
Chapter 2

Introduction to Calculus

There are two main concepts in calculus: the derivative and the integral.
Underlying both is the concept of a limit. This chapter introduces limits, with
an emphasis on developing both your understanding of limits and techniques
for finding them.

We start the journey in Section 2.1 where our knowledge about the slope
of a line is used to define the slope at a point on a curve. The four limits
introduced in Section 2.2 provide the foundation for computing many other
limits, particularly the ones needed in Chapter 3. The next few sections present
a definition of the limit that pertains to cases other than finding the slope of a
tangent line, explores continuous functions (Section 2.4) and three fundamental
properties of continuous functions (Section 2.5). We conclude, in Section 2.6,
with a first look at graphing functions by hand using intercepts, symmetry,
and asymptotes and with the use of technology.
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60 CHAPTER 2 INTRODUCTION TO CALCULUS

2.1 Slope at a Point on a Curve

The slope of a (straight) line is simply the quotient of “rise over run”, as shown
in Figure 2.1.1(a).

(a) (b)

Figure 2.1.1: slope = rise
run

; (a) positive slope, (b) negative slope.

It does not matter which point P is chosen on the line. If the line goes
down as you move from left to right the “rise” is considered to be negative
and the slope is negative. This is the case in Figure 2.1.1(b).

The slope of US Interstates never exceeds 6%=0.06. This means the road
can rise (or fall) at most 6 feet in 100 (horizontal) feet, see Figure 2.1.2(a).
On the other hand the steepest street in San Francisco is Filbert Street, with
a slope of 0.315, see Figure 2.1.2(b).

(a) (b)

Figure 2.1.2: (a) Steepest US interstate has slope 0.06 and (b) Filbert Street
has slope 0.315. [EDITOR: Replace with annotated pictures.]

Figure 2.1.3:

Now consider a line L placed in an xy-coordinate system, as in Figure 2.1.3.
Since two points determine the line, they also determine its slope.

To find that slope pick any two distinct points on the line, (x1, y1) and
(x2, y2). As Figure 2.1.3 shows, they determine a rise of y2 − y1 and a run of
x2 − x1, hence

slope =
rise

run
=
y2 − y1

x2 − x1

.
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§ 2.1 SLOPE AT A POINT ON A CURVE 61

Note that the run could be negative too; that occurs if x2 is less than x1.

EXAMPLE 1 Find the slope of the line through (4,−1) and (1, 3).
SOLUTION Figure 2.1.4 shows two points on a line. Let (4,−1) be (x1, y1)
and let (1, 3) be (x2, y2). So the slope is

Figure 2.1.4:

3− (−1)

1− 4
=

4

−3
= −4

3
.

That the slope is negative is consistent with Figure 2.1.4 which shows that the
line descends as you go from left to right. �

Note that the slope in Example 1 does not change if (4,−1) is called (x2, y2)
and (1, 3) is called (x1, y1).

If we know a point on a line and its slope we can draw the line. For
instance, say we know a line goes through (1, 2) and has slope 1.4, which is
7/5. We draw a triangle with a vertex at (1, 2) and legs parallel to the axes,
as in Figure 2.1.5. The rise and run of the triangle could be 7 and 5, or 1.4
and 1, or any two numbers in the ratio 1.4 : 1.

Figure 2.1.5:

If we know a point on a line, say (a, b), and the slope of the line, m, we can
draw the line and also write its equation. Any point (x, y) on the line, other
than (a, b), together with the point (a, b) determine the slope of the line:

slope =
y − b
x− a

= m.

The equation can be written as

y − b = m(x− a) or y = m(x− a) + b.

The slope of a line will be useful when we consider tangents to curves.

Figure 2.1.6:

Slope at Points on a Circle

Consider a circle with radius 2 and center at the origin (0, 0), as shown in
Figure 2.1.6. How do we find the tangent line to the circle at P = (x, y)? By
“tangent line” we mean, informally, the line that most closely resembles the
curve near P . The tangent line is perpendicular to the line OP , and the slope
of OP is y/x. Thus the slope of the tangent line at (x, y) is −x/y. (Exercise 21
shows that the product of the slopes of perpendicular lines is -1.) For instance,
at (0, 2) the slope is −0/2 = 0, which records that the tangent line at (0, 2),
is horizontal, that is, the tangent line at the top of the circle is parallel to the
x-axis.

We say that the slope of the circle at (x, y) is −y/x because that is the
slope of the tangent line at this point.
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62 CHAPTER 2 INTRODUCTION TO CALCULUS

For this special curve we could find the tangent line first, and then its slope.
If we had been able to find the slope of the tangent line first, we would then
be able to draw the tangent line. That is what we will have to do for other
curves, like the three considered next.

The Slope at a Point on the Curve y = x2

Figure 2.1.7:

Figure 2.1.7 shows the graph of y = x2. How can we find the slope of the
tangent line at (2, 4)? If we know that slope, we could draw the tangent.

If we knew two points on the tangent, we could calculate its slope. But we
know only one point on that line, namely (2, 4). To get around this difficulty
we will choose a point Q on the parabola y = x2 near P and compute the slope
of the line through P and Q. Such a line is called a secant. As Figure 2.1.8
suggests, such a secant line resembles the tangent line at (2, 4). For instance,

(a) (b) (c)

Figure 2.1.8:

choose Q = (2.1, 2.12) and compute the slope of the line through P and Q as
shown in Figure 2.1.8(b).

Slope of secant = Change in y
Change in x

= 2.12−22

2.1−2
= 4.41−4

0.1
= 0.41

0.1
= 4.1.

Thus an estimate of the slope of the tangent line is 4.1. If you look at Fig-
ure 2.1.8, you will see that this is an overestimate of the slope of the tangent
line. So the slope of the tangent line is less than 4.1.

We can also choose the point Q on the parabola to the left of P = (2, 4).
For instance, choose Q = (1.9, 1.92). (See Figure 2.1.8(c).) Then

slope of secant = Change in y
Change in x

= 1.92−22

1.9−2
= 3.61−4

−0.1
= −0.39
−0.1

= 3.9.

Inspecting Figure 2.1.8(c) shows that this underestimates the slope of the
tangent line. So the slope of the tangent line is greater than 3.9.
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§ 2.1 SLOPE AT A POINT ON A CURVE 63

We have trapped the slope of the tangent line between 3.9 and 4.1. To get
closer bounds we choose Q even nearer to (2, 4).

Using Q = (2.01, 2.012) leads to the estimate

2.012 − 22

2.01− 2
=

4.0401− 4

0.01
=

0.0401

0.01
= 4.01

and using Q = (1.99, 1.992) yields the estimate

1.992 − 22

1.99− 2
=

3.9601− 4

−0.01
=
−0.0399

−0.01
= 3.99.

Now we know the slope of the tangent at (2, 4) is between 3.99 and 4.01.
To make better estimates we could choose Q even nearer to (2, 4), say

(2.0001, 2.00012). But, still, the slopes we would get would just be estimates.
What we need to know is what happens to the quotient

x2 − 22

x− 2
as x gets closer and closer to 2.

This chapter is devoted to answering this and other questions of the type:
“What happens to the values of a function as the inputs are chosen nearer and
nearer to some fixed number?”

The Slope at a Point on the Curve y = 1/x

Figure 2.1.9:

Figure 2.1.9 shows the graph of y = 1/x. Let us estimate the slope of the
tangent line to this curve at (3, 1/3).

It’s clear that the slope will be negative. We could draw a run-rise triangle
on the tangent and get an estimate for the slope. But let’s use the nearby
point Q method because we can get better estimates that way.

We pick Q = (3.1, 1/3.1). The points P = (3, 1/3) and Q determine a
secant whose slope is

1
3
− 1

3.1

3− 3.1
=

0.1
3(3.1)

−0.1
= − 1

3(3.1)
= − 1

9.3
.

That’s just an estimate of the slope of the tangent line.
Using Q = (2.9, 1/2.9), we get another estimate:

1
3
− 1

2.9

3− 2.9
=

−0.1
3(2.9)

0.1
= − 1

3(2.9)
= − 1

8.7
.

By choosing Q nearer (3, 1/3) we could get better estimates.
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64 CHAPTER 2 INTRODUCTION TO CALCULUS

The Slope at a Point on the Curve y = log2(x)

Figure 2.1.10:

Figure 2.1.10 shows the graph of y = log2(x). Clearly, its slope is positive
at all points.

We will make two estimates of the slope at (4, log2(4)). Before going any
further, observe that (4, log2(4)) = (4, 2) (because log2(4) = log2(22) = 2).

For the nearby point Q, let us use (4.001, log2(4.001)). The slope of the
secant through P = (4, 2) and Q is

log2(4.001)− 2

4.001− 4
=

log2(4.001)− 2

0.001
.

We use a calculator to estimate log2(4.001). First, we have, by Exercise 47 in
Section 1.2, to five decimal places,

log2(4.001) =
log10(4.001)

log10(2)
≈ 0.60217

0.30103
≈ 2.00036.

So the estimate of the slope of the tangent to y = 1/x at (2, 4) is

2.00036− 2

0, 001
=

0.00036

0.001
= 0.36.

The number 0.36 is an estimate of the slope of the graph of y = log2(x) at
P = (4, log2(4)). It is not the slope there, but, even so, it could help us draw
the tangent at P .

Summary

We introduced the “nearby point Q” method to estimate the slope of the
tangent line to a curve at a given point P on the curve. The closer Q is to
P , the better the estimate. We applied the techniques to the curves y = x2,
y = 1/x, and y = log2(x). Note that in no case did we have to draw the curve.
Nor did we find the slope of the tangent except in the special cases of a line and
a circle. We found only estimates. The rest of this chapter develops methods
for finding what happens to a function, such as f(x) = (x2 − 4)/(x − 2), as
the argument gets near and nearer a given number.
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§ 2.1 SLOPE AT A POINT ON A CURVE 65

EXERCISES for Section 2.1 Key: R–routine,
M–moderate, C–challenging

1.[R] Draw an x axis and lines of slope 1/2, 1, 2, 4,
5, −1, and −1/2.

2.[R] Draw an x axis and lines of slope 1/3, 1, 3, −1,
and −2/3.

In Exercises 3 to 4 copy the figure and estimate the
slope of each line as well as you can. In each case draw
a “run–rise” triangle and measure the rise and run with
a ruler. (A centimeter ruler is more convenient than
one marked in inches.)
3.[R]

(a) (b) (c)

4.[R]

(a) (b) (c)

In Exercises 5 to 8 draw the line determined by the
given information and give an equation for the line.

5.[R] through (1, 2) with
slope −3
6.[R] through (1, 4) and
(4, 1)
7.[R] through (−2,−4)

and (0, 4)

8.[R] through (2,−1)
with slope 4

9.[R]

(a) Graph the line whose equation is y = 2x+ 3.

(b) Find the slope of this line.

10.[R]

(a) Graph the line whose equation is y = −3x+ 1.

(b) Find the slope of this line.

11.[R] Estimate the slope of the tangent line to
y = x2 at (1, 1) using the nearby points (1.001, 1.0012)
and (0.999, 0.9992).

12.[R] Estimate the slope of the tangent line to y = x2

at (−3, 9) using the nearby points (−3.01, (−3.01)2)
and (−2.99, (−2.99)2).

13.[R] Estimate the slope of the tangent line to
y = 1/x at (1, 1)

(a) by drawing a tangent line at (1, 1) and a rise-run
triangle.

(b) by using the nearby point (1.01, 1/1.01). (Is the
slope of the tangent line smaller or larger than
this estimate?)

14.[R] Estimate the slope of the tangent line to
y = 1/x at (0.5, 2)

(a) by drawing a tangent line at (0.5, 2) and a rise-
run triangle.

(b) by using the nearby point (0.49, 1/0.49). (Is the
slope of the tangent line smaller or larger than
this estimate?)

15.[R] Estimate the slope of the tangent line to
y = log2(x) at (2, log2(2))

(a) by drawing a tangent line at (2, log2(2)) and a
rise-run triangle.

(b) by using the nearby point (2.01, log2(2.01)). (Is
the slope of the tangent line smaller or larger
than this estimate?)

16.[R] Estimate the slope of the tangent line to
y = log2(x) at (4, 2)
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66 CHAPTER 2 INTRODUCTION TO CALCULUS

(a) by drawing a tangent line at (4, 2) and a rise-run
triangle.

(b) by using the nearby point (3.99, log2(3.99)). (Is
the slope of the tangent line smaller or larger
than this estimate?)

17.[R]

(a) Graph y = x2 carefully for x in [−2, 3].

(b) Draw the tangent line to y = x2 at (1, 1) as well
as you can and estimate its slope.

(c) Using the nearby poinst (1.1, 1.12) and
(0.9, 0.92), estimate the slope of the tangent line
at (1, 1). (Is the slope of the tangent line smaller
or larger than this estimate?)

18.[R]

(a) Graph y = 2x carefully for x in [0, 2].

(b) Draw the tangent line to y = 2x at (1, 2) as well
as you can and estimate its slope.

(c) Using the nearby point (1.03, 21.03), estimate the
slope of the tangent line at (1, 2). (Is the slope
of the tangent line smaller or larger than this
estimate?)

19.[R]

(a) Show that if you compute the slope of the line
through P = (1, 2) and Q = (5, 3), you will get
the same answer with either choice of labeling.

(b) Show that in general both ways of labeling the
points P and Q give the same slope.

20.[R] The angle between a line L that crosses the x
axis and the x axis is called its angle of inclination.
It is measured counterclockwise from the positive x
axis to the line, as shown in Figure ??. The symbol
θ denotes both the angle and its measure, 0 < θ < π.
For a line parallel to the x axis, θ is defined to be 0.
Show that tan(θ) equals the slope of the line.

21.[M] (This exercise shows that the product of the
slopes of perpendicular lines is -1.) Let one line, L,
have the positive slope m. Let L′ be a line perpendic-
ular to L, of slope m′. For convenience, we assume L
goes through the origin. Note that the point (1,m) lies
on L. (See Figure ??.)

(a) Use similar triangles ABC and BCD to show
that L′ crosses the x-axis at (1 +m2, 0).

(b) Show that the slope of L′ is −1/m. Thus mm′ =
−1.
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§ 2.2 FOUR SPECIAL LIMITS 67

2.2 Four Special Limits

This section develops the notion of a limit of a function, using four examples
that play a key role in Chapter 3.

A Limit Involving xn

Let a and n be fixed numbers, with n a positive integer.

What happens to the quotient
xn − an

x− a
as x is chosen nearer and nearer to a?

(2.2.1)
To keep the reasoning down-to-earth, let’s look at a typical concrete case:

What happens to
x3 − 23

x− 2
as x gets closer and closer to 2? (2.2.2)

As x approaches 2, the numerator approaches 23 − 23 = 0. Because 0
divided by anything (other than 0) is 0 we suspect that the quotient may
approach 0. But the denominator approaches 2 − 2 = 0. This is unfortunate
because division by zero is not defined.

That x3−23 approaches 0 as x approaches 2 may make the quotient small.
That the denominator approaches 0 as x approaches 2 may make the quotient
very large. How these two opposing forces balance determines what happens
to the quotient (2.2.2) as x approaches 2.

We have already seen that it is pointless to replace x in (2.2.2) by 2 as this
leads to (23 − 23)/(2− 2) = 0/0, a meaningless expression.

Instead, let’s do some experiments and see how the quotient behaves for
specific values of x near 2; some less than 2, some more than 2. Table 2.2.1
shows the results as x increases from 1.9 to 2.1. You are invited to fill in the Math is not a spectator

sport. Check some of the
calculations reported in
Table 2.2.1.

empty squares in the table below and add to the list with values of x even
closer to 2.

The cases with x = 1.99 and 2.01, being closest to 2, should provide the best
estimates of the quotient. This suggests that the quotient (2.2.2) approaches
a number near 12 as x approaches 2, whether from below or from above.

While the numerical and graphical evidence is suggestive, this question can
be answered once-and-for-all with a little bit of algebra. By the formula for
the sum of a geometric series (see (1.4.2) in Section 1.4), x3−23 = (x−2)(x2 +
2x+ 22). We have

x3 − 23

x− 2
=

(x− 2)(x2 + 2x+ 22)

x− 2
for all x other than 2. (2.2.3)

However, when x is not 2, (2.2.3) is meaningful, and we can cancel the (x−2),
showing that

x3 − 23

x− 2
= x2 + 2x+ 22, x 6= 2.
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68 CHAPTER 2 INTRODUCTION TO CALCULUS

x x3 x3 − 23 x− 2 x3−23

x−2

1.90 6.859 −1.141 −0.1 11.41
1.99 7.8806 −0.1194 −0.01 11.94
1.999
2.00 8.0000 0.0000 0.00 undefined
2.001
2.01 8.1206 0.1206 0.01 12.06
2.10 9.261 1.261 0.1 12.61

Table 2.2.1: Table showing the steps in the evaluation of x3−23

x−2
for four choices

of x near 2.

