Tonie
8. 1 10083
-6
λ

THE BENGAL

PHARMACOPOEIA。
 ANill

GENERAL CONSPECTUS OF MEDICINAL PLAN'IS,

ARUANOED ACCORDLNO TO THE NATUHAL AND TIRIAPEUTICAL SYBJEMS.

EDITED UNDEK TEA SANCTION OF A \&PECIBL COMBITRZR
BY W. B. O'SHAUGHNESSY, M. D., F. R. S., \&c.

BEMGAL MEDICAL BERTICE,
Honorary Fellow of the Royal Medico- Holanical Society of London-Corresponding Mena tuer of the Provinclal Meutical Association of England-of the Niational

Insitute of \ddagger Fashlngton, Esc, Ac.
12.5s26

FUBLISEED BT OHDER OFGOVEXNMEN心,

CALCUTTA:

BISHOP'SCOLLEGE PRESS.

玉ntroðuction.

The following pages are intended to supply a guide to the preparation of the remedies usually employed in medical practice in Bengal. The work embraces the few articles for which in this country we are still dependent on importation from Europe, and it includes a considerable number of remedies which, though long used by native practitioners, lave not hitherto been formally recognized in pharmaceutical works of this description.

The processes for the preparation of the ordinary forms of tincture, extract, mixture, \&c. in which the standard and familiar remedies are used, are taken chiefly from the Edinburgh Pharmacopecia, a few from that of the London or Dublin College.

The preparations of the new articles are given on the data afforded by express experiments.

The work aims at no higher object than affordiug a uscful guide to the native medical student and practitioner, to the subordinate medical establishment of the Army Hospitals, perhaps to the junior medical officers of the Bengal Presidency. To these it will afford some facilities, and under the distressing emergency which not unfrequently occurs in India, of the exhaustion of the supply of a particular article of medical stores, it will enable them, in most
cases, to avail themselves of a good or tolerable substitute from the resources of the bazar.

Thus for Quinine and the Peruvian bark we have Anarcotine, Gulancha, Rusot, the Kut-kulega nut, \&cc.; for Jalap, the Kaladana; for Belladonna the preparations of Stramonium and Daturia. The "Surmeh" supplies the ready means of preparing Tartar Emetic. In the Koochila bark and its salt, we have a substitute for Strychninc. Colchicum finds a fair representative in the Hermodactyl; Ipecactaanha in Mudar and the Kanoor. For Sarsaparilla, the Ununtamul is as good a substitute as could be desired. For all the metallie preparations, with a very few and unimportant exceptions, the bazar ores and minerals yield the materials which, used as we point out, will afford the local A potheeary, even thongh of limited skill, an ample and cheap supply of all the articles of this class absolutely necessary for Hospital use.

The few substitutes we have thus enumerated, represent the remedies which constitute the habitual resources of the practitioner, and with which, were all the rest of the Materia mediea beyond his reach, he might still undertake his Hospital duties, if not with full confidence, at least without despair as to the means at his disposal.

In the description of the articles and processes, we have adhered as much as possible to a familiar or English nomenclature. We have very seldom introduced Latin synonyms, and usually done so only when the Latin and English word differed very materially in pronunciation. In this onr object is to effect the gradual disuse of a Latin formulary in our Native IIospitals.

It was the intention of the Committee to have inserted a copious table of synonyms in the chief Eastern languages and in the native charaeter, and for this purpose, tables were accordingly prepared, under the superintendence of the Editor by native assistants, who were deemed competent for the task. But eareful examination led to such doubts of the accuracy of several of the names, that it is deemed preferable to omit the entire.

It seems desirable to explain, that the copious tables of the remedies found in the natural families of plants, and of remedies arranged aecording to their medicinal effcets, prefixed to the Pharmacopocia properly so called, constitutc an unusual, but it is confidently hoped not a useless addition to such a work, in our language. In several of the best European Pharmacopoiæ an alphabetical catalogue equally voluminous is first given, in which are inserted the names of nearly every plant of reputed medicinal value. In our work, we first give a Conspeetus of medicinal plants in the natural Botanical system, and then in the Therapeutical arrangement. The object sought to be accomplished by these tables is to facilitate researeh for new remedies in India, where a vast and rich field is open to the careful experimentalist. To illustrate the use of the tables, we may suppose a practitioner, having that knowledge of the natural families of plants which the Medical College of Calcutta affords to its graduates, to be desirous of ascertaining the actual medicinal valuc of the plants in his district. In the first table he will find at a glance what genera or species of a given family have in other countrics been found to possess particular virtues as eathar-
tics, emetics, diuretics, \&cc. The table further informs lim what species are already known to exist in a particular locality in India, and what is supposed to be their therapeutical utility. With this clue to guide him, his researches become comparatively free from difficulty. Or again, if we suppose him desirous on a particular occasion, on his stores being exhausted of a spccial purgative, diuretic, \&c. to obtain a local substitute, he consults the second table, and under the section-Purgative, Diuretic, \&c. he finds all the plants inserted which are known, or strongly believed, to possess this partieular property; and he also discovers the locality they occur in, and the degree of probability of their affording lim the object lie requires.

To those who are not inclined to pursue experiment, or to increase the existing catalogue of medicinal agents and resources, these tables will doubtless seeni a necdless expenditure of space and labour. But to the few who institute such researches, they will prove of value and assistance, and it is for such alone they have been arranged.

As in the preceding volume, the Editor lias the pleasing duty to discharge, of returning his grateful thanks to lis friend Dr. Wallich for the pains he has bestowed on this work, espeeially on the "Conspectus of Medicinal Plants" arranged aecording to the natural families; to Mr. Nicolsou and Dr. Cameron, the Editor also ventures to offer his cordial acknowledgments for the kinduess with which, in per-
formance of their functions as the only members of the Pharmacopœia Committce remaining at the Presidency, they lent their aid and sanction to his humble efforts to add to the resources of the medical practitioner in Bengal.

It becomes necessary to add, that the printing of this volume, already far advanced in October 1841, was interrupted by the Editor being compelled to go to Europe on sick furlough. It was resumed on his return to India this year, but under circumstances which deprived him of the facilities he formerly enjoyed for pharmaceutical and clinical experiment. He was thus prevented from testing during the completion of this volume many substances of considerable reputation among native physicians, and which have been, accordingly and unavoidably, reserved for future researches.

ERHATA.

Y'age 208 for LECHEN ISLANDICyM, read ICHEN, かC.
286 for distil of the spirit one-fourth, read TO one-fourth.
288 In the formula for preparing the "Acetic extracts" of Colehicum and of the Hermodactyl, it should be directed also to strain the bruised bulbs through calico, and epaporate the strained liquor. 298 Infusion of Buchu or Uva Ursiz, expunge or Uva Ursi. 392 for Creosote, read Creasole.
$\$ 26$ for Compaund mixture of Gentian, read Tincture, \&c. 436 for Hermodetyl read Hermodactyl.

THE

BENGALPHARMACOPCIA.

WEIGH'TS AND MEASURES.

To ensure perfect uniformity in the preparation and doses of medicines, and at the same time to provide a standard universally and easily obtainable, we have adopted as the basis of our system, both of weights and measures, the Honorable East.India Company's New Rupee.

By numerous experiments it has been ascertained) that the new Rupee, or tola, as found in cireulation, $\} 180$ is exactly equal to English Pharmaceutical grains ...

The $\frac{1}{2}$ rupee and $\frac{1}{4}$ rupee (silver) of the new currency are equal to 90 and 45 grains each.

The new eopper pice is equal to 100 grains.
The $\frac{2}{4}$ rupee (silver) we divide into 45 equal parts, each termed one grain.

This is readily done by taking an equal weight of wire, and cutting it into three equal lengths; each length is further subdivided three times, whereby five grain weights are obtained; eaclı five grain wire divided into five equal parts, gives the units required.

Of these units or grains, (gr.)
English Pharmacopeita wts.

20	are equal to one scruple
60	"
480	one draelim
3	

'Twelve English Pharmacopoeia or Troy ounces make one pound, (15 i.)

The Avoirdupois pound is divided into 16 ounces (each 437.5 grains) each ounce into 16 drachms-each drachm is 27.34 grains.

Grains.
5760
1 Troy pound contains 7000
1 Avoirdupois pound.

$$
0
$$

In wholesale pureliases, or sales of drugs, for example in large consignments imported from Europe, the avoirdupois pound is employed.

The measure of liquids we employ is derived from the rupee, but is equal to the legal standard of Great Britain.

A column of liquid of a base equal to the silver quarter rupee, and in lengtl equal to ${ }_{3}^{3}$ inches, mensures exactly-

1 Pharmaceutical fluid ounce ... f ${ }_{3} \mathrm{i}$
90 Fluid ounces, are one pint ... Oi
8 Pints, are one gallon Ci
For measures of liquids less than the fluid ounce, we take a column of liquid liaving a circular base equal in diameter to the semidiameter of the $\frac{1}{4}$ rupee, and in length equal to one inch and eight-tenths, which measure is one fluid drachon, or sixty minims; of these fluid drachmsthere are eight in one ounce.

A fluid drachm of pure water at $76^{\circ} \mathrm{Fahr}$. weiglis fifty-eight troy grains.

The minim, is expressed by the mark m .
As liquids expand and contract by clianges of temperature and atmospheric pressure, the bulks of the preceding measures are estimated at the standard of 620 of Fahrenheit's thermometer and 30° barometer. All measuring vessels should be graduated at such scasons as permit these circumstances to be observed.

The cubical inch of distilled water at this temperature weighs $252 \cdot 4.58$ grs.

The diameter of the new rupee is 1.20 English inch, or if divided into 12 equal parts, cach is $\frac{1}{10}$ of an inch.

The diameter of the silver quarter rupee is $\frac{1}{3}$ of an inch.
The diameter of the new copper pice is precisely an English inch.

The preceding measures are best made of glass, silver, or pure tin. A uniform tube of the necessary dimensions is easily prepared by hammering the silver or tin round an iron rod of the required size. The tube should be soldered on the outside, and closed below hy a perfectly flat piece also soldered from the outside.

For the construction of weights, we recommend silver or pure tin, beat ont into uniform thin plates; brass or copper ruste rapidly, and weights made of these metals soon become deceptivc. A set of weights should comprise the rupee or tola, half and quarter rupee, a drachm, a half drachm, a scruple, a half scruple, and a series of small weights from six grains to half a grain. The pharmacentical character, and the number, should be stamped on each weight.

For quantities above the tola weight, it is sufficient to recollect that the Troy pound contains $\mathbf{9 6}$ drachms, equal to 32 of the Company's new rupees.
Cable E .
Conspectus of Medicinal Plants, arranged in the Natural System. The Linnaan classed and orders are given to each genas. Signifies that the article is cultivated in the Caleutta lotanieal Garden. B. D. refers to a fuller description in the Bengal Dispensatory.

NAT. ORDER I.--RANUNCULACE压.

운웅으 웅으어어 성엉엉 웅 B.

B. 1). Page.

Page
171
171
183
183
184
184
管侖

\qquad
NAT．ORDER III．－PAPAVERACEA．
Upper India，．．．
South of Europe，
Europe，\quad.
Hindustan，．
United States and
$\left\{\begin{array}{c}\text { Nepal，Choor．} \\ \text { Punjal．}\end{array}\right.$

Corydalis cashmeriana．Diadelpkia Hexanh．．．
.. yields opium,
. violent acrid poison,
powerful emetic and purgative.
. . said to be a powerful narcotic.
Papaver Rhoeas. Polyand. Monogyn. . .
Chelidoniam majus.
Chelidoniam majus. Polyand. Monogyn.
Argemone mexicana.* Poiyand. AYonogyn.

Meconopsis aculeata．Poiyoni．Konogyn．

Papaver Rhoeas．polyand．Moonogyn．．－

 Meconopsis aculeata．

－ ＿＿－＿－＿Govaniana．．．．．
＿＿＿＿＿fabacea．．
red colour for a syrup, ..

$$
\begin{aligned}
& \begin{array}{l}
\text { NAF. ORDER V.-CRUCIFERA. } \\
\begin{array}{l}
\text { gently stimulant and diuretic, } \\
\text { aromatic, stimulaut. }
\end{array} \begin{array}{l}
\text { Europe. } \\
\text { Upper India, }
\end{array} \\
\begin{array}{c}
\text { \{stimulant, diaphoretic, emetic } \\
\text { and externally rubefacient, }\}
\end{array}
\end{array} \\
& \text { (and externally rubefacient, }\} \text { \&urope, } \\
& \begin{array}{l}
\text { Thibe 1-Arabideze. } \\
\text { Nasturtium officinale.* Tefradynamin Siliguosm. } \\
\text { Clieirantlius Cheiri.* Tetradynumia Siliquose. } \\
\text { Tribe 2-Alyssinke. } \\
\text { Cochlearia Armoracia.* Tetradynamiu Siliquase. }
\end{array} \\
& \begin{array}{l}
\text { Thibe 1-Arabideze. } \\
\text { Nasturtium officinale.* Tefradynamin Siliguosm. } \\
\text { Clieirantlius Cheiri.* Tetradynumia Siliquose. } \\
\text { Tribe 2-Alyssinke. } \\
\text { Cochlearia Armoracia.* Tetradynamiu Siliquase. }
\end{array}
\end{aligned}
$$

NAT．ORDER VI．asd VII．－MAGNOLIACE and WINTERACEE． $\cdot{ }^{2} 6 v_{d}{ }^{\prime}$ C ${ }^{\circ} \mathrm{C}$
ヘ่：路： の笑家 홍

[^0] —＿－vulgaris，

NAT．ORDER XI－CAPPARIDER．

N⿵人⿱龴⿵⺆⿻二丨⿱⿵人一⿰⺝刂
B. D. Page.

NAT. ORDER XIII.-BIXINEIE.
Bixa Orellana.* Polyand. Monog. colouring substance anolto,.. .
NAT. ORDER XIV.—VIOLACE

ถัลี๊สี
ลี
India,
Bixa Orellana.* Polyand. Monog.

NAT. ORDER XV.-POLYGALEÆ.

Several species have a liquid resin round the seeds.

ลิสีล
NO

: :
$:::::$

NAT. ORDER XXII.-DIPTEROCARPEE.
Borneo and Sumatra, 221 Morung, the Paulghat mountains, de. Malabar, Mysore,
Malabar, Mysore,
Chittagong, Pegu,
NAT. ORDER XXIIT.-TERNSTRÖMIACEF. Shorea robusta.* Polyand. Monog. ..
Vateria indica. Polyand. Monog.
..
Dipesin, rarnish, Elast Indian Copal,
Diptecarpus lævis.* Polyand. Monog. $\quad \begin{array}{r}\text { yields, an essential oil resembling } \\ \text { in properties Copaiba balsam, }\end{array}$
‘ๆนว!!
Arracan mountains, Bundlecund, hills round Adjigurh and Ka.
 ree pass

Page.
231
231
232
232
232
233
233
233

NAT. ORDER XXVII.-HYPERICINE:E.

俞

: : : : : : :
B. D. Page.
external application in rheumatism, All parts of India, translucent, adhesive, , and aromatic resin...
acrid and aromatic resin, Travancore, Bengal,

NAT. ORDER XXIX.-CANELLEÆ.

aromatic tonic, $\left\{\begin{array}{c}\text { Caribbean Islands, S. America, cul- } \\ \text { tivated in the Calcutta Gardens, }\end{array}\right\}$

NAT. ORDER XXX.-SAPINDACEAE.

very astringent,
Æesculus Hippocastanum. Heptand. Afonog.

Calophyllum Inophyllum.* Polyand. Mon
 Mesua ferrea.* Polyand. Monog.

Canella alba.* Polyand. Monoy.
Sapindus emarginatus.* Octand Monog. expectorant, .
Bengal,
Paullinia pinnata. Octand. Trigyn. . acrid and narcotic, Brazil, Schmidelia serrata.* Octand. Monog. . . astringent, Schleichera trijuga.* Octand. Monog. . . do, ..

Europe,

$\left\{\begin{array}{c}\text { cultivated in the } \\ \text { den, Calcutta, }\end{array}\right.$
$\ldots \quad \ldots$

do. do. ..
mountains of Yemen
\ldots
Sunderbuns, . .
Circar mountains,
Sylhet, ...

NAT. ORDER. XXXIII-CEDRELACEE.

Melia Azedarach.* Decand. Monog...

$$
\begin{aligned}
& \text { sempervirens. (Bukayun,)* } \\
& \text { Azadirachta indica,* Decand. Monog. } \\
& \text { Trichilia emetica. Decand. Monog. .. } \\
& \text { Guarea trichilioides. Octand. Monog. } \\
& \text { Xylocarpus.Granatum.* Octand. Mono } \\
& \text { Walsura piscidia.* Decand. Monog. } \\
& \text { - robusta. (Monoeyelis. Wali. }
\end{aligned}
$$

NAT. ORDER XXXIV.-VITACEÆ, OR AMPELIDE压.
Vitis vinifera.* Pentand. 1fonog.
B. D. Page.
Nat. ORDER XL.-RUTACEe.

B. D.
$\begin{array}{lcc}\text { aperient and diuretic, S. of Europe, } \\ \text { S. Ameriea, } & \text {.. } & . \\ \text { Peru and Chili, } & \ldots & \ldots \\ \text { Europe, } & \ldots & . . \\ \text { Delhi and Allahabad, .. } & . .\end{array}$
NAT. ORDER XXXIX.-ZYGOPHYLLEE. acrid, bitter, sharp, sudorific, astringent, in Cochin China, vermifuge and astringent, resembles guaiacum, fotid plants,.
bitter and offensive,. Guaiacum officinale. ${ }^{*}$ Decand. Monog. Tribulus terrestris.* Dectand. Monog. Zygophyllum Fabago. Decand. lifonog. Porliera hygrometrica. Octand. Monog Melianthus. Didynam. Angiosp. Balanites ægyptiaca.* Octand. .Monog.

NAT. ORDER XLI.-XANTHOXYLACEE.

B. D. Page.

NAT. ORDER XLVII--AQUIFOLIACEA.

ค่

NAT. ORDER XLVIII.-RHAMNEI.
Zizyphus ©noplia." Pentand. Monog. pleasant acid,

B.
D.
NAT. ORDER XLIX.-AQUILARINE E.
stimulant, astringent, $\quad . \quad$.. E. and SE. of Sylhet,
Aquilaria Agallocha.* Decand. Monog.
NAT. ORDER L.-TEREBINTHACEÆ.

B. 1. P'age.
Monog. similar to Myrrh, .. $\begin{aligned} & \text { Syllet, Assam, and Madagascar, } \\ & \text { d. pure, clear, amber-coloured gum, } \\ & \text { Sylhet and adjacent Mountains, }\end{aligned}$
NAT. ORDER LI.-MORINGEE.
ฐ్వ్ ⿷匚

S. of Europe and of Asia Minor,

 Colutea arborescens. Diadelph. Decand. used to adulterate the senna of Aleppo, Astragalus verus. Diadelph. Decand. affords the tragaeanth gum, gummifer. ___ areticus...

$$
*
$$

alfords the tragaeanth gum,

manna of the Desert, ...

bark, powerful bitter tonie, Bengal,
Beaves aperient, common in India, Mount Lebanon, \quad...
Crete and Ionia,
Peloponnesus and Cyprus,
§ Egypt, Syria, Mesopotania, (the Jumna and near Delhi, ...
Nipal, leaves aperient, common in India, $\quad .$. Bencal mountains of India, \quad.. \quad. do. do. .
India, Africa, and America, cases, do. do. $\left\{\begin{array}{cc}\text { American Islands, } & \text { espeeially } \\ \text { Guadaloupe, } & . \\ \hline\end{array}\right.$
Pulicat, Ceylon, and Mysore,

do.
do.
do.
\qquad

astringent

Pterocarpus Draco. Diadelph. Decand.
13. D. Page.

 Prosopis, species of. Decand. Monog. - bonolr punfiod eesses esur - fagifolia. __ unguis cati. ${ }^{*}$

Tinbe-Cfesalpinipie.

\{resinous, odour nauscous, taste \} \{ bitter and austere, cathartic, enretic, narcotic, .. \quad.

\% \%
do.
do.

:
age.
307

308
309
309
309
309
309
310
310
310
311
311
313
314
314
315
315
315 $\left.\begin{array}{l}\text { B. D. } \\ \text { and } \\ \text {.. }\end{array}\right\}$: : : : : : : : : : :
Siam and Amboyna, West Indies, Peru, Brazil, S. America, ..
 Cochin.China,
India, .. South of Europe,
United States,

> East and West Indies,
dye, Campechy and Jamaica,

——alata.*

-_occidentalis. ${ }^{*}$
Tamarindus indica." Monad. Dodec. H:ematoxylon campechianum.* Decand. Cesalpinia echinata." Decand. Monog.
 Hymenea Courbaril.* Decand. Monog.
Aloexylon Agallochum. Decand. Monog.

Brazog. valuable red and astringent a powerful tonic \& valuable febrifuge, copaiba, or copavi balsam, .. .•
 copal resin for varnishes, tonic and stimulant, tonic and stimulant,
brisk purgative, but not safe, seeds acrid and narcotic,

$$
\rangle \text { emetic, }
$$

substitute for log wood, astringent, . Clitoria Ternatea." Diadelph. Decand. Anagyris foctida. Diadelph. Decand. .Baptisia tinctoria. Diadelph. Decand...

ค

Genista tinetoria. Diad. Decand.
 - - seoparius. Anthyllis Hermannix. tigation,
used in dysentery,

Sabinea florida. Diad. Decand.
Piscidia Erythrina. Diad. Decand.
Coronilla. Diad. Decand.
-- - picta. Arthrolobium seorpioides. Diad. Decand. Ormocarpum sennoides.* Diad. Decand. Lathyrus Aphaca.* Diad. Decand. -.-_ sativus.* Diad. Decand. Phaseolus radiatus.* Diad. Decand. -_.-.- trilobus. Poinciana pulcherrima." Decand. Monog. used in dysentery,
seeds stomachic and deobstruent, $\{$ roots used as a poultice \{risonous,... \quad joints,
powerful narcotic and diaphoretic, ... $\left\{\begin{array}{c}\text { two species are described, having } \\ \text { cathartic leaves and juice, .. }\end{array}\right\}$ cathartic leaves and juice, .. $\}$
emollient leaves, blister,
$\begin{array}{lccc}\text { tonic and stimulant, ... } & \ldots & \ldots \\ \text { narcotic, } & \ldots & \ldots & \ldots \\ \text { seeds poisonous, } & \ldots & \ldots & \ldots \\ \text { oil of seeds a powerful cathartic, } & \ldots\end{array}$
$\begin{array}{lccc}\text { tonic and stimulant, ... } & \ldots & \ldots \\ \text { narcotic, } & \ldots & \ldots & \ldots \\ \text { seeds poisonous, } & \ldots & \ldots & \ldots \\ \text { oil of seeds a powerful cathartic, } & \ldots\end{array}$
$\begin{array}{lccc}\text { tonic and stimulant, ... } & \ldots & \ldots \\ \text { narcotic, } & \ldots & \ldots & \ldots \\ \text { seeds poisonous, } & \ldots & \ldots & \ldots \\ \text { oil of seeds a powerful cathartic, } & \ldots\end{array}$
$\begin{array}{lccc}\text { tonic and stimulant, ... } & \ldots & \ldots \\ \text { narcotic, } \ldots . & \ldots & \ldots & . \\ \text { seeds poisonous, } & \ldots & \ldots & \ldots \\ \text { oil of seeds a powerful cathartic, } & \ldots \\ \text { said to be nareotic, } & \ldots & \ldots\end{array}$ said to be tonic and sedative, said to be tonic and sedative, $\left\{\begin{array}{l}\text { enmenagogue, deserves inves- }\end{array}\right\}$ $\begin{array}{lcll}\text { good yellow dye, } & \ldots & \ldots & \ldots \\ \text { poisonous, } & \ldots & \ldots & . . \\ \text { diuretic and cathartic, } & . . & .\end{array}$ has diuretic roots, \qquad
$\begin{array}{lc}\text { common in } & \text { Europe, } \\ \text { Europe, } & \ldots \\ \text { do. } & \ldots \\ \text { do. } & \ldots \\ \text { India, } & \ldots \\ \text { Circar mountains, } \\ \text { West Indies, } & \ldots \\ \text { West Indies, } & \ldots \\ \text { Bengal, .. } & \ldots \\ \text { Bengal, } & \ldots \\ \text { Europe, } & \ldots \\ \text { Bengal, .. } & \ldots \\ \text { Europe,... } & \ldots \\ \text { Spain, } . . & \ldots \\ \text { Europe, ... } & \ldots \\ \text { Bengal, ... } & \ldots \\ \text { Bpper India, } & \ldots\end{array}$ $\cdot 26 p_{d} \cdot \alpha \cdot q$
NAT. ORDER LIII.-ROSACER

NAT. ORDER LIV.-MHIZOPHIOREA.
Includes no medicinal article but the mangrove, which is very astringent,
B. D. Page.

NAT. ORDER LV.-ONAGRARIÆ.

