
Subroutines

• Another example of a subprogram is a subroutine.

• Remember that the difference in a function and subroutine is that the subrou-
tine allows multiple (or no) outputs whereas a function returns only one value
to its calling program. Both allow multiple inputs.

subroutine name (input and output variables)

declarations

statements

end subroutine name

• Since a subroutine can have multiple outputs, we can not access it in the same

way we did a function. Recall for a function we could invoke the subprogram
by a statement like

centimeters = convert to centimeters(arguments)

and the single output of the function convert to centimeters is returned
in the value centimeters.

• Subroutines must be invoked or called through the use of the call statement

• Recall that we used the call statement when we invoked fortran’s random
number generator

• The syntax for the call statement is simply

call subroutine name (list of arguments)

• The arguments can be in any order, i.e., you can mix input and output vari-
ables.

• As in the function subprogram, the number of arguments and their declared
type must be the same in the calling argument and the subprogram definition.

• Since we can have multiple inputs and outputs to a subroutine it is often useful
to declare a variable as an input variable, output variable or both. The main
reason for this is clarity, readability, and debugging.

• This is done through the use of the specifier intent in the declaration state-
ment.

• Examples of declarations in a subroutine:

real, intent(in) :: xk

integer, intent(out) :: iteration number

real, intent(inout) :: x

• You will not get a compiler error if you fail to use the intent specifier.

• If you declare a variable as intent(in) and you attempt to modify it in the
subroutine, then you will get an error.

•When you use intent(inout) :: x this means that you are passing x

into the subroutine and it is modified there and the new value returned.

For each of the examples below, determine if a we should write a function or a
subroutine to perform the necessary calculations.

Remember that if you only have one output you can choose to use either a
function or a subroutine. However, if you have multiple outputs (or no outputs)
then you must use a subroutine

1. Write a subprogram to determine the area of a circle given its radius.

2. Write a subprogram to determine the area and perimeter of a circle given its
radius.

3. Write a subprogram to determine the value of f (x) = x3 − 2x and its first
derivative given the point x.

4. Write a subprogram to output (i.e., print) the values of three real numbers
x, y, z

Example - A subprogram to return the value of f = x3 sin(πx) and its first
derivative

• In this example we want to input the point to evaluate the function and its
derivative at.

• Since we have 2 outputs we need to use a subroutine instead of a function.

subroutine evaluate f (x, f at x, fp at x)

implicit none

real, intent(in) :: x

real, intent(out) :: f at x

real, intent(out) :: fp at x

real, parameter :: pi = 3.14159

f at x = (x**3) * sin (pi * x)

fp at x = 3.0*x*x* sin (pi * x) + pi *(x**3) * cos (pi * x)

end subroutine evaluate f

Calling statement:

call evaluate x (x, f, fp)

where x has been assigned a number.

The three variables x, f, fp must be declared as real in the calling program.

Note that the names don’t have to match in the calling statement and the sub-
program statement; just the number of arguments and their types much match.

Decide whether the calling statements and subprogram statements match

call function g(x, y) where x, y are declared real

function g(x,y) result (value) where g, x, y are declared real

call subroutine convert temperature(flag, temp in, temp out) where
flag is an integer and temp in, temp out are real

subroutine convert temperature(test, t1, t2) where test, t1,

t2 are real

z= g(x, y) where x, y, z are declared real

function g(x,y) result (value) where x, y,value are declared real

Oftentimes our main or driver programs consists mainly of calls to invoke sub-
programs. This way our code is compartmentalized which allows us to debug
each part and then never change that section of code. In addition, a routine
may be invoked in several places in the code by simply calling it with the correct
arguments. It also helps in making the code readable, i.e., determining what the
code does. The following example illustrates this.

program euclidean_length

! This program calls a subroutine to input a point in R^3

! Then it calls a function to find the Euclidean length of

! the vector from the origin to the given point

! Lastly, the program calls a subroutine to output this info.

!

!***

implicit none

!

real :: x,y,z

real :: length

!