Recall that a hollow dot on
a graph indicates that that

point is NOT on the graph.

x
K2 K1 0 1 2 3

5

10

15

(a)

x
1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

11.0

11.5

12.0

12.5

13.0

(b)

Figure 2.2.1: The graph of a y = x3−23

x−2
suggests that the quotient approaches

12 as x approaches 2. In (b), zooming for x near 2 shows how the data in
Table 2.2.1 also suggests the quotient approaches 12 as x approaches 2.
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§ 2.2 FOUR SPECIAL LIMITS 69

It is easy to see what happens to x2 + 2x+ 22 as x gets nearer and nearer
to 2: x2 + 2x+x2 approaches 4 + 4 + 4 = 12. This agrees with the calculations
(see Table 2.2.1).

We say “the limit of (x3− 23)/(x− 2) as x approaches 2 is 12” and use the
shorthand

lim
x→2

x3 − 23

x− 2
= lim

x→2
(x2 + 2x+ 22) (2.2.4)

= 3 · 22 = 12. (2.2.5)

Similar algebra, depending on the formula for the sum of a geometric series,
yields

For any positive integer n and fixed number a,

lim
x→a

xn − an

x− a
= n · an−1 (2.2.6)

See also Exercises 41 and 42.

A Limit Involving bx

What happens to 2x−1
x

and to 4x−1
x

as x approaches 0?
Consider (2x − 1)/x first: As x approaches 0, 2x − 1 approaches 20 − 1 =

1− 1 = 0. Since the numerator and denominator in (2x− 1)/x both approach
0 as x approaches 0, we face the same challenge as with (x3 − 23)/(x − 2).
There is a battle between two opposing forces.

There are no algebraic tricks to help in this case. Instead, we will rely upon
numerical data. While this motivation will be convincing, it is not mathemat-
ically rigorous. Later, in Appendix D, we will present a way to evaluate these
limits that does not depend upon any numerical computations.

Table 2.2.2 records some results (rounded off) for four choices of x. You
are invited to fill in the blanks and to add values of x even closer to 0.

WARNING (Do not believe your eyes!) The graphs in Fig-
ure 2.2.1(b) and Figure 2.2.2(b) are not graphs of straight lines.
They look straight only because the viewing windows are so small.
Compare the labels on the axes in the two views in each of Fig-
ure 2.2.1 and Figure 2.2.2. That the graphs of many common func-
tions look straight as you zoom in on a point will be important in
Section 3.1.
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70 CHAPTER 2 INTRODUCTION TO CALCULUS

x 2x 2x − 1 2x−1
x

−0.01 0.993093 −0.006907 0.691
−0.001 0.999307 −0.000693 0.693
−0.0001

0.0001
0.001 1.000693 0.000693 0.693
0.01 1.006956 0.006956 0.696

Table 2.2.2: Numerical evaluation of (2x − 1)/x for four different choices of x.
The numbers in the last column are rounded to three decimal places. See also
Figure 2.2.2.

x
K2 K1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

(a)

x
K0.10 K0.05 0.00 0.05 0.10

0.67

0.68

0.69

0.70

0.71

(b)

Figure 2.2.2: (a) Graph of y = (2x − 1)/x for x near 0. (b) View for x nearer
to 0, with the data points from Table 2.2.2. Note that there is no point for
x = 0 since the quotient is not defined when x is 0.
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§ 2.2 FOUR SPECIAL LIMITS 71

It seems that as x approaches 0, (2x − 1)/x approaches a number whose
decimal value begins 0.693. We write

lim
x→0

2x − 1

x
≈ 0.693 rounded to three decimal places. (2.2.7)

It is then a simple matter to find

lim
x→0

4x − 1

x
.

In view of the factoring of the difference of two squares, a2−b2 = (a−b)(a+b),
we have 4x − 1 = (2x)2 − 12 = (2x − 1)(2x + 1). Hence

4x − 1

x
=

(2x − 1)(2x + 1)

x
= (2x + 1)

2x − 1

x
.

As x → 0, 2x + 1 approaches 20 + 1 = 1 + 1 = 2 and (2x − 1)/x approaches
(approximately) 0.693. Thus,

lim
x→0

4x − 1

x
≈ 2 · 0.693 ≈ 1.386 rounded to three decimal places.

We now have strong evidence about the values of lim
x→0

bx − 1

x
for b = 2

and b = 4. They suggest that the larger b is, the larger the limit is. Since
limx→0

2x−1
x

is less than 1 and limx→0
4x−1
x

is more than 1, it seems reasonable
that there should be a value of b such that limx→0

bx−1
x

= 1. This special
number is called e, Euler’s number. We know that e is between 2 and 4 Euler named this constant

e, but no one knows why he
chose this symbol.

and that limx→0
ex−1
x

= 1. It turns out that e is an irrational number with an
endless decimal representation that begins 2.718281828 . . . . In Chapter 3 we
will see that e is as important in calculus as π is in geometry and trigonometry.

In any case we have

Basic Property of e

lim
x→0

ex − 1

x
= 1, and e ≈ 2.71828.

In Section 1.2 it was remarked that the logarithm with base b, logb, can be
defined for any base b > 0. The logarithm with base b = e deserves special
attention. The loge(x) is called the natural logarithm, and is typically
written as ln(x) or log(x). Thus, in particular,

y = ln(x) is equivalent to x = ey.
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72 CHAPTER 2 INTRODUCTION TO CALCULUS

Note that, as with any logarithm function, the domain of ln is the set of
positive numbers (0,∞) and the range is the set of all real numbers (−∞,∞).

In Exercise 40 it is shown that limx→0
bx−1
x

is ln(b).
Often the exponential function with base e is written as exp. This notation

is convenient when the input is complicated:

exp

(
sin3(
√
x)

cos(x)

)
is easier to read than esin3(

√
x)/ cos(x).

Many calculators and computer languages use exp to name the exponential
function with base e.

Three Important Bases for Logarithms
While logarithms can be defined for any positive base, three numbers have
been used most often: 2, 10, and e. Logarithms to the base 2 are used
in information theory, for they record the number of “yes – no” questions
needed to pinpoint a particular piece of information. Base 10 was used for
centuries to assist in computations. Since the decimal system is based on pow-
ers of 10, certain convenient numbers had obvious logarithms; for instance,
log10(1000) = log10(103) = 3. Tables of logarithms to several decimal places
facilitated the calculations of products, quotients, and roots. To multiply two
numbers, you looked up their logarithms, and then searched the table for the
number whose logarithm was the sum of the two logarithms. The calculator
made the tables obsolete, just as it sent the slide rule into museums. However,
a Google search for “slide rule” returns a list of more than 15 million websites
full of history, instruction, and sentiment. The number e is the most conve-
nient base for logarithms in calculus. Euler, as early as 1728, used e for the
base of logarithms.

A Limit Involving sin(x)

What happens to sin(x)
x

as x gets nearer and nearer to 0?
Here x represents an angle, measure in radians. In Chapter 3 we will seeAppendix E includes a

review of radians. that in calculus radians are much more convenient than degrees.
Consider first x > 0. Because we are interested in x near 0, we assume

that x < π/2. Figure 2.2.3 identifies both x and sin(x) on a circle of radius 1,
the unit circle.

To get an idea of the value of this limit, let’s try x = 0.1. Setting our
calculator in the “radian mode”, we find

sin(0.1)

0.1
≈ 0.099833

0.1
= 0.99833. (2.2.8)
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§ 2.2 FOUR SPECIAL LIMITS 73

Figure 2.2.3: On the circle with radius 1, (a) x is the arclength subtended by
an angle of x radians and sin(x) = AB.

Likewise, with x = 0.01,

sin(0.1)

0.01
≈ 0.0099998

0.01
= 0.99998. (2.2.9)

These results lead us to suspect maybe this limit is 1.
Geometry and a bit of trigonometry show that limx→0

sin(x)
x

is indeed 1.

First, using Figure 2.2.3, we show that sin(x)
x

is less than 1 for x between 0 and

π/2. Recall that sin(x) = AB. Now, AB is shorter than AC, since a leg of
a right triangle is shorter than the hypotenuse. Then AC is shorter than the
circular arc joining A to C, since the shortest distance between two points is
a straight line. Thus,

sin(x) < AC < x.

So sin(x) < x. Since x is positive, dividing by x preserves the inequality. We
have

sin(x)

x
< 1. (2.2.10)

Next, we show that sin(x)
x

is greater than something which gets near 1 as x
approaches 0. Figure 2.2.3 again helps with this step.

The area of triangle OCD is greater than the area of the sector OCA. (The
area of a sector of a disk of radius r subtended by an angle θ is θr2/2.) Thus

1

2
· 1 · tan(x)︸ ︷︷ ︸

area of ∆OCD

>
x · 12

2︸ ︷︷ ︸
area of sector OCA

.

Multiplying this inequality by 2 simplifies it to

tan(x) > x.
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In other words,
sin(x)

cos(x)
> x.

Now, multiplying by cos(x) which is positive and dividing by x (also positive)
gives

sin(x)

x
> cos(x). (2.2.11)

Putting (2.2.10) and (2.2.11) together, we have

cos(x) <
sin(x)

x
< 1. (2.2.12)

Since cos(x) approaches 1 as x approaches 0 , sin(x)
x

is squeezed between 1 and

something that gets closer and closer to 1, sin(x)
x

must itself approach 1.

We still must look at sin(x)
x

for x < 0 as x gets nearer and nearer to 0.
Define u to be −x. Then u is positive, and

sin(x)

x
=

sin(−u)

−u
=
− sinu

−u
=

sinu

u
.

As x is negative and approaches zero, u is positive and approaches 0. Thus
sin(x)
x

approaches 1 as x approaches 0 through positive or negative values.
In short,

lim
x→0

sin(x)

x
= 1 where the angle, x, is measured in radians.

A Limit Involving cos(x)

Knowing that lim
x→0

sin(x)

x
= 1, we can show that

lim
x→0

1− cos(x)

x
= 0. (2.2.13)

All we will say about this limit now is that the numerator, 1 − cos(x) is
the length of BC in Figure 2.2.3. Exercises 28 and 29 outline how to establish
this limit.
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The Meaning of lim
x→→0

sin(x)

x
= 1

When x is near 0, sin(x) and x are both small. That their quotient is near 1
tells us much more, namely, that x is a “very good approximation of sin(x).”

That means that the difference sin(x)−x is small, even in comparison to
sin(x). In other words, the “relative error”

sin(x)− x
sin(x)

(2.2.14)

approaches 0 as x approaches 0.
To show that this is the case, we compute

lim
x→0

sin(x)− x
sin(x)

.

We have

lim
x→0

sin(x)− x
sin(x)

= lim
x→0

(
sin(x)

sin(x)
− x

sin(x)

)
= lim

x→0

(
1− x

sin(x)

)
= lim

x→0

1− 1(
x

sin(x)

)


= 1− 1

1
= 0.

As you may check by graphing, the relative error in (2.2.14) stays less than
1 percent for x less than 0.24 radians, just under 14 degrees.

It is often useful to replace sin(x) by the much simpler quantity x. For
instance, the force tending to return a swinging pendulum is proportional to
sin(θ), where θ is the angle that the pendulum makes with the vertical. As
one physics book says, “If the angle is small, sin(θ) is nearly equal to θ”; it
then replaces sin(θ) by θ.
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Summary

This section discussed four important limits:

lim
x→a

xn − an

x− a
= nan−1 (n a positive integer)

lim
x→0

ex − 1

x
= 1 (e ≈ 2.71828)

lim
x→0

sin(x)

x
= 1 (angle in radians)

lim
x→0

1− cos(x)

x
= 0 (angle in radians).

That is, limx→0
ex−1
x

= 1 says, informally, that exp(a small number−1)
same small number

is near 1.
Each of these limits will be needed in Chapter 3, which introduces the

derivative of a function.
The next section examines the general notion of a limit. This is the basis

for all of calculus.
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EXERCISES for Section 2.2 Key: R–routine,
M–moderate, C–challenging

In each of Exercises 1 to 10 describe the two oppos-
ing forces involved in the limit. If you can figure out
the limit on the basis of results in this section, give it.
Otherwise, use a calculator to estimate the limit.

1.[R] lim
x→2

x4 − 16
x− 2

2.[R] lim
x→0

sin(x)
x cos(x)

3.[R] lim
x→0

(1− x)1/x

4.[R] lim
x→0

(cos(x))1/x

5.[R] lim
x→0

xx, x > 0

6.[R] lim
x→0

arcsin(x)
x

7.[R] lim
x→0

tan(x)
x

Hint: Write tan(x) =
sin(x)/ cos(x).

8.[R] lim
x→0

tan(2x)
x

9.[R] lim
x→0

8x − 1
2x − 1

Hint: The numerator
is the difference of two
cubes; how does b3 − a3

factor?

10.[R] lim
x→0

9x − 1
3x − 1

Exercises 11 to 15 concern lim
x→a

xn − an

x− a
.

11.[R] Using the factorization (x−a)(x+a) = x2−a2

find lim
x→a

x2 − a2

x− a
.

12.[R] Using Exercise 11,

(a) find lim
x→3

x2 − 9
x− 3

(b) find lim
x→
√

3

x2 − 3
x−
√

3

13.[R]

(a) By multiplying it out, show that (x − a)(x2 +
ax+ a2) = x3 − a3.

(b) Use (a) to show that lim
x→a

x3 − a3

x− a
= 3a2.

(c) By multiplying it out, show that (x − a)(x3 +
ax2 + a2x+ a3) = x4 − a4.

(d) Use (c) to show that limx→a
x4−a4

x−a = 4a3.

14.[R]

(a) What is the domain of (x2 − 9)/(x− 3)?

(b) Graph (x2 − 9)/(x− 3).

Note: Use a hollow dot to indicate an absent point
in the graph.
15.[R]

(a) What is the domain of (x3 − 8)/(x− 2)?

(b) Graph (x3 − 8)/(x− 2).

Exercises 16 to 19 concern lim
x→0

ex − 1
x

.

16.[R] What is a defini-
tion of the number e?
17.[R] Use a calculator
to compute (2.7x − 1)/x
and (2.8x − 1)/x for x =
0.001. Note: This sug-
gests that e is between 2.7
and 2.8.

18.[R] Use a calculator
to estimate (2.718x− 1)/x
for x = 0.1, 0.01, and
0.001.

19.[R] Graph y = (ex −
1)/x for x 6= 0.

Exercises 20 to 30 concern limx→0
sin(x)
x and

limx→0
1−cos(x)

x .
20.[R] Use your calculator to create a graph of
y = sin(x)

x .
21.[R] Use your calculator to create a graph of
y = 1−cos(x)

x .

22.[R] Using the fact that lim
x→0

sin(x)
x

= 1, find the
limits of the following as x approaches 0.

(a)
sin(3x)

3x

(b)
sin(3x)
x

(c)
sin(3x)
sin(x)

(d)
sin2(x)
x
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(a) (b)

Figure 2.2.4:
23.[R] Why is the arc length from A to C in Fig-
ure 2.2.4(a) equal to x?
24.[R] Why is the length of CD in Figure 2.2.4(a)
equal to tanx?
25.[R] Why is the area of triangle OCD in Fig-
ure 2.2.4(a) equal to (tanx)/2?
26.[R] An angle of θ radians in a circle of radius r sub-
tends a sector, as shown in Figure 2.2.4(b). What is the
area of this sector? Note: For a review of trigonome-
try, see Appendix E.
27.[R]

(a) Graph sin(x)/x for x in [−π, 0)

(b) Graph sin(x)/x for x in (0, π].

(c) How are the graphs in (a) and (b) related?

(d) Graph sin(x)/x for x 6= 0.

28.[R] When x = 0, (1 − cos(x))/x is not defined.

Estimate lim
x→0

1− cos(x)
x

by evaluating (1 − cos(x))/x

at x = 0.1 (radians).

29.[R] To find lim
x→0

1− cos(x)
x

first check this algebra
and trigonometry:

1− cos(x)
x

=
1− cos(x)

x

1 + cos(x)
1 + cos(x)

=
1− cos2(x)
x(1 + cos(x))

=
sin2(x)

x(1 + cos(x))
=

sin(x)
x

sin(x)
1 + cos(x)

.

Then show that

lim
x→0

sin(x)
x

sin(x)
1 + cos(x)

= 0.
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30.[M] Show that

lim
x→0

1− cos(x)
x2

=
1
2
.

