalent to the amount of subtilin released by the cell and the
SpaK and SpaR proteins are considered as one protein species.

From the above description, a dynamical model of subtilin production con-
sists of two parts: discrete events and continuous dynamics. The discrete events
include the initiations and terminations of transcriptions of various genes due
to the binding and unbinding of their transcription regulators to their promoter
regions, while the continuous dynamics include the accumulations and degrada-
tions of the protein species after the expressions of their genes are being switched
on and off, respectively. Thus, hybrid systems can be a suitable choice for such
a model.

Furthermore, in cellular networks involving coupled genetic and biochemi-
cal reactions, the expressions of genes are intrinsically non-deterministic, as is
evidenced by the random fluctuations (noise) in the concentrations of protein
species in the cell population, even in an isogenic culture [6]. One reason for
the stochasticity in gene expressions is the small copy number of interacting
molecular species (e.g. regulatory proteins and genes) in the relatively large cell
volume [13, 14, 16], since in a chemical system with extremely low concentrations
of reacting species, a reaction (collision of the reacting molecules) occurs in a



short time interval and is best viewed as a probabilistic event [9]. This is also
the case in our example, as an individual B. subtilis cell has only one copy of
each spa gene for the corresponding spa protein. Techniques such as stochastic
differential equations and Monte Carlo algorithms are often used to model and
simulate such biological systems with noise (see [17] for a review). Although
stochastic algorithms are computationally involved, they produce a more real-
istic and complete description of the time-dependent behavior of biochemical
systems than deterministic algorithms. In this paper, we adopt such a stochastic
point of view and propose a stochastic hybrid systems approach to analyze the
dynamics of the spa genes in the subtilin system. We also present simulation re-
sults of the subtilin regulatory network to demonstrate the distinctive behaviors
of the systems using the deterministic and stochastic modeling formalisms.

2 Stochastic Hybrid Systems

A framework first proposed by the engineering community to model systems that
exhibit both continuous dynamics and discrete state changes, hybrid systems
have in recent years found increasingly wide applications in many practical fields.
In particular, applications of hybrid systems in modeling of biological systems
can be found in [8,1], to name a few. However, most of the models proposed
in the literature so far are deterministic, and are not suitable to model system
with inherent randommness. This is the case, for example, in cellular processes
modeling, especially when the number of participating cells is not large enough
and random fluctuations within single cells cannot be ignored. Hence one needs
to extend the framework to a more general class of hybrid systems with built-in
randomness, namely, stochastic hybrid systems.

There have already been some work on stochastic hybrid systems (see, for
example, [10,3]). In this section we shall present a simple model suitable for our
main example, the production of subtilin, to be given in the next section. Basi-
cally, the state of the stochastic hybrid system consists of two parts, a continuous
one and a discrete one. The discrete state has a finite number of possible values,
and evolves randomly according to a Markov chain. The continuous state, on
the other hand, takes value in a certain Euclidean space, and evolves determin-
istically according to some ordinary differential equations. The dynamics of the
discrete and the continuous states are coupled in the following sense: on one
hand, the transition probabilities of the Markov chain for the discrete state de-
pend on the value of the continuous state at the moment of jump; on the other
hand, the differential equations governing the evolution of the continuous state
are different when the discrete state takes on different values.

More formally, we consider the following model of a stochastic hybrid system.
Its state (g, z) consists of a discrete part (mode) ¢ taking values in a finite set Q
and a continuous part x taking values in a Euclidean space R", n > 1. Both ¢
and z are functions of time ¢ and their dynamics are specified in the following.

— (Discrete Dynamics) The discrete state ¢ follows a Markov chain that jumps
at epochs t =0, A,2A4, ... of constant interval A > 0 with transition proba-



bilities
pij(2) = P{g(t™) = jlg(t™) = i,2(t7) = 2}, Vi,je€Q. (1)

Here ¢(t7) and ¢(t*) denote the values of the discrete state immediately
before and after the jump at time ¢, respectively. Note that the transition
probabilities as defined in (1) depend on the value of the continuous state
at the moment of the jump.