NAT. ORDER LVI-LYTHRARIÆ, or SALICARIE.
Amınannia vesicatoria. ${ }^{*}$ Tetrand. Afonog.

Trapa natans. Tetrand. ilonog. bispinosa.* Trapa

NAT. ORDER LVII.-TAMARISCINEIE.
bitter and astringent,
do. do,
Arabian manna,
Trigyn.
Tamarix indica and dioica.* Pentand. -ungalica. ..

Myrtus communis.* Icosand. Monoy.
——— Pimenta.*

Asia Minor and South of Europe, 333
S. America, W. Indian Islands, 333
命

Myrtus caryophyllata. Icosand. Monog.
Caryophyllus aromaticus.* Icosand. Monog.
Eucalyptus resinifera.* Icosand. Monog.
Melaleuca Cajeputi.* Icosund. Monog.
Leptospermum. Icosand. Monog. .
 Psidjum pyriferum.* Icosand. Monogyn. Eugenia malaccensis.* Icosand. Monog. - Jambos.
Lecythis. Monadelph. Polyand.

Barringtonia racemosa.* Icosand. Monog.
-_ـ_ speciosa.* ———acutangula.* ..
astringent,

$$
\left\{\begin{array}{c}
\text { yields the cajeput oil, stoma- } \\
\text { chic, stimulant, and useful } \\
\text { liniment or embrocation, .. }
\end{array}\right\}
$$

$$
\{\text { yields almonds, two species bit- }\}
$$

NAT. ORDER LIX-GRANATEAE.
B. D. Page.

$$
\mathscr{\wp}
$$

$$
\begin{aligned}
& \left\{\begin{array}{c}
\text { aromatic, hot and sharp, slightly } \\
\text { bitter and astringent, }
\end{array}\right\} \\
& \left\{\begin{array}{c}
\text { cloves, aromatic, sweet, strong, } \\
\text { hot, acrid, }
\end{array}\right.
\end{aligned}
$$

$$
\begin{array}{cccc}
\text { oog. juice a violent purgative, } & \text {. } \\
\text { guava tree, .. } & \text {.. } & \text {.. } & \text {. } \\
. & \text {. } & \text {. }
\end{array}
$$

$$
\left\{\begin{array}{c}
\text { ter fruit, } \\
\text { slightly bitter, aperient, cooling, } \\
\text { and febrifuge, }
\end{array}\right.
$$

Jamaica, Cuba, Ceylon,

'4sy gu!feotxolut joj pasn
. 'ษว se pasn səacə

> No article of medicinal value.
B. D. Tage.

$\underset{\substack{9 \\ \hline \\ \hline \\ \hline}}{ }$	
-	: :

B. D. Page.

NAT. ORDER LXVI.-PARONYCHIEA.
 considered cathartic, Trianthema obcordata.* Decand. Digyn. Trianthema obcordata.* Decand. Digyn. considered cathartic, Achyranthes lanata.* Pentand, Monag. $\quad\left\{\begin{array}{c}\text { a decoction of bark of the root } \\ \text { aperient, }\end{array}\right\}$ Bengal, Colombo,
 Found in the Bazars, Bengal.
 NAT. ORDER LXVII.-CRASSULACEA.
 Sempervivum tectorum. Dodec. Dodecag. $\left\{\begin{array}{c}\text { refrigerant, used internally and } \\ \text { externally, }\end{array}\right\}$
 NAT. ORDER LXVIII.-FICOIDEE.

354
75
60
永

South of Europe and Asia Minor,
B. D. Page.
$\left.\begin{array}{l}\left\{\begin{array}{c}\text { Persia, Herat, mountains of La- } \\ \text { ristan and Belochistan, }\end{array}\right. \\ \text { Persia, } \quad . .\end{array}\right\}$
ت
창
捳
365
䯍

Italy and Portugal, .. India ${ }_{2}$.. Middle and South of Europe, Mountainous parts of Europe, do. Naples N. of Europe iu watery places, South of Europe and Asia Minor, fPersia, Herat, mountains of 1 ristan and Belochistan, Persia, Asia Minor, Grecec and Morocco, Belcochistan, .. f Coasts of the Mediterranean, Caucasus, \&c. Persia, plains of Yerde Kaust, K mislia, in the province of Ir and near the town of Jez Khast, Meadows and shady pla

추ㅇㅜㅜ 중
$\stackrel{\circ}{\infty}$
Wet places in Enrope,
Levant, Tartary, South of Europe,
cultivated in all parts of India,
stimulant and stomachic,
Coriandun sativum.* Pentand. Digyn.
Aralia nudicaulis. Pentand. Digyn.
Hedera Helix. Pentand. Digyn.
Panax quinquefolius,
-
NAT. ORDER LXXIII-CORNE ${ }^{\text {L. }}$
NAT. ORDER LXXII.-ARALIACE/E.

372
$\stackrel{N}{c}$

8

Cornus macrophylla.*

Cornus macrophylla.*	..	
nervosa.	.	.
capitata.	..	.

NAT. ORDER LXXVI.-RUBIACEIE, OR CINCHONACEÆ. B. D. Page.

Coromandel and Bengat.	B.	Page.
		100
Do. do.		400
Do. do.		400
Brazil,		400
Java, Ceylon, and Sumatra,		400
Java, Coromandel, Mexico,		400
Bengal,		400
Plains and Continent of India,		400
Through India, especially Coromandel coast, ..		401
$\left\{\begin{array}{c} \text { Cayenne, Brazil, Peru, and some } \\ \text { of the West India islands, } \end{array}\right.$		401
Brazil, ..		401
Arabia, Bengal,		402
Brazil,	402

NAT. ORDER LXXVII--VALERIANEA.

B. D. Page.
ต

404
両
앖
Wet places in Europe, .. .
Piedmont and the Tyrol,
Mountains of the North of India,
(a valuable remedy in the atonic)

Niardostaclyys Jatamansi. Triand. MFonog.

\longrightarrow eeltica.

Dipsacus Fuilonum. Tetrand. Ifonog.
NAT. ORDER LXXIX.-SYNANTHEREN.
Europe,
Europe, Bengal, \{the inspissated juice produces $\}$ symptoms like those of opium,
Gardea or Roman lettuce, af-
fords lactucariun or thridace,
a sedative and anodyne with.

NAT. ORDER LXXVIII.-DIPSACES.
$\left\{\begin{array}{l}\text { fuller's thistle, Dunsakoos of the } \\ \text { Indian materia medica, }\end{array}\right\}$,
North of India,
Lactuca virosa. Synyenes. Fqual. ..
_-. sativa.*

Artemisia Absinthium. Syny. Superf.

___ Pyrethrum, pellitory.

Anthemis nobilis. Syng. Superf.
determines profuse and immediate salivation, used to re. lieve toothaehe, interually as a cordial and stimulant, ...

 ว ' $\mathrm{dn} \times 19$

Artemisia indica.* .. - - Abrotanum.*

'slusedn.

Achillea Millefolitm.* syng. Superf.
Tanacetum vulgare, tansy. Syng. Superft.

Eupatorium perfoliatum.

NAT. ORDER LXXX-CAMPANULATEE.

等

\& pe
B. D. Page.

$$
\left\{\begin{array}{c}
\text { stated to be successful as an anti- } \\
\text { periodic in fevers, }
\end{array}\right\}
$$

Destitute of medicinal plants of proved utility.
NAT. ORDER LXXXI.-LOBELIACEA.

Small shrubs．

NAT．ORDER LXXXIL．－VACCINIEA．

B．D．Page．

NAT．ORDER LXXXIII－－RHODORACEE，or RHODODENDRA．
poisonous plant，．．．．．．Virginia and Carolina， Alps，
Himal
Thibet
Cabul，
Colchis
Nort？
Nortlı Ameriea，
．． $\left\{\begin{array}{c}\text { small doses used in clironic } \\ \text { rhenmatism，gout．and syplii－} \\ \text { lis；stimulant and narcotic，}\end{array}\right\}$

B. 1). Fage.
967 .. \quad 'ย!
Pyrola nmbellata. Syn. Pipsissena.
\qquad

Arctostaphylos Uva ursi. Decand. Monog. the bladder, and some kinds
$\stackrel{0}{\frac{1}{8}}$

$\frac{\infty}{9}$
A.
N
from Canada to Georgia, .
\{ sudorific, and dinretic,
France and Ircland,
Ethiopia and Cape of Good Hope, . .

NAT. ORDER LXXXV.-SAPOTEA.

Bengal, around Calcutta,

Diospyros Melanoxylon.* ...

virginiana.

NAT. ORDER LXXXVII.-STYRACINEE.

Sumatra, Borne0, Siam, and Java, .. 430 benzoic acid, a well known sti. mulant and diaphoretie rense-
 ly used in the manufacture of
 incense,

NAT. ORDER LXXXVII.-JASIINEA.
คั
> $\left\{\begin{array}{c}\text { Spain, Italy, Sicily, consts of the } \\ \text { Mediterrancan, Asia Minor, .. }\end{array}\right\}$

ive, produces olive oil and re-
sin, oil much used in saps,
cerates, liniments, plasters, (\&e. ..
:

Olive Tribb-Oleinefe.
Olea europea." Diand. Monog.
Gouon pupara : 6! eu!odjo xerifis
-_Benzoin.

ウ

13. D. Page.

Aynanchum Ipecachuana.

--_ Vincetoxjeum.

ovalifolium.

a drastic purgative,. .
rather violent poison, said to be eaten by the natives, . . $\left\{\begin{array}{c}\text { thought to yield the false ipe- } \\ \text { eachuana of Bourbon, }\end{array}\right.$ (root expectorant and diaphoretic,
 (of the langs, and pleura, ..) similar properties, \{emetic, roots purgative, used in $\}$ fluor albus and gleet,

Persia and Arabia, a drastic purgative,..
 curnupeวadt joj saına! isqns 1 seq juice extremely acrid, used to remove hair from the skin, and as an external remedy in

emetic, $\left\{\begin{array}{r}\text { root emetie, and said to be pur- } \\ \text { gative; also a supposed anti- } \\ \text { dote to poisons, }\end{array}\right\}$
yields abundance of fine caoutchouc,

roots aerid and emetic,

 ringworm and other eusanerous diseases,. $-26 v_{d} \cdot \mathbb{C l}$Mauritius,
Sandy places in Europe,
Penang,
$\begin{cases}\text { Southern parts of the p } \\
\text { of India at the base of } \\
\text { tains, } & \text {.. }\end{cases}$

Europe,
Europe,

Continent of India,

Mauritius,

...

8

454
Secamone elletica. Pentand. Digyn.

-._- Mauritiana.
Asclepias tuberosa. Pentand. Digyn. .

- deeumbens.
—_ eurassavica.*
Calotropis gigantea.* Pentand. Digyn.

-- procera,

 Periploca graeca.*Alpini.

B．D．Page
Kunawar，on the northern face of
\｛of identical properties with the \}
Atropa acuminata．（mandrake，）．．
Nicandra physaloides．＊pentand．Monog．
Physalis somnifera．Pentand．Monog．．．
－Alkekengi．
Capsicum annuun．＊Pentand．Monog． frutescens．＊

5
令

$\stackrel{8}{8}$
通
8
F 皆
 South of Europe and the East，．．
Europe， Soutlı America，Mexico，East Indies，． Cultivated in Bengal，．．．．
waste places all over Enrope，．． $\left\{\begin{array}{c}\text { good substitute for belladonna } \\ \text { in many cascs，cominon over } \\ \text { the peninsula of India，}\end{array}\right.$
Europe and Asia Minor，．．．
warm parts of America，
Persia，
similar properties，but nore powerful， （f the narcotic properties identical） $\left\{\begin{array}{lll}\text { with those of belladonna and } \\ \text { lyyoscyamus，}\end{array}\right\}$
 said to be diuretic，．．
 \｛supposed to be narcotic and \} fberries purgative and diuretic， $\{$ verries purgative and diuretic， f used iu veterinary practice， $\left\{\begin{array}{c}\text { strong stimulant，useful in elon－} \\ \text { gated uvula and sore throats，}\end{array}\right.$

B. D. Page.
B. D. Page.

 Crescentia Cujete* Didyn. Angiosp. . .

$$
\therefore \quad: \quad \text { : }
$$

\square

$$
\#
$$

$$
\begin{aligned}
& \text { Malabar, } \\
& \text { Gosainthar }
\end{aligned}
$$

Kemaon,

$$
\begin{gathered}
\text { Yuagana, } \\
\ldots \\
\text { Kedarkanta, . . . }
\end{gathered}
$$

Cashmere,

NAT. ORDER XCVIII.-ACANTHACEÆ.

B. D. Page.

NAT. ORDER C.-LABIATE.

 - botogr 'pavig s!ןeupljo ela[es$\left\{\begin{array}{c}\text { Sage, slightly aromatic, some- } \\ \text { what bitter and very hot, . }\end{array}\right\}$
Syria, cultivated in the Calcutta Garden, 488

感
8
$\underset{F}{8}$
ill, Europe,
Europe,
Arabia,..
Europe,
Europe,

Gymnosp. yields an agrecable aromatic
$\left\{\begin{array}{c}\text { yields the oil called by porce- } \\ \text { lain painters-oil of spike, }\end{array}\right\}$
$\left\{\begin{array}{c}\text { nuch prized as an expectorant } \\ \text { and antispasmodic, .. }\end{array}\right\}$

pue siu!rddtu02 andadssip u! $\}$
(to stop vomiting,

∞
$\underset{\sim}{20}$

B. D. Page.
Europe and Asia Minor,

			B. D. Page.		
Europe,	\ldots	\ldots	\ldots	\ldots	490
Europe,	\ldots	\ldots	\ldots	\ldots	490
Mount Ida,	\ldots	\ldots	\ldots	\ldots	491
cultivated in some parts of lower India,	491				
Europe,	\ldots	\ldots	\ldots	\ldots	491
Do.	\ldots	\ldots	\ldots	\ldots	491
Bengal,	\ldots	\ldots	\ldots	\ldots	491
Bengal,	\ldots	\ldots	\ldots	\ldots	491
Himalayas,	\ldots	\ldots	\ldots	\ldots	492
Malabar,	\ldots	\ldots	\ldots	\ldots	492

(ague patients inhale the vapour) from an infusion to cause copious sweating, leaves in infusion give in the later stages of dysentery and intermittent fevers, entire plant

 Least Indies,..
Marrubium vulgare. Didyn. Gymnosp.
 - Dictamnus.

_ creticum.

___ Majorana.*

Thymus vulgaris. Didyn. Plectranthus cordifoli
Plectrantlius cordifolius.* Didyn. Gymnosp. Coleus barbatus.* Didyn. Gymnosp. .
Meriandra strobilifera. Didyn. Gymnosp. Roylea elegans.* Didyn. Gymnosp. ..
Anisomeles nualabarica. ${ }^{*}$ Didyn.Gymnosp.

Nalabar,

Ocymum Basilicuni.* Didyn. Gymnosp.

_.... hirsutum.*

.-_ album.*

Pucha Pat.* Didyn. 9 Gymnosp. 9

NAT. ORDER CI.-BORAGINEE.

Borago officinalis.* Pentand. Afonog.. .

 (decoction of the leaves used in)
believed to be purgative,

Ipomea Jalapa. (Jalap) Pentand. Monog. a brisk cathartic,
roots contain purgative resin,

Argyreia bracteata. ${ }^{\text {. Pentand. Monog. }}$

- speciosa."
Convolvulus Scammonia. Pentand. Mo
Argyreia bracteata. ${ }^{\text {. Pentand. Monog. }}$
- speciosa."
Convolvulus Scammonia. Pentand. Mon

$$
\begin{gathered}
\text { seoparius. } \\
\text { sepium, .. } \\
\hline \text { arvensis.* } \\
\hline \text { Soldanella. } \\
\text { altlæoides. } \\
\hline \text { Batatas.* } \\
\hline \text { grandiflorus. } \\
\hline \text { reptans.* } \\
\hline \text { malabaricus. }
\end{gathered}
$$

$$
\text { . } \text { sweet potaroe, }
$$

(affords a milky juice nearly
equal to scammony in purga- -• .. ‘Кวеэџ๐ ол! >

 -
a brisk cathartic,

B．D．Page．

感
合含喜
옹 B．D．

B. D. Page.
NAT. ORDER CVII.-PLUMBAGINEE.

NAT. ORDER CIX.-MYRSINEE.
B. D. Page.

B. D. Page.

Europe,
会
N
NN
肉
523
523
ค

$\left\{\begin{array}{c}\text { European Alps, Crimea, \& Mount } \\ \text { Caucasus, }\end{array}\right\}$		
wet places in Europe,		
Behar, ..		
Clina, East Indies,		
Germany, ..		
China and Japan,		
$\left\{\begin{array}{l} \text { cultivated in Europe and the Hi- } \\ \text { malayas, and in all the moun- } \\ \text { tainous countries nortl of Ben. } \\ \text { gal, Oude, \&c... } \end{array}\right\}$		

$\left\{\begin{array}{c}\text { valuable article of diet in many } \\ \text { countries where wheat will } \\ \text { not succed, .. }\end{array}\right\}\left\{\begin{array}{c}\text { ma } \\ \text { tai } \\ \text { ga }\end{array}\right.$
NAT. ORDER CXII.-CHENOPODEAE. Fagopyrum esculentum.* (buck wheat)
Rumex acetosa.

-an- alpinus.

 Polygonum Hydropipe \longrightarrow Bistorta... ___ barbatum.*
- amphibium.

- - - tinctorium.

$\left\{\begin{array}{c}\text { employed as an emmenagogue } \\ \text { and antispasmodic, . }\end{array}\right.$
$\begin{gathered}\text { used } \\ \text { us a pot-herb, }\end{gathered}$
do.
Chenopodiun olidum. Pentand. Digyn.
B. D. Page.
B. D.
524
524
524
524
524

524

ed as a pot-herb, . .	
$\left\{\begin{array}{ccc} \text { excessively footid, used as the } \\ \text { C. olidum, .. } & . . & . . \end{array}\right\}$	
powerful expectorant,	
powerful vermifuge, ..	
used in chorea and similar ner-	
vous diseases,	
articles of food cultivated by natives,	
ds said to be e	
do. . ${ }^{\text {a }}$	
yields carbonate of soda	
equal to the last species,	
nly used for fuel,	
leaves used for food,	
ashes highly alkaline,	
o. .. .	
ould	
and cheap carbonate of soda,	
common on sucli salt grounds	
as are inundated by the spring	

Chenopodium laciniatum.

Beta bengalensis.* Pentand. Digyn. Spinacia tetrandra. Dioec. Pentand. Basella.* Pentand. Trigyn... .. Atriplex angustifolia. Pentand. Digyn. - hortensis. Salsola Kali. Pentand. Digyn. ———sativa. \ldots nudiflora. _ indica.

-_-_Tragus.

[^1]ARRAN゙GED IN゙ そ＇HE N゙ATURAL EYSTEM．

Bengal,..	.	\ldots	\ldots	\ldots	528
Hills between Mysore \& Coimbatore,	528				
Gardens,	\ldots	\ldots	\ldots	\ldots	529
Bengal,	\ldots	\ldots	\ldots	\ldots	529

NAT. ORDER CXVI.-THYMELEE.

en
\vdots
\vdots
\vdots
\vdots
$\stackrel{\rightharpoonup}{6}$
ค
:

every part very acrid,
Europe,
Europe,
Europe,
Europe,

$$
\cdot 36 v_{d} \cdot \mathrm{~d} \cdot \mathrm{H}
$$

俞
NN
in
N
NAT. ORDER CXVII.-SANTALACEA.
Monog. sandal wood of Malabar,

$$
\begin{array}{lcc}
\text { Malabar, } & \cdots & \ldots \\
\text { Timor, .. } & \cdots & \ldots \\
\text { Owyliee, on the volcano, }
\end{array}
$$

do. continent of India,

$$
\begin{aligned}
& \text { ma sandal wood, } \\
& \text { dal wood, used by cabinet- } \\
& \text { tal articles of furniturnamen- pow- } \\
& \text { der given by native physici- }
\end{aligned}
$$ der given by native physicivers, cooling, is rubbed on the and other cutancous disor-

Sandwich Islands,

$$
:: ~:
$$ yields a sandal wood,

 ans in ardent remitting feand cooling, is rubbed on the
skin to allay the irritation of musquito bites, prickly heat, ders, ...

$$
\begin{aligned}
& \text { Sikkim, Nipal, Kemaon, \&c.... } \\
& \text { Jamaica, Mexico, St. Domingo, } \\
& \text { United States,... }
\end{aligned}
$$

Laurus Malabathrum.* Syn. Cinnarmomann Afolicathr.
———Culilawan.* Syn. Cinnam. Cwitaran. Cinnamomum. Syn. Cinnam. zeylanicum. Syn. Cinnam, albiforum.

Syn. Sassafras ofici

- Camphora. ${ }_{\text {Syn. }}$ Camphora officinarum. ,hore
the fruit is in odour, strongly -dod jo asmix!lit e 8 u!cquasad per and camphor, taste aroinatic, and sliglitly bitter, ..
 against spasms of the bowels, and in puerperal convulsions, finner bark and rind fragrant,
 bergamot,

Hindoo physicians,

bark bitter, aromatie, and stomachic,
Nectandra cymbarum. Enneand. Monog.

- cinnamomoides.
-_ Paclıury inajor.

___-_-_-_ minor.

Oreodapline opifera. Enneund. Monoy.

 Benzoin odoriferum. Di — Neesianuni. .. .
Benzoin odoriferum. Dioec. Enneand.

higlly stimulant and tonic,

 bark resembles cinnamon, Martius assigns the pichurim
bcans to this plant,.. according to Humboldt is the \} source of the sassafras nuts, . . yields a volatile oil, used as a (stimulating liniment, the cinnamon of the Mauritius,.$\ddot{ }$
 -

NAT. ORDER CXXII.-EUPHORBIACEIE.

South of Europe,
Bengal, 오

 $\left.\begin{array}{l}\text { as affording the best wood for } \\ \text { blocks for the wood engraver, }\end{array}\right\}$ leaves sudorific, seeds cathartic, \quad. $\left\{\begin{array}{c}\text { bark strongly astringent, used } \\ \text { for tanning and in diarrhoea, }\end{array}\right\}$ Buxus sempervirens** Monoec. Tetrand.Circa disticha.* Monoec. Tetrand. . .
Einblica officinalis.* Monoec. Tetrand.
Buxus sempervirens. Monoec. Tetrana.
Cicca disticha.* Monoec. Tetrand. . .
Emblica officinalis.* Monoec. Tetrand.
-

Croton sebiferum.*:.
thuriferum.
sanguifluum.
coriaceum.
bark very aromatic when burned,
(castor-oil plant, seeds inodorous,)

$$
\left[\begin{array}{l}
\text { rancid, yields an on, whicn } \\
\text { is an excellent purgative, } \cdot \cdot
\end{array}\right.
$$

$$
\begin{aligned}
& \text { the physic nut, a powerful cathartic, } \\
& \text { purgative, }
\end{aligned}
$$

America and India,
Bengal,

Bengal,

Cultivated in Bengal,
K!!paods Kıas 'puวe spies

- גaye 'fs.y ie ys!joans alse?
555
555
555

556

558
558

$\left\{\begin{array}{c}\text { the caoutchouc plant, incisions } \\ \text { in the bark cause the dis- } \\ \text { charge of this valuable article, }\end{array}\right\}$
$\left\{\begin{array}{l} \text { the bark derives its celebrity } \\ \text { from laving been long a re- } \\ \text { puted specific in pthisis, it is } \\ \text { also said to be emetic, } \end{array}\right.$
\{flowers said to be specific in di- \} \{ arrhoea and similar diseases, $\}$
\{root bruised in water cathartic, \} decoction of leaves laxative,
$\left\{\begin{array}{c} \text { roots given by the Vaidas as al- } \\ \text { teratives in cachexia and ve- } \\ \text { nereal diseases, } \end{array}\right\}$
$\left\{\begin{array}{c} \text { juice poisonous, seeds used for } \\ \text { intoxieating fish, } \end{array}\right.$
$\left\{\begin{array}{c} \text { odour strong and very foetid, } \\ \text { unvorthy of particutar no- } \\ \text { tice, ... } \end{array}\right\}$
(all parts of this tree discharge, on being punctured, abondance of very white caustic and poisonous juice ; this acts as an inmediate vesicatory, and is used by the Indians to poison their arrows,

Hevea guianensis. Monoec. Afonod.
Alchornea latifolia. Dioec. Monad.
Caturus spiciforus. Dioce. Triand.

Acalypha indica.* Monoec. Monad.
Tragia involucrata.* Monoee. Triand.
Sapium indicum.* Monoec. Monad.
Mercurialis annua** Dioec. Octand.
Hippomane Mancinella. Monoec Monad.

Euphorbia Peplus．．． －Gerardiana， －＿Pitlıyusa，

Ipecachuana，

Pedilanthus tithyma
点含鱀 然
E\％会 ： ： B．

West Indies，
South of Europe，West Indies，
$\left\{\begin{array}{cc}\text { cultivated ground on the Coro－} \\ \text { mandel Coast，}\end{array}\right\}$

South of Europe， \｛ mandel Coast，

North America，

Europe，
Europe，
Europe，
West Indies，

Dodec．Trig．used in America as ipecachuana，
Dodec．Trig．used in America as ipecachuana，


```
－
```

B. D. Page.

Piper nigrum.* Diand. Trigyn.