This suggests that, for small values of x, 1− cos(x) is
close to x2

2 , so that cos(x) is approximately 1− x2

2 .

(a) Use a calculator to compare cos(x) with 1 − x2

2
for x = 0.2 and 0.1 radians. Note: 0.2 radians
is about 11◦.

(b) Use a graphing calculator to compare the graphs
of cos(x) and 1− x2

2 for x in [−π, π].

(c) What is the largest interval on which the val-
ues of cos(x) and 1 − x2

2 differ by no more than
0.1? That is, for what values of x is it true that∣∣∣cos(x)− (1− x2

2 )
∣∣∣ < 0.1?

Note: See Exercise 29.

31.[M] The limit lim
θ→0

sin(4θ)
sin(θ)

appears in the design

of a water sprinkler in the “Calculus is Everywhere”
in Chapter 5 Find that limit.

32.[M]

(a) We examined (2x−1)/x only for x near 0. When
x is large and positive 2x − 1 is large. So both
the numerator and denominator of (2x−1)/x are
large. The numerator influences the quotient to
become large. The large denominator pushes the
quotient toward 0. Use a calculator to see how
the two forces balance for large values of x.

(b) Sketch the graph of f(x) = (2x− 1)/x for x > 0.
(Pay special attention to the behavior of the
graph for large values of x.)

33.[M]

(a) When x is negative and |x| is large what happens
to (2x − 1)/x ?

(b) Sketch the graph of f(x) = (2x− 1)/x for x < 0.
(Pay special attention to the behavior of the
graph for large negative values of x.)
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34.[M]

(a) Using a calculator, explore what happens to√
x2 + x− x for large positive values of x.

(b) Show that for x > 0,
√
x2 + x < x+ (1/2).

(c) Using algebra, find what number
√
x2 + x −

x approaches as x increases. Hint: Multiply√
x2 + x − x by

√
x2+x+x√
x2+x+x

, an operation that re-
moves square roots from the denominator.

35.[M] Using a calculator, examine the behavior of
the quotient (θ − sin(θ))/θ3 for θ near 0.
36.[M] Using a calculator, examine the behavior of

the quotient
(

cos(θ)− 1 +
θ2

2

)
/θ4 for θ near 0.

Exercises 37 to 40 concern f(x) = (1 + x)1/x, x in
(−1, 0) and (0,∞).
37.[M]

(a) Why is (1 + x)1/x not defined when x = −3/2
but is defined when x = −5/3. Give an infinite
number of x < −1 for which it is not defined.

(b) For x near 0, x > 0, 1 + x is near 1. So we
might expect (1 +x)1/x to be near 1 then. How-
ever, the exponent 1/x is very large. So perhaps
(1 +x)1/x is also large. To see what happens, fill
in this table.

x 1 0.5 0.1 0.01 0.001
1 + x 2
1/x 1

(1 + x)1/x 2

(c) For x near 0 but negative, investigate (1 + x)1/x

with the use of this table

x −0.5 −0.1 −0.01 −0.001
1 + x 0.5
1/x −2

(1 + x)1/x 4

38.[M] Graph y = (1 + x)1/x for x in (−1, 0) and
(0, 10).
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Exercises 37 and 38 show that limx→0(1+x)1/x is about
2.718. This suggests that the number e may equal
limx→0(1 + x)1/x. In Section 3.2 we show that this is
the case. However, the next two exercises give per-
suasive arguments for this fact. Unfortunately, each
argument has a big hole or “unjustified leap,” which
you are asked to find.
39.[C] Assume that all we know about the number e
is that limx→0

ex−1
x = 1. We will write this as

ex − 1
x

∼ 1,

and read this as “(ex−1)/x is close to 1 when x is near
0.” Multiplying both sides by x gives

ex − 1 ∼ x.

Adding 1 to both sides of this gives

ex ∼ 1 + x.

Finally, raising both sides to the power 1/x yields

(ex)1/x ∼ (1 + x)1/x,

hence
e ∼ (1 + x)1/x.

This suggests that

e = lim
x→0

(1 + x)1/x.

The conclusion is correct. Most of the steps are justi-
fied. Which step is the “big leap”?
40.[C] Assume that b = lim

x→0
(1+x)1/x. We will “show”

that
lim
x→0

bx − 1
x

= 1.

First of all, for x near (but not equal to) 0

b ∼ (1 + x)1/x.

Then
bx ∼ 1 + x.

Hence
bx − 1 ∼ x.

Dividing by x gives

bx − 1
x
∼ 1.

Hence

lim
x→0

bx − 1
x

= 1.

Where is the “suspect step” this time?

41.[C] Let n be a positive integer and define Pn(x) =
xn−1 + axn−2 + a2xn−3 + · · · + an−2x + an−1. This
polynomial is equal to the quotient xn−an

x−a . That is
(x− a)Pn(x) = xn− an. (This factorization is justified
in Exercise 43 in Section 5.4.)

(a) Verify that (x − a)P2(x) = x2 − a2. (Compare
with Exercise 11)

(b) Verify that (x − a)P3(x) = x3 − a3. (Compare
with Exercise 13(a))

(c) Verify that (x − a)P4(x) = x4 − a4. (Compare
with Exercise 13(c))

(d) Explain why (x− a)Pn(x) = xn − an for all pos-
itive integers n.

42.[C] Using the formula for the sum of a geo-
metric progression ((1.4.2) in Section 1.4), show that

lim
x→a

xn − an

x− a
= nan−1.

43.[C] An intuitive argument suggested that
lim
θ→0

(sin θ)/θ = 1, which turned out to be correct. Try

your intuition on another limit associated with the unit
circle shown in Figure 2.2.5.

(a) What do you think happens to the quotient

Area of triangle ABC
Area of shaded region

as θ → 0?

More precisely, what does your intuition suggest
is the limit of that quotient as θ → 0?

(b) Estimate the limit in (a) using θ = 0.01.
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Note: This problem is a test of your intuition. This
limit, which arose during some research in geometry, is
determined in Exercise 54 in Section 5.5. The authors
guessed wrong, as has everyone they asked.

Figure 2.2.5:
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2.3 The Limit of a Function: The General

Case

Section 2.2 concerned four important limits:

lim
x→a

xn − an

x− a
= nan−1, lim

x→0

ex − 1

x
= 1, lim

x→0

sin(x)

x
= 1, lim

x→0

1− cos(x)

x
= 0.

These are all of the form limx→a
f(x)
g(x)

, in which limx→a f(x) = 0 and limx→a g(x) =
0. However a limit may have a different form, as illustrated in Exercises 39
and 40 in Section 2.2, which concern limx→0(1 + x)1/x.

Limits are fundamental to all of calculus. In this section, we pause to
discuss the concept of a limit, beginning with the notion of a one-sided limit.

One-Sided Limits

10

0.0

80 642−2

0.5

1.5

−0.5

1.0

x

Figure 2.3.1:

The domain of the function shown in Figure 2.3.1 is (−∞,∞). In particu-
lar, the function is defined when x = 2 and f(2) = 1/2. This fact is conveyed
by the solid dot at (2, 1/2) in the figure. The hollow dots at (2, 0) and (2, 1)
indicate that these points are not on the graph of this function (but some
nearby points are on the graph).

Consider the part of the graph for inputs x > 2, that is, for inputs to
the right of 2. As x approaches 2 from the right, f(x) approaches 1. This
conclusion can be expressed as

lim
x→2+

f(x) = 1

and is read “the limit of f of x, as x approaches 2, from the right, is 1.”
Similarly, looking at the graph of f in Figure 2.3.1 for x to the left of 2, that
is, for x < 2, the values of f(x) approach a different number, namely, 0. This
is expressed with the shorthand

lim
x→2−

f(x) = 0.

It might sound strange to say the values of f(x) “approach” 0 since the function
values are exactly 0 for all inputs x < 2. But, it is convenient, and customary,
to use the word “approach” even for constant functions.

This illustrates the concept of the “right-hand” and “left-hand” limits, the
two one-sided limits.

DEFINITION (Right-hand limit of f(x) at a) Let f be a function
and a some fixed number. Assume that the domain of f contains
an open interval (a, c). If, as x approaches a from the right, f(x)
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approaches a specific number L, then L is called the right-hand
limit of f(x) as x approaches a. This is written

lim
x→a+

f(x) = L

or
f(x)→ L as x→ a+.

The assertion that
lim
x→a+

f(x) = L

is read “the limit of f of x as x approaches a from the right is L” or “as x
approaches a from the right, f(x) approaches L.”

DEFINITION (Left-hand limit of f(x) at a) Let f be a function
and a some fixed number. Assume that the domain of f contains
an open interval (b, a). If, as x approaches a from the left, f(x)
approaches a specific number L, then L is called the left-hand
limit of f(x) as x approaches a. This is written

lim
x→a−

f(x) = L

or
f(x)→ L as x→ a−.

Notice that the definitions of the one-sided limits do not require that the
number a be in the domain of the function f . If f is defined at a, we do not
consider f(a) when examining limits as x approaches a.

The Two-Sided Limit

If the two one-sided limits of f(x) at x = a, lim
x→a−

f(x) and lim
x→a+

f(x), exist

and are equal to L then we say the limit of f(x) as x approaches a is L.

lim
x→a

f(x) = L means lim
x→a−

f(x) = L and lim
x→a+

f(x) = L.

For the function graphed in Figure 2.3.1 we found that limx→2+ f(x) = 1
and limx→2− f(x) = 0. Because they are different, the two-sided limit of f(x)
at 2, limx→2 f(x), does not exist.

EXAMPLE 1 Figure 2.3.2 shows the graph of a function f whose domain
is the closed interval [0, 5].

(a) Does limx→1 f(x) exist?
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(b) Does limx→2 f(x) exist?

(c) Does limx→3 f(x) exist?

Figure 2.3.2:

SOLUTION

(a) Inspection of the graph shows that

lim
x→1−

f(x) = 1 and lim
x→1+

f(x) = 2.

Although the two one-sided limits exist, they are not equal. Thus,
limx→1 f(x) does not exist. In short, “f does not have a limit as x
approaches 1.”

(b) Inspection of the graph shows that

lim
x→2−

f(x) = 3 and lim
x→2+

f(x) = 3.

Thus limx→2 f(x) exists and is 3. That f(2) = 2, as indicated by the
solid dot at (2, 2), plays no role in our examination of the limit of f(x)
as x→ 2 (either one-sided or two-sided).

(c) Inspection, once again, shows that

lim
x→3−

f(x) = 2 and lim
x→3+

f(x) = 2.

Thus limx→3 f(x) exists and is 2. Incidentally, the fact that f(3) = 2 is
irrelevant in determining limx→3 f(x).

�

We now define the (two-sided) limit without referring to one-sided limits.

DEFINITION (Limit of f(x) at a.) Let f be a function and a
some fixed number. Assume that the domain of f contains open
intervals (b, a) and (a, c), as shown in Figure 2.3.3. If there is a
number L such that as x approaches a, from both the right and
the left, f(x) approaches L, then L is called the limit of f(x) as x
approaches a. This is expressed as either

lim
x→a

f(x) = L or f(x)→ L as x→ a.
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Figure 2.3.3: The function
f is defined on open inter-
vals on both sides of a.

EXAMPLE 2 Let f be the function defined by by f(x) =
xn − an

x− a
where

n is a positive integer. This function is defined for all x except a. How does it
behave for x near a?

SOLUTION In Section 2.2 and its Exercises we found that as x gets closer
and closer to a, f(x) gets closer and closer to nan−1. This is summarized with
the shorthand

lim
x→a

xn − an

x− a
= nan−1,

read as “the limit of xn−an
x−a as x approaches a is nan−1.” �

EXAMPLE 3 Investigate the one-sided and two-sided limits for the square
root function at 0.

SOLUTION The function
√
x is defined only for x in [0,∞). We can say

that the right-hand limit at 0 exists since
√
x approaches 0 as x→ 0 through

positive values of x; that is, limx→0+

√
x = 0. Because

√
x is not defined

for any negative values of x, the left-hand limit of
√
x at 0 does not exist.

Consequently, the two-sided limit of
√
x at 0, limx→0

√
x, does not exist. �

0−1 1 4

1

0

2 3 6

2

5−2

Figure 2.3.4:

EXAMPLE 4 Consider the function f defined so that f(x) = 2 if x is an
integer and f(x) = 1 otherwise. For which a does limx→a f(x) exist?
SOLUTION The graph of f , shown in Figure 2.3.4, will help us decide. If a is
not an integer, then for all x sufficiently near a, f(x) = 1. So limx→a f(x) = 1.
Thus the limit exists for all a that are not integers.

Now consider the case when a is an integer. In deciding whether limx→a f(x)
exists we never consider the value of f at a, namely f(a) = 2. For all x suffi-
ciently near an integer a, f(x) = 1. Thus, once again, limx→a f(x) = 1. The
limit exists but is not f(a).

Thus, limx→a f(x) exists and equals 1 for every number a. �

0−1

−0.4

0.6

0.8

x

−2

−0.2

−0.8

1.0

0.2

−1.0

0.0

−0.6

2

0.4

1

Figure 2.3.5: y = g(x) =
sin(1/x).

EXAMPLE 5 Let g(x) = sin(1/x). For which a does limx→a g(x) exist?

SOLUTION To begin, graph the function. Notice that the domain of g
consists of all x except 0. When x is very large, 1/x is very small, so sin(1/x)
is small. As x approaches 0, 1/x becomes large. For instance, when x = 1

2nπ
,

for a non-zero integer n, 1/x = 2nπ and therefore sin(1/x) = sin(2nπ) = 0.
Thus, the graph of y = g(x) for x near 0 crosses the x-axis infinitely often.
Similarly, g(x) takes the values 1 and -1 infinitely often for x near 0. The
graph is shown in Figure 2.3.5.
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Does limx→0 g(x) exist? Does g(x) tend toward one specific number as x→
0? No. The function oscillates, taking on all values from -1 to 1 (repeatedly)
for x arbitrarily close to 0. Thus limx→0 sin(1/x) does not exist.

At all other values of a, limx→a g(x) does exist and equals g(a) = sin(1/a).
�

Infinite Limits at a

A function may assume arbitrarily large values as x approaches a fixed number.
One important example is the tangent function. As x approaches π/2 from
the left, tan(x) takes on arbitrarily large positive values. (See Figure 2.3.6.)
We write

Figure 2.3.6:

lim
x→π

2
−

tan(x) = +∞.

However, as x → π
2

from inputs larger than π/2, tan(x) takes on negative
values of arbitrarily large absolute value. We write

lim
x→π

2
+

tan(x) = −∞.

DEFINITION (Infinite limit of f(x) at a) Let f be a function
and a some fixed number. Assume that the domain of f contains
an open interval (a, c). If, as x approaches a from the right, f(x)
becomes and remains arbitrarily large and positive, then the limit
of f(x) as x approaches a is said to be positive infinity. This is
written

lim
x→a+

f(x) = +∞

or sometimes just
lim
x→a+

f(x) =∞.

If, as x approaches a from the left, f(x) becomes and remains
arbitrarily large and positive, then we write

lim
x→a−

f(x) = +∞.

Similarly, if f(x) assumes values that are negative and these values
remain arbitrarily large in absolute value, we write either

lim
x→a+

f(x) = −∞ or lim
x→a−

f(x) = −∞,

depending upon whether x approaches a from the right or from the
left.
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Limits as x→∞
Sometimes it is useful to know how f(x) behaves when x is a very large positive
number (or a negative number of large absolute value).

EXAMPLE 6 Determine how f(x) = 1/x behaves for

(a) large positive inputs

(b) negative inputs of large absolute value

(c) small positive inputs

(d) negative inputs of small absolute value

SOLUTION

(a) To get started, make a table of values as shown in the margin. As x

becomes arbitrarily large, 1/x approaches 0: lim
x→∞

1

x
= 0. This conclusionx 1/x

10 0.1
100 0.01
1000 0.001

would be read as “as x approaches ∞, f(x) approaches 0.”

(b) This is similar to (a), except that the reciprocal of a negative number
with large absolute value is a negative number with a small absolute

value. Thus, lim
x→−∞

1

x
= 0.

(c) For inputs that are positive and approaching 0, the reciprocals are posi-
tive and large: limx→0+

1
x

= +∞.

(d) Lastly, the reciprocal of inputs that are negative and approaching 0 from

the left are negative and arbitrarily large in absolute value: lim
x→0−

1

x
=

−∞.

�

x

Figure 2.3.7:

More generally, for any fixed positive exponent p,

lim
x→∞

1

xp
= 0.

Limits of the form limx→∞ P (x) and limx→∞
P (x)
Q(x)

, where P and Q are polyno-
mials are easy to treat, as the following examples show.