!***

! Input the coordinates of a point in 3-space

!

call input_point (x, y, z)

!

! Find the Euclidean length of the vector (x,y,z) given by

! sqrt (x^2 + y^2 + z^2)

length = find_length (x, y, z)

!

! Output the vector and its Euclidean length

!

call output (x,y,z, length)

!

!***

!***

CONTAINS

!***

!***

subroutine input_point (u, v, w)

!

! This subroutines asks the user to input the coordinates

! of a point in R^3

!

!***

real, intent(out) :: u, v, w

print *, "input a point in 3-space "

read *, u, v, w

!

end subroutine input_point

!

!***

function find_length (x,y,z) result (value)

!

! This function find the Euclidean length of a

! vector in R^3

real :: x,y,z

real :: value

value = x*x + y*y + z*z

value = sqrt (value)

end function find_length

!***

!

subroutine output (x,y,z, length)

!

! This subroutine outputs a given point (x,y,z) and its

! Euclidean length

!

real, intent(in) :: x,y,z

real, intent(out) :: length

print *, "The vector in R^3 with endpoint ", "(",x,y,z,")"

print *, "has Euclidean length", length

end subroutine output

end program euclidean_length

Here is an outline of a code cubic.f90 which we are going to work on today.
It will NOT compile.

program cubic

! This program

! (1) calls subprogram to input coefficients of cubic

! u(x) = ax^3 + bx^2 + cx + d

! (2) calls subprogram to print out cubic

! (3) for points x in [0,1] subprograms are called to

! (i) evaluate u(x)

! (ii) evaluate u’(x) and u’’(x)

! (iii) output x, u(x), u’(x) and u’’(x)

!

implicit none

!

real :: a, b, c, d

real :: dx, x

real :: u, u_x, u_xx ! the value of cubic and its first 2 derivatives at a point

integer :: k

! input the coefficients of the cubic polynomial

! u(x) = ax^3 + bx^2 + cx + d

!

call input_cubic ()

!

! call routine to output the polynomial being used

!

! DO LOOP

! For each point x,

! (i) call subprogram to evaluate cubic at x

! ii) call subprogram to calculate the first

! and second derivatives of the cubic at x

! and return values in cubic1 and cubic2

! (iii) call subprogram to output the value of the cubic

! and its first and second derivatives at each of the points

dx = 0.25

x = -dx

do k = 1, 4

x = x + dx

u = eval_cubic ()

call eval_der ()

call output (x, u, u_x, u_xx)

end do

!**

!**

CONTAINS

!**

!**

subroutine input_cubic (a, b, c, d)

real :: a,b, c, d

!

! Reads in the coefficients of the cubic ax^3+bx^2+cx+d

!

print *, "enter the four coefficients of the cubic separated by comma"

print *, "enter the coefficient of x^3 first, then x^2, etc."

end subroutine input_cubic

!**

!

subroutine output_cubic (a, b, c, d)

real :: a,b, c, d

!

! Outputs the cubic ax^3+bx^2+cx+d

!

print *, "The cubic we are considering is"

print *, a,"x^3 +", b,"x^2+", c, "x+", d

print *,

print *,

end subroutine output_cubic

!

!**

!

function eval_cubic

real :: x

real :: a,b, c, d

real :: value

!

! Computes the value of the cubic ax^3+bx^2+cx+d at x

!

value =

end function eval_cubic

!**

!

subroutine eval_der (x, a, b, c, d, f1, f2)

real :: x

real :: a,b, c, d

real :: f1, f2 ! first and second derivatives of cubic

! ax^3+bx^2+cx+d at x

!

f1 = a*(3.0 * x * x) + b*(2.0 *x) + c

f2 =

end subroutine eval_der

!**

!

subroutine output (x, f, f1, f2)

real :: x

real :: f, f1, f2

!

! Outputs the cubic ax^3+bx^2+cx+d and its first and second

! derivatives at the point x

!

print *, "The cubic evaluated at x = ", x, "is", f

print *, "The first derivative of cubic evaluated at x = ", x, "is", f1

print *, "The second derivative of cubic evaluated at x = ", x, "is", f2

print *,

end subroutine output

!