B. D. Page.
Society, Friendly, \& Sandwich Islands, 575

NAT. ORDER CXXVIII.-URTICE \neq

Asia Minor, south of France, Piedmont, 577
N
N

> B. D. Page.

.

 -тquyu! әuı jo pooy [edjoulad tants,

NAT. ORDER CXXXII-MYRICER.
from the bark is obtained the

Peruvian balsam,
Liqnidambar styraciflua. Monoec. Polyand.
..

Castanea vulgaris. Dioec. Polyand.
Betula Bhojpattra. Monoec. Tetrand. -

- indica.

Fagus sylvatica. Monocc. Polyand
Corylus Avellana. Monoec. Polyand. . .
———_indica.* ..
a.* . . .

Corylus Avellana Nomoec. Polyana.
infectoria. ..

-
B. D, Page.
Page
611
611
611
611
611
 Nortlı Ameriea, $\quad . \quad$ B. D,
Cape,
Himalayas from the Sutlege to Nipal,
N. E. frontier of Bengal,
$\left\{\begin{array}{lll}\text { Coromandel, Patna, Monghir hills, } \\ \text { and from Sylhet to the Kheree } \\ \text { jungle, .. } & \ldots & . .\end{array}\right.$
NAT. ORDER CXXXIII-CONIFERAE.

$$
\dot{\text { Himalayas, }}
$$

Narainhetty,
E゙
Nipal, Kemaon, Cashmere,
Kunawur,
Mcuntains of Europe,

$\{$ produce, gunda biroza, birje or $\}$

 remarkable for its drooping branches, \qquad $\left\{\begin{array}{l}\text { is used as a stimulant in foul } \\ \text { uleers, }\end{array}\right.$seeds form one of the prineipal)
$\left.\begin{array}{l}\text { artieles of subsistence in } \mathrm{Ku} \\ \text { nawur, }\end{array}\right\}$
tenacious resin, tar, and piteh, excellent wood for packing
 ligltt and corklike, and con-
tains a mucilaginous principle

\cdots

$$
\begin{aligned}
& \text { - Deodara, } \\
& \text { _Gerardiana. } \\
& \text { - } \\
& \text { — Deodara, .. }
\end{aligned}
$$

MIyrica Gale. Dioec. Tetrand.

——_mapida. integrifolia.
Putranjiva Roxburghii.*

Tribe 2-Cutressinke.
Juniperts Lycia. Dtoec. Monad.
B. D. Page.
$\begin{array}{ll}\mathrm{N} \\ \mathrm{O} & \mathrm{N} \\ \mathrm{O} & \mathrm{N}\end{array}$
$\begin{array}{ll}\text { N } \\ 0 & 0 \\ 0\end{array}$

Arum vulgare. Monoec. Polyand.

——Colocasia.*

- orixense.*
Page.
625
626
앵 엉 쯩
気
Chittagong,
Ifomalonema aromatica. ${ }^{*}$.1onoec. Polyand. highly prized as a stimulant in India,
Pothos officinatis.* Aronoec. Potyand. . highly esteemed as a stimulant tonic,

NAT. ORDER II.-ACORACEIE.

NAT. ORDER III.-PANDANEF.
 Pandanus odoratissimus. (Keöra.)* $\left\{\begin{array}{c}* \\ \text { tlis article, which is gently }\} \text { Bengal, }\end{array}\right.$

Aquatic, no plant of this order furnishes any medicinal product of the least value,
NAT. ORDER V.-CYPERACEE.

tonic, diaphoretic or diuretic,	Europe,	.	
$\left\{\begin{array}{c}\text { employed as a diaphoretic and } \\ \text { diuretic in Jndia, }\end{array}\right\}$	Bengal,..	.	
species, \{properties the same as the last \}	India, .		
$\left\{\begin{array}{c} \text { plant deserves attention for its } \\ \text { considerable alimentary va- } \\ \text { lue, } . . \end{array}\right.$	Egypt, ..		
$\left\{\begin{array}{c}\text { the exterior tunic of the stems } \\ \text { formed the paper of ancient } \\ \text { Egypt and Europe, }\end{array}\right\}$ Gerinan sarsaparilla,	Bulbous r Sandy coas		

Cyperus longus.* Triand. Monog.
———geminatus. (Papyrus.)
Carex arenaria.

- Seminatua (Papy
Carex arenaria. .

艮

889		
869	'วdoxnt	
18		'snoutip!
489		
L89		
289		
L89		
989		
989		
989		
	 'dremıad
989		
60	$\mathrm{C}^{\prime} \mathrm{g}$	

Avena sativa.* Triand. Monog.
Oryza sativa.* Hexand. Monog.
Zea Mays.* Monoec. Triand.
Holeus Sorghum." Triand. Monog. -
- spicatus.
Panieum miliaceum.* Triand. Monog
italicum.*
Festuca lluitans. Triand. Monog.
Lolium temulentum. Triand. Monog.
Saceliarum officinarum.* Triand. Mon

Sagus lævis. Dioec. Hexand. . . -..-farinifera.

Ceroxylon andicola.
Plımix dactylifera.*
Elais guineensis.* Monoec. Hexand. . .

Andropogon Schoenanthus.* Triand.

Cocos nucifera．＊Monoec．Mexand．
Areca Catechu．${ }^{*}$ Dioec．Hexand．
Calamus Draco．Dioec．Hexand．
NAT．ORDER VIII．－SMILACEE， New Granada，
Mexican Andes， Brazils， Virginia， Sylhet，．． Eastern Bengal， \cdots
 Honduras sarsaparilla，．． Vera Cruz sarsaparilla，．． not proved to yield the drug， employed as a substitute －sarsaparilla，．．．． identical in appearance w （China root，．．．．． much resembles the former，
NAT．ORDER IX．－DIOSCORER．
Tropical Countries，

fnone have any medicinal pro－$\}$

B．D．Page．Honduras sarsaparilla，
Vera Cruz sarsaparilla，
Brazilian sarsaparilla，fmployed a subtitu for
${ }^{\text {for }}$ identical in appearance with the

$$
\because
$$

B. D. Page.

B. D. Page.

Anomum angustifolium. .. -_-_-_ maximum. aromaticum.
-_-_ maximum. ..

> -..-Cardamomum medium.

_ Cardamomum zeylanicum.

> Alpinia Galanga.* Manand. Monog.
Hedychium spicatum.* Monand. Monog.

 Bengal,
$\left\{\begin{array}{l}\text { purposes as ginger, } \\ \{\text { the root is fragrant, warm, and }\}\end{array}\right.$
$\left\{\begin{array}{r}\text { (damom, } \\ \text { Pareira con } \\ \text { damoms } \\ \text { identical }\end{array}\right.$
analogous to
Quilon and Matura,
Sumatra, cultiwated
Archipelago,皆:
Bengal, analogous to the Malabar cardamom, $\left\{\begin{array}{c}\text { the true galanga root of the } \\ \text { druggists, used for the same }\end{array}\right\}$
웅 13 69
68 $\cdot 06{ }^{\circ}{ }^{\circ} \mathrm{O}$ " G $\left\{\begin{array}{c}\text { the greater cardamoms of the } \\ \text { old writers, .. }\end{array}\right\}$ 옹 오 응落 \ldots
\ldots
\ldots
\ldots
\ldots
___ Grana paradisi. ...

$$
\begin{aligned}
& \text { great winged cardamoms, .. } \\
& \{\text { similar in shape and properties }\}
\end{aligned}
$$

to the true cardamoms,
the burra elachi of Sylhet,..

$$
\int \text { yields seeds of camphor-like fla. }
$$

(Pareira considers the wild car$\left\{\begin{array}{l}\text { damoins of Calcutta to be } \\ \text { identical with tlese fruits, .. }\end{array}\right.$
\qquad $\left\{\begin{array}{c}\text { the root is fragrant, warm, and } \\ \text { aromatic, }\end{array}\right\}$

NAT. ORDER XVI.-AMARYLLIDEß.
cultivated all over Bengal,
Cape of Good Hope, . .
Europe,
India,
South America, Bengal,
Mexico,
655
656
656
657
657
657

655
656
656
657
657
657

. - Gowort pubxaH *unoigesse wnu!d
var : toxicarium.*
Brunsvigia toxicaria.
Brunsvigia toxicaria. Itexand. Monog.
Narcissus poeticus- Hexand. Monog. . -—— Tazetta.*

[^2]Crocus sativus. Triand. Monog.
Iris florentina. Triand. .lonog.

-	
- -	-6ouoge pubi*at -snatiee snoolo

NAT. ORDER XVII-MELANTIIACEEA.
B. D. Page.
10
48
8

$\stackrel{\infty}{\circ}$
$\%$

Scilla maritima. Hexand. Monog.

-

B. D. Page.

tion and blistering ; taken in-
 tic, or diuretic; in large doses emetic, feffects said to be similar, but milder than the last species, Roxburgh states that the buib -1!q pue snoasneu se al!nb s!

(f) salbs said to be a substitute)

raw bulb acrid and irritating, taken internally in small -วeun suosaวd κq sทḷ!̣uenb
 ․ . .. '\{แело

 'pr Hepatic aloes,
Altris farinosa. Hexand. Monog.

$$
\ldots \text { Pancration. }
$$

Allium Cepa (onion.)* Hexand. Monog.

[^3]\[

\left\{$$
\begin{array}{c}
\text { used as a tonie, in large doses } \\
\text { tends to act as an emetic, .. }
\end{array}
$$\right\}
\]

$$
\begin{array}{llll}
\infty & \infty & 0 & \infty \\
8 & 0 \\
8 & 8 \\
8
\end{array}
$$

$$
\left\{\begin{array}{l}
\text { expectorant, in Europe it forms } \\
\text { the basis of the Syrop de Ca- } \\
\text { pillaire, }
\end{array}\right\}
$$

ORDER II--ALGE.
(common sea weed or bladder)
wrack, formerly used in the
treatment of scrofula, $\quad . \quad\}$
рако!ua sey 'ssour ueotsion

$$
\begin{gathered}
\text { Adiantum capillus veneris. Cryptog. } \\
\text { Frices. }
\end{gathered}
$$

common to all seas,
Irish Coast,
Corsica, ...
Ceylon, ...
$\left\{\begin{array}{c}\text { Irish rock moss (carrageen), } \\ \text { excel!ent demulcent remedy, }\end{array}\right.$

ORDER III.-FUNGI, (Mushrooms.)
\{invaluable from its powerful $\}$
\{ effects on the uterus,
Ergotatia abortifaciens. Cryptog. Fungi.
indigenous in the Himalayas,

$$
\begin{array}{r}
\text { B. D. Page. } \\
. \quad 677
\end{array}
$$

112 CONSIECTUS OF MEDICIN゙AL PLANTS, ETC.

$$
\begin{aligned}
& \text { Cetraria islandica. Cryptog. Alga. } \\
& \text { Rocella tinctoria. } \\
& \text { Lecanora tartarea. . . } \\
& \text { Borrera Ashneh. } \\
& \text {.. . . } \\
& \text { Be . . }
\end{aligned}
$$

8

:

Tabular Conspectus of Tife Materia
Medicinal
Medicinal Efrects. The Vcgetable，Animal，and Mineral substances are separately grouped．lefercnces are given under each head to works in which fuller descrip－ tions are to be found．The active principle producing the special effect is named in the fifth column．The subjoined abbreviations are to be attended to－

$$
\begin{aligned}
& \text { R1. Royle, } \\
& \text { Illustration }
\end{aligned}
$$

In this Table we give lists of the articles of Materia Medica，especially those available in Bengal，and India generally

刃ibision E ．
diluents，Emollients，and Demulcents．B．D． 132. Vegetable Kingdom．

Classical and Loglish Names.		Usual Native Names.	Locality.	Part used.		Active principle.	References.
Acacia, several specics of,		$\left\{\begin{array}{c} \text { Gum, Kavit goond, Ba- } \\ \text { bula ford. I1. Su- } \\ \text { mug Nraluee, A. } \end{array}\right.$	India, Arabia,	gum,		.	B. D. 299, A. v.ii.142, R1. 182.
Rosaces. Prunus domestica, prune tree,			Asia Minor	fruit,		. ..	B. D. 324. 121. 202.
Pyrus tomentosa, Cydonia vulgaris, Quioce,		Beheedana, H .	Bengal, Asia Mi. nor, Cabul, Bok. hara,	seeds,		. ..	$\left\{\begin{array}{c} \text { [x. v. ii. } 513 \text { B. D. } 330, \\ \text { A. i. 322, R1. 205. } \end{array}\right.$
$\left.\begin{array}{c}\text { Amygdalus communis, sweet } \\ \text { almond, }\end{array}\right\}$		Meetha Badan, H.	Asia Minor, Europe,	sweet almond,		- ..	
Onagharliz. Trapa bispinosa, \qquad natans,		Singara, H. Paneephul, B.	Bengal, Do.	seeds.or nuts, Do.		-	$\begin{aligned} & \mathrm{Rx} . \text { i. } 428.111 .21 \text { I. B. D. } 330 . \\ & \mathrm{Rx}, \text { v. i. } 428 . \end{aligned}$
Combretaces. Terminalia Catoppa,		Ingudi, S. Badam, B. ..	Bengal, ..	mond, oil,		.	41, Rl. 210, A. ii. 194.
Cucurbitacee. Cueurbita pepo, punkin, . .		Meetha kuddoo, Il. ..					
Alomordica dioica, . .		Agokara, Tam. ...	India geterally,	$\begin{aligned} & \text { fruit \& secds, } \\ & \text { root, } \end{aligned}$		$\because \quad .$.	
Bryonia rostrata,		Appakovay, Tam. ..	Tranquebar, ..	root, ..			v. $11.21,13.1 .347,12.218$.
Cucumis utilissimus, ..		Kurktec, B. Kakni, H,	Generally in Bengal, ..	the seeds,		. ..	$\left\{\begin{array}{l} \text { Rx. v. iii. } 722, \text { B. D. } 351 \\ \text { R1. } 218 . \end{array}\right.$
Uabellafyras. Daucus Carota, Cartot, ..		Gajra, H.c	Cultivated in Bengal,..	root, .-		\cdots	B.D. 368, R1. 229, A. v. i. 57.
Cinelonacre. Rubia Maujistu, Madder, ..		Munjit, H .	Bengal, .."	root,		. .	
Synanthembit. Elephantopus scaber, .		am dolu, 6.	mmon in Iudia,	pot,			จ. ii. 17, L. 449, Rl. 218

ARRANGED ACCORDING TO AEDICINAL EFFECTS. 117

Classical and English names.	Usual Native Names.	Locality.	l'art used.	Active principle.	References.
Sagus, several species of Sago plants. Tumphil, Sago palm, $\begin{array}{ll}\text {... } & \\ \end{array}$	Moluceas,	h of stems, ..	\cdots	
$\begin{array}{lll} & \text { Dioscorse. } & \\ \text { Yams, } & . . & . \\ \hline \end{array}$	Kamaloo, B...	Bengal, .-	roots, \quad....	-	R1. 379, lix. iii. $397, ~ 13 ~ D ~$ 616.
Marantages Maranta arundinacea, and other spectes, arrow root,	East Indies, Bengal,	arrow root,	-	B. D. G16, 121. 336 .
	$\} \text { likor, }$	Bengal, ..	fecula, $\quad . .$.	\cdots	Rl. 398, A. i. 454, Rx. i. 33, B. D. 649 .
Orchideze. Orchis maseuda, salep,	ots, Salep misree, H. ..	Europe and Cashmere,	tuberous roots, ..	-•	A. i. 368, 121. 369, B.D. 653.
Litiacese. Asparagus surmentosus,	Sufaid mooslie, \mathbf{B}.	Bengal,	ruot,		A. ii. 409. B. D. 681 Rl . 392, B. D. 168.

DIAPHORETICS. B. D. p. 133.

124 Tabular conspectus of the materia medica,

Classical aud Eutglish Names	Usual Native Names.	Locality.	Part used.	Active prituciple.	leferences.
Amyris Commiphora, Googul or Bdellium Iree,	supposed source of Googul, or Bdellium,	Sylhet,	resinoussubstance	..	B. D. 287. 1R1. 17G, Rx. ii, 211.
Leguninoss. Myrospermum peruiferum, Balsam of l'eru tree, tolniferum, tolu balsam		Colombia and Mexico,	Balsau, . . Balsam, .	\cdots	$\begin{aligned} & \text { B. D. } 290, \\ & \text { B. D. } 291 . \end{aligned}$
	the myrrh, Vola. S. Heeru Bol. 1. Muri, A.	Arabia Felix, ..	Gum resin, myrrh	..	B. D. 285.
Umbeliffere. Archangelica oflicinalis, Opoponax Chironium, opolonax plaut,	gum resin, Juw	North of Europe, Astia Minor, ..	$\begin{aligned} & \text { root. } \\ & \text { Guin resin, } \end{aligned}$.'.	13. D. 361.
Cincionacrer. Cephaelis Ipecacuanha,) 1peca. Psychotria emetica,.... \} enanha fichardsonia emetica,..) plants.	$\begin{array}{ll} & \\ \cdots \cdots & \ldots . \\ \cdots \cdots & \cdots\end{array}$	New Grauada, do. do. \qquad	root, \quad. do. do. \quad.	Emetine, do. .. do. ..	B. D. 379 . B. D. 23%. B. D. $3>8$.
Valmbianeze. Valeriana afficinalis, Valerian, .. Nardostachys_Jatamansi,spikeuard	Sumbul Hindec, Balchur, H.	Europe, Elimalayas,	$\begin{array}{ll} \text { \# root, } & \text {. } \\ \text {. roots, } & \end{array}$	Fssential oil	$\begin{aligned} & \text { B. D. } 402 . \\ & \text { 13. D. } 403, \text { A. ii. } 367 \text {, Ik. i. } \\ & 163, \text { Rl. 2A. } \end{aligned}$
SYNANTMEREA. Anthemis nobilis. cammomile,... Artemisia Dracuaculus, dragon Wormwood, \qquad rupestris, rock wormvoord,	laboone phool, II. ...	Byrope and P'ersia, Siberia,.. Sisitzerlaud,	fluvers, inspissated juice, whole plant, ..	\because	$\begin{aligned} & \text { B. D. } 413,111.290, \text { A. i. } 67 . \\ & \text { B. D. } 415, \text { RI. } 250, \text { Rx. ii. } \\ & \text { (117. D. } 415 . \end{aligned}$

Classical and English Names.	Usual Native Names.	Locality.		Part used.	Active principle.	References.
Laurus Camphora, or Camphora officinarum, camphor tree,	Camphor, Kupoor, H.	Japan, lormosa,		amphor,	.	B. D. $545, \mathrm{Rx}$. ii. 304, A. i 5%.
Euphorbiacke. Cicea disticha or Phyllanthus lon. gifolia,	Cheramela or Huriphul, ${ }^{\text {H }}$.	Bental, ..		leares and seeds,	..	B. D. 551, R1. 327, Rs. iii 673.
Aristolochieds. Aristolockia Serpentaria, and sc. veral otber species,.... $\quad . .$.	North America,		roots,	$\begin{aligned} - \\ \text { sential es. } \end{aligned}$	$\begin{aligned} & \text { B. D. } 567, \text { A. ii. 299, } 300, \\ & \text { Rx. } 489, \text { Ni. } 329 . \end{aligned}$
Cilohastiers. Chloranthus officiralis,	$\cdots \cdots$	Jaya, -		root,	- .	B. D. 570.
Piperaces. Piper methysticum, intoxicating pepper,	,	Sandwich islands,	-	fruit,	- .	B. D. 575.

MONOCOTYLEDONEA.

ANIMAL SUBSTANCES.

EXPECTORANTS. 13. D. p. 134.

ARRANGED ACCORDIVG TO MEDICRAAL EFFECTS 131

These are chicfly. the vapours of water, weak spirit. ammonia, of volatile oils, Chlorine and Iodine. The acetate of ammoniz.
Fartarized autimony.
EMETICS. B. D. p. 138.

Classieal ant English Names.	Usual Native Names.	Locality.	Part used.	Active principle.	References.
Psychotria emetica, emetic l’sy. chotria. Richardsonia braziliensis, Bra- ziliao Richardsonia, Randia (or Gardenia) dnmetorıum,	Muerphni. M.	$\begin{aligned} & \text { New Granada, } \\ & \text { Brazil, } \\ & \text { Bengal, Coromanilel, .. } \end{aligned}$	the roots,	1\%metine,	$\begin{aligned} & \text { B. D. } 3 \mathrm{i} \mathrm{U} . \\ & \text { B. D. } 399,1113, \text { A. ii. } 185 . \end{aligned}$
Pæderia fetida,	Gundale, B. Gunda badha. li, i. ..	India, rather rare, ..	root,		B.D -101, Rx .1 i. 683, 121.238.
Symintherb.z. Anthemis nobitis, chamomile,	Baboone, II.	Persia and Europe.	flowers,		B. D. 413, A. i. 67, 131. 250.
Lobeliaces. Lobelia infiata, Indi:m tobaceo, -	United States, ..	Howdered leaves and eapsules,. .	Essential oil,	B. D. 423.
Cerbera Apocrinez. Mlangas,	Botanie Garlens of Cal-			
A poe ennm androsmmifolinm, dog's bane, and other species,	United States, ..	kernels, fresh ronts,		$\begin{aligned} & \text { H. ఏ. } 44 \overline{1} . \\ & \text { li. D. } 448 . \end{aligned}$
Cynanchum (or Asclepias) Vince. toxicum,	Enrope.	powdered root, ..		B. D. 457 .
Sceamone, (or l'eriploca) emetica,	..	South Americs, West lnulies,			13. D. 151 .
Calotropis (or Aselepias) gigantea, inudar, and other species,	Akund, Ak, mudar, Il	India and Caleutta Gar. dens, ..	bark of root,	\cdots	13. 1). 452. B. 1). 452. A. i. $486,7,4 E 8$
Tylophora (or Asclepias) asthmatica, ..	Unlamol, If. ..	Common in Bengal,	Itried roots,	\ldots	lki. 2î̃3. lix. ii. 30 . B. D. 1550,233, RI. $2 \overline{4}$.
Scrofularinfr. Vantellia diffusa,	Mauritius,	roots and stems,	\cdots	B. D. 4π \%
Achnthaces. Gendarussa vulgaris, ..	Nela nergunda, S. Jugut inudun, B .	India in gardens,	dried plant,		B. D. 183, I21. 29 \%

AHRANGED ACCORDING TO MEDICINAL EFFECTS. 135

[^4]仍 \ddagger Many mineral poisons, for example-arsenic-produce violent vomiling, hut they are not used as emetics.
PURGATIVES. B. D. p. 138 .

Antmal.
Hexsy, produce ef the Bee, (apis mellifica ${ }_{1}$) is gently laxative.
Oxide of 3lercury. Blue.
Protochloride of mereury. Cstosizl, Salts.
Magnesin, sulphate of,
SodA, sulphate of,

- \& potash, tartrate ef,
l'OTASH, bisilphate of,
- $\quad \begin{gathered}\text { sulphate. } \\ \text { bitartrate. }\end{gathered}$
AnTimony, precipitated sulphuret of,
DIURETICS. B. D. p. 139.

Inorganic Diuretics.

EMMENAGOGURS. B. D. p. 139.

Classical and English Names.	Usual Native Namos.	Loeality.	Part used.	Aetivo prineiplo.	Refereuces.
\qquad bracteata, indica,	Cattrabunga, S . Isarmel, H. Hari, S.	$\begin{aligned} & \text { Coromandel, .. } \\ & \text { Bengal. } \end{aligned}$	roots,	.	13. t). 568 , llx. iii. 190, Rl. 329 , A. ii. -]. 301.
Arlemisia, wotm wood, several species of,	Afsunleen. A. Duna, Murwa, Nagdowna, H .	Europe,	plants, roots, seeds,	*	B. D. Jlh Rx, iii. 419, RI. 250, A. ii. 19].
Conifere, Jtniperus Sabina, savime, \qquad eommunis, juuiper,	The berries. Abhul, hoobur,	Lurope, Llimalayas and Cabul,	Bruised herb, leaves, vol, oil, tho berries,	\cdots	$\begin{aligned} & \text { B. D. } 620 . \\ & \text { B. D. } 620 . \end{aligned}$
Graminkef. Secale cornutum, or Selerotiam clavas (ergot of rye,)		Eimrope and Aınerica,...	the spurred grain,	\cdots	B. D. 673.

ANiMAL King dom.
Inorganic.
Alusk-produced by Musk Doer,
Castor -.......... By Beaver,
Preparations of lan, especially the fincture of the muriate of the Peroxide. Mencurx, especially ealomel and l'lummor's pill.
PARTURIFACIENTS. B. D. p. 141.
Secale cornutum, or Sclerotium clavus, Ergot of Rye, (see last class.)
SLALOGOGULSS. B. D. 141.

