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Abstract. Let M be a compact manifold with smooth boundary. We establish the existence of an
asymptotic expansion for the heat content asymptotics ofM with inhomogeneous Neumann and
Dirichlet boundary conditions. We prove all the coefficients are locally determined and determine
the first several terms in the asymptotic expansion.
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LetM be a smooth compact Riemannian manifold of dimensionmwith smooth
boundary∂M. We assume given a decomposition of∂M = CN ∪ CD as the union
of two disjoint closed sets. We will take Neumann boundary conditions onCN and
Dirichlet boundary conditions onCD. We permitCN = ∅ orCD = ∅.

We let the initial temperature be given by a smooth function8 on M. We
suppose given an auxiliary smooth function9 which is defined on∂M. On the
Neumann boundary componentCN , we pump heat into the manifold across the
boundary at a constant rate determined by9; on the Dirichlet boundary compo-
nentCD, we keep the boundary at temperature9. These boundary conditions are
independent oft . Let ∂N be the inward unit normal. The resulting temperature
functionH8,9(x; t) is the solution to the equations:

(∂t +1)H8,9(x; t) = 0 forx ∈ M, t > 0 (heat equation),

lim
t↓0
H8,9(x; t) = 8(x) for x ∈ M (initial condition), (1)

∂NH8,9(y; t) = 9(y) for y ∈ CN (Neumann boundary condition),

H8,9(y; t) = 9(y) for y ∈ CD (Dirichlet boundary condition).
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We refer to Carslaw and Jaeger [5] for a discussion of the physical motivation of
this problem. LetF represent the specific heat at a pointx ∈ M. We define the
weighted heat content energy function

β(8,9,F)(t) :=
∫
M

H8,9(x; t)F (x)dx.

THEOREM 1. Ast ↓ 0, there is an asymptotic expansion of the form

β(8,9,F)(t) ∼
∞∑
n=0

βn(8,9,F)t
n/2.

Let L be the second fundamental form on the boundary and letR be the Rie-
mann curvature tensor ofM with the sign convention thatR1221 = +1 for the
standard sphere in 3 space. Let ‘;’ and ‘:’ denote covariant differentiation with
respect to the Levi–Civita connections ofM and of∂M respectively. We choose
a local orthonormal frame{e1, . . . , em} for the tangent bundle ofM restricted to
the boundary so thatem is the inward unit normal. Thus, for example, the inward
unit normal derivative ofF is given byF;m. Let indicesa, b, c etc. range from 1
throughm − 1. We adopt the Einstein convention and sum over repeated indices.
We have the following combinatorial formulae

THEOREM 2.

(1) β0(8,9,F) =
∫
M
8F .

(2) β1(8,9,F) = − 2√
π

∫
CD
(8− 9)F .

(3) β2(8,9,F) = −
∫
M
F18+ 1

2

∫
CD
(FLaa−2F;m)(8−9)+

∫
CN
(8;m−9)F .

(4) β3(8,9,F) = − 1
6
√
π

∫
CD

{
(8−9)F(LaaLbb−2LabLab−2Ramma)−8F18

+4F(8−9):aa + 8(F;mm − LaaF;m)(8−9)
}+ 4

3
√
π

∫
CN
(8;m −9)F;m.

(5) β4(8,9,F) = 1
2

∫
M
(18 ·1F) + 1

32

∫
CD
{16(18);mF + 16(8 − 9)(1F);m

−8Laa[F18+ (8−9)1F ] + (8−9)F(−2LabLabLcc + 4LabLacLbc
− 2RambmLab +2RabcbLac + Rijji;m + 2Lab:ab)− 8Lab(8:a −9:a)F:b}
−1

4

∫
CN
{2(8;m − 9)1F + 2F;m18− Laa(8;m − 9)F;m}.

If there are no Dirichlet components, we can also computeβ5 andβ6.

THEOREM 3. AssumeCD is empty. Then

(1) β5(8,9,F) = 1
15
√
π

∫
CN
{−8(18);mF;m − 8(8;m − 9)(1F);m

−4(8;m −9):aF:a + (LaaLbb + 2LabLab + 2Ramma)(8−9;m)F }.
(2) β6(8,9,F) = −1

6

∫
M
128 ·1F + 1

96

∫
CN
{16(18);m1F + 16F;m128+

16(8;m −9)12F−8Laa(18);mF;m−8Laa(8;m−9)(1F);m +(2LabLabLcc
+ 4Lab LacLbc − 2RambmLab + 2RabcbLac + 4RammaLbb +Rijji;m + 2Lab:ab)
(8;m −9)F;m − 8Laa(8;m −9):a(F;m):a −8Lab(8;m −9):a(F;m):b.
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The coefficients in Theorem 2 and Theorem 3 are given by integral formulae.
This holds true for generaln.