!**

!**

end program cubic

Classwork

1. Download the code cubic.f90 It will NOT compile.

2. Make the necessary modifications to the code to make it perform the tasks
described in the comments.

3. After it is working add intent(in), intent(out) statements in the dec-
larations of the subroutines. Remember that we don’t use this in functions
because it only has one output, i.e., the variable in result(value).

PART II - Solving a Nonlinear Equation

The next problem we want to investigate is finding the root of a single nonlinear
equation f (x) = 0 (i.e., where the function f (x) crosses the x-axis) such as

x5 − 3x2 − 3 = 0 or x− sinx = 0 or ex
2 − 4 = 0

• A nonlinear equation f (x) = 0 may have no roots, only one root, or several
roots.

-3 -2 -1 1 2 3
-2

2

4

6

8

-3 -2 -1 1 2 3

-6

-4

-2

2

4

-3-2-1 1 2 3

2

4

6

8

10

•We know that there is a formula (the quadratic formula) for finding the roots

of a quadratic polynomial (which is itself a nonlinear equation).

ax2 + bx + c = 0 ⇒ x =
−b±

√
b2 − 4ac

2a

• Actually there are also formulas (not as well known) for finding the roots of
third and fourth degree polynomials but not for higher degree polynomials.

• Nonlinear equations are much more difficult to solve than linear equations.

•We should not expect to be able to find a formula which gives us the exact
answer, but rather we will look at methods which approximate the solution.

• The methods we will look at are called iterative methods.

Iterative Methods

• For an iterative method we start with an initial guess (which is a number in
our case), say x0, and then we will generate a sequence of approximations

x0, x1, x2, x3, · · ·
which we hope will tend to the exact root of our problem.

• For example, we might generate the sequence of iterates

2, 1.5556, 1.2586, 1.0851, 1.01324, 1.0039, 1.0023

In this case it appears that our approximations are approaching 1.0

• If xn approaches our exact solution, say x∗, as n → ∞ when we say the
method converges.

• As another example, we might generate the sequence

2, 2.5556, −5.3586, −11.0851, 41.01324, 121.0039

In this case our approximations are not tending to some value, so we say that
the method does not converge or diverges.

• Several issues arise when we use iterative methods

– How do we get our starting guess?

– Is the method sensitive to the starting guess? That is, does it work for any
starting guess?

– What if there is more than one root?

– When do we stop?

– If the approximations are tending to some value, how fast are they tending
to the value?

• How do we get our starting guess?

1. We could graph the function; e.g., for the root of f (x) = x7 − sinπx in
(0,2) we could graph this function and see approximately where it crosses
the x-axis or alternately we could graph x7 and sin πx and see where they
intersect.

2. Physical intuition

3. Random

0.5 1 1.5 2

2
4
6
8

10
12

x^7-sinHpi xL

0.5 1 1.5 2
-1

1
2
3

Plot of x^7 and sinHpi

The speed at which an iteration converges will be important to us.

For example, if we have the following two sets of approximations generated by
different methods both tending to 1.0, which one do we prefer?

2, 1.5556, 1.2586, 1.0851, 1.01324, 1.0039

2, 1.9576, 1.8386, 1.7651, 1.51324, 1.3033

We need a way to determine how fast (numerically) our approximations are con-
verging.

How do we know when to stop an iterative method?

•When we program iterative methods we always want to have a maximum
number of iterations.

• However, if our root is near say 4 and we have starting guesses of 2 and 100,
both yielding convergent sequences, then we would guess that the one with a
starting guess near the root (i.e., 2) would get to the root in fewer iterations.

• Consequently, we need some way to check to see if our answer is “good
enough”.

• Since xn → x∗ as n→∞ (where x∗ is the root we are looking for) we expect
the terms xm, xm+1 (for sufficiently large m) to be close together. So we
could check

|xm+1 − xm| ≤ prescribed tolerance

• Although this is commonly used, it can sometimes lead to problems when the
iterates themselves are small.