TNORGANIC.
The preparations of MErcury.
$\frac{\text { Hy donocyanic } A c I D .}{}$
RUBLFACIENTS, NIGREFACIENTS, BLISTERS, SUPPURATIVES. B. D. I42, 143.

References．合
B．D． 530 ．
ジ
B．D．553．A．i．101．IR1． 327. A．ii．61．121． 328, Rx．3， 476 ． B．D． 56$\}$ ． － 13．D．S6i3．A．in．438，Rl，328， B．D．565，RI．328．A．i． 129. B．D． 565 ，RI．328．A．i． 129.
ii． 420 ．IRx．ih． 468 ． B．D． 5% $\stackrel{\square}{0}$ B．D．613．616，121．319，Rx． B．D．613，616， 651, A． 458 ．
B．D．624， $12 x$ iif 503 ．A ii．
$\begin{aligned} & 463, \text { Kl．} 405 \text { ．}\end{aligned}$

	Classical and Euglish Numes.	Usual Native Names.	Locality.	Part used.	Active principle.	Refarenees.
	ANIMAL KINGDOM. Cantharis vesicatortia, Blistering beetle, Lytua caralea, Aeloe Trianthema, or Mylabris Cichorii,	clini, H. ..	Europe, Russia, .. Bengal, especially, Dac. ca, Hydrabad, ©c.	powdicred fly, tiveture of, do.	\cdots	B. D. G81. B. D. 68!.

Inorganic Epispastics, \&c.

[^5]LOCAL ANDD NNTERNAL STIMULANTS. B. D. p. 143. Carminatives-Diffusible Stimulants-Aromatics.

Classieal and English Names.	Usual Native Names.	Locality.	Part used.	Artive principle.	References.
Balsamiflue. $\xrightarrow{\text { Liquidambar Allinzia, }}$ orientale. .:	Rasamala. Malay.	Java. Cyprus. Levaut,	bark. bark.	\cdots	B. 1. 285. B. D. 255 .
Rutace.e. Galipea Cusparia. ..		South Ameriea,	bark.	..	13. D. 261.
Xanthoxylacpe. Xanthoxylum alatum, and several other species. Ptelea trifoliata, Toddalia aculeata.	Durmur. H. the capsules. tejbul, H. Kaka toddali, Tel.	Nipal. N. India, Unitell Stales. Coromandel.	whole plant and seeds, eapsules. frnit, leaves, frest bark.	\because	$\begin{aligned} & \text { B. D. } 264, \text { Rx. iii. } 768 . \text { RI. } \\ & \text { B. . . } 265 . \\ & \text { 8. D. } 265, \text { R1. } 157 . \text { lix. i. } 617 . \end{aligned}$
Aquilarmes. Aquilaria Agallocka, aloes wood.	Ugooro.S. Aooll Indee. H.	Sunderbunds.	rood,	B-D. 275, 11. 172, Rx. ii, 422.
'\̌brbinthace. Protium giteadense, .. - Kataf. uyrrh tree.	Ihe balsam, Khoghen Bulsan. gum resin, Heera Bol, 11...	Artbia, Bot. Garden. Arabia.	Balsam of Gilead. mayrh.	\because	$\begin{aligned} & \text { 13. D. } 28 \mathrm{t} . \\ & \text { 13. D. } 285 . \end{aligned}$
Commiphora madagnscarensis. glogul tree.	proluct, googul. H. ..	Assam. Sylhet.	yrogul resin, \quad.-	\cdots	B. 1. 287
Memit		dia.	Balsam of.	\cdots.	3. D. 288, A. ii, 60. lix. ii,383 R1. 172 .
Morixges. Moringa pterygosperma.	Solhanjuna, H. ..	India,	roots ith lulp. .-	.	13. D. 25), 181. 180, Rx. ii, 368. A. i. 177^{3}.
LEGEMINORA. Myгоspermaи peruiferım, -- tohtiferum,		South America. South A merica,	bals:1m of Peru. balsam of Tolu...	\cdots	B. D. 290 . 1B. D. 291.

Classical and Firntish names.	Usual Native Names.	Locality.	Part used.	Active Principle.	References.
Homalomena aromatica, Pothos ofticinalis,	Kuchoo gundubee, B. Guj pippul, B. H.	Bengal,	root,	\cdots	B. D. 626.
Acoracres. Acorus Calamus, sweet flag, ..	Buch, 11.	Malabar,	root,	-	B. D. 626.
Pandaner. Pandanus odoratissiuus.	Keora, B.	Bengal, .	distilled water of .Howers,	B. D. 627.
Andropogon Schoenanthus, lemon grass,	Gunda bel, H .	Arabia, India,	distillet water, \&: essential oil,	..	13. D. 639.
plant, ... Calamus aromaticus,	Roosa, H.	Nemaur, Beogall,	$\begin{array}{ll} \text { do. } & \text { do. } \\ \text { do. } & \text { do. } \end{array}$	\cdots	B. D. 639.
Zingiber. تio ioner, scveral species of.	Adrak, B.	Bengal,	roots.	B. D. 617.
and other species of, \qquad	Kuchoora, B. Bun Hul Amada. B.	Chittagong, Bengal,	lo. do.	\#.	B. D. 648. B. 1. 619.
Kxmpferia Galan;a,	Chundra moola, B. Booi Champa, B..	$\begin{array}{ll} \text { India, } \\ \text { India, } \\ \hline \end{array}$	$\begin{array}{ll} \text { do. do. } \\ \text { do. } & \text { do. } \end{array}$	-	B. D. 619 . B. 1. 650 .
Amomum Cardamomum, and several uther species, Slettaria C"ardumomum, and seve.	Elachi, H....	Mounlains of India	fruits,	\cdots	B. D. 650.
ral other species, Alpinia Galanga, galaugal roots.	Burra and chota clachi, Koolinjan, H .	Malabar, Sylhet, Sumatra	fruits,	-	B. D. 631 . B. D. 651
Hedychium spicatum, lesser gat laugal,	Kupoor kuehree, H.	India,	roots,		B. D. 652.

Toxics. B. D. p. 143.
Of these there are five 1 rincipal groupes, the simple bitter, astriugent, alterative, antispasmodic, and convnlsive.
BITTLER TONICS.

alterative tonics. B. D. p. $14 \overline{0}$.

f4 TABUIAR CONSPECTUS OF The materia medica,
convul. Ive Tonles.

Classical and English Names.	Usual Native Names.	Locality.	Part uscd.	Active principlc.	licferences.
Coriaraceiz. Coriaria Nipalensis, myrtifolia, \qquad	Mussooreo, IL....	Llimalayas, Europe and Egypt,	bark, $. . . . \quad . . .$. leaves,	B. D. 270 , RII. 165. B. D. 270 .
Lorantiaceas. Viscram monoicum, parasito of the Nux-vomica of sylhet,	Kuchila ko mulung,	Cuttack and Orissa.....	leaves, ...	\cdots	B. D. 375.
Synantilerre. Arnica montana, wolf's bane.		Europo,	fowors,	\ldots	B. D. 422.
RIIODODPsidrire. hhododendron, several specics of.	Leaves. 13urg. i. tibbut, Hoo. las Cashmeree. talesfur, .	11imalayas, Cashmere,	lcaves, bark, ...	…	B. D. 425, 121. 259.
Stryciner.e. Strychnos Nux-romica,	Koochla, 11. Khanck ul kelb, A.	Boogal,	$\left\{\begin{aligned} & \text { bark, } \text { sceds, } \\ & \text { strychaino } \\ & \text { cincuc, } \ldots . . \end{aligned}\right.$	\ldots	B. D. $436,12 \mathrm{x}$. i. 575 , A. i. 318, ii. 489, 14. 271.
\qquad \qquad St. Ignatii, Colubrina, and other spe.	Papecta. H.... Nagra musada, Tcl.	Philipprine Islands, Malabar, Cyylen,	sceds, the wood (lignum	B. I) 441. B. D. 442, A. ii. 202, kx . 1.

ARKANGHD ACCORDING TO MEDICIN゙AL EFFEOTS. 175
ANTISPASMODIC TONICS.

ASTRINGENF TONICS.

Classical and Engl:sh Names.	Usual Native Names.	Locality.	Part used.	Active principle.	Refernnces.
Cedrelacee. Srietenia Makugami, Soymida februfuya,	๕ohun, B. $\quad \cdots \cdots$	S. America, Bot. Gard. Bengal.	$\begin{array}{lll} \text { bark, } & \text {.. } & \text {.. } \\ \text { bark. } & \text {. } & \end{array}$	\cdots	B. D. 247° B. D. 247. KI. 142. 275, A. i. 123, 599. ii. 422 , Hx. ii.
Cedrela Toona, ..	Tunaa. B.	Bengal.	bark,	-	B. D. 249, A. ii. 429 . Rx- i. 635. RI. i. 142.
Cbickrassia tabularis. ..	Chickrassi, B.	East of Bengal.	bark,	-•	B. D. 250, Rx. ii. 399. RI. 143.
Hutacze. Barosma crerulata, buchu, ..	\cdots....	Cape of Good Hope, ..	leaves,	-	B. D. 262.
Santhoxulace. Bracea sumatrara.		Sumatra, Bot. Garden,	bark.	-	B. D. 266.
Celastrinef. Elæodeodron Roxburgbii, (Nee. rija Dechotoma. Roxi.) ..	\ldots...	Mountains of 1ndia. ..	bark of root,	-•	B. D. 27 I , Hx. i. 646. RI. 167.
Terebinthacker. Rhus coriaria. sumach,	Shumuk, P.	Persia, Syria.	leaves. bark, root,	*	B. D. 282. A. i. 414. R1. 179.
Leguminosa Butea frondosa.	Pulasa, H.	Mountains of India. ..	astringent juice, palass kino.flow.	-	B. D. 296. RII. 189. Rx. iii244, A. ii. 333.
Pterocarpus Draco. .-	The resin. Dumul-ook.wain, H.	American lslands.	ers, rait, dark"s resin, dragon's blood,	.	B. D. 297, 1k1. 195.
Pterocarpus erinaceus.		Senegal,	African kino. ..	-•	B. D. 298.
Acacia vera, arabica and other species.	Babool, H. $\quad .$. . ${ }^{\text {a }}$	Arabia, Bengal,	bark, and juice,	-	B. D. 299, RI. 182. A. ii. 142, Rx. it. 558.

Classical and English Names.	Usual Native Names.	Locality.	Part used.	Active principle.	References.
Tamarlx dioica. \qquad Furas,	Jhou, burree mue, galls. ul toorfa. Asul or atul. galls, chotee mue and sumput ul asul.	India generally. Dooab:	bark and leaves and galls of.	-	$\begin{aligned} & \text { B. D. 332.R1. 213, A. i. } 433 \text {, } \\ & \text { Rx. ii. } 100 . \end{aligned}$
Eucalyptus resinifera. Australian		Australia, Calcutta Garden.	kino of. .	-	B. D. 336.
Granatee. Punica Granatum, pomegranate,	Darim. B. Anar, H.	Bengal, ..	oots, bark, rind of fruit, \& flowers.	*	B. D. 338 , A. i. 322, ii. 175 . Rl. 119. 208. Rx. ii. 489.
Combretacese. Terminatia Chebula.	Hara, H.	Bengal, Mysore.		-•	B. D. 340.121 .209, A.i. 237. ii. 128.
—— alatapara. \quad..	Urjuna. H. Ingudi, S.	Cultivated in Bengal.	ruit and bark. .. bark and leaves,	..	B. D. 3il, A. ii. 193. B. D. 341, 121. 210. A. ii.
- Bellerica. .-	Bchira. If.	194, 230. B. D. 341 , RI. 209, A. i. 236.
Cornef. Cornus florida, and other species,	United States,		-	B. D. 375.
Cinchona, soveral species of.		Peruvian Andes			B. D. 383.
Hymenodictyon excelsum.	ndaru, H.	Mountains of India.	bark,	..	$\left\{\begin{array}{l} \text { B. D. } 394, \text { Rx. ii. 148. (ed } \\ \text { Carey i. } 529, \text { KI. } 239 . \end{array}\right.$ $\text { A. .i. } 341 .$
Uncaria Gambir. ..	Gambir, Malay.	Indian Archipelago. Bot, Garden.	leaves and extract gambir.	.	$\begin{aligned} & \text { B. D. } 398 \text { Rx. i. } 517.121 . \\ & \text { 239. A. i. } 105 . \end{aligned}$
Centaurea. several species of, Eupatorium Ayapana.	Ауарава, в....	Europe. Asia Minor. Bengal,	entire plant. tried plant.	\therefore	B. 1.490 . B. D. 24. R. ii. 35, R!. 250.

Classical and Englistu Names.	Usual Native Names.	Locality.		l'art used.	Active principle.	Keferences.
Earcaces. Pyrola umbellata,.. Arctostaphylos Uba ursi. Bear's whortle berry.	\cdots	Canada, Georgia. France, Ircland.		dried leaves, powdered leaves,	\because	13. D. 426. B. D. 426 .
Ebenacee. Diospyros Embryopteris. \qquad melanoxylon, Ebony tree.	Gab, H. B. .. Kendoo, B. .	Benga!. Bengal, Midnapore.		fruit. julce of. .. bark. ..	\cdots	B. D. 428. A. if. 278 , lkx . ii. 533. lit. 262. B. 1. 429 . Kx. ii. 530, 121. $26^{\circ} 2$.
Alocyned. Wrightia antidysenterica, (Co. nessi bark.)	Conessi. Tiway, 11. ..	Nalabar. Ceylon.	.	bark.	\cdots	B. D. 446. A. i. 88, R1. 270.
	Bukooari, B. Burra lesoora, H. Goondnee, H.	Hindoostan.	. \cdot	bark and seeds. bark,	-	B. D. 499 . A. ii. 466. B. D. 499. Kl. 306, Rx. i. $590,595$.
Polygonek. 'I'be Rhubarbs, (Rheum) contain the astringent acid in swall rpoportions. Polygonum Bistorta.	. ${ }^{\text {- }}$ -	Europe. . .	-	root. .. .*	\cdots	B. D. 522.
Amarantacea. Achyranthes aspera,	Lal chirchiri, H. Apamarga, S.	Behar, ..	-	root. - .	-	$\begin{aligned} & \text { B. D. } 529 . \text { A. ii. 221, Kx. i. } \\ & \text { 672, R1. } 321 \text {. } \end{aligned}$
Euphorbiacra. Emblica officinalis, or Phyllan. thus Emblica.	Amlaki, S. Anola, H.	India commonly.		bark, fruit.	.	B. D. 55 i. A. i. 241.244 , K1. 122.

182 TABULAR CONSPECTUS OF TIIE MATERIA MEDICA,

Classica! and English Names.	Usual Native Names.	Locality.	Parl used.	Active Principle.	References.
Phyllantbus Niruri, Brictelia spinosa,.. Alcornea latifolia, Caturus spiciflorus,	Sadcehazar munce, H. Kadishen, Tel. $\because \quad \because$ $\because \quad \therefore$	India commenly. Ditto, \because Jamaica, \because Bengal, \because	root. bark of capsule. bark, flowers,	\because \because \because	B. D. 55], Rx. iii. 671, 659. B.D. $652, \mathrm{Rx}$, tii. 735 . B. D. 561 . B. D. 569. Kx. iii. 76 . R! 326.
Cytinus Hypocistus, Bilanophora gigantica,	$\ddot{\sim}{ }^{\text {eerbees, }}$ B.	rope,	uice, bark,	..	B. D. 569. B. D. 569 , kl. 330.
Jugla nders. Juglans regia, Walnut,	Akrot, H. .	malayas,	bark, pericarp, ..	,	B. D. 605.
Amentacres. Quercus Fiobur, Oak tree, -- infectoria, Gallnut oak,	The galls, Majoptut, H.	Europe, Asia Alinor, Kurdista		\because	B. D. 607. B. D. 607 .
Areca Catechu, .. C'alamus Draco, ..	The resin Damu\{ukwain. H .	Eastern Islands, Ben. gal, Indian Archipelago, ..	betel nut, resin, dragon's blood,		B. D, 643, A. ii. $268, R$ \$(0), Rx. iii. 615 . B. D. 643 .

INORGANIC ASTRINGENTS.
Alum, Sulphate of Alumina and Potassa. AcETATB Of LEAD.
SULPHATE Of COPP SULPHATE of COPPER.
SULPGATE,
Muriatr, $\}$ Sesquivitrate, $\}$ fron.
Biachlorioe of Mercury.
Nitrate of Sllver.
Sulphate of Zinc.
REFRIGEKANTS. B. D. 147.
The articles used as internal refrigerants bave either beeu described already under the heads of Diaphoretics. Diuretics. \&c. or are included iu the next division, Narcotics.
NARCOTICS. B. D. 100.

Classical and English Names.	Usudl Notive Names.	Locality*	Part used.	Active principle.	Referetices.
Ranunclelaceie. Aconitum ferox, and other spe. cies, monk's hood. "..	The rool. Bisb. Mcetha tee. lia. H.	Himalayas.	the root.	deonitine.	B. D. 165. RI. 46, 27.2
Pavaveracbe. Papaver somniferum. poppy. .. Meconopsis aculeata.	Tbe juice, Afyoon. Afecm. H.	Bengal, Himalayas.	cappsules.concrete juice. орium. root.	Morphia,	B. D. 171 I. A. i. 326 . ii. 329 . Kl. 119. Kx. ti. 571. B. D. 184. Kl. 67.
Menispermacee. Anamirta Cocculus, or coceulus indicus. ..	Kakmar:. S. .	Malabar. Bot. Garden,	seeds.	Picrotosic aeid.	B. D. 195, R1. 61. A. ii. 131.
Flacourtiaces. Hydnocarpus venenata,	Ceylon. ..	fruits a fish poison.	.	B. D. 207.
Dryabalanops Camphora. Cam. phor,	Kufoor. H.	Sumatra. Java,	camphor,	*	3. D. 220.
MBLIACEA. Walsura fiscidia.	Wallursi. T.	the Circars.	bark, a lish poison		13. D. 247, Kx. ii. 317, 1 ll .

Clausical and English Names.	Usual Native Names.	Locality.	Part used.	Active principle.	lieferonces.
Solaneze. Solanum nigruin. AtropaBelladonnz,deadly nightshade.	$\begin{array}{ll}\text { Arrub-ul salib. H. } & \text {..... } \\ \text {..... }\end{array}$	Enrope. Bengal. Europe.	fruits, extract. leaves, ..	Atropia, ..	13. D. 462. R1. $2 \overline{2} 9$. B. D. 463, A. i. 20 î. B. D- 464.
Physalis somatifera. vel. flexuosa.	Usynnil. kaknuj. H. $\quad \cdots$	Endia,	leaves, stems.		B. D. 467. Iix. i. 56], A. ii.
Daiurg Stramonium. thorw-ap. \qquad fastiosa. \because	$\left.\begin{array}{l}\text { Datoora, } \\ \text { Kala datoora. }\end{array}\right\}$ methal. H.	Enrope,	stems. capsules. seeds, ..	Daturia.	14, R1. 279. B. D. 469 A. i. 442 , Rl. 279. Rx. i. 561.
Hyoscyamus niger. henbaue. ..	seeds. (khorasanee ajwa- $\text { in. } \mathrm{H} \text {.) }$	Enrope. cultivated in India. B. garden.	leaves, seeds, ex. tract.	Hyoscya. mia.	B. D. 470. A.i. 167. K1. 279.
Nicotiana Tabacum, tobaceo. \& other speeics. Cestrum venenatura	Tambaca, H.	West Indiez, Asla Miuut Bengal. \&c. Cape of Good Hope, ..	leaves and prepa. rations. bark.	Nicotina.	$\begin{aligned} & \text { B. D. } 4 \mathrm{I} \text { I. A. i, } 447 . \mathrm{Kl} \text {. } \\ & \text { B. D. } 474 \end{aligned}$
Scropitularineze. Digitalis purpurea. foxglove and		Europe.	leaves.	.	B. D. 474.
ládrinea. Laurus Camphora. or camphora Officinarnra. camphor tree. \cdots...	Japan.	the camphor.	.	B. D. 5.45. R1. 324 A. A. i. 588 , Rex. it. 304.
Euphorbtacer. Fluggea virosa, or 1'hyllanthns		rear Mountai	bark, a fish poi.	-	B. D. $533 . \mathrm{kl} .32 \mathrm{~T}$
Sapiumindicum. ${ }^{\text {a }}$. ${ }^{\text {a }}$	Hoorora. B	Delta of Ganges.	juice. seeds. fish poison.	..	B. D. 533. Rx. iii. 692, R1. 328.
URticee. Humulus Lupulus, hop,		Europe, the Dhoon. ..	strobiles, lupu.		B. D. 578.

ARRANGED ACCORDIN゙GTO MEDICINAL EFFECTS. 187

3art 班。

fateria ftevica.

Acfitate of Ammonia, Water of. (Ammonie Acetatis Aqua)-Sp. Gr. 1011, neutral, neither smells of ammonia nor of vinegar ; not precipitated by nitrate of silver ; may be evaporated from platinum or tale without leaving any residuum; does not redden litmus, nor turn turmeric paper brown. Solution of potash sets free ammonia, sulphurie acid disengages vapours of acetic acid.

Acti, Acetic.w-Density not above $1068 \cdot 5$, volatile, colourless, not coloured by sulphurctted liydro-

Sirka Ke Tesab.-ActDUW ACETICUM. gen or precipitated by the baryta test; 100 minims neutralize 216 grs . of carbonate of soda.
Varieties.--Vinegars
a. British.-Sp. Gr. 1006 to 1019.
b. Distilled.-Sp. Gr. 1005.
c. French.-Sp. Gr. 1014 to 1020.
d. Pyroligneous or Wood. Sp. Gr. 1034, colorless; 100 minims neutralize 53 grains of carbonate of soda.
'l'le Britisli and French Vinegars contain a small quantity of sulplurie acid, which is detected by nitrate of Baryta; 30 minims of a solution of this test should precipitate all the sulphuric acid in four fluid onnces of these varieties. The Bengal vinegar described in the next part is too impurc to be admitted as an artiele in this list.

Acid, Benzoic.-Crystalline, fragrant, dissolved in solution of potasl, feathery, brilliant, melted
Taban Ke KhoolasaAcidusi Benzoncum. spirit lamp flamc.

Acid, Citric.-White, in irregular, roundish lard erys-

Niboo ke KhoolasnAcidum Cithicum. tals; not precipitated by a solution of potash, whiel would detect tartaric aeid hy precipitating the bitartrate of potash;
heated on tale with a little nitrate of ammonia, (see tests,) it is entirely consunted, shewing the absence of alkaline or earthy admixtures.

Acid, Hydrocyanic or Prussic.-Transparent, colorless, smells faintly of bitter almonds. Dum Hydrocyanicum. Add a few drops of a solution of nitrate of silver, (see tests,) to a fluid drachm of the acid in a glass test tube, let the precipitate deposit, pour off the fluid above and introduce half a draclim of nitric acid and boil: the precipitate should disappear. 'This test proves the alsence of muriatic acid. After this is done, take one hundred minims and agitate well in a small stoppered phial with 10 grains of pure and finely powdered red oxide of mercury. Pour off the fluid and repeat this once with distilled water. Dry the red precipitate with blotting paper, and afterwards on a lot-water plate: weigh: divide the loss of weight by 4 , and the result gives the quantity by weight of real hydrocyanic acid present in the specimen : 2 per 100 is the proper strength.

Acid, Muriatic or Hydrochloric.-Smell aerid. Sp.

NimuFketesab.-Acinum Muriaticem ok Hy. DROGHLORICUR. Gr. 1180; yellow; dilnted with four measures of water gives traces of sulphuric acid, detected by nitrate of baryta; of oxide of iron, deteeted by giving a blue preeipitate with : 1 solution of ferrocyanuret of potassium, (see tests); of Chlorine, detected by its bleaching a solntion of indigo in sulphuric aeid. (see tests.) When pure, sp. gr. 1170, colorless, not affected by the above reagents, and not preeipitated by water of ammonia added in excess.

Acid, Nitric.-Sp. Gr. 1380 to 1500: pale yellow. In Shora ke tesab.-Acidum the upper part of the bottle there is a mitricus. brown vapour; if it contain sulphuric acid, one volume in four of water gives a precipitate with a dilute solution of nitrate of baryta. Muriatic acid is usually present, and is detected by diluting one measure of the aeid with 10 of distilled water, and adding nitrate of silver so long as there is a precipitate; colleet this and dry on a lot-water plate, divide by 4, and the result is very nearly the quantity of muriatie acid present by weight.

When pure the acid is colourless, not precipitated by the abore tests.

Acid, Prroligneous.- (Acetic, or the acid obtained by distillation of wood, transparent, colomless, fragrant. Sp. Gr. 1084 to 1050 ; when nearly neutralized by ammonia, is not blaekened by smlphuretted hydrogen, (see tests,) or lyydro-sulphuret of ammonia, nor preeipitated by nitrate of baryta. 100 minims neutralize 53 grains of carbonate of soda.

Acid, Sulphuric, or Oil of Vitriol.-Gunduk ke tesab.- Λ cidum Sulfiuricum, (Dilute.)-Sp. Gr. 1200 to 1250, slightly milky appearance, smells of sulpliurous acid.