— (Continuous Dynamics) For each i € @, let f; be a vector field on R™. Then
the dynamics of the continuous state x follows

#(t) = fi(z(t)) (2)

in any open time interval where ¢ = i. Here we assume that solutions to
equation (2) starting from an arbitrary initial position are well defined on
all time intervals. This is automatically satisfied if each f; is Lipschitz con-
tinuous in .

— (Reset Condition) We assume that the continuous state is reset trivially at
any moment ¢ of discrete state jump, namely, z(t~) = z(t*) for all ¢t =
0,4,2A,.... Thus we shall simply denote them by z(t).

It is obvious from the definition that solutions (or ezecutions) (q(t),z(t)) of
the stochastic hybrid system exist and are stochastic processes with continuous
x(t) and piecewise constant g(t).

Remark 1. Instead of a discrete Markov chain jumping at fixed time intervals,
we can alternatively model the discrete dynamics as a continuous Markov chain
with generator [ri;(2)];,jeq satisfying ri;(2) > 0 for i # j and } 5 1ij(2) =0,
Vi € Q. Therefore, given that z(t) = z and ¢(t*) = i right after the time ¢
of jump, the discrete state will remain in ¢ for a random time of exponential
distribution with parameter —r;;(z), and then jump to a new state j # i with

probability 7;;(z)/ Z#i 75 (2).

3 Model of Subtilin Production

3.1 Population Growth Model

Denote by D the size of B. subtilis population, and by X the total amount of
nutrient available in the environment, both properly normalized. The growth of
B. subtilis population can be modeled by the logistic equation:

%_TD<1_%). 3)

Here D represents the equilibrium population size that can be sustained in the
long term given the amount X of available nutrient. Solutions to equation (3)
with a fixed Dy, are

D(t) = —— (4)



which, starting from any initial value D(0) > 0, converge to Do as t — co. In
our model D, changes with X, the amount of available nutrient, in the following
way:

Do = min{X/Xo, Dpaz} (5)

for some constant Xgy. Thus D, increases linearly with the increase of X before
it saturates at a fixed level D, ., due to space limit and competition within the
population. With a time-varying X, so is D, and solutions to equation (3) do
not have a simple expression as in (4).
The dynamics of X is given by
49X D+ ky[Spad), (6)
dt
for some constants k1 and ks. By equation (6), there are two factors affecting
the dynamics of X: the nutrient is consumed at a rate proportional to the pop-
ulation size (the first term); and it is replenished at a rate proportional to the
average concentration of SpaS protein in the population due to the elimination
of competitors caused by Spa$ in the environment. The bar over [SpaS]| indicates
that it is a population level average, not for a particular cell.

3.2 Single Cell Model

Within each B. subtilis cell, there are several modulating proteins affecting the
concentration level of SpaS. In this section we shall present models of their
dynamics.

First of all, SigH is a sigma factor whose production is switched on if and
only if the food level X is below a certain threshold 1D,,4, for some n > 0. Its
production rate is assumed to be k3 > 0 when it is being produced and negligible
when it is not. Thus the dynamics of its concentration [SigH| can be modeled as

d[SigH] {—/\1 [SigH] X >nDmaa, (7)

dt - kg — Al[SIgH] X < 77Dmax;

where A; is the natural decaying rate of SigH.

The production of the protein SpaRK is controlled by a switch S; in the
following way. The switch has two states 1 (on) and 0 (off), corresponding to
the cases where SigH is bound and unbound to the promoter region of the gene
spaRK, respectively. SpaRK is produced at a constant rate k4 when the switch
is on, and at a negligible rate when the switch is off. Taking into consideration
its natural decaying rate of Ao, the dynamics of [SpaRK] is given by

d[SpaRK] {—)\2 [SpaRK] if Sy is off, (8)

dt - k4 — Xo[SpaRK] if Sy is on.

The switch 57 is modeled as evolving randomly at constant time interval A >
0 according to a Markov chain with a probability transition matrix dependent



on the concentration level of SigH as follows:

. 1 — ao([SigH])  ao([SigH))
A([SigH]) :( al(?SigPig]) 1—0a1([§igH]))' “

Here ao([SigH]) and a;([SigH]) denote the probabilities that S; switches from
off to on and from on to off, respectively. In practice one may not know exactly
the statistics of the random time interval between successive switchings of ;.
However, by choosing sufficiently small A and proper A([SigH]), one can approx-
imate the random time interval probabilistically, as long as it has an exponential
distribution.