• It is actually better to look at a relative error such as

|xm+1 − xm|
|xm+1|

≤ prescribed tolerance

• Another approach to terminate an iterative process is when we know a theo-
retical bound on the error. In this case we can bound it by some tolerance.
This error bound is typically not known in general but for the first algorithm
we investigate it is known.

The Bisection Method

One of the simplest method for finding a root of a continuous function f (x) is
the bisection method.

•We first find an interval [a, b] where the product f (a)f (b) < 0

– This means that f (a) and f (b) are of opposite signs.

– Recall from calculus that the Intermediate Value Theorem guarantees that a
continuous function f (x) must pass through zero somewhere in the interval
(a, b) if f (a) and f (b) are of opposite signs. Of course it may have more
than one root but it has at least one. In the figure below we are guaranteed
that this function has a root in [0,1.4] since f (0) > 0 and f (1.4) < 0.

0.2 0.4 0.6 0.8 1 1.2 1.4

-1

1

2

3

4

5

• So if we start with an interval [a, b] where f (a)f (b) < 0 then we are guaran-
teed that a zero or root of f (x) lies in (a, b).

• The basic idea behind the bisection method is that we take the midpoint of the

interval [a, b] and then check to see if the root is in [a,
a + b

2
] or in [

a + b

2
, b].

– To do this we simply evaluate f (
a + b

2
) and compare the sign with that of

f (a) or f (b).

– We choose the interval which has function values at the endpoints of op-
posite signs.

• This process can be repeated and we are guaranteed that we can get as close
to a root as we want by continually halving the interval.

Example

We can approximate the square root of 5 by finding a root of the equation

f (x) = x2 − 5 = 0

•We know that 2 <
√
5 < 3 and since f (2) = −1 < 0 and f (3) = 4 > 0, we

can take the interval [2, 3].

2.2 2.4 2.6 2.8 3

-1

1

2

3

4

y=x^2-5

• Our first approximation would be the midpoint x = 2.5

• Since f (2.5) = 1.25 we see that f (2) = −1 and f (2.5) are opposite signs
(i.e., f (2)f (2.5) < 0) so we take [2,2.5] as our next interval.

f (2) = −1

f (2.5) = 1.25

f (3) = 4
HH

HH
HHY

root in [2,2.5]

• Our next approximation is (2+2.5)/2= 2.25

• Since f (2.25) > 0 and f (2) < 0 we choose our next interval to be [2,2.25]

2.1 2.2 2.3 2.4 2.5

-1

-0.5

0.5

1

y=x^2-5

f (2) = −1

f (2.25) = 0.0625

f (2.5) = 1.25
HH

HH
HHY

root in [2,2.25]

• Our next approximation is (2+2.25)/2= 2.125

• Since f (2.125) < 0, f (2) < 0 and f (2.25) > 0 we choose our next interval
to be [2.125,2.25]

2.05 2.1 2.15 2.2 2.25

-1

-0.8

-0.6

-0.4

-0.2

y=x^2-5

f (2) = −1

f (2.125) = −.484

f (2.25) = .0625
��

��
��*

root in [2.125,2.25]

• Continuing in this manner, we form a sequence

2.5, 2.25, 2.125, 2.1875, 2.21875, 2.23438, 2.24219, 2.23828, 2.23633 . . .

which converges to
√
5 = 2.236067977

How do we know when to stop the Bisection Method?

•When we program iterative methods we always want to have a maximum
number of iterations.

• However, in our example, if we started with the initial interval of [2,3] we
would expect it to take less steps than if we started with [0,100] although
they both satisfy the condition f (a)f (b) < 0

• Consequently, we need some way to check to see if our answer is “good
enough”.

•We can do this if we know something about the error we are making. We
don’t have this information for every method, but we do for the Bisection
Method. If we have an estimate for the error then we can check

if error < prescribed tolerance then stop

The Error in the Bisection Method

• As an example, let’s say that we know the root is in the interval [1,2]; then
our next guess is 1.5.