Keep in mind that ∞ is not a number. It is just a symbol that tells us
that something — either the inputs or the outputs of a function — become
arbitrarily large.

EXAMPLE 7 Find lim
x→∞

(2x3 − 5x2 + 6x+ 5).
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SOLUTION When x is large, x3 is much larger than either x2 or x. With
this in mind, we use a little algebra to determine the limit:

2x3 − 5x2 + 6x+ 5 = x3

(
2− 5

x
+

6

x2
+

5

x3

)
.

The expression in parentheses approaches 2, while x3 gets arbitrarily large.
Thus

lim
x→∞

2x3 − 5x2 + 6x+ 5

x3
=∞.

�

EXAMPLE 8 Find limx→∞
2x3−5x2+6x+5

7x4+3x+2
.

SOLUTION We use the same technique as in Example 7.

2x3 − 5x2 + 6x+ 5 = x3
(
2− 5

x
+ 6

x2 + 5
x3

)
and 7x4 + 3x+ 2 = x4

(
7 + 3

x3 + 2
x4

)
so that 2x3−5x2+6x+5

7x4+3x+2
=

x3(2− 5
x

+ 6
x2

+ 5
x3

)
x4(7+ 3

x3
+ 2
x4

)

= 1
x

2− 5
x

+ 6
x2

+ 5
x3

7+ 3
x3

+ 2
x4

.

As x gets arbitrarily large, 1
x

approaches 0, 2− 5
x

+ 6
x2 + 5

x3 approaches 2, and
7 + 3

x3 + 2
x4 approaches 7. Thus,

lim
x→∞

2x3 − 5x2 + 6x+ 5

7x4 + 3x+ 2
= 0.

�
As these two examples suggest, the limit of a quotient of two polynomials,

P (x)
Q(x)

, is completely determined by the limit of the quotient of the highest degree

term in P (x) and in Q(x).
Let

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

and
Q(x) = bmx

m + bm−1x
m−1 + · · ·+ b1x+ b0,

where an and bm are not 0. Then

lim
x→∞

P (x)

Q(x)
= lim

x→∞

anx
n

bmxm
.

In particular, if m = n, the limit is an/bm. If m > n, the limit is 0. If n > m,
the limit is infinite, either ∞ or −∞, depending on the signs of an and bn.
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Summary

This section introduces the concept of a limit and notations for the various
types of limits. One-sided limits are the foundation for the two-sided limit as
well as for infinite limits and limits at infinity.

It is important to keep in mind that when deciding whether limx→a f(x)
exists, you never consider f(a). Perhaps a isn’t even in the domain of the
function. Even if a is in the domain, the value f(a) plays no role in deciding
whether limx→a f(x) exists.
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EXERCISES for Section 2.3 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 8 the limits exist. Find them.

1.[R] lim
x→3

x2 − 9
x− 3

2.[R] lim
x→4

x2 − 9
x− 3

3.[R] lim
x→0

sin(x)
x

4.[R] lim
x→π

2

sin(x)
x

5.[R] lim
x→0

ex − 1
2x

6.[R] lim
x→2

ex − 1
2x

7.[R] lim
x→0

1− cos(x)
3x

8.[R] lim
x→π

1− cos(x)
3x

In Exercises 9 to 12 the graph of a function y = f(x)
is given. Decide whether lim

x→1+
f(x), lim

x→1−
f(x), and

lim
x→1

f(x) exist. If they do exist, give their values.

9.[R]

10.[R]

11.[R]

12.[R]
ARTIST: Please remove
the ”12” from the vertical
axis in Figure 12

13.[R]

(a) Sketch the graph of y = log2(x).

(b) What are lim
x→∞

log2(x), lim
x→4

log2(x), and

lim
x→0+

log2(x)?
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14.[R]

(a) Sketch the graph of y = 2x.

(b) What are lim
x→∞

2x, lim
x→4

2x, and lim
x→−∞

2x?

15.[R] Find lim
x→a

x3 − 8
x− 2

for a = 1, 2, and 3.

16.[R] Find lim
x→a

x4 − 16
x− 2

for a = 1, 2, and 3.

17.[R] Examine lim
x→a

ex − 1
x− 2

for a = −1, 0, 1, and 2.

18.[R] Find lim
x→a

sin(x)
x

for a = π
6 , π

4 , and 0.

In Exercises 19 to 24, find the given limit (if it exists).

19.[R] lim
x→∞

2−x sin(x)

20.[R] lim
x→∞

3−x cos(2x)

21.[R] lim
x→∞

3x5 + 2x2 − 1
6x5 + x4 + 2

22.[R] lim
x→∞

13x5 + 2x2 + 1
2x6 + x+ 5

23.[R] lim
x→∞

10x6 + x5 + x+ 1
x6

24.[R] lim
x→∞

25x5 + x2 + 1
x3 + x+ 2

In Exercises 25 to 27, information is given about func-
tions f and g. In each case decide whether the limit
asked for can be determined on the basis of that infor-
mation. If it can, give its value. If it cannot, show by
specific choices of f and g that it cannot.
25.[M] Given that lim

x→∞
f(x) = 0 and lim

x→∞
g(x) = 1,

discuss

(a) lim
x→∞

(f(x) + g(x))

(b) lim
x→∞

(f(x)/g(x))

(c) lim
x→∞

(f(x)g(x))

(d) lim
x→∞

(g(x)/f(x))

(e) lim
x→∞

(g(x)/|f(x)|)

26.[M] Given that lim
x→∞

f(x) =∞ and lim
x→∞

g(x) =∞,
discuss

(a) lim
x→∞

(f(x) + g(x))

(b) lim
x→∞

(f(x)− g(x))

(c) lim
x→∞

(f(x)g(x))

(d) lim
x→∞

(g(x)/f(x))

27.[M] Given that lim
x→∞

f(x) = 1 and lim
x→∞

g(x) =∞,
discuss

(a) lim
x→∞

(f(x)/g(x))

(b) lim
x→∞

(f(x)g(x))

(c) lim
x→∞

(f(x)− 1)g(x)

28.[M] Let f(x) = cos(1/x).

(a) What is the domain of f?

(b) Does lim
x→0

cos(1/x) exist?

(c) Graph f(x) = cos(1/x).

29.[M] Let f(x) = x sin(1/x).

(a) What is the domain of f?

(b) Graph the lines y = x and y = −x.

(c) For which x does f(x) = x? When does f(x) =
−x? (Notice that the graph of y = f(x) goes
back and forth between these lines.)

(d) Does lim
x→0

f(x) exist? If so, what is it?

(e) Does lim
x→∞

f(x) exist? If so, what is it?

(f) Graph y = f(x).
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30.[M] Let f(x) = |x|
x , which is defined except at

x = 0.

(a) What is f(3)?

(b) What is f(−2)?

(c) Graph y = f(x).

(d) Does lim
x→0+

f(x) exist? If so, what is it?

(e) Does lim
x→0−

f(x) exist? If so, what is it?

(f) Does lim
x→0

f(x) exist? If so, what is it?

In Exercises 31 to 33, find lim
h→0

f(3 + h)− f(3)
h

for the

following functions.

31.[M] f(x) = 5x
32.[M] f(x) = x2

33.[M] f(x) = ex

34.[M] Figure 2.3.8 shows a circle of radius a. Find

(a) lim
θ→0+

AB
_
CB

Note:
_
CB is the length of the arc of

the circle with radius a.

(b) lim
θ→0+

AB

CD

(c) lim
θ→0

area of ABC
area of ABCD

.

Figure 2.3.8: Exercise 34
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35.[M] Let f(x) be the diameter of the largest circle
that fits in a 1 by x rectangle.

(a) Find a formula for f(x).

(b) Graph y = f(x).

(c) Does lim
x→1

f(x) exist?

36.[M] I am thinking of two numbers near 0. What,
if anything, can you say about their

(a) product?

(b) quotient?

(c) difference?

(d) sum?

37.[M] I am thinking about two large positive num-
bers. What, if anything, can you say about their

(a) product?

(b) quotient?

(c) difference?

(d) sum?

38.[C] Find lim
h→0

f(θ + h)− f(θ)
h

for f(x) = sin(x).

Hint: sin(a+ b) = sin(a) cos(b) + cos(a) sin(b).

39.[C] Find lim
h→0

f(θ + h)− f(θ)
h

for f(x) = cos(x).

Hint: cos(a+ b) = cos(a) cos(b)− sin(a) sin(b).

40.[C] Find lim
x→0

e2x − 1
x

.
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41.[C] Sam and Jane are discussing

f(x) =
3x2 + 2x
x+ 5

.

Sam: For large x, 2x is small in comparison to 3x2,
and 5 is small in comparison to x. So the quo-
tient 3x2+2x

x+5 behaves like 3x2

x = 3x. Hence, the
graph of y = f(x) is very close to the graph of
the line y = 3x when x is large.

Jane: “Nonsense. After all,

3x2 + 2x
x+ 5

=
3x+ 2

1 + (5/x)

which clearly behaves like 3x+2 for large x. Thus
the graph of y = f(x) stays very close to the line
y = 3x+ 2 when x is large.

Settle the argument.

42.[C] Sam, Jane, and Wilber are arguing about lim-
its in a case where lim

x→∞
f(x) = 0 and lim

x→∞
g(x) =∞.

Sam: lim
x→∞

f(x)g(x) = 0, since f(x) is going toward 0.

Jane: Rubbish! Since g(x) gets large, it will turn out
that lim

x→∞
f(x)g(x) =∞.

Wilber: You’re both wrong. The two influ-
ences will balance out and you will see that
limx→∞ f(x)g(x) is near 1.

Settle the argument.

43.[C] Sam and Jane are arguing about limits in
a case where f(x) ≥ 1 for x > 0, lim

x→0+
f(x) =

1 and lim
x→0

g(x) = ∞. What can be said about

limx→0+ f(x)g(x)?

Sam: That’s easy. Multiply a bunch of numbers near
1 and you get a number near 1. So the limit will
be 1.

Jane: Rubbish! Since f(x) may be bigger than 1 and
you are multiplying it lots of times, you will get
a really large number. There’s no doubt in my
mind: lim

x→0
f(x)g(x) =∞.

Settle the argument.
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44.[C] An urn contains n marbles. One is green and
the remaining n− 1 are red. When picking one marble
at random without looking, the probability is 1/n of
getting the green marble, and (n−1)/n of getting a red
marble. If you do this experiment n times, each time
putting the chosen marble back, the probability of not
getting the green marble on any of the n experiments
is ((n− 1)/n)n.

(a) Let p(n) =
(
n−1
n

)n. Compute p(2), p(3), and
p(4) to at least three decimal digits (to the right
of the decimal point).

(b) Show that as n→∞, p(n) approaches the recip-
rocal of lim

x→0
(1 + x)1/x.
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2.4 Continuous Functions

This section introduces the notion of a continuous function. While almost all
functions met in practice are continuous, we must always remain alert that a
function might not be continuous. We begin with an informal description and
then give a more useful working definition.

An Informal Introduction to Continuous Functions

When we draw the graph of a function defined on some interval, we usually
do not have to lift the pencil off the paper. Figure 2.4.1 shows this typical
situation.

Figure 2.4.1:

A function is said to be continuous if, when considered on any interval
in its domain, its graph can he traced without lifting the pencil off the paper.
(The domain may consist of several intervals.) According to this definition
any polynomial is continuous. So is each of the basic trigonometric functions,
including y = tan(x), whose graph is shown in Figure 2.3.6 of Section 2.3.

You may be tempted to say “But tan(x) blows up at x = π/2 and I have
to lift my pencil off the paper to draw the graph.” However, x = π/2 is not in
the domain of the tangent function. On every interval in its domain, tan(x)
behaves quite decently; on such an interval we can sketch its graph without
lifting the pencil from the paper. That is why tan(x) is continuous. The
function 1/x is also continuous, since it ”explodes” only at a number not in its
domain, namely at x = 0. The function whose graph is shown in Figure 2.4.2
is not continuous. It is defined throughout the interval [−2, 3], but to draw its
graph you must lift the pencil from the paper near x = 1. However, when you
consider the function only for x in [1, 3], then it is continuous. By the way, a
formula for the piecewise-defined function given graphically in Figure 2.4.2 is:

Figure 2.4.2:

f(x) =


x+ 1 for x in [−2, 1)
x for x in [1, 2)
−x+ 4 for x in [2, 3].

It is pieced together from three different continuous functions.

The Definition of Continuity

Our informal “moving pencil” notion of a continuous function requires drawing
a graph of the function. Our working definition does not require such a graph.
Moreover, it easily generalizes to functions of more than one variable in later
chapters.

To get the feeling of this second definition, imagine that you had the infor-
mation shown in the table in the margin about some function f . What would
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you expect the output f(1) to be?x f(x)
0.9 2.93
0.99 2.9954
0.999 2.9999997

It would be quite a shock to be told that f(1) is, say, 625. A reasonable
function should present no such surprise. The expectation is that f(1) will
be 3. More generally, we expect the output of a function at the input a to
be closely connected with the outputs of the function at inputs near a. The
functions of interest in calculus usually behave that way. In short, “What you
expect is what you get.” With this in mind, we define the notion of continuity
at a number a. We first assume that the domain of f contains an open interval
around a.

DEFINITION (Continuity at a number a) Assume that f(x) is
defined in some open interval that contains the number a. Then
the function f is continuous at a if limx→a f(x) = f(a). This
means that

1. f(a) is defined (that is, a is in the domain of f).

2. limx→a f(x) exists.

3. limx→a f(x) equals f(a).

Figure 2.4.3:

As Figure 2.4.3 shows, whether a function is continuous at a depends on
its behavior both at a and at inputs near a. Being continuous at a is a local
matter, involving perhaps very tiny intervals about a.

To check whether a function f is continuous at a number a, we ask three
questions:

Question 1: Is a in the domain of f?

Question 2: Does limx→a f(x) exist?

Question 3: Does f(a) equal limx→a f(x)?

If the answer is “yes” to each of these questions, we say that f is continuous
at a.

If a is in the domain of f and the answer to Question 2 or to Question 3
is “no,” then f is said to be discontinuous at a. If a is not in the domain
of f , we do not speak of it being continuous or discontinuous there.

We are now ready to define a continuous function.

DEFINITION (Continuous function) Let f be a function whose
domain is the x-axis or is made up of open intervals. Then f is a
continuous function if it is continuous at each number a in its
domain. A function that is not continuous is called a discontinu-
ous function.
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EXAMPLE 1 Use the definition of continuity to decide whether f(x) = 1/x
is continuous.

SOLUTION This function f is continuous at every point a for which the
answers to Questions 1, 2, and 3 are all “yes”.

If a is not 0, it is in the domain of f . So, for a not 0, the answer to
Question 1 is “yes.” Since

lim
x→a

1

x
=

1

a
,

the answer to Question 2 is “yes.” Because

f(a) =
1

a
,

the answer to Question 3 is also “yes.” Thus f(x) = 1/x is continuous at
every number in its domain. Hence f is a continuous function. Note that the
conclusion agrees with the “moving pencil” picture of continuity. �

Not every important function is continuous. Let f(x) be the greatest in-
teger that is less than or equal to x. For instance, f(1.8) = 1, f(1.9) = 1,
f(2) = 2, and f(2.3) = 2. This function is often used in number theory and
computer science, where it is denoted [x] or bxc and called the floor of x.
People use the floor function every time they answer the question, “How old
are you?” The next example examines where the floor function fails to be
continuous.

EXAMPLE 2 Let f be the floor function, f(x) = bxc. Graph f and find
where it is continuous. Is f a continuous function?

SOLUTION We begin with the following table to show the behavior of f(x)
for x near 1 or 2.

Figure 2.4.4:

x 0 0.5 0.8 1 1.1 1.99 2 2.01
bxc 0 0 0 1 1 1 2 2

For 0 ≤ x < 1, bxc = 0. But at the input x = 1 the output jumps to 1 since
b1c = 1. For 1 ≤ x < 2, bxc remains at 1. Then at 2 it jumps to 2. More
generally, bxc has a jump at every integer, as shown in Figure 2.4.4.

Let us show that f is not continuous at a = 2 by seeing which of the
three conditions in the definition are not satisfied. First of all, Question 1 is
answered “yes” since 2 lies in the domain of the function; indeed, f(2) = 2.

What is the answer to Question 2? Does limx→2 f(x) exist? We see that

lim
x→2−

f(x) = 1 and lim
x→2+

f(x) = 2.
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Since the left-hand and right-hand limits are not equal, limx→2 f(x) does not
exist. Question 2 is answered “no.”

Already we know that the function is not continuous at a = 2. Since the
limit does not exist there is no point in considering Question 3. Because there
is one point in the domain where bxc is not continuous, this is a discontinuous
function. More specifically, the floor function is discontinuous at a whenever
a is an integer.