The choice of the transition matrix in (9) should, nevertheless, satisfy the
following inherent biochemical constraint. Denote by p,i the probability of S;
switching on in the equilibrium distribution. Then one should have [18]

B e~ AGrk/RT [SigH]
Pk e~ AR [SigH]’

(10)

where AG,, is the Gibbs free energy of the molecular configuration when the
switch is on (the Gibbs free energy is 0 if the switch is off), T is the temperature
in Kelvin (K), and R = 1.99 cal/mol/K is the gas constant. A simple calculation
shows that for transition matrix (9), the equilibrium probability of S; switching

e a0 ((SigH))
ao([SigH]) + a1 ([SigH])

Thus we must have

ao([SigH]) e A9n/ATSigH] (1)
ao([SigH]) + a1 ([SigH]) 1 + e~AG+/RT[SigH]’

The set of ag([SigH]) and a([SigH]) satisfying condition (11) is characterized
exactly by the following family:

ao([Sigh]) = p,  ar([SigH]) = pe“/ T [SigH] ", (12)

for all 0 < p < min{1, e=4%+/ET[SigH]}. The difference between these choices is
that they result in different frequencies of actual switchings for the Markov chain
5. Indeed, starting from the on (respectively, off) state, it takes an expected
time of Ap~'e~AG/BT[SigH] (respectively, Au~") for S; to switch to the other
state, provided that [SigH] is kept constant. Thus p (together with A) is a
parameter controlling the switching frequency of ;.

A particular choice in (12) is

) e*AGrk/RT [SlgH]
ol Sieh]) = 1= xa AT g
1
1+ e~ AGr/RT[SigH]

(13)
a1 ([SigH]) =




This results in a Markov chain (9) that can be verified to be reversible [5]. Re-
versible Markov chains (or random walks on graphs) find many applications in
diverse fields of physics, such as the Ising model [4]. Thus they may be particu-
larly relevant in modeling S7 in the thermal equilibrium state.

The dynamics of the concentration of the third protein, SpaS, is similar
to that of [SpaRK]. There is a switch Sy with two states 1 (on) and 0 (off),
corresponding to the cases where activated SpaR is bound and unbound to the
promoter region of the gene spaS, respectively. SpaS is being produced at a
constant rate ks whenever Sy is on, and at a negligible rate whenever S5 is off.
In other words,

= 14
dt ks — A3[SpaS| if S is on, (14)

d[Spas] {—)\3 [SpaS]  if Sy is off,
where A3 is the natural decaying rate of SpaS. Moreover, So switches randomly
at constant time interval A according to a Markov chain with a probability
transition matrix dependent on [SpaRK]:

_ (1= bo([SpaRK])  bo([SpaRK])
Bspar) = (1, (0D 1 Monepeni) - 09
It is required that the equilibrium probability of Sy switching on be ([18])
—AGs/RT
e [SpaRK] (16)

Ps =17 e~ AG:/BT[SpaRK]’

where AG, is the Gibbs free energy of the molecular configuration when the
switch S is on.
A family of by([SpaRK]) and b ([SpaRK]) satisfying constraint (16) is

bo([SpaRK]) = v, b1 ([SpaRK]) = ve?%/FT[SpaRK] !,

where 0 < v < min{1,e~4%/RT[SpaRK]} is a parameter controlling the actual
switching frequency of Ss. In particular, if we choose

e~ AGs/RT [SpaRK]
bo([SpaRK]) = 1 + e~AGn/RT[SpaRK]’

1
PLSpaRK]) = T e=ae AT pRR)

(17)

then the corresponding Markov chain Sy is reversible.

3.3 Stochastic Hybrid Systems Model

To sum up, each individual B. subtilis cell can be modeled as a stochastic hy-
brid system. Its discrete state is (S1,S52) € {0,1} x {0,1}, where (S1,S52) =
(0,1) corresponds to the case when the switch S is off and the switch Sy is



on, etc. So there are four possible discrete states in total. Its continuous state
is ([SigH], [SpaRK], [SpaS]) € R? with dynamics given by equations (7), (8),
and (14). The discrete state changes mode randomly every A time accord-
ing to a Markov chain whose probability transition matrix can be obtained
from A([SigH]) in (9) and B([SpaRK]) in (15) (in fact, it is the tensor prod-
uct A([SigH]) ® B([SpaRK])), and depends on the values of [SigH] and [SpaRK]
at the moment of transition. The food level X appearing in the continuous dy-
namics in (7) is a population level quantity and can be thought of as an external
input to the stochastic hybrid system.