• How far away can 1.5 be from the answer; i.e., what error are we making ?
Clearly it has to be < 0.5 from the answer since the root is in the interval
[1, 2].

• In general, the error at a particular step is going to be half the length of the
current interval.

– Initially, with an approximation of
a + b

2
the error is less than

b− a
2

– At the end of the second step the interval is half the size of the previous

step so taking its midpoint gives the error is less than
b− a
4

– At the end of the third step the interval is half the size of the previous step

so the error is less than
b− a
8

– In general, at the end of the nth step the error is less than
b− a
2n

– Note that the Bisection Method will always converge if you start with an
interval [a, b] containing the root.

– If there is more than one root in the interval [a, b] to begin with, then you
will simply converge to one of the roots.

– We will see that the convergence of the Bisection Method is very slow and
that the error does not decrease at each step. The next methods we look
at will try to address these problems. However, we may have to give up
the guaranteed convergence of the method.

What do we need to write a program to implement the Bisection Method?

•We know that we will need a conditional (like IF THEN) to check the error
and to see which interval our root is in.

– Actually we will probably want to do one thing if the product of the two
function values equals zero, another if it is less than zero and another if it
is greater than zero

– Consequently we may need a slightly more complicated IF - ELSE IF -

ELSE construct

•We do not want to “hardwire” the function we are using so we need to write
a separate function to do this. If we hardwired the function in the code in
our example for finding the root of x2 − 5, we would require statements like

f at a = a*a - 5.0

f at b = b*b - 5.0

mid = (a + b) /2.0

f at mid = mid*mid - 5.0

so if we want to find the root of a different function, then we have to recode
all of these statements. Instead we just invoke our function eval f with a
statements like

f at a = eval f (a)

f at b= eval f (b)

f at mid = eval f (mid)

When we change the function we are using we simply change the function and
don’t have to modify the main program.

IF-ELSE IF constructs

We will need IF-ELSE IF constructs to write the code for the bisection method
because when we compute f

(
(a + b)/2

)
, i.e., at the midpoint of [a, b] we do

one thing if f (a) f
(
(a + b)/2

)
<= 0 and another if it is > 0 and still another

if it equals zero (i.e., we have found the root).

• The simplest type of conditional that we looked at was the situation where
we need to test a condition and if it is true, then do something, that is, we
have only one alternative. For example,

if (n > 10) stop

– Here the condition we are testing is n > 10.

– If the condition is true, then we terminate the program.

• In the case where we have two alternatives, that is, we need to test a condition
and do one thing if it is true and another when it is false, we use the if-else

construct. For example,

if (b*b-4.0*a*c >= 0) then

term = sqrt (b*b-4.0*a*c)

else

print *, " there are no real roots"

end if

– Here the condition we are testing is to see if b2 − 4ac ≥ 0 which could be
part of a code to implement the quadratic formula.

– If it is true, then we can take the square root of this number.

– If it is false (and we are using the quadratic formula to find real roots only)
we simply include a write statement to indicate the roots are complex.

• Clearly you can imagine a situation where we have more than two alternatives.
In this case we use the if-else if construct.

• The syntax for the situation where we have 4 alternatives is described next.

if (logical expression # 1) then

statements

else if (logical expression # 2) then

statements

else if (logical expression # 3) then

statements

else

statements

end if

• Note that there is no then required after the final else since there is no if.

• Note that if the first expression is satisfied then the remaining statements are
not reached; if the first statement is not true but the second is, then none of
the remaining statements are checked, etc.

As an example, consider the following conditional written for the situation de-
scribed below.

Suppose that the temperature, temp, high temp, low temp, have been de-
fined and we want to check to see if it is within a normal temperature range
defined by the values low temperature and high temperature. If it is be-
low the normal range, print this fact out and if it is above the normal range, print
this fact out.

if (temp > high temp) then

print *, ”temperature is above normal high”

else if (temp < low temp) then

print *, ”temperature is below normal low”

else

print *, ”temperature is in normal range”

end if

As another example, consider a program which reads in the coefficients of two
lines

ax + by = c

dx + ey = f

Assume that a function routine is available to compute the slope of a line αx +
βy = γ.