Is f continuous at a if a is not an integer? Let us take the case a = 1.5,
for instance.

Question 1 is answered “yes,” because f(1.5) is defined.
(In fact, f(1.5) = 1.)

Question 2 is answered “yes,” since limx→1.5 f(x) = 1.

Question 3 is answered “yes,” since limx→1.5 f(x) = f(1.5).
(Both values are 1.)

The floor function is continuous at a = 1.5. Similarly, f is continuous at every
number that is not an integer.

Note that bxc is continuous on any interval that does not include an integer.
For instance, if we consider the function only on the interval (1.1, 1.9), it is
continuous there. �

Continuity at an Endpoint

The functions f(x) =
√
x and g(x) =

√
1− x2 are graphed in Figures 2.4.5(a)

and (b), respectively. We would like to call both of these functions continuous.
However, there is a slight technical problem. The number 0 is in the domain
of f , but there is no open interval around 0 that lies completely in the domain,
as our definition of continuity requires. Since f(x) =

√
x is not defined for x

to the left of 0, we are not interested in numbers x to the left of 0. Similarly,
g(x) =

√
1− x2 is defined only when 1 − x2 ≥ 0, that is, for −1 ≤ x ≤ 1.

To cover this type of situation we utilize one-sided limits to define one-sided
continuity.

DEFINITION (Continuity from the right at a number.) Assume
that f(x) is defined in some closed interval [a, c]. Then the function
f is continuous from the right at a if

1. f(a) is defined

2. limx→a+ f(x) exists

3. limx→a+ f(x) equals f(a)
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(a) (b)

Figure 2.4.5:

Figure 2.4.6:

Figure 2.4.6 illustrates this definition, which also takes care of the continu-
ity of g(x) =

√
1− x2 at -1 in Figure 2.4.5(b). The next definition takes care

of the right-hand endpoints.

DEFINITION (Continuity from the left at a number a.) Assume
that f(x) is defined in some closed interval [b, a]. Then the function
f is continuous from the left at a if

1. f(a) is defined

2. limx→a− f(x) exists

3. limx→a− f(x) equals f(a)

Figure 2.4.7:

Figure 2.4.7 illustrates this definition.
With these two extra definitions to cover some special cases in the domain,

we can extend the definition of continuous function to include those functions
whose domains may contain endpoints. We say, for instance, that

√
1− x2 is

continuous because it is continuous at any number in (−1, 1), is continuous
from the right at -1, and continuous from the left at 1.

These special considerations are minor matters that will little concern us
in the future. The key point is that

√
1− x2 and

√
x are both continuous

functions. So are practically all the functions studied in calculus.
The following example reviews the notion of continuity.

EXAMPLE 3 Figure 2.4.8 is the graph of a certain (piecewise-defined)

Figure 2.4.8:

function f(x) whose domain is the interval (−2, 6]. Discuss the continuity of
f(x) at (a) 6, (b) 4, (c) 3, (d) 2, (e) 1, and (f) -2.

SOLUTION

(a) Since lim
x→6−

f(x) exists and equals f(6), f is continuous from the left at

6.
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(b) Since lim
x→4

f(x) does not exist, f is not continuous at 4.

(c) Inspection of the graph shows that lim
x→3

f(x) = 2. However, Question 3 is

answered “no” because f(3) = 3, which is not equal to lim
x→3

f(x). Thus

f is not continuous at 3.

(d) Though lim
x→2−

f(x) and lim
x→2+

f(x) both exist, they are not equal. (The

left-hand limit is 2; the right-hand limit is 1.) Thus lim
x→2

f(x) does not

exist, the answer to Question 2 is “no,” and f is discontinuous at x = 2.

(e) At 1, “yes” is the answer to all three questions: f(1) is defined, limx→1 f(x)
exists (it equals 2) and, finally, it equals f(1). f is continuous at x = 1.

(f) Since -2 is not even in the domain of this function, we do not speak of
continuity or discontinuity of f at −2.

�
As Example 3 shows, a function can fail to be continuous at a given number

a in its domain for either of two reasons:

1. limx→a f(x) might not exist

2. when, limx→a f(x) does exist, f(a) might not be equal to that limit.

Continuity and Limits

Some limits are so easy that you can find them without any work; for instance,
limx→2 5x = 52 = 25. Others offer a challenge; for instance, limx→2

x3−23

x−2
.

If you want to find limx→a f(x), and you know f is a continuous function
with a in its domain, then you just calculate f(a). In such a case there is no
challenge and the limit is called determinate.

The interesting case for finding limx→a f(x) occurs when f is not defined
at a. That is when you must consider the influences operating on f(x) when
x is near a. You may have to do some algebra or computations. Such limits
are called indeterminate.

The four limits encountered in Section 2.2, lim
x→a

xn − an

x− a
, lim
x→0

bx − 1

x
, lim
x→0

sin(x)

x
,

and lim
x→0

1− cos(x)

x
all required some work to find their value. These types of

limits will be discussed in detail in Section 5.5.
We list the properties of limits which are helpful in computing limits.

Theorem 2.4.1 (Properties of Limits). Let g and h be two functions and
assume that limx→a g(x) = A and limx→a h(x) = B. ThenEach of these properties

remains valid when the
two-sided limit is replaced

with a one-sided limit. October 22, 2010 Calculus
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Sum lim
x→a

(g(x) + h(x)) = lim
x→a

g(x) + lim
x→a

h(x) = A+B

the limit of the sum is the sum of the limits

Difference lim
x→a

(g(x)− h(x)) = lim
x→a

g(x)− lim
x→a

h(x) = A−B
the limit of the difference is the difference of the limits

Product lim
x→a

(g(x)h(x)) =
(

lim
x→a

g(x)
)(

lim
x→a

h(x)
)

= AB

the limit of the product is the product of the limits

Constant Multiple lim
x→a

(kg(x)) = k
(

lim
x→a

g(x)
)

= kA, for any constant k

special case of Product

Quotient lim
x→a

(
g(x)

h(x)

)
=

(limx→a g(x))

(limx→a h(x))
=
A

B
, provided B 6= 0

the limit of the quotient is the quotient of the limits, provided the denom-
inator is not 0

Power lim
x→a

(
g(x)h(x)

)
=
(

lim
x→a

g(x)
)(limx→a h(x))

= AB, provided A > 0

the limit of a varying base to a varying power

EXAMPLE 4 Find lim
x→0

(x4 − 16) sin(5x)

x2 − 2x
.

SOLUTION Notice that the denominator can be factored to obtain

(x4 − 16) sin(5x)

x2 − 2x
=
x4 − 24

x− 2
· sin(5x)

x
.

This allows the limit to be rewritten as

lim
x→0

x4 − 24

x− 2
· lim
x→0

sin(5x)

x

where we have also used 16 = 24. Now, limx→0
x4−24

x−2
= 4 · 24−1 = 32. Also,

lim
x→0

sin(5x)

x
= lim

x→0
5

sin(5x)

5x
= 5 lim

x→0

sin(5x)

5x
= 5 · 1 = 5.

We conclude that

lim
x→0

(x4 − 16) sin(5x)

x2 − 2x
= lim

x→0

x4 − 24

x− 2
· lim
x→0

sin(5x)

5x
= 32 · 5 = 160.

�

Calculus October 22, 2010



104 CHAPTER 2 INTRODUCTION TO CALCULUS

Summary

This section opened with an informal view of continuous functions, expressed
in terms of a moving pencil. It then gave the definition, phrased in terms of
limits, which we will use throughout the text.

The development concludes in the next section, which describes three im-
portant properties of continuous functions.
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EXERCISES for Section 2.4 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 12, which of these limits can be found
at a glance and which require some analysis? That is,
decide in each case whether the limit is determinate or
indeterminate. Do not evaluate the limit.

1.[R] lim
x→0

(2x − 1)

2.[R] lim
x→∞

((
1
2

)
2x − 1

)
3.[R] lim

x→1

3x − 1
2x − 1

4.[R] lim
x→2

3x − 1
2x − 1

5.[R] lim
x→∞

x

2x

6.[R] lim
x→0

x

2x

7.[R] lim
x→0+

x2

ex − 1
8.[R] lim

x→π
2
−

(sin(x))tan(x)

9.[R] lim
x→0+

x log2(x)

10.[R] lim
x→0+

(2 + x)3/x

11.[R] lim
x→∞

(2 + x)3/x

12.[R] lim
x→0−

(2 + x)3

x

In Exercises 13 to 16, evaluate the limit.

13.[R] lim
x→π

2

sin(x)
ex − 1
x

14.[R] lim
x→0

cos(x) (ex − 1)
x

15.[R] lim
x→0

sin(2x)
x(cos(3x))2

16.[R] lim
x→1

(x− 1) cos(x)
x3 − 1
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In Exercises 17 to 20 the graph of a function y = f(x)
is given. Determine all numbers c for which lim

x→c
f(x)

does not exist.

17.[R]

18.[R]

19.[R]

20.[R]

In Exercises 21 and 22 the graph of a function y = f(x)
and several intervals are given. For each interval, de-
cide if the function is continuous on that interval.

21.[R]

(a) [−2,−1]

(b) (−2,−1)

(c) (−1, 1)

(d) [−1, 1)

(e) (−1, 1]

(f) [−1, 1]

(g) (1, 2)

(h) [1, 2)

(i) (1, 2]

(j) [1, 2]

22.[R]

(a) [−3, 2]

(b) (−1, 3)

(c) (−1, 2)

(d) [−1, 2)

(e) (−1, 2]

(f) [−1, 2]

(g) (2, 3)

(h) [2, 3)

(i) (2, 3]

(j) [2, 3]

23.[R] Let f(x) = x+ |x|.

(a) Graph f .

(b) Is f continuous at -1?

(c) Is f continuous at 0?
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24.[M] Let f(x) = 21/x for x 6= 0.

(a) Find lim
x→∞

f(x).

(b) Find lim
x→−∞

f(x).

(c) Does lim
x→0+

f(x) exist?

(d) Does lim
x→0−

f(x) exist?

(e) Graph f , incorporating the information from
parts (a) to (d).

(f) Is it possible to define f(0) in such a way that f
is continuous throughout the x-axis?

25.[M] Let f(x) = x sin(1/x) for x 6= 0.

(a) Find lim
x→∞

f(x).

(b) Find lim
x→−∞

f(x).

(c) Find lim
x→0

f(x).

(d) Is it possible to define f(0) in such a way that f
is continuous throughout the x-axis?

(e) Sketch the graph of f .

In Exercises 26 to 28 find equations that the numbers
k, p, and/or m must satisfy to make each function con-
tinuous.

26.[M] f(x) ={
sin(x)

2x x 6= 0
p x = 0

27.[M] f(x) =
k x ≤ 0

arcsin(x) 0 < x ≤ π
2

p x > π
2

28.[M] f(x) =
ln(x) x > 1

k −m
√
x 0 < x ≤ 1

pe−x x ≤ 0
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29.[M]

(a) Let f and g be two functions defined for all num-
bers. If f(x) = g(x) when x is not 3, must
f(3) = g(3)?

(b) Let f and g be two continuous functions defined
for all numbers. If f(x) = g(x) when x is not 3,
must f(3) = g(3)?

Explain your answers.

30.[C] The reason 00 is not defined. It might be
hoped that if the positive number b and the number
x are both close to 0, then bx might be close to some
fixed number. If that were so, it would suggest a def-
inition for 00. Experiment with various choices of b
and x near 0 and on the basis of your data write a
paragraph on the theme, “Why 00 is not defined.”
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2.5 Three Important Properties of Continu-

ous Functions

Continuous functions have three properties important in calculus: the “extreme-
value” property, the “intermediate-value” property, and the “permanence”
property. All three are quite plausible, and a glance at the graph of a typical
continuous function may persuade us that they are obvious. No proofs will be
offered: they depend on the precise definitions of limits given in Sections 3.8
and 3.9 and are part of an advanced calculus course.

We will say that a function has a local or relative maximum at a point
(c, f(c)) when f(c) ≥ f(x) for x near c. More precisely, there is an open interval
I containing c such that if x is in I, and f(x) is defined, then f(x) ≤ f(c).
Likewise, a function has a local or relative minimum at a point (c, f(c))
when f(c) ≤ f(x) for x near c. Each maximum or minimum is referred to as The plural of extremum is

extrema.an extreme value or extremum of the function.

Extreme-Value Property

The first property is that a function continuous throughout the closed interval
[a, b] takes on a largest value somewhere in the interval.

Theorem (Maximum-Value Property). Let f be continuous throughout a
closed interval [a, b]. Then there is at least one number in [a, b] at which f
takes on a maximum value. That is, for some number c in [a, b], f(c) ≥ f(x)
for all x in [a, b].

To persuade yourself that this is plausible, imagine sketching the graph of
a continuous function. (See Figure 2.5.1.)

Figure 2.5.1:
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The maximum-value property guarantees that a maximum value exists,
but it does not tell how to find it. The problem of finding it is addressed in
Chapter 4.

There is also a minimum-value property that states that every contin-
uous function on a closed interval takes on a smallest value somewhere in this
interval. See Figure 2.5.1 for an illustration of this property. Combining the
two properties, we have:

Theorem (Extreme-Value Property). Let f be continuous throughout the
closed interval [a, b]. Then there is at least one number in [a, b] at which f
takes on a minimum value and there is at least one number in [a, b] at which
f takes on a maximum value. That is, for some numbers c and d in [a, b],
f(d) ≤ f(x) ≤ f(c) for all x in [a, b].

EXAMPLE 1 Find all numbers in [0, 3π] at which the cosine function,
f(x) = cos(x), takes on a maximum value. Also, find all numbers in [0, 3π] at
which f takes on a minimum value.

SOLUTION Figure 2.5.2 is a graph of f(x) = cos(x) for x in [0, 3π]. Inspection

Figure 2.5.2:

of the graph shows that the maximum value of cos(x) for 0 ≤ x ≤ 3π is 1, and
it is attained twice: when x = 0 and when x = 2π. The minimum value is -1,
which is also attained twice: when x = π and when x = 3π. �

The Extreme-Value Property has two assumptions: “f is continuous” and
“the domain is a closed interval.” If either of these conditions is removed, the
conclusion need not hold.

Figure 2.5.3(a) shows the graph of a function that is not continuous, is
defined on a closed interval, but has no maximum value. On the other hand
f(x) = 1

1−x2 is continuous on (−1, 1). It has no maximum value, as a glance
at Figure 2.5.3(b) shows. This does not violate the Extreme-Value Property,
since the domain (−1, 1) is not a closed interval.

Intermediate-Value Property

Imagine graphing a continuous function f defined on the closed interval [a, b].
As your pencil moves from the point (a, f(a)) to the point (b, f(b)) the y-
coordinate of the pencil point goes through all values between f(a) and f(b).
(Similarly, if you hike all day, starting at an altitude of 5,000 feet and ending
at 11,000 feet, you must have been, say, at 7,000 feet at least once during the
day. In mathematical terms, not in terms of a pencil (or a hike), “a function
that is continuous throughout an interval takes on all values between any two
of its values”.
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(a) (b)

Figure 2.5.3:

Theorem (Intermediate-Value Property). Let f be continuous throughout
the closed interval [a, b]. Let m be any number such that f(a) ≤ m ≤ f(b) or
f(a) ≥ m ≥ f(b). Then there is at least one number c in [a, b] such that
f(c) = m.

Figure 2.5.4:

Pictorially, the Intermediate-Value Property asserts that, if m is between
f(a) and f(b), a horizontal line of height m must meet the graph of f at least
once, as shown in Figure 2.5.4.

Even though the property guarantees the existence of a certain number c,
it does not tell how to find it. To find c we must be able to solve an equation,
namely, the equation f(x) = m.

EXAMPLE 2 Use the Intermediate-Value Property to show that the equa-
tion 2x3 + x2 − x+ 1 = 5 has a solution in the interval [1, 2].

SOLUTION Let P (x) = 2x3 + x2 − x+ 1. Then

P (1) = 2 · 13 + 12 − 1 + 1 = 3
and P (2) = 2 · 23 + 22 − 2 + 1 = 19.

Since P is continuous (on [1, 2]) and m = 5 is between P (1) = 3 and P (2) = 19,
the Intermediate-Value Property says there is at least one number c between
1 and 2 such that P (c) = 5.