One way to study a population of B. subtilis is to model it as a collection of
such stochastic hybrid systems evolving independently from one another. How-
ever, this is difficult to implement in practice, since the population size D is
changing according to (3). Thus the number of individual stochastic hybrid sys-
tems is time varying. To overcome this difficulty, one can replace the differential
equation (3) by a birth-and-death Markov chain D on N with properly chosen
transition probabilities, with D being the (integer) number of cells in the popu-
lation. One keeps track of the state of each cell, from its birth to its death, and
[SpaS] is the average of [SpaS] of the currently living cells. This approach will be
pursued in future work. In this paper we adopt a simplified version by assuming
that [SpaS] = &[SpaS] for some constant . Although simulation results under
this assumption tend to exaggerate the random fluctuations of [SpaS], insights
can still be gained on how individual B. subtilis cell modulates its production of
subtilin at different growth stages of the population.

Intuitively, the B. subtilis population as a whole reacts to the food level signal
X in a way similar to a feedback control system. For example, when X drops
below the threshold 7Dz, SigH starts to be produced according to (7). An
increased [SigH] then makes it more likely for S; to switch on, thus resulting in
an increased [SpaRK]. In turn, [SpaS] will increase due to a higher probability
of S5 switching on. As this occurs for the cells in the population, more foods
will be made available by equation (6), offsetting the decrease in X. Exactly
the opposite happens when X is above the threshold 7D,,.. So it is reasonable
to expect that some equilibrium state will be reached eventually for the overall
system, as will be illustrated in the next two sections by analysis and simulations,
respectively.

4 Analysis

In this section, we focus on a single cell, and study how the concentrations of its
various proteins evolve over time, i.e., the continuous dynamics of the stochastic
hybrid system modeling the cell as described in Section 3.

We first observe that the dynamics of [SpaS] is affected indirectly through So
by [SpaRK], and in turn the dynamics of [SpaRK] is affected indirectly through
Sy by [SigH]. Moreover, [SigH] is relatively slow-varying compared with [SpaRK]
and [SpaS]. Therefore, we shall focus on two sub-problems: the evolution of
[SpaRK] under a fixed [SigH] and the evolution of [SpaS] under a fixed [SpaRK].



Suppose that [SigH] is fixed. Then it is easy to see that
Proposition 1. ([SpaRK], S1) at the time 0, A,2A, ... is a Markov process.

Indeed, S; follows a Markov chain with probability transition matrix (9), and
according to (8), [SpaRK] transits as follows:

e *24[SpaRK], A if S1 is off,

18
% + e 22 ([SpaRK]pa — %} if S; is on, (18)

[SpaRK](n41)a = {
for all n = 0,1,.... Here [SpaRK],a denotes the value of [SpaRK] at the time
epoch nA. Note that ([SpaRK], S1)n4 is not a Markov chain in the conventional
sense since [SpaRK] takes values in the uncountable set R.

Note that S; evolves independently from [SpaRK], and its state distribution
at time nA will converge to the stationary distribution as n — oo, namely, S;
will open with probability p,r given in (10), and close with probability 1 — p,.

Proposition 2. Suppose that S1 has reached its stationary distribution. Then
[SpaRK], 1, n=0,1,..., is a Markov process with transition probabilities

P{[SpaRK], ;1) = y|[SpaRK], , =z}

L—pp ify=e 22,
Drk ify = ’;\—i+e*)‘2A{x—§—§}.

In other words, [SpaRK],a is a random walk on R that in one time step either
jumps towards 0 or towards k4/A2 by a fixed proportion e~*24 with constant
probabilities. Thus one can expect that it will eventually achieve an equilibrium
distribution on the interval [0, k4/A2]. Depending on whether p,; < 0.5 or p. >
0.5, the equilibrium distribution will concentrate more on the left (or right)
half of the interval. Moreover, the smaller e~*24 is, the further [SpaRK], o will
jump towards either 0 or k4/Me2, hence the larger the variance of [SpaRK],a
(normalized by k4/A2) in the equilibrium distribution.