The strong acid is of sp. gr. 1845, transparent, eolourless, oily-like. To detect sulphate of lead, dilute one measure with 20 of distilled water, and the sulphate of lead wil! remain as a white sediment. To detect Nitric acid, pour upon it in a broad glass a saturated solution of proto-sillphate of iron (green vitriol) so that the fluids slall not mix. If nitric acid be present, a red streak is scen where they touch.

Acid, Tartaric.-Acidum Tartaricun,--In colomrless large erystals. Incinerate on tale with the nitrate of ammonia. If free from cream of tartar or lime, it is entirely eonsumed.

Aconitr, Root of.-Aconitum Ferox.--Assam variety,

Aconitr or Moxks.
haod Root.-Singea Bish, or Dakra. in small wieker baskets, roots small, black, very fibrous. Nipal variety, about the length of the thumb, tapering to a point, black ath wrinkled, fraeture white, in best specimens resinous and semi-transparent.

Aconitina.-Aetive principle of the above.
Acorus Calanus.-(Sweet Flag.) Buch. IL. Roots of Acorus calamus.

Ambugo.-See Vismdicris.
Asther, Sulphuric.- SEther Sulphuricus.-Sp. Gr. ${ }^{\circ}$ \%35. Agitate in a long graduated tube of half an incli in diameter 100 measures with 50 measures of concentrated solition of muriate of lime, (see Tests). If no diminution of volume oceurs, the ether is free from water and aleoliol.

By this test 50 measures of the ether of the Honorable Company's Dispensary are fond to contain 9 measures of water and spirit.

Transparent, colourless, fragrant, lighlıy inflammable, burns with a bright yellow flame; floats upon water withont mixing with it. Evaporates totally on exposure to the airIf it contain water, this is left on burning the ether.

Aumain Seeds.-Ajouain or Juvanec.-Seeds of Ptychotis ajwain. Care must be taken not to confound these with the Khorasanee ajwain, which are the sceds of the poisonous Hyosciamus or Henbane.

Seeds very small, stalked, conical, pointed, streaked with yellow longitudinal stripes, stalks of seeds bright yellow.

Henbane seed, grey, not ribbed or streaked, shape obscurely triangular and flattened; surface rougl, dotted. Other seeds, especially umbelliferous, are sold under both these names.

Asmod.-Seeds of Apium involucralum.
Akurkurra. (Pellitory.) Roots of Anacyclus Pyrethrum.
Aliverie.-Garden cress.-Haleem.-Seeds of Lepidium salivum.

Alcohol, Absolute.-Sp. Gr. ${ }^{\text {r }}$ 794, unchanged by soletion of nitrate of silver, though exposed to a bright light; should contain no essential oil, and not be rendered milky by being mixed with four times its bulk of water.

Alconol, Pharmaceutical.-(Spivits of Wine.)-Sp. Gr. 835.

Almonds.-(a) Sweet and (b) bitter varieties. Kernels a Amgdala dulcis. of Amgdalus comnunis.
b Amgdala amara.
a Meetha Badam.
© Kurka Badam.
Aloes. Musabhir or Eluwa.-The dried juice of several species of Aloc, the best from Socotora; colonr, liver-brown, in large masses mixed with the leaves; soft to the nail at 86°; semi-transparent in thin layers; dissolved in water does not blacken solution of sulphate of iron; solution in water yellow; smell faint.
2. Deckan Aloes.-Dark brown, in eartly, opaque masses, brittle and hard at 86°; often adulterated with cateclin, and then its solution blackens the salts of iron.
3. Kurachee.-Intermediate in properties between Socotorine and Deekan kind.
4. Barbadoes Aloes.-Externally dark brown, fraetured edges almost opaque, slightly brittle, of strong odour.
5. Arabian, (or Gulf,) Aloes.-In large masses, powder. golden yellow, weak spirit leaves a flocculent residnum.
6. Cape Aloes.-Very dark with greenish shade in reflected light, thin layers nearly transparent; very brittle.
7. Caballine Aloes.-Almost blaek, smell offensive ; full of impurities, very searce.

The purity of aloes may be estimated by the degree of solubility in spirit, of the density of 950 .

Alual-Phitkāri.-Alumen.-The sulphate of Alumina and Potaslr, in large crystals ; soluble in water.

Altiea.-Marsh Mallow.-Roots and leaves of Althea offeinalis.

Amarantmus.-Nutecya.-Herb and leaves of several speeies.

Ammonia, Muriate of. (Sal-ammoniae.) Nowshadir.Murias Ammonis.-In fine radiated erystalline masses; occurs in the bazar in a coarse form, containing muelr earthy matter. The crystals should be entirely volatilized by beat, and totally soluble in water; smell pungent when rubbed with quiek lime in a mortar; crystallized gypsum is often sold in its stead.

Ammonia, Sesqui-Carbonate of.- Ammonie Carbonas. Volatile from talc; precipitates by nitrates of silver and baryta are dissolved by pure nitrie aeid, sliewing the absence of sulphate and muriate of ammonia.

Ammonta, Spirit of-Ammonie Spiritus.-Sp. gr. 815. Odour strong, does not effervesce on addition of acids.

Ammonia, Water of (difutel).-Ammonie Aqua.-Sp. Gr. 960, does not effervesce witl aeids.

Ammonia, Water of.-Strongest, sp. gr. 880.
Ammoniacum.-Ooshk or Ooshäk.-Gum resin of Dorema Ammonincum; in light brown masses, eontaining white
substances like small almonds, soft to the nail at 86°; soluble spirit ; inodorous.

Anarcotine.--Febrifuge crystalline alkaloid from opium: not reddened by dilute nitric acid, which gives it a bright yellow colour; not rendered bluc by permuriate of iron. Totally dissipated by heating with nitrate of ammonia. Its muriate is not crystallizable, but very deliqueseent. From muriate of anarcotine, ammonia precipitates a non-crystalline very white sediment.

Angustura Bark.-Bark of Galipea Cusparia.
Animal Cilarcoal, or Ivory Black.-Carbo animalis. -When pure, it is entirely dissipated on tale or platinum if burned with nitrate of ammonia.

Anise.-Sonf.--Fruit of Pimpinella anisum.
Anse, (star.)-See Star anisc.
Anisr, Essential oil of.
Anisomeles. - Bootan Kushun. - Malabar catmint. Herb of Anisomeles malabarica.

Anola.-Fruits of Emblica offeinalis-romndish, blackish grey, very wrinkled, obscurely six-sided, nut three celled, each cell with two red shining seeds.

Antimony, Golden Sulphuret of.-Antimonii sulphteretum aureum.-Often adulterated with brick dust; boil in muriatic acid, this leaves the impurity and a little sulphur in globules-also with red oxide of iron; if this be present the muriatic solution will be precipitated blue by prussiate of potasl.

Antimony, Oxide of.-Antimonii oxidum.-White, fusible at a red heat, dissolved by a boiling solution of cream of tartar. Often adulterated with chalk, lime, or phosphate of lime, which are insoluble in the cream of tartar solution.

Antimonial Powder.-Pulvis antimonialis.-A mixture of sesqui-oxide of antimony and phosphate of lime with a little antimoniate of lime. (Ed. Ph.) Warm muriatic acid
dissolves it, and the solution gives a copious orange precipitate to sulpluretted hydrogen or hydro-sulpluret of ammonia; the solution gives a copions precipitate to oxalate of ammonia. Sulphate of Baryta is sometimes found as an adulteration; this is detected by its insolubility in all acids.

Antimony, Black Sulfiuret of.-Surma.-Antimonil Sulpiuretum Nigrum.-Sulphuret of lead is msually sold instead of this article. Heat a particle on cliarcoal by the bloss pipc. If sulphuret of lead, it melts; and on cooling is surrounded by concentric red and yellow rings of ashes. If sulphuret of antimony, copious whitc fumes are cvolved.

Sulphuret of antimony is also entircly soluble in warm muriatic acid ; the solution is precipitated white by the copious addition of water.

Antimony, Tartarized.-See Tartar Emetic.

Arachis Otl.-China Badrm he tel.-Arachidis Or.kum. Oil from seeds of the Arachis hypogea.

Aristolochia.-Root of Aristolochia longa, whitish, twist1. Var. long, \%ura. ed pieces, the size of a finger; nearly taste2. Vari, tound, Zura- less. 2nd Var. Root of Aristolochice ro2. Var, round, Zurawund mooderuj. tanda.

Aristolocmia, Indian.-Isarmel.-Root of Aristolochia Indica. Root resembles sarsaparilla in appearance.

Arrow Root.-Tikor.-Marantat fercula.-Fecula of the tubers of several species of Maranta, Curcuma, \&c.

Arsenic.- White Arsenic. Arscnicum album.-Suffecel Sumbhul, Sumul or Sumbool-khar.-Often adulterated in Calcutta with chalk. Heat a particle in a glass tube by the spirit lamp flame; if pure, it is entirely sublimed.

Artemisla.-Sec Wormuood.
Arum of Orissa.-Ghet Kruchoo.-Rccent tul)ers of Arum Orinense.

Assafeetida.-Ming or IIingra.-Gum resin afforded by several species of Ferula. Best kind from Ilcrat. Good assafoctida contains patches of fine purple matter dissemi-
nated through it. Is much mixed with leaves and stems. Often adilterated with sagapenum and galbanum; neither can be detected.

Ayapana.-Dricd leavés and twigs of Eupatorium Ayapana.

Babul Gum.-Babul Goond.-Gum of Acacia arabica. Babula, II. Gursoonder, Beug.

Balsam of Mecca.-Roghea Bulsan.-Produce of Protima Gileadeuse.-Balsamum Mecca.-Odonr like anise, liquid, yellowish, soluble in alcolol.

- of Peru.-Balsamum Peruvianum.-Fluid exudation of Myrospermum peruiferum, opaque, reddish, of sweet smell.
- of Canada.-Balsamum Canadense.-Flnid exndation of Abies balsamea, nearly colourless and transparent, often sold for Balsam of Gilead.
-- of Tole.-Balsamum Tolutanum.-Semi-solid exudation of Myrospermum Toluiferum, in solid, brittle, golden yellow masses. Odour very sweet. Dissolved in an alkaline liquid taste resembles that of elores.

Balungoo.-Seeds of Dracocephalum Royleauma: mueilaginous and slightly aromatic, black, $\frac{1}{B}$ of an inch long, pointed.

Bang.-Same as Subjee; which see, also Hemp and Gunjah.
Bavopsua.-Dried plant of violet, Viola odorata.
Barbzrmy, sec Rusot.
Barley, Pearl.-The decorticated seeds of BarleyHordeum distichon.

Baryta, Carbonate of.-Barytce Carbonas.-Totally dissolved by dilute nitric acid; solution of 98.8 grs. gives to sulplinric acid a precipitate, which when dried weiglis $116 \cdot 8$ grains.

Baryta, Crystallized Muriate of.-Baryte Murias. - Soluble in water, solution of 122.8 .3 grs. treated with sulphuric acid, gives dry preeipitate 116.8 grains.

Baryta, Nitrate of.-See tests.
Bassorah Gum.-Gum of Acacia sassa, may be sometimes used as a substitute for Tragacantl.

B'dellium.- (Googut).-Probably the produet of Commiphora Madagascareasis. A semi-pellucid yellowish gum resin.

Bedana.--Seeds of Cydonia vulgaris infused in water give a thiek demulcent mucilage.

Beeg' Wax, Bleached.-Sufed moom.-Cibra Alba.Totally fusible under heat.

- Bees' Wax, Yellow.-Peela moom.-Seeretion of the bee, Apis mellifica, sometimes adulterated by pease-meal. Melt and strain through eloth, the meal remains on the strainer; also with tallow, which eannot be deteeted, but by the smell.

Belladonna. Deadly Nightshade.-Leaves of Atropa Belladonna.

Bel ka pat.-Leaves of Cratava religiosa.
Benzorn. Benjamin. - Looban. - Concrete Jalsam of Styrax Benzoiu: fragrant, resinous, with white veins through the mass, hard at 84 ; boiled with a solution of potash, acids throw down a precipitate of benzoie acid; it also yields this acid on the application of heat.

Bergamot, Otl of.- Volatile oil of rind of the Citrus Limetta.

Bilva.-Fruit of Figle marmelos.
Brozentur.-Oleoresinous product of Pinus longifolia.
Bismuth.-Purplish white, highly erystalline.-Sp. Gr. $9 \cdot 8$, brittle, powder dissolves in nitric aed, and the solution yields a white erystalline precipitate on the addition of water.

Bismuth, White Oxide of.-Bismuthi oxydum album.-Soluble without efferveseence in dilute nitrie aeid, and the
solution not precipitated by sulphuric acid: thus distinguished from white lead.

Bleaciing Soda Liquor.-Smells faintly of chlorine. Bleaches a solution of sulplate of Indigo; gives no precipitate to oxalate of ammonia ; should effervesce partially on the addition of acids, and at the same time cmit a strong odour of chlorine.

Blistering Flies.--See Cantharis and Telini.

Bonduc Nut.-Kutculega.-Seeds of Casalpinia (or Guilandina) Bonducella, irregularly round, grey; the almond is white, very hard, and intensely bitter ; gets a bloodred eolour from nitric acid.

Borax.-Sohaga.-Biboras Soda.-In dense crystalline masses, sometimes mixed with chalk, totally soluble in warm water; solution does not effervesce with acids, but it turns turmeric paper brown.

Botany Bay Kino.-Produce of Eucalyptus resimifera; opaque, dark brown; fraeture shining and smootlı; watery solution blackens the salts of iron strongly, and precipitates solution of gelatine.

Bucku.-Leaves of various species of Barosma.
Bukum Wood.-Sapan.-Wood of Cesalpinia Sapan.
Burgundy Pitcir-Pix Burgundica.-Product probably of Alies excelsa; of light ycllow eolour, often adulterated with dammer or gunda barosa.

Bursunga, Leaves of.-Leaves of Bergera Königï.
Buch.-Root of Acorus Calamus. Sweet flag.
Cacalia.-Gao Zuban, Lisan ulsaur.-Leaves of Cacalia Kleinia; leaf dotted with white prickly speeks.

Cajeput Oil.--Kyapoofie ka tel, Oleum Cajeputi.The volatile oil of the leaves of the Mclaleuca Cajcputi.The green colour is not caused by copper.

Calamine, Artificlal, Prepared.-Calamina preparata, impure carbonate of zine levigated; pinkish eolour, soluble in dilute sulphuric aeid with effervescence; the nsual impurities are lime or earbonate of baryta or elay, which are not dissolved.

Calamus Aromaticus.-Sweet flag, Buch.-Rhizome of Acorus Calamus.

Calomel.-Chloride of mercury, Calomelas.-Entirely volatilized by heat; if it eontains sulphate of baryta, this remains; if it contains corrosive sublimate, this may be detecten by sulphuric ether, whieh dissolves it out : the etherial solution evaporated gives a erystalline erust, turned orange yellow by lime water, eaustie potash, or solla.

Calumba Root.-Colombo-ke-jur.-Colomber radix.-Root of Cocculus palmalus: in transverse sliees, bright yellow, depressed in the centre, marked with eoarse radiating lines; bark greenish yellow.

Camomile Flowers. - Baboone.phul. - Anthemidis flores.- Flowers of Anthemis Nobilis; heavy fragrant smell, give a very bitter infusion.

Camphor.-Kupoor.-Camphora.-Cainphor of Laurus Camphora, or Camphora officinarum; entirely volatilizeıl hy leat; may be burned on the surfaee of water.

Canella-Bark of Canella alba; colour pinkish-white, taste pungent.

Cantiarrs.-Blistering fly.-Cantharides; the fly Cautharis vesicatoria, bright green, with metallic lustre.

Capstcum.-Lal merich.-Cayenne Pepper, Chillies.Fruit of Capsicum annuum, anl other species.

Carbonate or Soda, dried.-Carbonas Sodas siccatum. When heated to redness, erystallized carbonate of soda loses 62 per 100.

Carbonate of Soda.-Crystallized.

Cardamon-Elachi, var. Bura and Chota.--Fruits of various species of Amomum and Elettaria.

Caraway.-Fruit of Carum Carui.
Caramay, Black.-Zeera seeah.-Fruits of Carum Nigrum, a good substitute for Carum Carui : the secds of the Somraj (Conyza anthelmintica), are often sold for it in the bazar; about $\frac{1}{b}$ of an inch long, slightly winged, flat, ovatolaneeolate, ribbed on one surface.

Carbonate of Magnesta.-Carbonas magnesife.White, light, soluble in dilute sulphuric acid. The sohation takes place with effervescence.

Carolina Pink.--Spigelia.-Root of Spigelia marylandica.
Carrot Root.-Gajra.-Carotaradix.-Root of Daucus Carota.

Cascarilla.-Bark of Croton Eleutheria?-Grey, much covered with lichens, evolves a very fragrant odour on burning.

Cashew Nut.-Hidjelee Badam.-Nut of Anacardium occidentale; kidney-shaped, affords a black juice used as an indelible marking ink.

Cassia Bark.-Cassies Cortex.-Bark of Cinnamomum, or Laurus Cassia.

Cassia, Oil of.-Cassias Oleum.-Volatile oil of Cassia bark.

Cassia Pulp.-Amultas.-Pulp of fruits of Cathartocarpus fistula.

Castor.-Castor Frber.-An animal secretion obtained from the beaver; often adulterated with dried blood.

Castor Oil.-Arendi-ke-tel.-Olibum Ricini.-Entirely soluble in its own bulk of alcohol.

Catappa.-Iagudi badam.-Almond of Terminalia Chatappa.

Catecisu.-Kuth.-Extract of wood of Acacia Catechu, Khuer-the kernels of Areca Catechu: leaves of Uncaria Gambir, \&e. Sulphuric ether removes from 28 to 53 per 100 of tannin, aecording to the quality.

The best is of uniform liver-brown colour; often adutterated with red elay; this is detected by incineration. Pure catechu leaves no more than 5 per 100 of earthy matter.

Celeny Seeds.-Kurufs, Arab.-Apil Graveolentis Semina.-Seeds of Apium graveolens.

Centaurium,-Common Centaury.-Flowering heads of Erythrcea Centaurium. The Chironium Centaurium, or Nye of Bengal, may be substituted for this plant.

Cevadnaa.-Seeds of Veratrum Sabadilla and Helonias offeinalis.

Ceylon Moss.-Gigartina lichenoides.-In white filaments, swells greatly in hot water, but is not dissolved without previous powdering and long boiling.

Charoon Seeds.-Seeds of Cordia myxa.
Chalk, Prepared.-Totally solible in acetic acid; 50.68 grs. thus dissolved give to oxalate of ammonia $82 \cdot 78$ grs. of dry precipitate.

Cifampac, Bark.-Cilampacas Cortex.-Bark of Michelia Champaca.

Charcoar.-Carbo Ligni.
Charcoal, Animal.-Carbo Animalis.-Shonld not effervesce on addition of muriatic acid, and the filtered liquid should give no precipitate on ammonia being added.

Cierry Laurel.-Lauro-cemasi Folia.-Leaves of Prunus lauro-cerasus.

Cinna Root.-Chob Chince.-Root of Smilax China.
Chiretta.-Chirayta.-Dried plant of Agathotes Chirayta, an Indian substitute for Gentian.

Chloride of Lime.-Chloridum Calcis.-50 grains nearly dissolved by two ounces of water, and solution smells strongly of chlorine, especially if an acid be added; usual adulteration chalk; has powerful bleaching properties.

Chlorine.-Culorinhi Aqua.-Solution of Chlorine.
Chironia.-Nye.-Herb and leaves of Chironia Cenauroides.

Churrus.-Hemp resin of bazar.m-Cannabis Resina. --Commercial resin of the hemp, Cannabis sativa.

Chitra.-Sce Lal (ilitra.
Cinchona Cohone.-Crown bark.-Bark of Cinchona condaminea.

Cinchona Cinerea.-Grey or silver bark.-Bark of Cinchona micrantha.
Yellow bark, Cinchona Flava, Pale bark, Cinchona Pallida, $\}$ Species uncertain. Red bark, Cinchona Rubra,

100 grains of yellow bark boiled in two fluid ounces of distilled water and filtered, give with a fluid ounce of a concentrated solution of Carbonate of Soda, a precipitate whieh when heated in the fluid becomes a fused mass, weighing when cold two grains or more, and easily soluble in a solution of Oxalic acid.-Edinb. Ph.

Cinnabar.-Bisulphuret of Mercury, sold in red striated erystalline lumps, also in powder; it is often adulterated by red lead and briek dust. It is entirely volatile from a slip of talc, while these impurities remain behind.

Cinnamon.-Darchini.-Cinnamomum,-Bark of Cinna. momum Zeylanicum or Laurus zeylanicum. The volatile oil on which its virtues depend, is sometimes fraudulently extraeted; this ean only be detected by the taste.

Clove. Long.-Dried immatıre flower of Caryophyllus aromaticus.

Cloves, Oil of.-Oleum caryopiylli.-Essential oil, of light yellow eolostr, liable to adulteration with fixed oils,
and with oil of turpentine. Heat a drop or two on paper over a lamp, the rolatile oil is dissipated, the fixed remains.

Cocculus Indicus.-Kakmari ke beengi.-Fruit of Anamirta cocculus; an irregular berry of blaek colour, containing a dark coloured kernel.

Cochineal.-Coccus Cacti-Dintire insect of Coccus cacti, eovered with a whitish powder.

Colchicum.-Meadow Saffron.-Bulbs (cormi) of Colchicum autumnale; sold in slices of liglit grey colour, and kidneyslape.

Colchicum Seeds.-Colchici semina.-Irregularly round, brownish red, about $1-10$ th of an inell diameter.

Colocynth. - Indrayun. Bislombhee. - Colocynthis. Pulp and Capsules.-Dried pulp of the Cucumis colocynthis.

Conessi Bark.--Bark of Wrightia antidysenterica.
Conium.-Hemlock.-Leaves and seeds of Conium maculatum; when triturated with water of potash, evolve a powerful odour of conia.

Copaiba.-Resinous fluid of various speeies of Copaifera; of light yellow colour; heavy odour ; soluble in two parts of alcohol; slowly dissolves $\frac{1}{4}$ its weight of magnesia; liable to adulteration with fixed oil, turpentine, and gurjun oil.

Copaiba, volatile Oil of.
Copper, Ammoniuret of.-Cuprum ammoniatum,-sulphate of copper and ammonia.

Copper, Sulpilate of.-Neel Tutiya.-Cupri Sulphas. -In fine blue crystals; solution preeipitated, and precipitate totally dissolved by ammonia in excess.

Cordia Myxa.-Sec Sebestens.
Cortandrr Seeds.-Duriga.-Fruit of Coriandrum sativum.

Corn Poppy Petals.-Papayeris Rheados petala.

Corrosive Sublimate of Mercury, Biciloride of Mercury.-Entirely volatilized by heat, soluble in water and in sulphuric ether. 'Tlic bazar raskopur of Bengal is a mixture of calomel with about 10 per cent. of corrosive sub-limate.-See Calomel.

Coronilla Leaves.-Krishna rajam ke patta. - Leaves of Coronilla picta.

Cotton--Rouee, Kutn.-Gossypium,-IIairs of the seeds of the Gossypium herbaceum, cotton bush.

Cowage,-Kiwach.-Mucuna,-Hair from the pods of Mucnna pruriens.

Cream of Tartar, or Bitartrate ox Potasil--Bitartras Potasse.- Converted by a red heat into carbonate of potash; soluble in 4.0 parts of boiling water; 100 grains are nentralized by 75 of crystallized carbonate of soda. The precipitate it causes in a solution of acetate of lead is soluble in dilute nitric acid. Uswal adulteration, Sulphate of Potash and Tartrate of Lime.

Cleasote,-Creasotum.-Liquid, transparent, oily looking; colourless, smell overpoweringly empyreumatic, like that of smoked meat ; slightly soluble in water; dissolves in acetic acid, volatilized at 212°, boils at 897°, distils unaltered, coagulates solution of white of egg, heavier than water, highly inflammable.

Crinum.-See Kanoor.

Croton Oil.-Jumalgotha ke tel-Crotowis olevm, -Oil expressed from the seeds of the Croton tiglium; soluble in alcohol; often adulterated with eastor oil, and other fixed oils; yellowish brown, heavy oily smell, very irritating to the skin.

Cubebs,-Kubab Chini,-Cubebse.--Fruit of Piper cube$b a$. The ground seeds sloould afford 10 per 100 of essential oil on distillation with water.

Cubebs, Volatile Oil of.-Light yellow colour, and fragrant.

Cumin Seed.-Zeera sufed.-Cumini semina.-Fruit of Cuninum cyminum.

Curcuma,--See Turmeric.
Dammar, Bengal.-Common resin of Bengal.-Resina Bengalensis.-Produce of Shorea robusta; yellow, hard, brittle, translucent.

Dandelion.-Taraxacum.-Plant of Taraxacum densleonis.

Dáod Murdun, Leaves of.-Leaves of Cassia alata.
Datura.-Datoora.-Herb, capsules and seeds of Datura stramonium, and other species; seeds very small; much resemble the human ear in form.