We want to calculate slope of each line, say m1,m2. Then

(i) If the lines are parallel (i.e., slopes are equal) print this out

(ii) If the lines are not parallel determine if they are perpendicular (i.e., the slopes
satisfy m1 = − 1

m2
)

(iii) If neither is true, print this out.

The section of code to perform this follows, assuming coefficients have been
entered.

m1 = eval slope (a,b)

m2 = eval slope (d,e)

if (m1 == m2) then

print *, "lines are parallel"

else if (m1 == -1.0 / m2) then

print *, "lines are perpendicular"

else

print*, "lines are neither parallel nor perpendicular"

end if

Classwork

1. Write a code to have the user input a score (between 0 and 100) which allows
fractional scores like 75.5

2. The instructor has set the following scale for the exam.

A 88− 100

B 77− 87

C 65− 76

D 55− 64

F < 55

Write an appropriate if-else if construct to print out the student’s nu-
merical score and letter grade on the exam.

Implementing the Bisection Method

Strategy:

•We will have a function routine which as input has an x value and as output
the function value.

• In our algorithm, we will start with an interval, say [a, b] containing the root.

• At the end of each iteration we will have a new interval of half the length of

the previous interval, either [a,
a + b

2
] or [

a + b

2
, b].

•We will still call this interval [a, b]; we will simply modify a or b to be the
midpoint.

• Once we have a midpoint of a new interval we will check the error to see if it
is less than the tolerance.

• To begin with we need an interval, say [a, b], which brackets the root.

– The values for a and b should be input by the user

– The fact that [a, b] brackets the root should be verified by the program;
if it is not satisfied then an error message should be output and execution
terminated. At this time we can also see if by change f (a) = 0 or f (b) = 0,
i.e., we already found root.

•We will also need a maximum number of steps to do and a tolerance to check
for convergence of the method; for now we can “hard wire” these.

• Evaluate function at initial a and b, call them f at a, f at b

•We will have an iteration loop which must accomplish the following

– Evaluate midpoint, call it midpoint

– Check for convergence; if
b− a
2

is less than tolerance then stop.

– Evaluate f at midpoint, call it f at midpoint

– Evaluate (for example) f (a)f (
a + b

2
) call this number value

– if (value) == 0 terminate because root has been found

– if (value) < 0 then we know that the root is in
b− a
2

is less than

tolerance then stop.

[a,
a + b

2
] so move the endpoint b to the midpoint. Also, since we have

already evaluated f at the midpoint we might as well use it; i.e.,

b= midpoint

f at b = f at midpoint

– else if (value) > 0 then we know that the root is in

[
a + b

2
, b] so move the endpoint a to the midpoint; i.e.,

a= midpoint

f at a = f at midpoint

Code for the Bisection Method

program bisection_method

!

! This program approximates the root of a nonlinear equation f(x) = 0 using the BISECTION METHOD

! The Bisection Method needs the following information

! 1) an interval [a,b] which brackets the root (so that f(a)* f(b) < 0)

! 2) a function routine to evaluate f(x) at any point x

! 3) a maximum number of iterations to do

! 4) a tolerance to determine if method has converged

!

! The code first checks to make sure that we have an interval bracketing the root.

! The algorithm determines the midpoint of the interval [a,b] and then checks to see if

! the root is in [a, (a+b)/2)] or [(a+b)/2, b]; then it moves the appropriate endpoint to make

! the interval bracketing the root half the previous size

!

! Convergence is achieved if the error given by (b-a)/2^k is less than a user prescribed tolerance

!**

implicit none

integer, parameter :: max_iterations = 30

real, parameter :: tolerance = 1.0e-4

real :: a, b ! interval bracketing root

real :: b_minus_a ! length of initial interval

real :: f_at_a, f_at_b, f_at_midpoint ! stored function values at a, b, and midpoint

real :: f ! the function for evaluation f(x)

real :: midpoint ! (a+b)/2

integer :: k ! iteration counter

!**

!