THEOREM 4. The coefficientsβn(8,9,F) are locally computable for alln.

Proofs of Theorems1–4. Since we will be varying the manifoldM and the
setsCN andCD, we change our notational convention slightly and denote the heat
content function byβ(8,9,F ;M,CN,CD). The equations given in display (1)
decouple so

H8,9(x; t) = H8,0(x; t) +H0,9(x; t),
β(8,9,F ;M,CN ,CD)(t) = β(8,0, F ;M,CN ,CD)(t) (2)

+ β(0,9, F ;M,CN ,CD)(t).
Thus in the proof of Theorems 1–4, we may consider the cases(8,0, F ) and
(0,9, F ) separately. SinceCN andCD are disjoint closed sets, we can choose
smooth functionsFN andFD onM so thatF = FN + FD, so thatFD is supported
nearCD, and so thatFN vanishes nearCD. We may then decompose

β(9,0, F ;M,CN ,CD)(t) = β(9,0, FN ;M,CN,CD)(t)
+β(9,0, FD;M,CN,CD)(t). (3)

The principal of not feeling the boundary shows there exist errorsE which vanish
to infinite order ast ↓ 0 so that

β(9,0, FN ;M,CN,CD)(t) = β(9,0, FN ;M, ∂M,∅)(t) + EN(t),

β(9,0, FD;M,CN,CD)(t) = β(9,0, FD;M,∅, ∂M)(t) + EN(t); (4)

the heat which flows across the additional boundary components is weighted with
zero near these components. We refer to Grubb [7] for further details concerning
elliptic boundary value problems and to Hsu [8] for a discussion of the principle of
not feeling the boundary from a probabilistic point of view. Theorems 1–4 for the
functionsβ(8,0, FN ;M, ∂M,∅) andβ(8,0, FD;M,∅, ∂M) follow from results
in [1, 2, 6]. In these papers, we considered the heat content of a manifold with ho-
mogeneous Neumann or homogeneous Dirichlet boundary conditions. We now use
equations (3) and (4) to see that Theorems 1–4 hold forβ(8,0, F ;M,CN ,CD).

We study the heat content functionβ(0,9, F ;M,CN ,CD); to complete the
proof of Theorems 1–4. This corresponds to zero initial condition and inhomoge-
neous boundary conditions. Suppose for the moment that the average value of9

is zero on∂M. Then there exists a harmonic functionU so thatU |CD = 9 and
so that(∂NU)|CN = 9. The defining relations given in display (1) then show that
U(x)−HU,0(x; t) = H0,9(x; t). Let U := ∫

M
U . Then

β(0,9, F ;M,CN ,CD)(t) = U− β(U,0, F ;M,CN ,CD)(t). (5)
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Theorems 1–3 now follow from the corresponding assertions for the heat content
functionβ(U,0, F ;M,CN ,CD).

We now remove the assumption that
∫
∂M
9 = 0. Choose a pointx0 in the

interior ofM and chooseε > 0 so that the diskDε(x0) of radiusε aboutx0 is
disjoint from∂M. Choose a smooth functioñF so thatF̃ agrees withF near∂M
and so thatF̃ is identically zero near∂Dε(x0). Let M̃ = M − Dε(x0). Choose
9̃ to agree with9 on ∂M. Extend9̃ to ∂Dε(x0) so that

∫
M̃
9̃ = 0. Let C̃N =

CN ∪ ∂Dε(x0), and letC̃D = CD. The principal of not feeling the boundary shows
that there is an errorE which vanishes to infinite order ast ↓ 0 so that

β(0,9, F ;M,CN ,CD)(t) = β(0, 9̃, F̃ ; M̃, C̃N , C̃D)(t)+ E(t), (6)

the heat which flows across the extra boundary component is weighted with weight
0. Since the average value of9̃ vanishes, Theorems 1–3 hold for the modified heat
content functionβ(0, 9̃, F̃ ; M̃, C̃N , C̃D). We use equation (6) to see Theorems 1–3
also hold forβ(0,9, F ;M,CN ,CD). This completes the proof of Theorems 1–3.