To get a more accurate estimate for a number c such that P (c) = 5, find
a shorter interval for which the Intermediate-Value Property can be applied.
For instance, P (1.2) = 4.696 and P (1.3) = 5.784. By the Intermediate-Value
Property, there is a number c in [1.2.1.3] such that P (c) = 5. �

EXAMPLE 3 Show that the equation −x5−3x2 + 2x+ 11 = 0 has at least
one real root. In other words, the graph of y = −x5 − 3x2 + 2x + 11 crosses
the x-axis.
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SOLUTION Let f(x) = −x5−3x2 +2x+11. We wish to show that there is a

y

5

−5

−15

20

15

10

0

−10

x

210−1−2

Figure 2.5.5:

number c such that f(c) = 0. In order to use the Intermediate-Value Property,
we need an interval [a, b] for which 0 is between f(a) and f(b), that is, one of
f(a) and f(b) is positive and the other is negative. Then we could apply that
property, using m = 0.

We show that there are numbers a and b with a < b, f(a) > 0 and f(b) < 0.
Because limx→∞ f(x) = −∞, for x large and positive, f(x) is negative for x
large and positive. Thus, there is a positive number b such that f(b) < 0.
Similarly, limx→−∞ f(x) = ∞, means that when x is negative and of large
absolute value, f(x) is positive. So there is a negative number a such that
f(a) > 0. Thus there are numbers a and b, with a < b, such that f(a) > 0
and f(b) < 0. For instance, f(−1) = 7 and f(2) = −29.

The number 0 is between f(a) and f(b). Since f is continuous on the
interval [a, b], there is a number c in [a, b] such that f(c) = 0. (In particular
there is a number c in [−1, 2]. This number c is a solution to the equation
−x5 − 3x2 + 2x+ 11 = 0. �

Note that the argument in Example 3 shows that any polynomial of odd
degree has a real root. The argument does not hold for polynomials of even
degree; the equation x2 + 1 = 0, for instance, has no real solutions.

EXAMPLE 4 Use the Intermediate-Value Property to show that there is
a negative number such that ln(x+ 4) = x2 − 3.
SOLUTION We wish to show that there is a negative number c where the
function ln(x + 4) has the same value as the function x2 − 3. The equation
ln(x+ 4) = x2−3 is equivalent to ln(x+ 4)−x2 + 3 = 0. The problem reduces
to showing that the function f(x) = ln(x+4)−x2 +3 has the value 0 for some
input c (with c < 0).

We will proceed, as we did in the previous example. We want to find
numbers a and b (both in (−∞, 0)) such that f(a) and f(b) have opposite
signs.

Before beginning the search for a and b, note that ln(x+ 4) is defined only
for x+ 4 > 0, that is, for x > −4. To complete the search for a and b, make a
table of values of f(x) for some sample arguments in (−4, 0).

x −3 −2 −1 0
f(x) −6 −0.307 3.099 4.386

We see that f(−2) is negative and f(−1) is positive. Since m = 0 lies between
f(−2) and f(−1), and f is continuous on [−2,−1], the Intermediate-Value
Property asserts that there is a number in [−2,−1] such that f(c) = 0. It
follows that ln(c+ 4) = c2 − 3. �
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In Example 4 the Intermediate-Value Property does not tell what c is. The
graphs of ln(x+ 1) and x2−3 in Figure 2.5.6 suggest that there are two points

4

y
−3

−2

x

3

2

2

−1
−2

−5

4

0

0

5

−4

1

−4

Figure 2.5.6:

of intersection, but only one with a negative input. The graph, and the table
of values, suggest that the intersection point occurs when the input is close to
-2. Calculations on a calculator or computer show that c ≈ −1.931.

Permanence Property

The extrema property as well as the intermediate-value property involve the
behavior of a continuous function throughout an interval. The next property
concerns the “local” behavior of a continuous function.

Consider a continuous function f on an open interval that contains the
number a. Assume that f(a) = p is positive. Then it seems plausible that f
remains positive in some open interval that contains a. We can say something
stronger:

Theorem 2.5.1 (The Permanence Property). Assume that the domain of a
function f contains an open interval that includes the number a. Assume that
f is continuous at a and that f(a) = p is positive. Let q be any number less
than p. Then there is an open interval including a such that f(x) ≥ q for all
x in that interval.

To persuade yourself that the permanence principle is plausible, imagine
what the graph of y = f(x) looks like near (a, f(a)), as in Figure 2.5.7.

q

a

p

x

Figure 2.5.7:

Summary

This section stated, without proofs, the Extreme-Value Property, the Intermediate-
Value Property, and the Permanence Property. Each will be used several times
in later chapters.
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EXERCISES for Section 2.5 Key: R–routine,
M–moderate, C–challenging

1.[R] For each of the given intervals, find the maxi-
mum value of cos(x) over that interval and the value
of x at which it occurs.

(a) [0, π/2]

(b) [0, 2π]

2.[R] Does the function x3+x4

1+5x2+x6 have (a) a maxi-
mum value for x in [1, 4]? (b) a minimum value for x
in [1, 4]? If so, use a graphing device to determine the
extreme values.

3.[R] Does the function 2x − x3 + x5 have (a) a max-
imum value for x in [−3, 10]? (b) a minimum value for
x in [−3, 10]? If so, use a graphing device to determine
the extreme values.

4.[R] Does the function x3 have a maximum value for
x in (a) [2, 4]? (b) [−3, 5]? (c) (1, 6)? If so, where does
the maximum occur and what is the maximum value?

5.[R] Does the function x4 have a minimum value for
x in (a) [−5, 6]? (b) (−2, 4)? (c) (3, 7)? (d) (−4, 4)?
If so, where does the minimum occur and what is the
minimum value?

6.[R] Does the function 2 − x2 have (a) a maximum
value for x in (−1, 1)? (b) a minimum value for x in
(−1, 1)? If so, where?

7.[R] Does the function 2 + x2 have (a) a maximum
value for x in (−1, 1)? (b) a minimum value for x in
(−1, 1)? If so, where?

8.[R] Show that the equation x5 + 3x4 + x − 2 = 0
has at least one solution in the interval [0, 1].

9.[R] Show that the equation x5−2x3 +x2−3x = −1
has at least one solution in the interval [1, 2].

In Exercises 10 to 14 verify the Intermediate-Value
Property for the specified function f , the interval [a, b],
and the indicated value m. Find all c’s in each case.

10.[R] f(x) = 3x + 5,
[a, b] = [1, 2], m = 10.

11.[R] f(x) = x2 − 2x,
[a, b] = [−1, 4], m = 5.

12.[R] f(x) = sin(x),
[a, b] = [π2 ,

11π
2 ], m = −1.

13.[R] f(x) = cos(x),
[a, b] = [0, 5π], m =

√
3

2 .
14.[R] f(x) = x3 − x,
[a, b] = [−2, 2], m = 0.

15.[R] Use the Intermediate-Value Property to show
that the equation 3x3 +11x2−5x = 2 has a solution.

16.[M] Show that the equation 2x = 3x has a solution
in the interval [0, 1].

17.[M] Does the equation x+ sin(x) = 1 have a solu-
tion?

18.[M] Does the equation x3 = 2x have a solution?

19.[M] Let f(x) = 1/x, a = −1, b = 1, m = 0. Note
that f(a) ≤ 0 ≤ f(b). Is there at least one c in [a, b]
such that f(c) = 0? If so, find c; if not, does this imply
the Intermediate-Value Property sometimes does not
hold?

20.[M] Use the Intermediate-Value Property to
show that there is a positive number such that
ln(x+ 4) = x2 + 3.

Exercises 21 and 22 illustrate the Permanence Prop-
erty.

21.[M] Let f(x) = 5x.
Then f(1) = 5. Find an
interval (a, b) containing 1
such that f(x) ≥ 4.9 for
all x in (a, b).

22.[M] Let f(x) = x2.
Then f(2) = 4. Find an
interval (a, b) containing 2
such that f(x) ≥ 3.8 for
all x in (a, b).
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23.[C] Let P (x) = anx
n + an−1x

n−1 + · · · + a0 be a
polynomial of odd degree n and with positive leading
coefficient an. Show that there is at least one real
number r such that P (r) = 0.

24.[C] (This continues Exercise 23.) The factor
theorem from algebra asserts that the number r is
a root of a polynomial P (x) if and only if x − r is
a factor of P (x). For instance, 2 is a root of the
polynomial x2 − 3x + 2 and x − 2 is a factor of it:
x2 − 3x + 2 = (x − 2)(x − 1). Note: See also Exer-
cise 47 in Section 8.4.

(a) Use the factor theorem and Exercise 23 to show
that every polynomial of odd degree has a factor
of degree 1.

(b) Show that none of the polynomials x2 +1, x4 +1,
or x100 + 1 has a first-degree factor.

(c) Verify that x4+1 =
(
x2 +

√
2x+ 1

) (
x2 −

√
2x+ 1

)
.

(It can be shown using complex numbers that
every polynomial with real coefficients is the
product of polynomials with real coefficients of
degrees at most 2.)

25.[C] Let f(x) = anx
n+ · · ·+a1x+a0 where an and

a0 have opposite signs.

(a) Show that the f(x) has a positive root, that is,
the equation f(x) = 0 has a positive solution.

(b) Show that if each of the roots in (a) is simple,
there are an odd number of them. Hint: Use a
picture. Note: A number c is a simple root of
f(x) when x− c is a factor of f(x) but (x− c)2

is not a factor.

(c) If the roots in (a) are not simple, what would
be the corresponding statement? Hint: Use a
picture.

(d) What can you say about the roots of f(x) if an
and a0 have the same sign?

Convex Sets and Curves

A set in the plane bounded by a curve is convex if for
any two points P and Q in the set the line segment
joining them also lies in the set. (See Figure 2.5.8(a).)
The boundary of a convex set we will call a con-
vex curve. (These ideas generalize to a solid and its
boundary surface.) The notion of convexity dates back
to Archimedes.
Disks, triangles, and parallelograms are convex sets.
The quadrilateral shown in Figure 2.5.8(b) is not con-
vex. Convex sets will be referred to in the following
exercises and occasionally in the exercises in later chap-
ters.

(a)

(b)

Figure 2.5.8: (a) There are no dents in the bound-
ary of a convex set. (b) Not a convex set.
Exercises 26 to 32 concern convex sets and show how
the Intermediate-Value Property gives geometric infor-
mation. In these exercises you will need to define var-
ious functions geometrically. You may assume these
functions are continuous.
26.[C] Let L be a line in the plane and let K be a
convex set. Show that there is a line parallel to L that
cuts K into two pieces with equal areas.
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Follow these steps.

(a) Introduce an x-axis perpendicular to L with its
origin on L. Each line parallel to L and meeting
K crosses the x-axis at a number x. Label the
line Lx. Let a be the smallest and b the largest
of these numbers x. (See Figure 2.5.9.) Let the
area of K be A.

Figure 2.5.9:

(b) Let A(x) be the area of K situated to the left of
the line Lx corresponding to x. What is A(a)?
A(b)?

(c) Use the Intermediate-Value Property to show
that there is an x in [a, b] such that A(x) = A

2 .

(d) Why does (c) show that there is a line parallel
to L that cuts K into two pieces of equal areas?

27.[C] Solve the preceding exercise by applying
the Intermediate-Value Property to the function
f(x) = A(x) − B(x), where B(x) is the area to the
right of Lx.

28.[C] Let P be a point in the plane and let K be a
convex set. Is there a line through P that cuts K into
two pieces of equal areas?

29.[C] Let K1 and K2 be two convex sets in the plane.
Is there a line that simultaneously cuts K1 into two
pieces of equal areas and cuts K2 into two pieces of
equal areas? Note: This is known as the “two pan-
cakes” question.

30.[C] Let K be a convex set in the plane. Show
that there is a line that simultaneously cuts K into
two pieces of equal area and cuts the boundary of K
into two pieces of equal length.
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31.[C] Let K be a convex set in the plane. Show
that there are two perpendicular lines that cut K into
four pieces of equal areas. (It is not known whether it
is always possible to find two perpendicular lines that
divide K into four pieces whose areas are 1

8 , 1
8 , 3

8 , and
3
8 of the area of K, with the parts of equal area shar-
ing an edge, as in Figure 2.5.10.) What if the parts of
equal areas are to be opposite each other, instead?

Figure 2.5.10:
32.[C] Let K be a convex set in the plane whose
boundary contains no line segments. A polygon is said
to circumscribe K if each edge of the polygon is tan-
gent to the boundary of K.

(a) Is there necessarily a circumscribing equilateral
triangle? If so, how many?

(b) Is there necessarily a circumscribing rectangle?
If so, how many?

(c) Is there necessarily a circumscribing square?

33.[C] Let f be a continuous function whose domain
is the x-axis and has the property that

f(x+ y) = f(x) + f(y) for all numbers x and y.

For any constant c, f(x) = cx satisfies this equation
since c(x + y) = cx + cy. This exercise shows that f
must be of the form f(x) = cx for some constant c.

(a) Let f(1) = c. Show that f(2) = 2c.

(b) Show that f(0) = 0.

(c) Show that f(−1) = −c.

(d) Show that that for any positive integer n, f(n) =
cn.

(e) Show that that for any negative integer n,
f(n) = cn.

(f) Show that f(1
2) = c

2 .

(g) Show that that for any non-zero integer n,
f( 1

n) = c
n .

(h) Show that that for any intger m and any positive
integer n, f(mn ) = m

n c.

(i) Show that for any irrational number x, f(x) =
cx. This is where the continuity of f enters.
Parts (h) and (i) together complete the solution.

34.[C]

(a) Let f be a continuous function defined for all real
numbers. Is there necessarily a number x such
that f(x) = x?

(b) Let f be a continuous function with domain [0, 1]
such that f(0) = 1 and f(1) = 0. Is there neces-
sarily a number x such that f(x) = x?

35.[C] Let f be a continuous function defined on
(−∞,∞) such that f(0) = 1 and f(2x) = f(x) for
all numbers x.

(a) Give an example of such a function f .

(b) Find all functions satisfying these conditions.

Explain your answers.
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2.6 Techniques for Graphing

One way to graph a function f(x) is to compute f(x) at several inputs x, plot
the points (x, f(x)) that you get, and draw a curve through them. This proce-
dure may be tedious and, if you happen to choose inputs that give misleading
information, may result in an inaccurate graph.

Another way is to use a calculator that has a graphing routine built in.
However, only a portion of the graph is displayed and, if you have no idea
what to expect, you may have asked it to display a part of the graph that is
misleading or of little interest. At points with large function values, the graph
may be distorted by the calculator’s choice of scale.

So it pays to be able to get some idea of the general shape of a graph
quickly, without having to compute lots of values. This section describes some
shortcuts.

Intercepts

The x-coordinates of the points where the graph of a function meets the x-axis
are the x-intercepts of the function. The y coordinates of the points where
a graph meets the y-axis are the y-intercepts of the function.

EXAMPLE 1 Find the intercepts of the graph of y = x2 − 4x− 5.
SOLUTION To find the x-intercepts, set y = 0, obtaining

Figure 2.6.1: The graph of
y = x2 − 4x − 5, with in-
tercepts.

0 = x2 − 4x− 5.

Fortunately, this quadratic factors nicely:

0 = x2 − 4x− 5 = (x− 5)(x+ 1).

The equation is satisfied when x = 5 or x = −1. There are two x-intercepts,
5 and −1. (If the equation did not factor easily, the quadratic formula could
be used.)

To find y-intercepts, set x = 0, obtaining

y = 02 − 4 · 0− 5 = −5.

There is only one y-intercept, namely −5.
The intercepts in this case give us three points on the graph. Tabulating

a few more points gives the parabola in Figure 2.6.1, where the intercepts are
shown as well. �

If f(x) is not defined when x = 0, there is no y-intercept. If f(x) is defined
when x = 0, then it’s easy to get the y-intercept; just evaluate f(0). While
there is at most one y-intercept, there may be many x-intercepts. To find
them, solve the equation f(x) = 0. In short,
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Finding Asymptotes
To find the y-intercept, compute f(0).
To find the x-intercepts, solve the equation f(x) = 0.

Symmetry of Odd and Even Functions

Some functions have the property that when you replace x by −x you get
the same value of the function. For instance, the function f(x) = x2 has this
property since

f(−x) = (−x)2 = x2 = f(x).

So does the function f(x) = xn for any even integer n. There are fancier
functions, such as 3x4 − 5x2 + 6x, cos(x), and ex + e−x, that also have this
property.

DEFINITION (Even function.) A function f such that f(−x) =
f(x) is called an even function.

For an even function f , if f(a) = b, then f(−a) = b also. In other words,
if the point (a, b) is on the graph of f , so is the point (−a, b), as indicated by
Figure 2.6.2(a).

(a) (b)

Figure 2.6.2:

This means that the graph of f is symmetric with respect to the y-axis,
as shown in Figure 2.6.2(b). So if you notice that a function is even, you can
save half the work in finding its graph. First graph it for positive x and then
get the part for negative x free of charge by reflecting across the y-axis. If you
wanted to graph y = x4/(1− x2), for example, first stick to x > 0, then reflect
the result.
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DEFINITION (Odd function.) A function f with f(−x) =
−f(x) is called an odd function.