Digitalis.-See Foxglove.
Dill Seed, common.-Anethi semina.-Fruits of Anethum graveolens.

Dill Seed, Indian, Soya.-Fruits of Anethum sowa.
Drogue Amere.-A compound of mastic, frankincense, myrrh, aloes, and kreat.

Dulcamara Tors.--Bittersweet.--Dulcamares summi-tates.-Summits and twigs of Solanum dulcanara; very little used.

Egg.-Unda.-Ovum.-The egg of the cominon fowl, Phasianus gallus.

Elaterium.-In thin grey layers; sediment from the juice of the Momordica Elaterium, or Ecbalium officinale; an alcoliolic tincture deposits large crystals on spontaneous evaporation.

Elemi,--Concrete resin.-Plant uncertain.
Ergot of Rye.-Secale cornutum.-A fungus, Ergotoctia parturifaciens, growing instead of the seed of the rye; sometimes imitated by plaster casts-the spurious ergot falls to pieces in water.

Euphorbrua Resin.-Concrete resin of Euphorbia. Species uncertain.

Fennel Seed.-Feniculi Semina.-Fruit of Femiculum officinale. See Sonf. and Panmuhori.

Fenuareek.-Methee, or Moothee.-Fanum Grecum. -Seeds of Trigonella fanum.gracum.

Fern.-Filix mas.-Root of male fern, Nephrodium filix mas.

Ferrocyanide of Potassium.-Potassil ferrociyani-dum.-In large lemon-yellow crystals; quite soluble in water, gives a blue precipitate with solution of permuriate of iron, brown with solution of sulphate of copper.

Figs.-Unjeer.-Ficl.-Fruits of Ficus carica.
Filfil Burree.-Wild pepper, fruits of Vitex trifolia, agnus.castns and negundo.

Flour, Wheaten.-Gom ke meida.-Farina,-Flour of seeds of Triticum vulgare.

Foxglove Leaves.-Digitalis Folia, -Leaves of Digitalis purpurea.

Gab.-Dyosryros.-Fruit of Dyospyros Embryopteris ; size of a small orange; deep green, witl a rusty dust; strongly astringent and mucilaginous.

Galanga.-Koolinjan.-Roots of Alpinia galanga.
Galbanum.-Bireja.-Conerete gum resin of Galbanum officinale ; yellowish brown colour and heavy smell; soluble in a mixture of alcohol and water.

Galls.-Majoophul.-Gallif.-Exerescence produced by the puncture of an insect called Diplolepsis, on the Quercus infectoria, or gall-nut oak.

Gambir.-Astringent extract of the leaves of Uncaria Gambir.

Gamboge.-Gambogia.-Muldri, Ossara Rewond.-Product of Hebradendron gambogioides of Siam, also of Ceylon; sometimes adulterated with starclı; boil 100 grs . in water, allow the mixture to cool and settle, add tincture of iodine; if starch be present, a greenish blue colour is struck: alkalies redden and dissolve the pure article, leaving many impurities.

Garlic.-Lassun.-Allium Cepa.-Bulb of Allium cepa.
Gentran Root.-Root of Gentiana lutea: very bitter.
Ginger.-Adrak.-Zingiber. - Rhizoma of Zingiber officinale.

Gingilie Oil.--Til ke tel:-Oleum Sesami.-Oil of seeds of Sesamum orientale : light brown, Sp. gr. 911.

Gooqul.-See B'dellizm.
Goonch.-Abrus.-Roots of Abrus precatorius. Indian substitute for liquorice.

Grass Oil.-Roosa ke tel.-Essential oil of Andropogon Iwaranchusa; of liglit straw colour, transparent and fragrant.

Guaiac Resin.-Guaiaci Resina.-Resin obtained by leat from the wood of Guaiacum officinale: surface changes from red to green by exposure to air ; tincture gives a blue colour to solutions of all starchy roots; for example-the potatoe, arrow root, \&c.

Guaiacum Wood.-Guaiacl Lignum.-Wood of Guaiacum officinale.

Guj.Pifpul.-Fruit of Pothos officinalis.
Gulancha.-Root and stems of Menispermum cordifolium: intensely bitter, transverse section very porous and radiated.

Gum Arabic.-Kavit goonl.-Gummi Acacle.-Gum of varions specics of Acacia: totally soluble in water, insoluble in alcohol.

Gunjah.-See Hemp.
Gurjun Oil.-Gurjun ke tel.-Gurjune Oleum.-Oleo-resinous liquid afforded by several species of Dipterocarpus: deep brown, transparent, of nauseous odour ; sometimes thick and white.

Gurjun, Essential Oil of.-Transparent and colourless.

Gundabarosa.-See Olibanum.
Hellebore, Black.-Mali-kootkie.-Helleborus ni-GER.-Roots of Hellelorus niger.

Hempesmus,-Unumtamul.-Roots of Hemidesmus indicus. Indian substitute for Sarsaparilla; occurs in bundles, about a foot and a half long; smell fragrant, enduring; fracture white; boiled in water, vapour very agreeable.

Hemp, Indian.-Gunja.-Cannabis.-Dried plant of Cannabis sativa v. indica. In bundles of 2 to 3 feet long, usually containing 24 plants; the leaves and tops are adhesive to the touch, and should yield a green tincture to spirit at 835°.

Henbane.-Hyosciamus.-Leaves and seeds of Hyosciamus niger.

Hermodactyl.-Sooriajan tulh.-Bulb or cormus of an uncertain species of Colchicum.

Hibiscus, Capsules of.-Ramturai.-Hibsci capbula.Capsules of Abelmoschus esculentus; or Hibiscus longifolius.

Honey.-Shahid.-Mel. - Saccharine product of the bee, Apis mellifica.

Hoormul, Sced.-Lahoorce Hoormul.-Harmalal sem-Na-Seeds of Peganum Harmala; used as rue; grey, small, pyramidal and triangular, of smell like rue.

Horn.-Corsu.-Shavings of the horn of the deer: give a jelly when boiled with water

Hop.-Humuli Strobila.-Catkins of IIumulus lupulus: bitter tonic.

Horse Radisil.-Cocilearif Armoraciae Radix.Root of Cochlearia armoracia. See Solnunjuna.

Hyssop.-Zonfac.-Dried plant of Hyssopus nfficinalis.
Indian Fennrl Seed.-Panmuhori. Sonf.--Seeds of Faniculum Panmorium.

Indurjuo, mild.-Indurjuo shereen.--Seeds of Wrightia antidysenterica: about $\frac{3}{4}$ of an inch long, brown, nearly tasteless.

Indurjuo, bilter.-Indurjuo tulkh.-Seeds of Holarrhena pulescens (Roora) and antidysenterica: the same size and colour ; furrowed deeply at one side, very bitter.

Iceland Moss.-Leciien Islandicum.--Plant of Cetraria islandica.

Iodine.-Iodineum.-Totally soluble in alcohol; sublimed from talc, gives a purple vapour: " 39 grains with 9 of quicklime and 3 ounces of water, when heated short of ebullition, slowly form a perfect solution, which is yellowish or brownish, if the iodine be pure, but colourless if there be above two per cent. of water or other impurity."--Edinb. Ph.

Ioduret of Iron.-Ferri ioduretum.-Soluble in water, solution greenish.

Ioduret of Potassium.-Potassil iodidum.-With starch and dilute sulphuric acid it gives a fine blue mixture; the usual impurity is carbonate of potash. If pure, it precipitates a solution of acetate of lead, of a bright yellow colour. Common salt is detected by precipitating a solution of 100 grains by excess of nitrate of silver, agitating the precipitate in weak ammonia, and neutralizing this with nitric acid; no precipitate occurs if the salt be pure.

Ipecaciunanha Root.-Root of Cephaelis Ipecachuanha, and other species.

Iron, Black Oxide of.--Ferri Oxydum Nigrum.Nearly black, attracted by the magnet, and soluble in muriatic acid.

Iron Filings.-Ferri limatura.
Iron, Red Oxide of,-Ferki Oxydum Rubrum.-Soluble in muriatic acid; solution precipitated red by ammonia.

Iron Rust.-Ferrugo Ferri.-Not magnetic, soluble in muriatic acid without effervescence.

Iron, Sugared Carbonate of.-Ferki Carbonas Sac-charatum-Colour greyish green; dissolved with effervescence by muriatic acid.

Iron, Sulphate of,-Heera hasis.-Ferri Sulphas.Green crystals, soluble in water; does not cleposit copper on a piece of polished iron.

Iron, Sulphuret of.-Sulphuretum Ferri.-Soluble in dilute sulphuric acid, with erolution of sulphuretted hydrogen gas.

Iron Wire.-Ferri filum.
Isarmel.-See Aristolochia Indica.
Isinglass. - Ictiryocolla. - Concrete gelatine of the sturgeon (Acipenser sturio) and the sulea (Polynemus sele) of the Ganges.

Ispagula.-Ispagool.-Seeds of Plantago Ispagula.
Jalap Root.--Jalapal Radix.-Root of Ipomea Jalapa or purga.

Jatamansi Valerian.-Jatamansi, Balchur.-Valeriana Jatamansi.-Roots of Narelostachys Jatamansi.

Jujube Fruit.-Ber Choonce.-Jujuba.-Fruit of Kinyphus (or Rhamuus) Jujuba.

Junteer Berries.-Hfoober.-Junileri baccas.-Berries of Juniperus communis.

Juniper Oil.-Oleum Juniperr.-Volatile oil of the fruit of the common Juniper.

Juniper Tops.-Juniperi cacumina.-Tops of Juaiperns Communis.

Kaladana, or Mirchar،-Seeds of Pharbitis carulea, Indian substitute for jalap.

Kamarunga, fruil of. - Fruit of Averrhoa earambola.

Kanoor.-Sheathing bases of the leaves of Crinum asiatieum, v. toxiearium.

Kathbel.-Wood-apple.-Feronia.-Leaves and fruit of Feronia elephantum.

Kelon Turpentine.-Oily prodnet of Pinus or Cedrus Deodara.

Kino.-Conerete juice of Plerocarpus erinaceus, Eucalyptus resinifera, \&c. See Polass Kino.

Koolinjan.-See Galanga.
Kreat Root, and Planl.-Kaluphalh or Muha tita.Root and plant of Andrographis panieulata.

Kuchla Mulung.--Parasite (Viseum monoieum) found on the Nux Vomica trees of Cuttack; a substitute for preparations of Strychnine.

Kuephul.-Myrica,-Bark of Myriea sapida.
Kulkul.-Seed of Cassia Tora.
Kurroo.-Roots of Pneumonanthe Kurroo: an Indian substitute for Gentian.

Kunurs.-Sced of Apium graveolens, or Celery.
Kutira Gum.-Produce of Cochlospermum gossypirm; yellow-flowered cotton tree; under the same name, and of very similar properties, is often sold the gum of several
species of Sterculia, (Bulea) of Bombax pentandrum, Huttian ke goond, \&c. \&c.

Lactucariual, - Lettuce opinm. - Inspissated juice of Lactuca virosa and sativa.

Lal Chitra.-Blistering Plumbago.-Root of Ilumbago rosea.

Lamd.-Churbee.-Axungia.-Fat of the Sus scrofa.
Lavender.-Lavandula.-The flowering tops of Lavandula vera and other species.

Lead, Acetate of.-Sugar of Leead.-Plumbi acetas.Soluble in distilled water. A solution of 190 grains shonld yield to sulphuric acid 152 grains of sulphate of lead dried at 200.

Lead, Carbonate or.-White lead.-Plumbi Carbonas. - Entirely soluble in dilute acetic acid, 100 grains thus dissolved give to sulphuric acid 114. grains of precipitate dried at 200.

Lead, Diacerate of, Solution. - Goulard's extract. Solutio diacetatis Plumbi.-Blackened by sulphuretted hydrogen, alkaline to test paper; precipitated white on exposure to the air, or being breatlied through with a tube.

Lead, Ioduret of.-Plumbi iodidum.-Entirely solille in boiling water acidnlated with pure acetic acid; on cooling golden yellow crystals are deposited.

Lead, Nitrate of.-Plumbi nitras.
Lead, Red Oxide of-Plumbi oxydum rubirum.-Solible in fuming nitrons acid.

Leecir.-Jonk.-Hirudo medicinai.is.
Lemon Peel.-Limonum cortex.-Rind of fruit of Cirus medica.

Lemons.-Neboo.-Limones.-Fruit of Citrus medica and Citrus limomum.

Lemon Grass,-Gunda Bel.-Plant of Andropogon schoenanthus.

Lettuce. - Kahoo. - Lactuca saliva. See Lactucarium.

Lime.-Chuna.-Calx.-Solution in water is not precipitated by ammonia.

Linseed or Flaxseed.--Tisi.-Lini semina.--Seeds of Linum usitatissimum.

Linseed Meal.-Lini farina.-Ground seeds, previonsly deprived of their oil by expression.

Linseed Oil-Oleum Lint.--Texpressed oil of sceds of the Linum usitatissimum.

Liquorice Extract. - Glycyriizfe extractum, Black and shining.

Liqiforice Root.-Setimadh.-Glycyrriizar radix.Root of Glycyrrhiza glabra.

Litiarge.-Lythargyrum.-Partially fised protoxide of lead: soluble in dilute nitric or acetic acid; sulphuric acid gives a white precipitate. The solution of 112 grains should yield 152 grains of dry sulphate of lead.

Litaus.-Lacmus.-The colouring matter of Rocella tinctoria.

Lobelia.-Herb of Lobelia inflata.
Log Wood.-Hematoxyli lignum.--Wood of IIematoxylon campechianum.

Maddir.-Munject.-Roots of Rubia manjista.
Mace.-Jawatri.-Myristicas arillus.-Arillus of mitmeg fruut. Myristica moschata.

Magnfsia.-Entirely soluble without effervescence in dilute sulphuric acid; the diluted solution is not precipitated by oxalate of ammonia.

Magnesta, Carbonate of. - Magnesias Carbonas. Totally soluble in dilute muriatie acid-dilute solntion not precipitated by oxalate of ammonia.

Magnesia, Sulphate of - Epsom salts.-Magnesiae sulphas.- 100 grains dissolved in water, precipitated by carbonate of soda, give 34 of dry precipitate, insoluble in ammonia ; the precipitate heated to redness on charcoal, on cooling remains perfectly white : these tests distinguish it from sulplate of zine with which it bas been largely adulterated in Bengal: if sulphate of zine be present, the precipitate on being lieated glows with the colour of the fire-fly, and while cooling, is a deep gamboge yellow.

To distinguish it from oxalic acid, add lime water to a dilute solution ; if oxalie acid be present, there is a white precipitate.

Majoophut.-See Gulls.
Marjoram.-Origanum.-Herb of Origanum valgare.
Mallow. - Khitmec. - Khungee. - Malva. - Root of Malva sylvestris or Mauritiana.

Marsh Mallow.-Leaves and root of Alheca officinalis.
Marsoram, Volatile Oil of.-Origani Oleum.
Mastic, resin.-Roomic mastike.-Resin of Pistacia lentiscus.

Malinungee, Oil of.-Malkungee.-Empyreumatic oil of seeds of Celastrus nutans.

Manganese, Peromide of. -Manganesil oxydum Heated to redness evolves oxygen gas; with muriatic acid disengages chlorine and dissolves. If dried and then heated to redness, the loss is 12 per 100.

Mansa.-Shirkist.-Sweet exndation from several species of Fraxinus and Ornus.

Marbit:-Marmor.-Crystallized carbonate of lime.
Mercury.-I'ara.-Ifdrargyrum-Sp. Gr. 13.5. vola-
tilized by leat ; if purc, agitated with sulplimic acid, the acid may be boiled away without leaving a trace.

Mercury witii Cilalk.-Hydrargyrum cum crrta.Heated on talc, leaves a white residuc soluble with effervescence in strong acetic acid.

Mercury, Black Sulpiiuret op-Sulphuretum Mydragyri nigrum.-Totally dissipated by heat.

Mercury, White precipitate of.-Hydrargyri preclpitatum album.-Chloride of mercury and ammonia-entircly volatilized by heat. Treated with potash evolves an ammoniacal smell.

Mercury Bicyanuret of. - Hydrargyri Bicyani-dusi.-In white prismatic crystals totally soluble in water; in concentrated solutions, solution of nitrate of silver gives a white precipitate, soluble in hot nitric acid; often adulterated with corrosive sublimate; in this case the precipitate is not dissolved by hot nitric acid.

Mercury, Binioduret op.-Hydrargyri biniodidum. -Volatile from talc, previonsly clanging to a brilliant yellow colour; soluhle in 40 parts of a concentrated solntion of common salt at 212°, and deposited in fine crystals on cooling-often adulterated with red lead, brick dust, or peroxide of mercury. The two former are not volatilc. The last is not dissolved by muriate of soda solution.

Mercury, Red, Sulpmuret of.-Hybrargyri Bisul-muretum,-Totally dissipated by heat, not dissolved by nitric or muriatic acids separately, but soluble in both when mixed. It does not colonr spirits of wine : sold in crystalline masses and in red powder called Vermilion. The powder is often adulterated, usually with red lead.

Mercury, Red Oxide of.-Hydrargyri oxydum rubrum, Red precipifate.-Perfectly volatilized by licat, and soluble in muriatic acid. Brick dinst and red lead, the nsual adulterations, are thus detected.

Mezereon Bark.-Mazrioon.-Mezenei contex.-Root bark of Dapline mezereon.

Mishime 'Terta.-Golden thread•root of Assam.-Roots of Coplis tecta.

Mooslie, white.-Sufel Mooslie.-Root of Bombax Malabaricum.

Morunga Seeds.-Hub-ool-Ban.-Moringe semina.An exeellent substitute for the horse-radish, Cochlcare armoracia.

Morunga Root.-Sohunjuna. Root of Moringa ptery-gosperma-similarly used.

Morphia, Acbtate of.-Morphie acetas.-" One liundred measures of a solution of tell grains in laalf a fluid ounce of water and five minims of reetic acid, heated near to 212° and decomposed by a faint excess of ammonia, yield by agitation a preeipitate which in 24 hours oecupies 15.5 measures of the liquid."-Ldind. Ph.

To detect anarcotine, boil the precipitate for 20 minutes in a solution of 2 drachms of muriate of ammonia in 2 ounces of water, filter, dry, and weigh the nendissolved part, the loss denotes the amount of morphia present.

Morphia, Muriate of.-Morphie Murias.-White, soluble in water, does not lose more than 13 per eent. if heated to 212°. If it contains anareotine, it deliquesees or softens in a few hours when exposed to damp air, or placed elose to a eapsule of water under a bell glass; gives a preeipitate by ammonia, whieh is reddened by nitric acid, and turned blue by permuriate of iron.

Mowa Oil.-Bassie oleum.-Oil of Bassia latifolia.
Mudar Bark:-Akund.-Bark of root of Calotropis gigantea.

Mueda Lukree.-Wood of Tetranthera Roxburghii.
Mugrela.-See Nimella.
Muriatf. of Lime,-Murias calcis.-Runs rapidly into a liquid when exposed to the air.

Musk.-Misk.-Moscrius.-Secretion in the preputial
follieles of the musk deer, Moschus moschiferus; sometimes adulterated with dried blood or eateelu. If the former be present, agitation with distilled water will often give a red solution, coagulated by heat. The latter is detected by adding a solution of muriate of iron to the water in which the musk was diffused : a deep black colonr is produeed if eateehu be present. -Globules of lead are often fraudulently introdueed in the saes.

Musk Habiscus, seeds of.-Hubl-ul-musk.-Abelmoschi semina.-Seeds of Abelmoschus moschatus.

Mustard.-Rae.-Sinapis.-Flour of seeds of Sinapis nigra and alba.

Myrobolan (Belleric.) Bahira.-Fruit of Terminalia Bellerica.

Myrobolan, (black.) Zengi Har, B.-Unripe dried fruit of Terminalia chebula.

Myrobolan, (Chebulic.). Umbed'ler, H.-Hara, B.Ripe dried fruit of Termiaalia chebula.

Mrobolan, (cmblic.) Anola.- Fruit of Emblica (or Phyllanthus) officinalis.

Myrri.-~Hecta Bol.-Myrrua.-Gimmy resinous exu- dation from Balsamodendron myrrha.

Neemooka.-Root of several species of Cissampelos.
Nherija Bark.-Bark of Elaodenetron Roxburghii.
Negundo.-Recent leaves of Vitex negundo.
Nigella.-Mugrela.-Kala-jira.-Seeds of Nigella sativa; black, irregularly angular, resembling grains of coarse gunpowder.

Nim.-Nim-LLeares and bark of Melia azadirachata.
Nitrate of Potash.-Shora.-Nitras potass.-Salt-petre.-'The usual impurities, commercially called "refraction," are water, sulphates, and muriates of soda or potash.

The quantity of rater is estimated by drying 100 grains on the water bath.

To detect the sulphates, add nitrate of baryta to a solution of 100 grains, filter on paper, dry the filter at 200 , separate the precipitate and weigh, 11.6 grains indicate 7.1 grains of sulphate of soda, the sulphate commonly found in Bengal.

To detect the muriate of soda, add nitrate of silver in excess to a solution of 100 grains of the salt, collect the precipitate, dry and weigh; 144 grains correspond to 59 grains of muriate of soda.

Nutmeg.-Jucplul.-Fruit of Myristica Moschata.
Nutmeg, expressed Ohlof, or Butter of.-Myrispic.a ADEPS.

Nutmeg, Ofr. of, Volatile.-Myristice oleum.
Nux Vomica Bark.-Kuchila ke chilka.-Nucis Vomicas Cortex.-Bark of Strychuos Nux Vamica; grey, covered with rusty exuberance: rusty patches changed green by nitric acid ; black inner bark reddened by the same reagent.

Nux Vomica Seeds.-Kuchila lie beenji.-Nucıs Vomic爪 Semina.-Sceds of Strychnos Nux Vomica.

Oak Bark.-Quercus Cortex.-Bark of Quercus pedinculata.

Oats.-Avena.-Seeds of Avena sativa.
Olibanum, African.-Probable prodnct of Juniperis Lycia.

Olibanum, Indian,-Olibanum Indicum.-Gunda baro-sa-oleo-resinous product of Boswellia thurifera.

Olive Oil, or Sweet Ohl.-Oleum Oliva.-Oil offruits of Olea Europea.-With one 12th of its weight of nitrate of mercury solidifies in a few hours.-Edinb. Ph.

Oprum.-Afin.-Concrete juice from capsules of the pop-py.-PapaverSomniferum. To estimate amount of Anarcotine, triturate 200 grs. with 2 ounces of alcohol at 835°-strain through cloth-add 50 drops of strongest solution of ammonia,
and boil away ${ }^{3}$ ths of the spirit from a water bath-on cooling, crystals of impure anareotinc are obtained, which when pressed between blotting paper, and dried at 200 should weigh at least 4 grains.

To estimate amount of Morphia.-Triturate 200 grains of Opium with one ounee of distilied water and 20 grains of dry muriate of lime, filter through eloth, and evaporate on a water batl to l-6th.-On eooling muriate of morphia crystallizes, squeeze through cloth, and dry at 200-the product should weigh at least 4 grains

Common Adulterations of Opium.

a, Water.-Heat 100 grs . on a water batli for half an hour, the loss is water.
b, Starch, pease-meal, flour-boil 20 grs. with waterstrain, allow to cool, add tincture of iodine which gives a blue precipitate with these impurities.
c, Resins, dammar and clay,-subside as a harsh mass during the trituration of 100 grains in distilled water.
d, Catechu, Gab.-To solution a add a solution of isinglass, there is a eopious preeipitate.
e, Mucilaginous cxtracts of bel (fruit of Aeglc marmelos) and mekanna, sceds of Euryale ferox-add alcolnol to solution a previously eoncentrated to $\frac{1}{4}$ thi. A eopious preeipitate of gummy matter ensues, quite soluble in hot water.
f, The presence of datura, tobacco and bang can only be deteeted by the smell of the drug, whieh resembles that of a bad hookah.

Orange flower water.-Aqua Aurantit.-Distilled water of flowers of the Citrus Vulgaris-sometimes contains lead, whieli is detected by its being blackenell by snlphuretted bydrogen.

Orange rind.-Aurantil Cortex.-Rind of fruit of common orangc.

Orange flower Oil.-Aurantil oleum.
Orris root.-Beg Banopsha.-Roots of Iris florentina.
Oroponax. - Juwashur. - Gum resin of Ferula opopo. nax.

Palas gum.-P'alas goond or Dhak ke goond.-Produce of Butcafrondosa, in ruby red, transparent grains or irregular tears.

Panmunori.-Seeds of Feniculum Panmorium. See Sonf.
Pafeeta.-Nut of Strychnos Sancti Ignatii.
Pareira Brava.-Root of Cissampelos Pareira.
Para.-Leaf of Corchorus olitorius.
Pata root,-Pala ke jur-Side Acutee radix.-Root of Sida acuta.

Pedalium.-Gokeroo.-Leaves of Pedalium Murex
Pelisuree.-Thalictrum.--Root of Thalictrum folioloswn.