Remark 2. The exact expression of the equilibrium distribution of [SpaRK], A
can be complicated. For example, assuming kq/X2 = 1, if e7*24 is rational
and [SpaRK] starts from a rational number, then [SpaRK],A can only jump to
rational numbers. In this case, [SpaRK],a is a random walk on Q instead of
on R. In particular, let us take the example of e=*24 = 1/m for some integer
m > 2. If [SpaRK],a has an m-nary expression 0.717y2 ... where v1,72,... €
{0,...,m — 1}, then by Proposition 3, [SpaRK](,41)4 will have an m-nary ex-
pression 0.79v172 ..., where 79 = m — 1 with probability p,; and vy = 0 with
probability 1 — p,;. From this it is easy to see that the equilibrium distribution
of [SpaRK],a as n — oo is characterized by 0.y17y2 ... where v1,72,... are a
sequence of i.i.d. random variables that take the value m — 1 with probability
pri. and the value 0 with probability 1 — p,;. Note that in this characterization
0.71y2 ... must represent a rational number, i.e., we want the resulting distri-
bution to be restricted on Q since we have assumed that [SpaRK] starts from
a rational number. Unless m = 2, this equilibrium distribution is concentrated
only on a subset of Q.



Suppose now that [SpaRK] is fixed. Then the dynamics of [SpaS] as given
by (14) can be analyzed in a similar way to obtain

Proposition 3. ([SpaS], S2) at the time 0, A,2A, ... is a Markov process.

Proposition 4. Suppose that S has reached its stationary distribution. Then
[SpaS], o, n=0,1,..., is a Markov process with transition probabilities

P{[SpaS],,;1)a = yl[SpaS], 5, = =}

_Jl-ps dfy=eed,
ps  fy=t e Mo - )

The equilibrium distribution of [SpaS], , concentrates on the interval [0, k5 /3],
and has more weight on the left half interval or the right half interval depending
on whether py < 0.5 or ps > 0.5. In addition, the smaller e=*34 is, the larger
the variance of [SpaS], 4 (normalized by k5/A3) in the equilibrium distribution.
Instead of the above Markov process analysis, one can adopt the following
deterministic approximation procedure. Suppose that [SigH] is kept constant,
and that the Markov chain S; is in its equilibrium distribution. Then by av-
eraging the dynamics of [SpaRK] in (8) in the two cases using the equilibrium
probabilities of Sy, one obtains the “averaged dynamics” of [SpaRK]:

d aq [SigH]

— K=—7"-2-"-— K 1

g7 [SpaRK] T+ anSie] A2[SpaRK], (19)
where a; = kge 2G/BT and ap = e~ AG+/BT This practice of obtaining

deterministic dynamics through averaging the random dynamics is often used
in the biological literature. Similarly, the averaged dynamics of SpaS can be
obtained from (14) as

61 [SpaRK]

W — Az[SpaS], (20)

d

where 81 = kse ACG/BT and By = e~ AG:/ET

Equations (19) and (20), together with equations (3), (6) and (7), form a
deterministic differential system whose solutions approximate the solutions to
the original stochastic hybrid system in the average sense. Simulation results of
both approaches will be compared in the next section.

5 Simulation Results

In this section, we present the simulation results for the stochastic hybrid sys-
tem model introduced in Section 3, which consists of equations (3), (6), (7), (8),
and (14). We also compare the results with those obtained using the determin-
istic model consisting of equations (3), (6), (7), (19), and (20). Unless otherwise
stated, the parameters are chosen as follows: r = 0.02, Dyer = 1, by = 0.1,
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Fig. 2. A typical solution of the stochastic hybrid system model.

k220.4, k3=0.5, k4=1, k5:1,§=0.1, /\12/\2:)\3:0.2,77:4, X0:4,
e~ AG/RT = 0.4, and e~AG/FT = (.4, The initial conditions are D(0) = 0.01,
X(0) = 10, and [SigH]y = [SpaRK]y = [SpaS], = 0.