! set beginning interval [a,b]

!

print *, "Enter the beginning interval [a,b] separated by comma"

read *, a, b

b_minus_a = b - a ! save length of initial interval which is used in convergence criteria

!

! test to make sure that we have an interval bracketing the root

! that is, f(a) and f(b) have opposite signs which implies f(a) * f(b) < 0;

! if not stop and print error message

!

f_at_a = f(a) ! save function evaluations

f_at_b = f(b)

if (f_at_a * f_at_b > 0.0) then

print *, "error - we do not have an interval that brackets the root"

stop

else if (f_at_a * f_at_b == 0.0) then ! we have the root at either a or b

print *, " root found at endpoint of beginning interval "

if (f_at_a == 0.0) print *, "root is at x= ", a

if (f_at_b == 0.0) print *, "root is at x= ", b

stop

end if

! loop over number of iterations with a maximum number of iterations specified

!

do k = 1, max_iterations

print *, "iteration number ", k

midpoint = (a + b) / 2.0 ! calculate midpoint

f_at_midpoint = f(midpoint) ! evaluate function at midpoint

print *, " approximate root is ", midpoint

print *, " function value (residual) at approximate root is ", f_at_midpoint

! now test to see if root is in (a,midpoint) or (midpoint, b) or if midpoint is location of root

if (f_at_midpoint * f_at_a < 0.0) then ! root is between a and midpoint

b = midpoint ! move right end of interval bracketing root

f_at_b = f_at_midpoint ! save function value

else if (f_at_midpoint * f_at_b < 0.0) then ! root is between midpoint and b

a = midpoint ! move left end of interval bracketing root

f_at_a = f_at_midpoint ! save function value

else ! f(midpoint) is zero

print *, "root found exactly at ", midpoint

stop

end if

! check for convergence; we know that at the kth step error is no larger than (b-a)/2^k where [a,b]

! is the original interval. If this value is < tolerance, stop; otherwise perform another iteration.

if (b_minus_a / 2.0** k < tolerance) then ! convergence achieved

print *, "root is found to desired tolerance in", k, " iterations "

print *, "root is located at x = ", midpoint

stop

end if

end do ! end do over iteration loop

!

! if the code reaches this point without finding the root,

! then the maximum number of iterations has been reached

!

print *, " Bisection Method failed to find root in ", max_iterations, "iterations to a tolerance of" , tolerance

!***

!***

CONTAINS

!***

!***

function eval_f (x) result (f)

real :: x

real :: f

f = x**2 - 5.0

end function eval_f

!***

end program bisection_method

!***

Now let’s look at the results for f (x) = x2 − 5 on [2, 3]

approximation relative error =
∣∣∣√5− approximation√

5

∣∣∣
2.5 0.118034

2.25 0.62306 ×10−2
2.125 0.496711 ×10−1

2.1875 0.217203 ×10−1
2.21875 0.774483 ×10−2
2.23438 0.757123 ×10−3
2.24219 0.0273673 ×10−2

We note that the error oscillates; it is not monotonically decreasing. Why
is this?

Classwork

1. Download the code bisection.f90 and make the necessary modifications
to run it for

f (x) = x2 − 4 sinx

with a beginning interval of [1,3]. The function has one root in the interval
at x = 1.93375. Set the tolerance to 10−3. How many steps does it take to
satisfy the tolerance?

2. The function f (x) = f (x) = x2− 4 sinx has two roots in the interval [−1, 3]
at x = 0 and x = 1.93375. Using the graph below, which root do you think
the bisection method will find? Try the code and see if you are right.

3. Instead of checking for convergence in the main program, write a subprogram
to accomplish this. Do you need a function or a subroutine?

Out[448]=

-1 1 2 3

-2

2

4

6

8

fHxL=x^2-4 sin x