Pellitory.-Alinrkura.-Pyrethrum.-Root of Anacylus. (or Anthemis) Pyrethrum.

Pennyroynl.-Pulegium.-Herb of Mentha Pulegium.
Pepper Blach.-Pipgr Nigrum.-Kala-merich.-Unripe berries of Piper nigrum.

Pepper - Long. - Merich. - Piper Longum. - Dried spikes of Piper longum.

Peppermint, - Mentha Piperita. - Herb of Mentha piperita.

Peppermint Oil.-Oleum Menthe Piperitac.-Volatile oil of Mentha piperita.

Peruvian Balgam.-See Balsam,
Petroleun, or Rock oil.-Mite he tel.-Petraleum.The best article comes from Rangoon and Clieduba.

Pimenta Berries.-Pimenta Bacce.-Unripe berries of Eugenia Pimemta.

Piperine.-Crystalline principle of black pepper.

Pippula Moola. - Root of long pepper, Piper longum.

Pitcil-Pix.-Product of various pines.
——Burgundy. - Concrete resinous exudation, probably from Abies excelsa.

Porson Oak.-Rhus toxicodendron.-Leaves of Rhus toxicodendron.

Pomegranate Root. - Anar ke jur.-Punica granati radix.-Bark of root of the Punica granatum.

Poppy Heads.-Papaverum capsula.-Unripe capsulcs of Papaver somniferum.-'Those marked with parallel cuts should be rejected.

Potash.-Potassa.-Should dissolve in water except a few flakes of oxide of iron.

Potablu.-Acetate of-Potassaf Acetas.

Potash, Bicarbonate of.-Potasse Bicarbonas.- 100 grs. heated to redness lose 30.7 ; solution does not precipitate a solution of Muriate of Limc while cold-by boiling for a few minutes the liquor deposits a white precipitate, Carbonate of Lime.

Potasil, Bisulpiate of.-Potasse Bisulphas.-Solution strongly acid.

Potari, Bromide of.-Potassar Bromidum,-Does not lose weight by exposure to a red heat ; not precipitated by Muriate of Baryta-A solution of starch and sulpluric acid cause no blue eolour.

Potashi, Carbonate of.-Potasse Carbonas (Commer-cial.)-At'a red heat may lose 20 per cent. It should give a very faint haze with Nitrate of Baryta.

Potash, Carbonate of,-(pure),-Does not loose weight at a low red hent.-Edinb. Ph.

Potash with Lime.--Potassa cum Calce.

Potasi, Ferrocyanide of.-Commonly called Prussiate of Potash.-Ferrocyanidum Potassin.-In large yellow crystals.

Potash, Hydriodate of,-See Iodine,
Potassa, Solution of.-Llquor Potassa.-Sp.gr. 1072. Does not effervesce with acids.

Potash, Sulphate of.-Potassa sulphas.
Potash, Sulphate of with Sulphur.-Potassie sulphas cum sulphure.

Potasif, Sulphuret of.-Potasse sulphuretum-A mixture of persulphuret of potassium witl sulphate of Po-tash.-Edinb. Ph.

Potash, Tartrate of.-Potasee tartras.-Solution neutral.

Potash, Bitartrate of.-Cream of Tarlar.-Bitartras Potasse.-Soluble in 40 parts of boiling water, solution acid and 40 grains are neutralized by 30 of crystallized carbonate of soda.

Potash and Soda, Tartrate of.-Potassac et Soda Tartras. - Very soluble in water, and the addition of muriatic acid occasions a deposit of crystals of cream of tartar.

Prabunatila.-Seeds of Cassia Tora.
Prunes. - Pruna. - Dried fruit of Prunus domestica.

Prussian Blue.-Percyanidum Ferri.-Usually inixed with alumina. Wash with dilute muriatic acid, filter and add carbonate of soda. A white precipitate forms if alumina be present.

Pyrola.-Herb of Chimaphila umbellata.
Quassia Wood.-Lignua Quassien,-Wood chiefly of Picrena excelsa.

Quince Seed.-Beduna.-Cydonie Semina.-Seed of Cydonia Vulgaris.

Quinine, Sulphate of.-Quinate Sulpias,-Soluble in water slightly acidulated with sulphuric acid Totally destructible on tale when burned with nitrate of ammonia-loses 8 or 10 per 100 by heating to 200°. These tests prove the absence of spernaceti, stearine, powdered talc, benzoic acid, and sulphate of lime, the usual adulterations. To detect sugar, precipitate the quinine by ammonia, filter, and evaporate on a water bath-The sweet taste of the residue will denote the presence of sugar.

Raisins.-Kismish.-Uvef passa.- Dried fruit of grape, Vitis vinifera.

Red Lead.-Plumbi Oxydum Rubrua.-Red oxide of lead, a compound of protoxide and peroxide of lead.
lessina.-Resin, dammar.-Product of various pines.
Rhatany Root.-Rhatanias radix. - Root of Krameria triandra.

Rice.-Dhan.-Oryza.-Fruit of Oryza sativa.
Rhododendron. - Talesfur. - Leaves of Rhododendron aromaticum.

Ruubarb.-Rewund.-Rheum.-Roots of uncertain species of Rheum.

Rohun Bark.-Rohun-ke-chilku.-Rohune Cortex.Bark of Soymida febrifuga - is not spotted with rusty patches, and the inside is dark reddish brown-nitric acid does not stain it of a bright scarlet. These tests distinguish it from the poisonous bark of the nux vomica tree (Kuchila;) which is commonly sold for it in the bazars of Bengal.

Rose.-IIundred-leaved rose.-Gul.-Rosa Centifolia. -Petals of Rosa centifolia.

Rose. - Red.-Rosa Gallica. - Petals of Rosa gallica.

Rose,-Utr of.-Essential oil distilled from petals of the rose.

Rosemary.-Rosmarinus.-Tops of Rosmarimes officinalis.

Rur.-Rata.-Leaves and unripe fruit of Ruta graveolens.
Rue, Indian.-Sudab.-Ruta Indica.--Herb of Ruta angustifolia.

Rusot.-Extract of Barberry.-Berberidis Extrac-tUn.- Extract of bark and wood of the Barberry, (Berberis) several species; deep yellow eolour, totally soluble in water.

Sabadilla.-Fruit of Veràtrum Sabadilla, and several other Melanthacee.

Saffron,-Zafran.- Crocus Sativus. - Stigmata of Crocus sativus.

Sagarenum,-Sugbeenuj.-Kundel.-Gnm resin of Fe . rula Sagapenum.

Sage,--Salbia.--Plant of several species of Salvia.
Sage, Bengal.-Murtoo.-Leaves and herb of Meriandra Bengalensis.

Sago.-Sagoo.-Farinaceous product of several palms and Cycades.

Salep.-Salep misree.-Tubers of the Orchis mascala and other species.

Sandal Wood.-Sufed sandal.-Santalum Album.Wood of Santalum album.

Sanders Wood (red).-Rukta chundun,-Wood of Pferocarpus santalinus.

Sapan Wood.-Bakum.-Wood of Cesalpinia Sapan.
Sarsaparilla. - Sarza. - Root of several species of Smilax.

Sassafras. - Root of Lauras sassafras, or Sassafras offeinalc.

Sassafras of Assam and Nipal.-Perhaps the bark of Camphora glaudulifera.

Savine.-malbina.-Tops of Juniperus sabina.
Scammory.-Sugmoonia.-Scammonia.-Gum resin of Connolvulus scammonia.-Adulterations, chalk, starch.--. If the former, fragments cffervesce on being thrown into dilute muriatic acid-the latter is detected by a decoction of the powder when cold being rendered blue by tincture of Iodine-yields 80 per 100 of resin to sulphuric cther.

Sebestens. - Lesura, If. Buhooari, B.--Sebestena. Fruit, and pulp of Cordia myxa.

Semen Contra.-Unopened flowers and calices of Artcmisia contra.

Semen Contra, Indian. - Saheba. - Undeveloped calices of Artemisia judaica.

Senna, Alexandrian.-Serna Alexandrina.-Leaves of Cassia lanccolata, acutifolia, and obovata-with leaves of Cynanchum arguel, which should be removed.

Senna, Indian.-Leaves of Cassia clongata.
Serpentaria Root.--Root of Aristolochia serpentaria.
Sidher or Subjef.-Cannabis Foha.-Larger leaves and capsules of Caunabis sativa, used for smoking.

Silver-Argentum.-Sp. gr. 10.4, dissolves in pure nitric acid. A solution of 108 grains should give to a solution of common salt a white precipitate, entircly soluble in ammonia, insoluble in water, and weighing when dried 148.72 grains. Sycee or China silver contains 12 grains of gold to cach troy pound which is left as a black powder.

Silver,-Nitrate of, or Lunar Caustic.-Argenti Nitras.-White when pure, and well kept-29 grains dissolved in dilute nitric acid, and precipitated by a solution of 9
grains of muriate of ammonia, should leave a liquid which when the deposit settles yields a further precipitate if more muriate of ammonia be added.-Edinb. Ph.

Simarouba Root.-Simaruba radix.-Root of Simaruba amara.
S.nake Root-Senega.-Root of Polygala Senega.

Soap Berries.-Ritah.-Saplndi Baccae.-Berries of Sapindus emarginatus.

Soap (hard or Castile).-Saboon.-Sapo durus-Made with olive oil and soda.

Soap (soft).-Sapo mollis.-Made with olive oil and potasl.

Soda, Bicarbonate of.-Sode Bicarbonas.-Does not precipitate solution of sulphate of magnesia till the solution is boiled.

Soda, Carbonate of (crystallized).-Sodae carbonas. -Nitrate of baryta throws down a white precipitate, totally soluble in nitric acid.

Soda, Muriate of.-Common salt.-Soda Murias.A solution of 58.75 grs . previously well dried, gives exactly 143.72 grs. of dry chloride of silver, on being precipitated by nitrate of silver; is not precipitated by phosphate of soda and ammonia, or oxalate of ammonia.

Soda, Phosphate of,-Soda phosphas.-Precipitated by nitrate of silver yellow.

Soda, Sulphate of,-Kari miltee,-Sode Sulplias.
Soda Water.-Solution of bicarbonate of soda charged with carbonic acid. In Bengal it very often contains copper; boil the suspected water, and add hydro-sulphuret of ammonia, this gives a black precipitate which if containing copper gives a blue solution with nitric acid.

Sohunjuna, - Solunjuna jur, - Moringe Radix.Roots of Moringa pterygosperma.

Sonr.-Indian fennel.-Seeds of Feniculum panmorium.
Sorrel Leaves.-Chooka tiputtee.-Oxalidis Folia.Herb of Oxalis corniculata.

Somraj.-Seeds of Conyza (or Serratula) anthelminticaa worm medicine often. sold in the bazar instead of Zeera seeah, or black caraway.

Soyn.-See Dill seed.
Spearmint. - Pudina. - Mentha Viridis. - Herb of Mentha viridis.

Spermaceti.-Ceraceum.-Fatty secretion of the spermaceti whale, Physeter macroccphalus-in fine crystalline masses.

Spirits of Nitric Ether.-Sfiritus Etheris Ni-tricl.-Hyponitrous ether, with 4 measures of rectified spirit.-Edinb. Ph. Sp. gr. 847-does not effervesce with ajkaline carbonates.

Spirit, Proof.-Spiritus Tenuior.-Sp. gr. 920.
Spirits of Sulphuric Ether.-Spiritus Aetieris Sul-phuricr.-Sp. gr. 809-does not redden litmus paper.

Spirit, Rectified.-Spiritus Rectificatus.-Sp. gr. 838° or less,-not rendered milky by addition of water.

Sponge.-Isfenj.-Spongia Officinalis.
Squill.-Scilla.-Bulb of Scilla maritima.
Star Anise.-Badian Kutai.-Fruit of Ificium nnisatum.
Starch.-Anylum.-Fecula of the seeds of wheat, Triticum vulgare.

Stramonium, or Thorn Apple.--Sec Datura.
Storax.-Balsam of Styrax officinalis.
Strychina.-One of the alkaloid principles of the Strysh-
nos nux vomica. Often adulterated with sulpliate or phosphate of lime. Calcine on a slip of tale with a little nitrate of ainmonia. If free from eartly adulterations it will be entirely dissipated-by nitric acid it is strongly reddened.

Suet-Seyum.-Fat of the sheep, Ovis aries.
Sugar (Common).-Cheenee.-Saccharum.--Product of Saccharum officiuarum.

Sulphur.-Gunduk.--Entirely sublined by heat, does not redden moistened litmus paper.

Sumac-Rinus Sumac.--Leaves of Rhus coriaria.
Talesfur.-See Rhododendion.
Tamarind Pulp.-Emli.-Tamarindr Pulpa.-Pulp of the fruits of Tamarindus Indica.

Tapioca.-Fecula of the root of Janipha manihot.
Tar.-Pix Lieuida.- From various species of Pines.
Tartar emetic-Tartrate of Potash and Antimony.-ANthmonium tartarizatum.-Soluble in twenty parts of water, solution not affected by ferrocyanuret of potassium. Precipitated of fine orange color by liydrosulphuret of ammonia.

Tartarized Iron-Ferrum Tartarizatum.-A tartrate of Potash and sesquioxirle of iron, soluble in cold water. Not precipitated by acids and alkalies, nor coloured blue by ferrocyanuret of potash.-Etdind. Ph.

Tejbul.-Capsules and seeds of several species of Xanthoxylon.

Tejpata.-I Ieaves of Laurus (or cimamomum) Malabathrum, the Folia Malabathri of the ancients.

Telinı.-Indian Blistering Fly:-Melöe or Mylabris Ci-chorii.-The wing coverts are marked with large spots of light brown alternating with deep blac. Another blistering fly is small, stecl bluc-Cautharis Violacca.

Thalictrum.-See Pelijurce.
Tirme.-Herb of Thymus Serpillum.
Til.-Sesamum.-Seeds and oil of Sesamum Orientale.
Tin.-Ranga.-Stannum.
Tobacco.-Tumbaca-Tabacum.-Leaves of Nicotiana Tabacum.

Toddali, Bark-Toddalie Cortex.-Toddali chilka.-. Bark of Toddalia aculeata.

Toon Bark.-Toona Cortex.-Bark of Cedrela Tunna.
Tormentilla Root; Tormentille radix.-Root of Potentilla tormentilla.

Tragacanth Gum.-Gum of Astragalus Verus and other species.

Treacle.-Saccharifax.
Tulsi, Black.-Seeds of Ocymum basilicum.
Tulsi, Saered.-Root and herb of Ocymum sanctum.
Tulsi, White.-Leaves of Ocymum allum.
Turameric.-Huldi.-Root of Curcama longa.
Turpentine. - (Chian.) - Liquid product of Pistacia Terebinthus.

Turpentine, Oil of-Terebinthine Oleum-Volatile oil of liquid exuded by various species of Pinus and Abies.

Turpentine, (Venctian.) - Liquid product of Abies Larix.

Turunjabin, Manna of the Desert.- Saccharine product of the Alhagi manrorum, or Camel's thorn, (Shurtrkar), a substitute for manma.

Tylophora Bark.-Untamol.-Bark of root of Tylophorn asthmatica-must not be confounded with Ununtamul, the root of Hemidesmus Indicus.

Untamol.-See Tylophora.
Urjuna Bark.-Astringent bark of Terminalia alata.

Ununtamul.-See Hemidesmus.

Utr of Roses.-See Rose.
Uva Ursi, or Bear Berry.-Leaves of Arctostaphylos wa ursi.

Valerian.-Valeriana.-Root of Valeriana officinalis.
Valerian, (Indian)-Root of Valeriana Jatamansi. See Jatamansi.

Verdigris.-Pitrai.- Erugo.-A diacetate of Copper, is dissolved by muriatic acid except about 5 per 100 ; almost entirely dissolved by ammonia or by dilute sulphuric acid.

Vinegar.-See Acetic acid.
Violet.-Viola.-Phul Banopsha.-Recent flowers of Viola ollorata.

Virginian Snake Root.-Serpentarie Radix.-Ruot of Aristolochia Serpentaria.

Water:-Panee.-Arua.-Water for Pharmaceutical purposes should be either rain or distilled-solutions of nitrate of silver or nitrate of baryta, oxalate of ammonia and sulphuretted hydrogen should give no precipitate.

Water Cress.-Nasturtium.-The leaves, loot puttia.The seeds, hurufs.-Herl (recent) and seeds of Nasturtium officinale.

Wax.-Moom-Cera.-Product of Bee, Apis mellifica; the white and yellow kind are to be kept.

Wiite Helifbore.--Veratrum album.-Rhizoma of Veratrum Album.

Wild Pepper.-Filfil buree.-Fruits of several species of Vitex.

Wine.-Vinum.-Port fine and Sherry of the best quality should be kept by the Apothecary.

Worm wood.-Afsunteen.-Absinthlum.-Herb of Artemisia Absinthium, and other species.
-- Seed.-Capsules and seeds of ditto.
Wolf's Bane.-Arnica.-Dried Flowers of Arnica Montana.

Yeast.-Cerevisire Fermentum.-Cryptogamic product of the fermentation of infusions of Barley.

Zinc. - Dusta. - Zincum, - Soluble in dilute sulphuric acid.

Zinc, oxide of.-Zinci Oxidum.-White, tasteless, dissolved by dilute sulphuric acid, the solution is precipitated by ammonia, and the precipitate re-dissolved by excess of the alkali.

Zinc, Sulphate of.-Zinci Sulphas.-See preceding test.

anatidy。
 preparations ano compounts.

ACIDS.

ACETIC ACID.

- 1st Variety.-Distilled Vinegar.

Take of vinegar eiglit measures : distil from a glass retort into a glass receiver seven measures-dilute with distilled water to the density of 100.5 .

2d. Variety.-Pyroligneous Acid.

Take chips of Jyntee wood, (Aschynomene Sesban,/ any quantity, and heat gradually to redness in an iron vessel provided with a bent iron tube, and dipping the eighth of an inch under water in an open receiver of glass, wood, or porcelain. On the small scale the iron bottles in which mercury is imported if fitted with a bent gun-barrel answer perfectly. Allow the distilled product to settle for 24 hours, and separate the acid liquor from the matters floating upon it and adhering to the bottom and sides of the vessel. Distil off nine-tentlis from a glass vessel.

Acetic Acid.

To the distilled vinegar or pyroligneous acid, add bazar carbonate of soda while there is any effervescence, allow the mixture to settle and clear, decant the flid and evaporate in a glass or earthen vessel over a charcoal fire, till crystallization commences. On cooling, remove the crystals and heat them very gradually, stirring carefully with a glass rod or wooden spatnla, till the odour of acetic acid is perceptible.

Take of this acetate of soda four ounces, strong sulphuric acid eight ounces, (troy weight,) pour the acid on the acetate of soda in a glass retort, and distil from a sand
bath nearly to dryness-cool the receiver by ice or saltpetre, agitate the distilled liquor with twenty grains of red oxide of lead, and after a white and red powder has subsided, decant and redistil.

The density of tbis acid should range from 1063 to 1067, and one hundred minims ncutralize from 235 to 242 grains of crystallized carbonate of soda.

Chemical nature.-In the Materia Medica list, we have enumerated several varieties of vinegar, all of whicb contain acetic acid in variable quantities. This acid exists also in the sap of several plants, combined with potash, soda or lime, and it is exhaled in the cutancous transpiration of many animals. It is formed also by the action of oxygenating ggents on sugar and alcohol; as in the fermentation of wines and fluids containing sugar, which first passes into alcohol; and in the destructive distillation of several kinds of wood when heated in close vessel.

The molecular changes which take place in the production of acetic acid, in the simplest of the cases above enumerated, are secn on considering the composition of sugar, alcohol, aldchyd and acetic acid. By the fermentation of sugar, one atom of that substance yields two atoms of alcohol and four of carbonic acid.

Carbon. Oxygen. Ifydrogen.

-thus on exposing alcolol to the action of oxygen, two atoms of hy. drogen are first removed. by wbich aldehyd is formed, and the further action of two atoms of oxygen give the formula of dry acetic acid.

Aldehyd, the substance intermediately produced, is a colorless rather fragrant liquid, which is lighter than water, and boils at 71°; it is inflammable, soluble in water, alcolol, and ether, and by oxydizing substances, such as nitric or chromic acid or atmospberic air. it changes into aldehydic and acetic acid. Acetic ether, for the preparation of which we give a process, is isomeric with aldehyd, but boils at 165°, and otherwise differs from aldehyd in its secondary properties. This ether is formed in many of the processes for preparing vinegar and acctic acid, to which it imparts a finc aromatic flavour.

Acetic acid, is a colorless fluid which crystalizes at 50°, in large white plates, and boils at 240° - volatile, corrosive and inflammable, of pungent odour, and excessively sour taste. It lissolves or combines with alkalies and many oxides, forming numerous and characteristic salts, also dissolves the resins, volatile oils and camphor. Its composition is carb. 4 , hyd. 3 , ox. $3=$ to $51,2-$ and 1 eq. water $=9$.

The s1. gravity of the strongest acid is 1063 , and of this onc lundred minims saturate 242 grains crystallized carbonate of soda. The density of acetic acid is not a certain test of its strengtl between 1077 and 1063, when any intermediate degree may indicate acids of which one may be twice the streugtl of the other. 'I'hese densities must accordingly be checked by ascertaining the neutralizing power. This is most readily done by suspending in a given measure of the acid a weighed fragment of white marble, and weighing it again when the acid is saturated, The loss of weight indicates as elosely as required, the quantity of true acid present, as the equivalent of carhonate of lime 50.5 , is almost the same as that of pure acetic acid 51.2 .

The usual popular processes for preparing the commercial rinegars are now intelligible, Any fluid containing sugar, such as the juice of the cane, the grape, the tari pralm, infusions of malt, \&c, if fermented at a temperature above 60°, Fahrt. produce alcohol and earbonic acid. The alcolol thus formed, or that contained in beer, wine, \&c. if left in contact with air and leaven or ferment, is further oxydized, and aldehyd and acetic acid produced.

This action is beautifully shewn in a process lately brought to perfection in. Europe. If porous paper moistened with weak alcohol be suspended in a jar containing common air in contact with a sulbstance called platinum black, the alcohol is rapidly oxydized and converted into acetic acid. The platinum black undergoes no clange, its action being of the same kind as that of the platinum sponge in the common Hydrogen lamp.
ln Germany a strong acetic acid is obtained cleaply and ranidity by causing a mixture of one part of spirit, four water, and about $\frac{1}{10000 \text { an }}$ part of honey or yeast to filter into a cask containing wood shavings, and provided with holes to secure a free circulation of air. A very large surface being thus exposed the alcohol is rapidly converted into acetic acid, The fluid drons from the eask into the receiver and should be repassed over the shavings four times. The action is most effective when the temperature ranges from 75° to 100°. This is a process well calculated to succeed in Bengal. Teak shavings well boiled in water and subsequently steeped in good vinegar should be employed. The cask should be provided with a perforated tray at top to receive the mixture, the perforations being about the size of a quill, and furnished with cotton wicks to moderate the flow of the liquid. The tray should also have four air.holes an inch in diameter, with glass tubes to picrmit of the circulation of air.

The rinegars obtained from French grape juice contain water, acetic aeid, acetic ether, alcohol, a colouring matter turned purple by ammonia, bitartrate of potash, \&c. In malt, sugar, palm juice and wood vincgars, the colouring matter so affected by ammonia is absent. In British vinegar the manufacturers add I part in 1000, (often a larger quantity,) of sulphuric aeid. Lead and copper are sometimes aresent, and are carsily detceted by the black precipitate oceasioned
hy passing a current of sulphuretted liydrogen gas through a portion of the acid previously ncutralized with ammonia.
The production of acctic acid by the distillation of wood next rcquires notice. Wood contains carhon, oxygen and liydrogen, and when heated in a close vessel, new combinations of those elements are formed and volatilized, while most of the carbon remains as a finc charcoal in the vessel.

The most remarkable of the products are water, tar, oil, acetic acid, pyroacetic spinit or acetone, aldehyd, and creasote, with xylit, mesit, methól and eblanine, substances of much theoretical, but little practical intercst. The liquid first distilled over separates into two layers, the tar and oily matter above, the water, acetic acid and pyroxilic spirit below. This mixture is powerfully acid, and when treated by the method described at the head of this section, yields very strong and pure acetic acid. Instead of neutralizing by carbonate of soda, chalk or carbonate of lead may be used, but we give the preference to the process above recommended.

The acetic acid prepared by the distillation of wood retains a very strong empyreumatic taste and odour, unless the steps of distillation, neutralization, drying and decomposition by sulphuric acid be very carefully attended to. Eiven when quitc free from any empyreuma, it is deficient in the agreeable fragrance of the acid and vinegars obtained from wine. To supply this deficiency we have inserted a process for the preparation of acctic cther, a very few drops of which will give this pyroligneous acid the agreeable flavour required.

Medical Uses.-The strongest acetic acid is not given internally. Externally it is sometimes, though but rarely, used as a caustic or blistering agent.