The function f(x) = x3 is odd since

f(−x) = (−x)3 = −(x3) = −f(x).

For any odd integer n, f(x) = xn is an odd function. The sine function is also
odd, since sin(−x) = − sin(x).

If the point (a, b) is on the graph of an odd function, so is the point (−a,−b),
since

f(−a) = −f(a) = −b.
(See Figure 2.6.3(a).) Note that the origin (0, 0) is the midpoint of the segment
whose ends are (a, b) and (−a,−b). The graph is said to be “symmetric with
respect to the origin.”

(a) (b)

Figure 2.6.3:

If you work out the graph of an odd function for positive x, you can obtain
the graph for negative x by reflecting it point by point through the origin. For
example, if you graph y = x3 for x ≥ 0, as in Figure 2.6.3(b), you can complete
the graph by reflection with respect to the origin, as indicated by the dashed
lines.

Most functions are neither even nor odd. For instance, x3 + x4 is neither
even nor odd since (−x)3 + (−x)4 = −x3 + x4, which is neither x3 + x4 nor
−(x3 + x4).

Asymptotes

If limx→∞ f(x) = L where L is a real number, the graph of y = f(x) gets
arbitrarily close to the horizontal line y = L as x increases. The line y = L is
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called a horizontal asymptote of the graph of f . (See Figure 2.6.4.)

Figure 2.6.4:

If a graph has an asymptote, we can draw it and use it as a guide in drawing
the graph.

If limx→a f(x) = ∞, then the graph resembles the vertical line x = a for
x near a. The line x = a is called a vertical asymptote of the graph of
y = f(x). The same term is used if

lim
x→a

f(x) = −∞, lim
x→a+

f(x) =∞ or −∞, or lim
x→a−

f(x) =∞ or −∞.

Figure 2.6.5 illustrates these situations.

(a) (b) (c) (d)

Figure 2.6.5:

EXAMPLE 2 Graph f(x) = 1/(x− 1)2.
SOLUTION To see if there is any symmetry, check whether f(−x) is f(x)
of −f(x). We have

f(−x) =
1

(−x− 1)2
=

1

(x+ 1)2
.

Since 1/(x + 1)2 is neither 1/(x − 1)2 nor −1/(x − 1)2, the function f(x) is
neither even nor odd. Therefore the graph is not symmetric with respect to
the y-axis or with respect to the origin.

To determine the y-intercept compute f(0) = 1/(0 − 1)2 = 1. The y-
intercept is 1. To find any x-intercepts, solve the equation f(x) = 0, that
is,

1

(x− 1)2
= 0.

Since no number has a reciprocal equal to zero, there are no x-intercepts.
To search for a horizontal asymptote examine

lim
x→∞

1/(x− 1)2 and lim
x→−∞

1/(x− 1)2.
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Both limits are 0. The line y = 0, that is, the x-axis, is an asymptote both to
the right and to the left. Since 1/(x− 1)2 is positive, the graph lies above the
asymptote.

Figure 2.6.6:

To discover any vertical asymptotes, find where the function 1/(x − 1)2

“blows up” — that is, becomes arbitrarily large (in absolute value). This
happens when the denominator (x−1)2 becomes zero. Solving (x−1)2 = 0 we
find x = 1. The function is not defined for x = 1. The line x = 1 is a vertical
asymptote.

To determine the shape of the graph near the line x = 1, we examine the
one-sided limits: limx→1+ 1/(x− 1)2 and limx→1− 1/(x− 1)2. Since the square
of a nonzero number is always positive, we see that limx→1+ 1/(x − 1)2 = ∞
and limx→1− 1/(x− 1)2 =∞. All this information is displayed in Figure 2.6.6.
�

Technology-Assisted Graphing

A graphing utility needs to “know” the function and the viewing window. We
will show by three examples some of the obstacles you may run into and how
to avoid them. More techniques to help overcome these challenges will be
presented in Chapter 4.

The viewing window is the portion of the xy-plane to be displayed. We
will say the viewing window is [a, b]× [c, d] when the window extends horizon-
tally from x = a to x = b and vertically from y = c to y = d. The graph of
a function y = f(x) is created by evaluating f(x) for a sample of numbers x
between a and b. The point (x, f(x)) is added to the plot. It is customary
to connect these points to form the graph of y = f(x). The examples in the
remainder of this section demonstrate some of the unpleasant messes that can
happen, and how you can avoid them.

EXAMPLE 3 Find a viewing window that shows the general shape of the
graph of y = x4 + 6x3 + 3x2 − 12x+ 4. Use graphs to estimate the location of
the rightmost x intercept.
SOLUTION Figure 2.6.7(a) is typical of the first plot of a function. Choose
a fairly wide x interval, here [−10, 10], and let the graphing software choose
an appropriate vertical range. While this view is useless for estimating any
specific x intercept, it is tempting to say that any x intercepts will be between
x = −6 and x = 3. Figure 2.6.7(b) is the graph of this function on the viewing
window [−6, 3] × [−30, 30]. Now four x intercepts are visible. The rightmost
one occurs around x = 0.8. Figure 2.6.7(c) is the result of zooming in on this
part of the graph. From this view we estimate that the rightmost x intercept
is about 0.83.
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x
K10 K5 0 5 10

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

(a)

x
K6 K5 K4 K3 K2 K1 0 1 2 3

y

K30

K20

K10

10

20

(b)

x
0.82 0.84 0.86 0.88 0.90

y

K0.10

K0.05

0.00

0.05

0.10

(c)

Figure 2.6.7:

In fact, using a CAS, the four x intercepts for this function are found to
occur at 0.8284, 0.4142, −2.4142, and −4.8284 (to four decimal places). �

Generating a collection of points and connecting the dots can sometimes
lead to ridiculous results, as in Example 4.

EXAMPLE 4 Find a viewing window that clearly shows the general shape
and periodicity of the graph of y = tan(x).
SOLUTION A computer-generated plot of y = tan(x) for x between−10 and
10 with no vertical height of the viewing window is shown in Figure 2.6.8(a).
This graph is not periodic; it looks more like an echocardiogram than the graph
of one of the trigonometric functions.

x
K10 K5 0 5 10

y

K1,000

K500

500

1,000

(a)

x
K10 K5 0 5 10

y

K10

K5

5

10

(b)

x
K10 K5 0 5 10

y

K10

K5

5

10

(c)

Figure 2.6.8:

Notice that the default vertical height is very long: [−1000, 1000]. Reducing
this by a factor of 100, that is, to [−10, 10], yields Figure 2.6.8(b). This graph
is periodic and exhibits the expected behavior.

To understand this plot you must realize that the software selects a sample
of input values from the domain, computes the value of tangent of each input,
then connects the points in order of the input values. The tangent of the
last input smaller than π/2 is large and positive and the tangent of the first
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input larger than π/2 is large but negative. Neither of these points is in
the viewing window, but the line segment connecting these points does pass
through the viewing window and appears as the “vertical” line at x = π/2 in
Figure 2.6.8(b). Because the tangent is not defined for every odd multiple of
π/2, similar reasoning explains the other “vertical” lines at every odd multiple
of π/2

These segments are not really a part of the graph. Figure 2.6.8(c) shows
the graph of y = tan(x) with these extraneous segments removed. �

Example 4 illustrates why we must remain alert when using technology.
We have to check that the results are consistent with what we already know.

The next example shows that sometimes it is not possible to show all of
the important features of a function in a single graph.

EXAMPLE 5 Use one or more graphs to show all major features of the
graph y = e−x 3

√
x2 − 8.

SOLUTION The graph of this function on the x interval [−10, 10] with the
vertical window chosen by the software is shown in Figure 2.6.9(a). In this
window, the exponential function dominates the graph.

x
K10 K5 0 5 10

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

(a)

x
K4 K2 0 2 4

100

200

300

(b)

y=(x^2-8)^(1/3) y=exp(-x)

x
K4 K2 0 2 4

y

K3

K2

K1

1

2

3

4

5

6

(c)

Figure 2.6.9:

At x = 0 the value of the function is (0 − 8)1/3e0 = −2. To get enough
detail to see both the positive and negative values of the function, zoom in
by reducing the x interval to [−5, 5]. The result is Figure 2.6.9(b). Reduc-
ing the x interval to [−4, 4] and specifying the y interval as [−15, 15] gives
Figure 2.6.9(c).

We could continue to adjust the viewing window until we find suitable
views. A more systematic approach is to look at the graphs of y = 3

√
x2 − 8

and y = e−x separately, but on the same pair of axes. (See Figure 2.6.10(a).)
The exponential growth of e−x for negative values of x stretches (vertically)
the graph of y = 3

√
x2 − 8 to the left of the y-axis while the exponential decay

for x > 0 (vertically) compresses the graph of y = 3
√
x2 − 8 to the right of the

y-axis.
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It is prudent to produce two separate plots to represent the sketch of this
function. To the left of the y-axis, with a viewing window of [−4, 0]×[−15, 100],
the graph of the function is shown in Figure 2.6.10(b). To the right of the y-
axis, with a much shorter viewing window of [0, 4] × [−2.2, 0.2], the graph is
as shown in Figure 2.6.10(c). �

x
K4 K3 K2 K1 0 1 2 3 4

y

K15

K10

K5

5

10

15

(a)

x
K4 K3 K2 K1 0

y

20

40

60

80

100

(b)

x
1 2 3 4

y

K2.0

K1.5

K1.0

K0.5

0

(c)

Figure 2.6.10:

Summary

The first half of this section presents three tools for making a quick sketch of
the graph of y = f(x) by hand.

1. Check for intercepts. Find f(0) to get the y-intercept. Solve f(x) = 0 to
get the x-intercepts.

2. Check for symmetry. Is f(−x) equal to f(x) or −f(x)?

3. Check for asymptotes. If limx→∞ f(x) = L or limx→−∞ f(x) = L (where
L is some real number), then the line y = L is a horizontal asymptote. If
limx→a f(x) = +∞ of −∞, then the line x = a is a vertical asymptote.
This is also the case whenever limx→a+ f(x) or limx→a− f(x) is +∞ or
−∞.

The second half of the section provides some pointers for using an automatic
graphing utility. The key to their use for graphing is to specify an appropriate
viewing window.
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Computer-Based Mathematics
Graphing calculators provide an easy way to graph a function. Computer
algebra systems (CAS) such as Maple, Mathematica, and Derive can perform
symbolic operations on mathematical expressions: for example, they can factor
a polynomial:

x5 − 2x4 − 2x3 + 4x2 + x− 2 = (x− 1)2(x+ 1)2(x− 2),

express the quotient of two polynomials as the sum of simpler quotients:

36

x5 − 2x4 − 2x3 + 4x2 + x− 2
=

−3

(x+ 1)2
− 9

(x− 1)2
− 4

x+ 1
+

4

x− 2
,

and solve equations, such as

arctan(x2 + 1) = π/3 and sin
(π
x

)
− π

x
cos
(π
x

)
= 0.

Some of these symbolic features are now available on calculators, PDAs, tele-
phones, and other handheld devices.
These tools will continue to develop and you need to be aware that they do
exist, and can do much more than graph functions. As they become more
common, and easier to use, they will change the way mathematics is used in
the real world. The ability to factor a polynomial or to solve an equation will
be less important than the ability to apply basic principles of mathematics
and science to set up and to analyze the equations.
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EXERCISES for Section 2.6 Key: R–routine,
M–moderate, C–challenging

1.[R] Show that these are even functions.

(a) x2 + 2

(b)
√
x4 + 1

(c) 1/x2

2.[R] Show that these are even functions.

(a) 5x4 − x2

(b) cos(2x)

(c) 7/x6

3.[R] Show that these are odd functions.

(a) x3 − x

(b) x+ 1/x

(c) 3
√
x

4.[R] Show that these are odd functions.

(a) 2x+ 1
2x

(b) tan(x)

(c) x5/3

5.[R] Show that these functions are neither odd nor
even.

(a) 3 + x

(b) (x+ 2)2

(c) x
x+1

6.[R] Show that these functions are neither odd nor
even.

(a) 2x− 1

(b) ex

(c) x2 + 1/x

7.[R] Label each function as even, odd, or neither.

(a) x+ x3 + 5x4

(b) 7x4 − 5x2

(c) ex − e−x

8.[R] Label each function as even, odd, or neither.

(a) 1+x
1−x

(b) ln(x2 + 1)

(c) 3
√
x2 + 1

In Exercises 9 to 18 find the x- and y-intercepts, if
there are any.

9.[R] y = 2x+3

10.[R] y =
3x− 7

11.[R] y =
x2 + 3x+ 2

12.[R] y =

2x2 + 5x+ 3

13.[R] y =
2x2 + 1

14.[R] y =
x2 + x+ 1

15.[R] y =
sin(x+ 1)

16.[R] y =
ln(x2 + 1)

17.[R] y =
x2−1

( x2 + 1)

18.[R] y =
ecos(x)

In Exercises 19 to 24 find all the horizontal and vertical
asymptotes.

19.[R] y = x+2
x−2

20.[R] y = x−2
x2−9

21.[R] y = x
x2+1

22.[R] y = 2x+3
x2+4

23.[R] y = x2+1
x2−3

24.[R] y = x
x2+2x+1

In Exercises 25 to 32 graph the function.
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25.[R] y = 1
x−2

26.[R] y = 1
x+3

27.[R] y = 1
x2−1

28.[R] y = x
x2−2

29.[R] y = x2

1+x2

30.[R] y = 1
x3+x−1

31.[R] y = 1
x(x−1)(x+2)

32.[R] y = x+2
x3+x2

Use a graphing utility to sketch a graph of the functions
in Exercise 33 to 51. Be sure to indicate the viewing
window used to generate your graph.

33.[R] (x2 +x−6) ln(x+
2)
34.[R] (x2−x+6) ln(x+
2)
35.[R] (x2 + 4) ln(x + 1)

36.[R] (x2 − 4) ln(x + 1)

37.[R] x3

x2−4
arctan

(
x
5

)
38.[R] (x2−4)

x3 arctan
(
x
5

)
39.[R] x3−3x

x2−4

40.[R] x3−2x
x2−4

41.[R] sin(x)
x

42.[R] sin(2x)
x

43.[R] sin(2x)
3x

44.[R] sin(x)
3x

45.[R] x−arctan(x)
x3

46.[R] x−arctan(x)
x3+x

47.[R] x−arctan(x)
x3−1

48.[R] x−arctan(x)
x3+1

49.[R] 5x3+x2+1
7x3+x+4

50.[R] x3−3x
x2−4

arctan
(
x
4

)
51.[R] x3−2x

x2−4
arctan

(
x
4

)
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Exercises 52 to 58 concern even and odd functions.
52.[M] If two functions are odd, what can you say
about

(a) their sum?

(b) their product?

(c) their quotient?

53.[M] If two functions are even, what can you say
about

(a) their sum?

(b) their product?

(c) their quotient?

54.[M] If f is odd and g is even, what can you say
about

(a) f + g?

(b) fg?

(c) f/g?

55.[M] What, if anything, can you say about f(0) if

(a) f is an even function?

(b) f is an odd function?

Note: Assume 0 is in the domain of f .
56.[M] Which polynomials are even? Explain.
57.[M] Which polynomials are odd? Explain.
58.[M] Is there a function that is both odd and even?
Explain.
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Exercises 59 to 62 concern tilted asymptotes. Let A(x)
and B(x) be polynomials such that the degree of A(x)
is equal to 1 more than the degree of B(x). Then
when you divide B(x) into A(x), you get a quotient
Q(x), which is a polynomial of degree 1, and a remain-
der R(x), which is a polynomial of degree less than the
degree of B(x).
For example, if A(x) = x2 + 3x+ 4 and B(x) = 2x+ 2,

Thus

x2 + 3x+ 4 =
(

1
2
x+ 1

)
(2x+ 2) + 2)

This tells us that

x2 + 3x+ 4
2x+ 2

=
1
2
x+ 1 +

2
2x+ 2

.

When x is large, 2/(2x + 2) → 0. Thus the graph of
y = x2+3x+4

2x+2 is asymptotic to the line y = 1
2x+ 1. (See

Figure 2.6.11.)

Figure 2.6.11:
Whenever the degree of A(x) exceeds the degree of
B(x) by exactly 1, the graph of y = A(x)/B(x) has a

tilted asymptote. You find it as we did in the example,
by dividing B(x) into A(x), obtaining a quotient Q(x)
and a remainder R(x). Then

A(x)
B(x)

= Q(x) +
R(x)
B(x)

.