Fig. 2 plots one typical realization of the continuous state trajectories of the
stochastic hybrid system in thin solid lines. Simulation results of the determin-
istic model are plotted in the same figure in thick solid lines. As expected, the
continuous state tends to some equilibrium position eventually. In particular, the
population density D grows from 0.01 to some value slightly below the maximal
density D4, while the food level X drops from 10 to around 7D, = 4. The
continuous states that exhibit the most random fluctuations are [SpaRK] and
[SpaS], both of which fluctuate around the values predicted by the deterministic
model. On the other hand, there is a visible discrepancy between the values of
[SigH] in the two models.

In order to examine the population density-dependent behavior of subtilin
production in the cell, we simulate our models by varying the maximum density
Dz (carrying capacity of the incubating medium) at which a cell culture can
grow to. Fig. 3 shows the results obtained by using the stochastic model (left)
and the deterministic model (right), respectively. In both plots the vertical axis
represents D,,q., the horizontal axis represents the time, and the gray level at
each point represents the concentration level of SpaS. Thus, each horizontal slice
is one simulation run of [SpaS] with a particular D,,4,. The contours of [SpaS] are
also plotted in both cases. It can be seen that a cell exhibits greater variations in
the strength of subtilin production at lower cell densities in the stochastic case
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Fig. 3. Simulation results of the stochastic (left) and deterministic (right) models under
different carrying capacity of medium Dynaz.

than in the deterministic case. From a biological perspective, these variations
may be attributed to uncertainty in the signal transduction pathway (between
the SpaK and SpaR proteins) under the condition of low level of external stimuli
(i.e. extracellular subtilin) and are captured by the stochastic formalism of our
model. In addition, as shown in Fig. 4 where the average subtilin production
strength at equilibrium condition is plotted at different D,,4;, results of the
stochastic model reveals that there is a threshold for D,,,, below which the
cell can not be induced to produce subtilin (the concentration of subtilin in the
medium is too dilute due to the sparse population to induce subtilin production
in individual cells) and that the production level exhibits a linear response to
the extracellular subtilin concentration if the maximum population density is
above this value, as is observed experimentally in [12]. The deterministic model
of subtilin production, in contrast, shows a linear response over the entire range
of the carrying capacity of the medium.

We also examine the level of subtilin production in the cell in response to
intra-cellular signals (i.e. SigH). We obtain different average concentrations of
SigH at equilibrium condition by varying the parameter k3 (larger ks implies
larger average [SigH] at steady state) and simulate the corresponding subtilin
production process. The results are shown in Fig. 5 for the stochastic model (left)
and the deterministic model (right). Similar to the previous case, the "noise” in
the SpaS protein synthesis due to low level of the activating signals inside the
cell can be better reflected by using the Markov chain formalism. In addition,
Fig. 6 suggests that the SpaS protein synthesis seems to exhibit a switching
behavior in response to the increasing concentration of the activating SigH in
the cell. Again, such a switching behavior is more obvious in the stochastic case
than in the deterministic case. This finding, along with the simulation of varying
D naz, supports the hypothesis that a threshold mechanism exists for the subtilin
production in B. subtilis.
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Fig. 5. Simulation results of the stochastic (left) and deterministic (right) models under
different values of k3.

6 Conclusion and Future Directions

In this paper a stochastic hybrid system model and a deterministic model of
the subtilin synthesis process for B. subtilis cells are constructed. Although sim-
ulations of the two models generate results similar in the average sense, the
stochastic model may be better suited to explain the intrinsic random fluctua-
tions in gene expressions under the condition of a small number of participating
players (i.e. low concentrations of regulatory proteins intra-cellularly and a small
cell population extracellularly). The stochastic model also demonstrates the cell
density-dependent, sigmoid-like switching behavior of subtilin production in B.
subtilis.

This work can be extended in several directions. For example, more regulating
proteins such as SpaB, SpaT, and SpaC could be incorporated into the models;
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the population size D could be modeled as a birth-and-death Markov chain
instead of as the solution to the logistic equation, as is pointed out in Section 3.3;
and experiments on B. subtilis could be performed and the data collected to
validate the proposed models and the simulation results.
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