In the proof of Theorem 4, the argument given above shows that we need only
deal with the case(0,9, F ) and that we may assume eitherCD = ∅ or that
CN = ∅. The caseCN = ∅ involving pure Dirichlet boundary conditions was
discussed in [3] so we assumeCD = ∅, i.e. that we are dealing with pure Neumann
boundary conditions. We also note that the argument given above shows that we
may assume without loss of generality that the average value of9 vanishes and
consequentlyU is well defined. Although we have shown thatβn(U,0, F ;−) is
locally computable, this does not imply thatβn(0,9, F ;−) is locally computable.
The construction ofU from 9 is global in nature; a-priori one would expect both
the values ofU and the normal derivatives ofU to enter into the local formulae.
This would involve the Neumann to Dirichlet problem which is known to be non-
local. The local formulae given in Theorems 2 and 3 show that this does not happen
for n 6 6. There are no undesirable extra terms and the coefficients are in fact
locally determined ifn 6 6. To complete the proof of Theorem 4, we must show
this is true for alln.

Let P be the vector space of all bilinear partial differential operatorsP(9,F)

which are invariantly defined and which only involve tangential derivatives of9

on∂M. Let Q0 andQ1 be the vector spaces of all operators of the form

Q0 :=
∑
p

P 0
p (1

p9,F),Q1 :=
∑
p

P 1
p ((1

p9);m, F ) forP ip ∈ P .

The analysis of [1] shows that there existsQi
n ∈ Qi so that

β2k−1(2,0, F ) =
∫
∂M

(Q0
2k−1+Q1

2k−1)(2, F ),

β2k(2,0, F ) =
∫
∂M

(Q0
2k +Q1

2k)(2, F )+
(−1)k

k!
∫
M

1k8 · f (7)



HEAT CONTENT ASYMPTOTICS WITH INHOMOGENEOUS BOUNDARY CONDITIONS 273

for any smooth function2 defined onM. Furthermore, if2;m = 0, then

βn(2,0, F ) = −2βn−2(12,O,F). (8)

Choose a smooth function2 onM so that for allk we have(1k2);m|∂M = 0 and
(1k2)|∂M = (1kU)|∂M . We then haveQ1

n(2, F ) = 0 on∂M. We use equations
(7) and (8) to see∫

∂M

Q0
n(2, F ) = −

2

n

∫
∂M

Q0
n−2(12,F),

for all n; the interior boundary integrals which appear ifn is even cancel. Since we
haveβ0 = 0 andβ1 = 0, this recursion relation shows

0=
∫
∂M

Q0
n(2, F ) =

∫
∂M

Q0
n(U, f ).

SinceU is harmonic, we haveQ1
n(U, F ) = Pn(U;m, F ) = Pn(9,N) for some

Pn in P . Consequentlyβn(0,9, F ) is computable in terms of the tangential deriv-
atives of9 and the total derivatives ofF . This completes the proof of Theorem 4.2
REMARK 5. An essential technical consideration in our proof was the creation of
an additional Neumann boundary component to ensure that the average value of9

vanished. This is not necessary ifCD is non-empty; there is no obstruction to find-
ing a harmonic function with given boundary data if there is at least one Dirichlet
component. This can be seen as follows. Suppose that there is at least one Dirichlet
boundary component. Choose91 so that91 = 9 onCN and so that

∫
∂M
91 = 0.

We findU1 harmonic so that∂NU1|∂M = 91. Using probabilistic methods, we can
find U2 harmonic so that∂NU2 = 0 onCN and so thatU2 = 9 − U1 onCD. We
then noteU = U1 + U2 is a harmonic function with the required boundary data.
We could also argue physically to see that we could takeU = lim t→∞H0,9(x; t)
since the presence of at least one Dirichlet component eliminates infinite heat build
up and establishes the existence of a stationary solution.

REMARK 6. An essential feature of our analysis is that the Neumann and the
Dirichlet boundary conditions are imposed on disjoint closed subsets of the bound-
ary. One could consider the following simple situation where this does not hold.
Let M be the unit ball in 3 space. Take homogeneous zero Neumann boundary
conditions on the upper hemisphere of the bounding sphere and homogeneous zero
Dirichlet boundary conditions on the lower hemisphere of the bounding sphere;
this corresponds to insulating the upper hemisphere and immersing the lower hemi-
sphere in ice water. This problem, where the Neumann and Dirichlet boundaries in-
tersect in a smooth surface of codimension two is not tractable by present methods
as far as we know.
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