The asymptote is y = Q(x). In each exercise graph the
function, showing all asymptotes.

59.[M] y = x2

x−1

60.[M] y = x3

x2−1

61.[M] y = x2−4
x+4

62.[M] y = x2+x+1
x−2

A piecewise-defined function is a function that is
given by different formulas on different pieces of the
domain.
Read the directions for your graphing software to learn
how to graph a piecewise-defined function. Then use
your graphing utility to sketch a graph of the functions
in Exercises 63 and 64.

63.[M] y =
{

x2 − x x < 1√
x− 1 x ≥ 164.[M] y =


sin(x)
x x < 0

sinx 0 ≤ x ≥ π
x− 2 x > π

Some graphing utilities have trouble plotting functions
with fractional exponents. General rules when graph-
ing y = xp/q where p/q is a positive fraction in lowest
terms are:

• If p is even and q is odd, then graph y = |x|p/q.

• If p and q are both odd, then graph y = |x|
x |x|

p/q.

Use that advice and a calculator to sketch the graph
of each function in Exercises 65 to 68.

65.[M] y = x1/3

66.[M] y = x2/3

67.[M] y = x4/7

68.[M] y = x3/7

69.[C] Let P (x) be a polynomial of degree m and
Q(x) a polynomial of degree n. For which m and n
does the graph of y = P (x)/Q(x) have a horizontal
asymptote?
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70.[C] Assume you already have drawn the graph of
a function y = f(x). How would you obtain the graph
of y = g(x) from that graph if

(a) g(x) = f(x) + 2?

(b) g(x) = f(x)− 2?

(c) g(x) = f(x− 2)?

(d) g(x) = f(x+ 2)?

(e) g(x) = 2f(x)?

(f) g(x) = 3f(x− 2)?

71.[C] Is there a function f defined for all x such that
f(−x) = 1/f(x)? If so, how many? If not, explain why
there are no such functions.

72.[C] Is there a function f defined for all x such that
f(−x) = 2f(x)? If so, how many? If not, explain why
there are no such functions.

73.[C] Is there a constant k such that the function

f(x) =
1

3x − 1
+ k

is odd? even?
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2.S Chapter Summary

One concept underlies calculus: the limit of a function. For a function de-
fined near a (but not necessarily at a) we ask, “What happens to f(x) as x
gets nearer and nearer to a.” If the values get nearer and nearer one spe-
cific number, we call that number the limit of the function as x approaches
a. This concept, which is not met in arithmetic or algebra or trigonometry,
distinguishes calculus.

For instance, when f(x) = (2x − 1)/x, which is not defined at x = 0, we
conjectured on the basis of numerical evidence that f(x) approaches 0.693 (to
three decimals). Later we will see that this limit is a certain logarithm. With
that information we found that (4x − 1)/x must approach 2(0.693), which is
larger than 1. We then defined e as that number (between 2 and 4) such that
(ex − 1)/x approaches 1 as x approaches 0. The number e is as important in
calculus as π is in geometry or trigonometry. The number e is about 2.718
(again to three decimals) and is called Euler’s number. That is why a scientific
calculator has a key for ex, the most convenient exponential for calculus, as
will become clear in the next chapter.

When angles are measured in radians,

lim
x→0

sin(x)

x
= 1 and lim

x→0

1− cos(x)

x
= 0.

These two limits will serve as the basis of the calculus of trigonometric func-
tions developed in the next chapter. The simplicity of the first limit is one
reason that in calculus and its applications angles are measured in radians. If
angles were measured in degrees, the first limit would be π/180, which would
complicate computations.

Most of the functions of interest in later chapters are “continuous.” The
value of such a function at a number a in its domain is the same as the limit
of the function as x approaches a. However, we will be interested in a few
functions that are not continuous.

A continuous function has three properties, which will be referred to often:

• On a closed interval it attains a maximum value and a minimum value.Extreme-Value Property

• On a closed interval it takes on all values between its values at the endIntermediate -Value
Property points of the interval.

• If it is positive at some number and defined at least on an open intervalPermanence Property

containing that number, then it remains positive at least on some open
interval containing that number. More generally, if f(a) = p > 0, and
q is less than p, then f(x) remains larger than q, at least on some open
interval containing a. A similar statement holds when f(a) is negative.
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A quick sketch of the graph of a generic continuous function makes the
three properties plausible. In advanced calculus they are all established using
only the precise definition of continuity and properties of the real numbers —
but no pictures. Such strictness is necessary because there are some pretty
wild continuous functions. For instance, there is one such that when you zoom
in on its graph at any point, the parts of the graph nearer and nearer the point
do not look like straight line segments.

The initial steps in the analysis of a function utilize intercepts, symmetry,
and asymptotes. The same ideas are also helpful when selecting an appro-
priate viewing window when using an electronic graphing utility. Additional
techniques will be added in Chapter 4, particularly Section 4.3.

EXERCISES for 2.S Key: R–routine, M–moderate, C–challenging

1.[R] Define Euler’s constant, e, and give its decimal
value to five places.

In Exercises 2 to 4 state the given property in your own
words, using as few mathematical symbols as possible.
2.[R] The Maximum-Value Property.

3.[R] The Intermediate-Value Property.

4.[R] The Permanence Property.

5.[R]

(a) Verify that x5 − y5 = (x− y)(x4 + x3y + x2y2 +
xy3 + y4).

(b) Use (a) to find limx→a
x5−a5

x−a .

6.[R] Let f(x) = 1
x+2 for x not equal to −2. Is there a

continuous function g(x), defined for all x, that equals
f(x) when x is not −2? Explain your answer.

7.[R] Let f(x) = 2x−1
x for x not equal to 0. Is there a

continuous function g(x), defined for all x, that equals
f(x) when x is not 0? Explain your answer.

8.[R] Let f(x) = sin(1/(x − 1)) for x not equal to
1. Is there a continuous function g(x), defined for all
x, that equals f(x) when x is not 1? Explain your

answer.

9.[R] Let f(x) = x sin(1/x) for x not equal to 0. Is
there a continuous function g(x), defined for all x, that
equals f(x) when x is not 0? Explain your answer.

10.[M] Show that limx→1
x1/3−1
x−1 = 1

3 by first writing

the denominator as
(
x1/3

)3 − 1 and using the factor-
ization u3 − 1 = (u− 1)(u2 + u+ 1).

11.[M] Use the factorization in Exercise 5 to find
limx→a

x−5−a−5

x−a .

12.[M] Assume b > 1. If limx→0
bx−1
x = L, find

limx→0
(1/b)x−1

x

13.[M] By sketching a graph, show that if a function
is not continuous it may not

(a) have a maximum even if its domain is a closed
interval,

(b) satisfy the Intermediate-Value Theorem, even if
its domain is a closed interval,

(c) have the Permanence Property, even if its do-
main is an open interval.
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14.[M] Let g be an increasing function such that
limx→a g(x) = L.

(a) Sketch the graph of a function f whose domain
includes an open interval around L such that

f
(

lim
x→a

g(x)
)

and lim
x→a

f(g(x))

both exist but the are not equal

(b) What property of f would assure us that the two
limits in (a) would be equal?

We obtained limx→a
xn−an
x−a be exploiting the factoriza-

tion of xn − an. Calling x− a simply h, that limit can
be written as limh→0

(a+h)n−an
h . This limit can be eval-

uated, but by different algebra, as Exercises 15 and 16
show.
15.[M]

(a) Show that (a+ h)2 = a2 + 2ah+ h2.

(b) Use (a) to evaluate limh→0
(a+h)2−a2

h .

16.[M]

(a) Show that (a+ h)3 = a3 + 3a2h+ 3ah2 + h3.

(b) Use (a) to evaluate limh→0
(a+h)3−a3

h .

17.[M] If you are familiar with the Binomial The-
orem, use it to show that for any positive integer n,
limh→0

(a+h)n−an
h = nan−1. Note: The Binomial The-

orem expresses (a + b)n, when multiplied out, as the
sum of n+ 1 terms. Using calculus, we will develop it
in Section 5.4 (Exercise 31).

In Exercises 18 to 21 find each limit.

18.[M] limx→∞
ln(5x)
ln(4x2)

19.[M] limx→∞
ln(5x)
ln(4x)

20.[M] limx→∞
log2(x2)
log4(x)

21.[M] limx→∞
log3(x5)
log9(x)

22.[M] Find limh→0
(e2)h−1

h by factoring the numera-
tor.

23.[M] Define f(x) =

{
h(x)
x−3 x 6= 3
p x = 3

What condi-

tions on h must be satisfied to make f continuous?

24.[M] Assuming that limx→0+ xx = 1 and that
limx→∞ ln(x) =∞, deduce each of the following limits:

(a) limx→0 x ln(x)

(b) limx→∞
ln(x)
x Hint: Use (a).

(c) limx→∞ x
1/x

(d) limx→∞
ln(x)
xk

, k a positive constant

(e) limx→∞
x
ex

(f) limx→∞
xn

ex , n a positive integer

(g) limx→∞
ln(x)n

x , n a positive integer

25.[M] Define f(x) =

{
x3−3x2−4x+k

x−3 x 6= 3
p x = 3

(a) For what values of k and p is f continuous? (Jus-
tify your answer.)

(b) For these values of k and p, is f an even or odd
function? (Justify your answer.)

26.[M] Two points on a circle or sphere will be called
“opposite” if they are the ends of a diameter of the
circle or sphere.

(a) Assuming the temperature is continuous, show
that there are opposite points on the equator
that have the same temperatures.

(b) Show that there may not be opposite points on
the equator where the temperatures are equal
and also the barometric pressures are equal.
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Note: The Borsuk-Ulam theorem in topology implies
that there are opposite points on the earth where the
temperatures are equal and the pressures are equal.

27.[M] Let f = g + h, where g is an even function
and f is an odd function. Express g and h in terms of
f .

28.[M]

(a) Show that any function f can be written as the
sum of an even function and an odd function.

(b) In how many ways can a given function be writ-
ten that way?

29.[M] If f is an odd function and g is an even func-
tion, what, if anything, can be said about (a) fg, (b)
f2, (c) f + g, (d) f + f , and (e) f/g? Explain.

30.[C] The graph of some function f whose domain
is [2, 4] and range is [1, 3] is shown in Figure 2.S.1(a).
Sketch the graphs of the following functions and state
their domain and range.

(a) g(x) = −3f(x),

(b) g(x) = f(x+ 1),

(c) g(x) = f(x− 1),

(d) g(x) = 3 + f(x),

(e) g(x) = f(2x),

(f) g(x) = f(x/2),

(g) g(x) = f(2x− 1).

(a)

(b)

Figure 2.S.1:

31.[C] For a constant k, find limh→0
(ek)h−1

h .
Hint: Replace h in the denominator by hk, but do
it legally.

32.[C]

(a) Calculate (0.99999)x for various large values of
x.

(b) Using the evidence gathered in (a), conjecture
the value of limx→∞(0.99999)x.

(c) Why is limx→∞(0.99999)x+1 the same as
limx→∞(0.99999)x?

(d) Denoting the limit in (b) as L, show that
0.99999L = L.

(e) Using (d), find L.

33.[C] (Contributed by G. D. Chakerian) This ex-
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ercise obtains limθ→0
sin(θ)
θ without using areas. Fig-

ure 2.S.2 shows a circle C of radius 1 with center at
the origin and a circle C(r) of radius r > 1 that passes
through the center of C. Let S(r) be the part of C(r)
that lies within C. Its ends are P and Q. Let θ be the
angle subtended by the top half of S(r) at the center
of C(r). Note that as r → ∞, θ → 0. Define A(θ)
to be the length of the arc S(r) as a function of θ.

Figure 2.S.2:

(a) Looking at Figure 2.S.2, determine limθ→0A(θ).
Hint: What happens to P as r →∞?

(b) Show that A(θ) is θ/2
sin(θ/2) .

(c) Combining (a) and (b), show that limθ→0
sin(θ)
θ =

1.

October 22, 2010 Calculus



C.2– Bank Interest and the Annual Percentage Yield 137

Calculus is Everywhere # 2

Bank Interest and the Annual Percentage

Yield

The Truth in Savings Act, passed in 1991, requires a bank to post the Annual
Percentage Yield (APY) on deposits. That yield depends on how often the
bank computes the interest earned, perhaps as often as daily or as seldom as
once a year. Imagine that you open an account on January 1 by depositing
$1000. The bank pays interest monthly at the rate of 5 percent a year. How
much will there be in your account at the end of the year? For simplicity,
assume all the months have the same length. To begin, we find out how much
there is in the account at the end of the first month. The account then has
the initial amount, $1000, plus the interest earned during January. Because
there are 12 months, the interest rate in each month is 5 percent divided by
12, which is 0.05/12 percent per month. So the interest earned in January is
$1000 times 0.05/12. At the end of January the account then has

$1000 + $1000(0.05/12) = $1000(1 + 0.05/12).

The initial deposit is “magnified” by the factor (1 + 0.05/12).
The amount in the account at the end of February is found the same way,

but the initial amount is $1000(1 + 0.05/12) instead of $1000. Again the
amount is magnified by the factor 1 + 0.05/12, to become

$1000(1 + 0.05/12)2.

The amount at the end of March is

$1000(1 + 0.05/12)3.

At the end of the year the account has grown to

$1000(1 + 0.05/12)12,

which is about $1051.16.
The deposit earned $51.16. If instead the bank computed the interest only

once, at the end of the year, so-called “simple interest,” the deposit would
earn only 5 percent of $1000, which is $50. The depositor benefits when the
interest is computed more than once a year, so-called “compound interest.” A
competing bank may offer to compute the interest every day. In that case, the
account would grow to

$1000(1 + 0.05/365)365,
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n (1 + 1/n)n (1 + 1/n)n

1 (1 + 1/1)1 2.00000
2 (1 + 1/2)2 2.25000
3 (1 + 1/3)3 2.37037

10 (1 + 1/10)10 2.59374
100 (1 + 1/100)100 2.70481

1000 (1 + 1/1000)1000 2.71692

Table C.2.1:

which is about $1051.27, eleven cents more than the first bank offers. More
generally, if the initial deposit is A, the annual interest rate is r, and interest
is computed n times a year, the amount at the end of the year is

A(1 + r/n)n. (C.2.1)

In the examples, A is $1000, r is 0.05, and n is 12 and then 365. Of special
interest is the case when A is 1 and r is a generous 100 percent, that is, r = 1.
Then (C.2.1) becomes

(1 + 1/n)n. (C.2.2)

How does (C.2.2) behave as n increase? Table C.2.1 shows a few values of
(C.2.2), to five decimal places. The base, 1 + 1/n, approaches 1 as n increases,
suggesting that (C.2.2) may approach a number near 1. However, the exponent
gets large, so we are multiplying lots of numbers, all of them larger than 1. It
turns out that as n increases (1 + 1/n)n approaches the number e defined in
Section 2.2. One can write

lim
x→0+

(1 + x)1/x = e.

Note that the exponent, 1/x, is the reciprocal of the “small number” x.
With that fact at our disposal, we can figure out what happens when an

account opens with $1000, the annual interest rate is 5 percent, and the interest
is compounded more and more often. In that case we would be interested in

1000 lim
n→∞

(
1 +

0.05

n

)n
.

Unfortunately, the exponent n is not the reciprocal of the small number 0.05/n.
But a little algebra can overcome that nuisance, for(

1 +
0.05

n

)n
=

((
1 +

0.05

n

) n
0.05

)0.05

. (C.2.3)
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The expression in parentheses has the form “(1 + small number) raised to
the reciprocal of that small number.” Therefore, as n increases, (C.2.3)) ap-
proaches e0.05, which is about 1.05127. No matter how often interest is com-
pounded, the $1000 would never grow beyond $1051.27.

The definition of e given in Section 2.2 has no obvious connection to the fact
that limx→0+(1 + x)1/x equals the number e. It seems “obvious,” by thinking
in terms of banks, that as n increases, so does (1 + 1/n)n. Without thinking
about banks, try showing that it does increase. (This limit will be evaluated
in Section 3.4.)

EXERCISES

1.[R] A dollar is deposited at the beginning of the
year in an account that pays an interest rate r of 100%
a year. Let f(t), for 0 ≤ t ≤ 1, be the amount in the
account at time t. Graph the function if the bank pays

(a) only simple interest, computed only at t = 1.

(b) compound interest, twice a year computed at
t = 1/2 and 1.

(c) compound interest, three times a year computed
at t = 1/3, 2/3, and 1.

(d) compound interest, four times a year computed
at t = 1/4, 1/2, 3/4, and 1.

(e) Are the functions in (a), (b), (c), and (d) con-
tinuous?

(f) One could expect the account that is com-
pounded more often than another would always
have more in it. Is that the case?
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