Diluted acetic acid is used as a refrigerant lotion, its vapour inhaled in cases of hoarseness and relaxation of the uvula-it is ap$\mathrm{p}^{\mathrm{li}} \mathrm{ied}$ with benefit in some chronic cutaneous affections. Internally it is very little employed as a medicine, although it enters into many very uscful mixtures either as a solvent or as the promoter of the action of other remedies.
The acctates of morphia, lead and potash and ammonia, the acetic solution of cantharides, colchicum, and squill, and the mixture of vincgar and boney termed oxymel, are its chief Pharmaceutical picparations.

Manufacture of Pyroligneous Acetic Acid in Bengal.-For the assistance of persons desirous of preparing this acid, the Editor ap. pends an account of numerous cxperiments he carricd on, on this sulbject, by order of Government, in 1838. The subjoined extracts are the substance of the Rejort addressed on this subject by the Editor to the Medical Board.

1 have the honor to report for the information of the Medical Board, that I have completed the experimental inquiries which I was directed 10 institute respecting the practicabilily of manufacturing the concentrated Acetic Acids, at the Gun. powder Agency at Eshapore.

In November 1833, I wisited on several occasions the l'owder Works at Lishapore, and ohlaiued the fullowing information as to the Charcoal Manufacture at that establishment :-
The rroods employed are the Urhur, (Cytisus Cajan,) and the Jyntee, (Acschy. nomene Sesban.) The distillation is carried on in iron retorts, constructed in the usual manner; 6 retorts are daily used, hnt 16 charges of wood are bnrned. The wood in cach slip averages 70 seers, the charcoal obtained 21 seers, the average loss 49 secrs. From each retort a tar pipe is led to a smatl sqnare and open reser. voir in brick work, but so little condensation of the volatile liquors takes place, that only S quarts of acid liquor are daily coltected.

In order to learn exactly what quantity of acid the woods employed were capable of yiclding, and also of ascertaining the proportion they would afford compared with other woods and substances, an extensive series of experiments was institut. ed, of which I beg to add a general description:

One lh. of the wood or other subject of experiment was plaved in ant iron retort fitted with a delivering tube, the tube led intu a vessel bept cold by immersion in water, and connected with a Gasometer, as shewn in the accompanying sketch. The retort was heated in a draught furnace. When no fnrther gaseous products were ewolved the acid liquor was collected, measured, and its strength tested by exact neutralization with a solntion of anhydrous carbonatc of potass, containing 100 grs. in each flnid ounce.

The results are shewo in the subjoined

TABLE.

Sulstance Distilled	Quantity Liquor obtained	1 fluid oz. saturated of Carhonate 1^{3} ot. ass.	Charcoal obtained.	Gases.
Cytisns Cajan, or Urhur, Aeschynomene Sesban, or Jyntce, Treak.wood thips. Toon ditto ditto....................... Bamboo ditto ditto, . \qquad Saul ditto ditto, \qquad	$\begin{array}{cc} 4 & 02 . \\ 4 & d 0 . \\ 4 & \because \\ 4 & \because \\ 4 & \because \\ 4 & \because \\ \hline \end{array}$	$\begin{aligned} & 50 \mathrm{grs.} \\ & 56 \mathrm{~h}^{2} \\ & 50 \\ & 48 \\ & 38 \\ & 50 \\ & \hline \end{aligned}$		120 pints. 131 115 109 108 108 128

The preceding table shews that of the woods therein named, when carefully distilled, the Jyntee fone of those nsed in the Gunpowder Agency) gives the largest quantity of acid.

I rext contrasted the strength of this acid with that of specimens collected from different reservoirs at Eshapore, obtained in the Bazar, either of Indian manufacture or imported from England, and lastly with the dilute and concentrated acid of the Hon'ble Company's Dispensary:

TABLE SIBCOND.

Acid employed.	Streugth by Neutralization.
Jyntee Wood Liquor.	
No.	33^{4}
${ }_{0}{ }^{\text {d }}$ Urhur Wood Liquor.	
$4{ }_{4}^{\text {cosen }}$	20
二二 No. $3, \ldots \ldots$.	40
A specimen of Bazara (Suyar) Vincg	6i
	334
Strongest ditto dit:0,	250

'Thus the Jyntee wood prodnet is still the best of all the materials from whence the strongest acetic acm can be procured.

Further experiments were made to aseertain the mode of condensation whielt would yield the maximum quantity of liquor of nniform strenjth.
As to the results obtained thismissing ineonclusive experiments) I have to report that the ingde of condensation by extension of surface of the cundenser at common temperatnres is that wbieh vields the largest produet.

To conlense by surface at common temperatures, a series of vessels, equal in ea. paeity to the gaseous contents Iound by experiment to be evolved by the quantity of wood under operation was adjusted to the retort, with connecting pipes of tarred iron.

By this a rrangement the quautity of a cid liguor obtained sas nearly doubled for all the precedin. articles, while the acid strength was the same as befure.

From the preceding and subjoined data it is evident, that the Jyntee wood of the charronl manufactory at Rshapore suffiees to yield a very large quantity uf pyroligneous aeid, in every respect equal to the lest male in England, and sufieient for the manofacture of more concentrated acid than there is deunand for in India. If 1 lb . of trood yiells 6 oz. of aeid liquor (average strength 50) 1 maund of 80 lbs . will give 480 ozs , equivalent to 6 pounds of st rongest acetie aeid.

Now as 2.800 maunds of Jyntee wood are distilled in each season, this is eqniva. lent to 16.800 lus of aectie aeid per annum, whieb can be furnished from the best of the woods. The Urbur wool, $11,000 \mathrm{ind}$, would give (at 4 lbs . per md.) $41,000 \mathrm{lbs}$. acetic acid per anumm.
lo order to render this report eomplete, it is neeessary to enter into some details as to the purifieation ol the acill liquor.
Tos separate the tar and some other empyreumatic products, distillation is first newessary.
The distillation may be performed in copper stills with barrel condensers, as in the tirst step of the process.
I have examined the strength of the prodnets oblained at each of ten periods of the distillation. The results are stated below, from whieb the important fact appears that the first liquors are the weakest, anul that the strength of the distilled aeislinereases with great rapidity as the distillation draws to a elose.

Distillation of 10 ox: of Acid Liquor of 42 neutralizing strength, equal to 420 grs.

	Strenthth in grs. of Car
1st Oz . reed. 29 grs.
21.	
$3{ }^{3}$ $31 \frac{1}{4}$,.
5 5th ${ }^{\text {at }}$
6ith $41 \frac{1}{2}{ }^{\prime \prime}$
7th	. ${ }^{\text {c.......... }}$ 411 ${ }^{\text {a }}$
8th 9th 53 , ${ }^{\text {a }}$
'I'otal Products,..	414

The distillation must consequently be ןushed until 9.10 ths of the quantity distilled are recovered.

The distilled liquor still contains a portion of the volatile oil of tar which gives it a very strowg ellpyreumatie smell, and the property of communicating a brets color to whatever it touches. To rid the acid of this oil, and to bring it to its maxiuum strength, the following steps are necessary :-
lu England it is usual to neutralizo with earbonale of lime and then to decomposo the resulting acetate of lime by the sulphate of Soda.-Acetate of Soda is thus the final product. In Inlia, Carbonate of Soda is available so cheaply, that we ean employ it at first, which simplifies and expedites the process.

As fossil Sola, or Soji Mati of Bengal, azerafes 30 per cent. of Alkali, every 100 lus. of acid liquor (at 50 neutraliziugstreag th) will require 30 lus. of Saji AI att. This 1 state as the mean result of several experiments. The neutralization may be conveniently effectell in a tank of masonry or in a plapked vat.

The impure solution of aeetate of soda is now to be filtered and boiled down to dryness, and the dry mass stirred in aniron pot over a naked fire till the contents begin to burn. The residue is again dissolved in water and tiltered, and afferds pure acctate of soda on erystallization.

1, astly, to obtain the concentrated Acid (250 neulralizing power,) place 1 equiva. lent, or 83 parts of this acetate of Soda previonsly deprived of its water of crystallization by heating it in an iron basin, in a glass retort with 80 oun ces uf conecntrated sulphuric Aeid, and distil into glass receivers kept cold by Saltpetre. 51 punces of Aectic Acid of tho greatest strength will be otitainced,
The total expense of the mannfacture may be estimated from the preceding data, reekoned on the produee of the distillation of one maund of woad. yielding acid liquor 480 oz . strengtb equal to 50 grs. of Jhe Carbonate of P'otash-tbis will re. quire ot impure soula, $8 \frac{2}{4}$ lls.
or $\frac{3}{t h}$ maund, at 2 Rupecs per maund, 0 . 40 Fuel for distillation and erystallization, $\ldots . . \quad$..... $\quad . .$.

Total. $2 \nless 0$
produce 6 liss. acetic acid-
Deduct 1.6 th fer loss in the several steps, and the pioduce will be 5 lbs . at $7 \frac{8}{8}$ annas per lb . avoirdupois, or eleven pence sterling. As the vessels employed are of native manufacture and very cheap, 10 per cent. should eover all allowance for breakaye. labour and supcrintendence 1 do not charge, because I suppose the jrimary aeid liquor to be eollected at Eshaporc, the ncutralization, and rectificathon of the strollg aeid to be eonducted at the Honorable Company's Dispensary, withont and dition to the present establishment of these institutions,
'Ihe eoncentrated acid now imported for the Dispensary costs iss. $6 d$, the ib .

BENZOIC ACID.

Take of Benzoin one pound, place the Benzoitu coarsely powdered and mixed with a fourth of its bulk of well washed sand, in an eartlen or glass vessel, with a similar one inverted over it, and the edges joined by clay lute.

Heat gradually by a sand bath or over a slow charcoal fire, and continue the heat as long as a sublimate is obtained; collect the sublimate and press between folds of filtering paper to remove some oily matter. Snblime the crystalline matter again.

Bazar Benzoin should yield one-fifth its weiglte of this acid. The sand is itsed in order to diminist the cohesion of the softened Benzoin, and expose a greater surface to the heat.

Benzoic acid occurs in very light brilliant, featlery crystals, fragrant witen heated, readily volatilized, soluble in 200 parls of cold and 24 of boiling water, freely soluble in alcobol and in alkaline solutions. It is composed of Carbon 14 equiv. $=$ to 84 , Oxygett 3 equiv. $=24$, Hydrogen 5 equiv. $=$ to 5 ; the combining proportion is consequertly 113 . Benzoic acid contains also I equtiv. of water $=9$.

Uses.-It is not prescribed alone, but is an ingredient in the compound theture of Camphor and the ammoniated tincture of Opium.

CITRIC ACID.

Take of lemon or lime juice four pints, albumen of the egg four fluid ounces, beat well together and boil, skim off the albuminous froth and filter. Boil the filtered fluid again, and whitc boiling, add powdered chalk till effervescence ceascs. Strain through ealico, and wash the sediment on the filter with hot water till the washings pass through quite colorless. Remove the sediment, and subject it to strong pressure in a screw press. Reduce this (the citrate of lime) to powder, diffuse it uniformly through a quart of distilled water, and add gradually dilute sulphuric acid, (sp. gr. 1090.) From 25 to 30 ounces will generally be required, the mixture should be constantly stirred. After the addition of the 20th ounce of acid, filter a small quantity of the mixture, and test it with nitrate of baryta. So long as the precipitate is perfectly dissolved by nitric acid, more sulphuric acid is to be cautiously added. When the test indieates a slight excess of sulphuric acid, this is to be removed by the addition of a little powdered citrate of lime. Lastly, filter through ealico, wash with cold water and evaporate the filtered liquor and washings on a water bath, till a pellicle begins to form on the surface. Scveral days are required for the subsequent crystalization.

This valuable acid is a natural product exclusively, and almost peculiar to the fruits of the Aurantiacem, in which it is associated with sugar, mucilage, malic aeid, occasionally a bitter principle, and small quantities of salts of lime, potash and soda.

The numerous varieties of the lemon and lime in Bengal differ remarkably in the quantity of this acid they contain, and each species again is infuenced much by the locality in which it exists, and many other circumstances. As a general rule, it may be stated, that untess a pint of the juice requires an ounce of powdered chalk for its neutralization, the product will be insignifieant.

In the process above described, the albumen first coagulates, and removes a quantity of membranous, mucous, and colouring matter. The citrate of lime is then formed and washed, in order to free it from sugar and mucilage. It is then decomposed by dilule sulphuric acid, which forms sulphate of lime, and sets free the citric acid which is dissolved in the water. If any excess of sulphuric acid were employed, it would spoil the process by charring the citric acid in the subsequent evaporation. To guard against this, the use of the baryta test is required. Citrate of baryta is soluble, sulphate of baryta insoluble in nirric acid. When the pellicle forms on the evaporated fluid, the application of heat must be discontinued, as the acid at this point of the process is apt to undergo spontaneous decomposition. Indeed in Lower Bengal, the process will seldom yield satisfactory results, the usual temperature of the air being too high to permit the crystallization.

Chemical Nature.-Pare citric acid occurs in brilliant rhombic prisms. 100 parts are soluble in 75 parts of water at 60° and in 50 of boiling water. It is also dissolved by alcohol. It is a powerful acid, and is composed of Carbon 4 eq. $=$ Oxygen $4=$ Hydrogen 2. It is oftell adulterated with tartaric acid, which is detected by a strong watery solution yielding a fine crystalline precipitate of bitartrate of polash on the addition of muriate of potash. It sometimes contains lime or the tartrate or citrate of lime. This is detected by burning on platinum foil, the tartaric or citric acid is destroyed and the lime remains as a white powder, which on being touched with moistened turmeric paper, gives it a red-brown colour.

Uses.-Citric acid is a valuable tonic, and a useful addition to drink, for fever patients. It was once supposed 10 be the antiscorbutic principle of lemon juice, but this is now much doubted. Its chief use in medicine is to make effervescing draughts with the alkaline carbonates. Thirty grains of the acid are used as the equivalent of 50 grains of bi-carbonate of potash, 40 of sesquicarbonate of soda, and 30 of sesquicarbonate of ammonia.

IIYDROCYANIC (or Prussic) ACID, (dilute.)

Take of ferro-cyanuret of potassium three ounces, sulphuric acid two fluid ounces, water sixteen fluid ounces. Dissolve the salt in two-thirds of the water. Dilute the acid with the remaining third. Let this acid cool, introduce it into a glass retort or mattrass with a bent tube, and add the solntion of the salt. Distil witlı a quick leat till fourteen ounces
pass over, and to the product collected in a glass receiver cooled with ice, add water till the whole is sixteen fluid ounces.

There are several processes by which this important acid may he prepared. The above is nearly identical with that of the last Edituburgh Pharmacopecia, one which we bave found preferable to any other. The acid it yields moreover keeps a much fonger time than any other preparation.

Chemical Nature.-Hydrocyamic acid when free from water is an anhydrous higuid, composed of 1 eq. of a compound gas, Cyanoyeu, and I eq. of Hydrogen.

$$
\begin{aligned}
\text { Cyanoren contains } 2 \text { eq. Carhon, } & \ldots & =12 \\
1 \text { eq. Nitrogen, } & \cdots & =14 \\
\vdots & & -26
\end{aligned}
$$

Cyanogen is a transparent and colorless gas of heavy narcotic smell-inflammable, highly destructive to animal life. It combines directly with simple bodies, and especially the metals, and with iron forms the well-known Prussian blue.

With iron 1 eq. potassium 2 eqs. and water 3 eqs. Cyanogen forms the salt used in the above process. It occurs in large tahular crystals of fine lemon color. This salt is a valuable test and dye stuff, and is manufactured for the latter use in immense quantities. The mode of preparing it is given under the head of tests.

When heated with sulphuric acid the water is cecomposed, its lydrogen with part of the cyanogen forms hydrocyanic acid which distils over with water. Its oxygen unites with the potassium, and the base thus generated with sulphuric acid, forms hi-sulphate of potasl. There also remains a yellow salt composed of iron, cyanogen and potassium in different proportions to the original salt, but the properties of which have not been accurately studied.

The lydrocyanic acid thus obtained, consists of water combined with variable proportions of anhydrous acid. This formidable substance is never used in medicine, but its mode of preparation requires a cursory notice.

When the dilute acid is agitated with peroxide of mercury in fine powder, for every 54.58 parts of real acid 218 parts of the peroxide are dissolved, and by evaporation and crystallization, we obtain a salt, the bicyanide of mercury, containing 2 equivalents of cyanogen and one of metallic mercury.

When this salt is placed in a glass tube horizontally, and a current of sulphuretted hydrogen gas passed over it, sulphuret of mercury is formed, and hydrocyanic acid wapor set free. The vapor must be condensed in a thin glass phial surrounded by iet.

The condensed liquid is very linypid, transparent, and colorless, sp. grc 0.696, so volatile that it boils at 80° Fahrı,-Its odour is most oppressive and sickening, and the vapour highly dangerous to life. It dissol ves readily in water and alcohol. A single drop of this acid placed on the tongue of a large dog, killed lion in 15 seconds; five drops in one of the Editor's experiments, killed a horse in 11 seconds. 1 laced on the eye-ball of a small anmal, it proves fatal with little less rapidity.

It is this anhydrous acid, which with a large proportinn of water, constitutes the powerful and valuable reutedy, as well as the formidable poison of the several modern Pharmacopciæ.

There are many other processes by which the absolute hydrocyanic acid may be made, for an account of which we must refer to works on general chemistry. The attention of the Medical practitioner is chiefly required to the preparation, strength, and properties of the Diluted acid of the Plarmacopcia.
'this is a colorless liquid, having a faint but decided amell of the strong acid. It should contain no wore than three per 100 of the real acid, but is seldom in the shops stronger than two per 100. If exposed to the sun's rays, it is rapidly decomposed, and muless a trace of sulphuric acid be present, it alters in a few weeks, so as to lose nearly all power. Being volatile, it must be preserved in well corked phials, and we reconmend that no more than two ounces be kept in each.

It is sometimes adulterated with muriatic acid, to detect which add a few drops of solution of nitrate of silver in a test tube. Boil the precipitate in nitric acid, which at this temperature dissolves the cyanide, but does not act upon the chloride of silver.

Siffects as a poison,--ln qusntities of from 3 ii to zit, this acid taken by an adult man, proves fatal in a period varying from half a minute to 20 minutes. When the patient survives beyond three or four minutes, convulsions usually occur. In the more rapid cnses sudden failure of all nervous energy, cessation of the heart's action, as well as that of the diaphragm and other involuntary muscles, deadly coldness, and the bursting forth of drops of cold clammy sweat are the effects and symptorns which terminate in death. On dissection, no peculiar inorbid effects are observable, but the odour of the acid may often be distisctly traced. When the examina: tion is defer red for some hours, the odour and the poison itself may often be detected in the blood, the perieardial fluid, and the serous liquid usually found in the ventricles and at the base of the brain.

Doses, - In medicinal closes of from one to three drops, with a table spoonful of water sliglitly sugared, the hydrocyanic acid is an excellent sedative, allaying pain, checking voniting, and calming irritation of the intestinal canal. Its action indeed extends, whenther by sympatly or absorption, to the most distant organs. It is accordingly given with decided advantage in incipient cholera, colic, gastritic inflanmation, and in many spasmodic diseases: especially in
asthma. When long continued, it has been known to occasion profuse salivation.

In enses of poisoning by hydrocyanic acid, the iuhalatioll of ammonia and the cold slower bath are the only remedies of practical value.

Preservation.--IIydrocyanic acid must be kept in well-stoppered or corked glass bottles, covered with paper to exclude the light. The Apothecary is enjoined to observe the utmost carc in dispensing this medicine, and to place it in his shop where it cannot be mistaken for auy other article.

MURIATIC (or IIydrochloric) ACID.

Take of purified and dried common salt, (see muriate of sod a_{3}) sulphuric acid and water, of each equal weights, mix the acid and one-third of the water and allow the mixture to cool, add this to the salt in a glass retort. In the receiver place the rest of the water. Distil with a gentle heat from a sand bath. Keep the receiver cool by dissolving ice, saltpetre, or sal-ammoniac in the water by which it is surronnded, and renew this from time to time.

> Muriatic Acid, (dilute.)

Take of the pure acid, 4. fluid onnces.
Distilled water, 12 fluid ounces.
Mix -mp. Spr. 1050
In the :lbove processes, the Edinburgh Pharmacopocia is followed in the proportions observed.

The pure muriatic acid thus prejarell is nearly colorless, sp. gr. 1170, of acrid and suffocating odour. It does not dissolve gold leaf, and occasions no precipitale in solution of nitrate of baryla. 100 grains nentralize 132 grains of erystallized carbonate of soda.

Pure muriale of soda is composed of clatorine 35.84 , sodium 23.3. On adding sulphuric acid decomposition ensues, the chlorine with hydrogen derived from the water forms hydrochlorice or muriatie aeid gas, (1 eq. cllorine, 1 eq. hydrogen) which is condensed by the water in the receiver. The oxygen of the decomposed water with 1 eq. of sodium forms soda, and hifis with one equivalent of sulphuric acid produces the sulphate of sodil.

The strongest muriatic acid has the density of 1216 and contaills 40 per cent. of real anhydrous acid.

Commercial muriatic acid being usually prepared in iron wessels from impure sult coutaining mire, is often contaminated with iron and nitric acid ; sometimes it contaius also free chlorine. These impurities are thus detected.
Iron - To one measure of acid add eight of water, neutralize with ammonia. A brown precipitate occurs if iron be present.

Chlorine.-Dilute with water as above, and add a little water tinged blue with a solution of indigo in sulphuric acid. If chlorinc is presem, the color is bleached.

Nitric Acid is detected by the undiluted acid dissolving fragments of gold leaf.

Sulphuric Acid is detected by adding a solution of the nitrate of bargta to the diluted acid; a white precipitate falls, insoluble in nitric acid.

The density of the commereial muriatic acid is 1180 , its color yellow, It is totally unfit for use as a chemical reagent, or in pharmaceutical processes.

The strength of muriatic acid is most readily ascertained by the quamity of white marble it will dissolve- 50.6 parts of marble are equivalent to 36.42 of real muriatic acid. The dilute acid of our Pharmacopocia contains of real acid 10.10 per 100 .

Medicinat uses.-This acid is seldom emploged internally. Dr. Paris praises it as a preventer of worms, 5 to 10 min . lieing giveu frequently wilh infusion of gentian. Two ounces of muriatic acid with one of nitric acid and 1wo gallons of water constitute the pro. portions of the nitro-muriwice acid bath of Seott and others, which has been so much lauded as a remedial agent in the treatment of chronic hepalitis and dysentery.

Preservation.-In aceurately stoppered glass bottles.

NITRIC ACID, (Pure.)

Take of pure saltpetre (see nitrate of potash), and conscentrated sulphuric acid equal weights, distil from a glass retort from a sand bath heat as long as vapors are given off:

Nitric Acid, (Dilute.)

Mix one flind ounce of this acid with nine fluid ounces of distilled water.

$$
\text { Sp. gr. } 1.290
$$

If commercial aeid be used, the proportions should be 3 acid and 4 of water.

1 eq. nitrate of potash contains 1 eq. dry nitric acid $=54$; 1 eq. of potash $=47.3=101.3 ; 1$ eq. of sulphuric acid contains sulphuric acid $1 \mathrm{eq} .=40.1$, and water one eq. $=9$, sulphuric acid 49.1. Thns in equal weights, there exist 2 atoms of sulphuric aeid with 2 of water, and but 1 eq . of anhydrous nitrate of potash.

When decomposition ensues, the 2 eq. sulphuric aeid displace the nitric acid and unite with its potash, forming the bi-sulphate of that base. This salt retains 1 eq. of water, while the remaining eq. of water unites with the mitric acid, forming the hydrate of that substance which is distilled over. Without this proportion of water, the nitric acid camot exist in the separate state, being decomposed into nitric exyde (n. 1, ox. 2) and nitrous acid ($\mathrm{n}, 1,0 \mathrm{x} .4$.)

The nitric acid prepared as above directed is a pale yellow fluid, sp. gr. f .500 , extremely corrosive, staining the skin yellow and destroying its texture; 100 grains diluted with water saturate 217 grs. of erystallized carbonate of soda. The salts it forms with bases are called nitrates, and from the large proportion of oxygen they contain, many of these are much used in the preparation of several lighly inflammable or explosive mixtures. Nitric acid also communicates oxygen to many metals, and then in most onses combines with the oxyde thus formeed.

Commereial nitric acid is prepared by decomposing the nitrate of potash or soda hy suiphuric acid in cast-iron cylinders. Half the proportion of sulphuric acid above directed is used on the large seale. The residuum in the iron cylinder is the nentral sulphate of potash or soda.

Pharmacertical uscs. - Chiefly for the preparation of hypo-mitrnus ether, nitrates of silver, baryta, red oxide of mercury, and ointment of nitrate of mercury.

Medicinal uses.-The dilute nitric acid in doses of 5 to 30 drops with one to two oz. of water, taken thrice daily, is found very serviceable in many eases of obstinate syphilis and chronic hepatitis. It seems ta exercise a gentle tonic and diuretic power. Under its nse, salivation bas been sometimes known to ensue. It is also given in typloid fevers, and as a lithontriptic in that form of ealeulus and gravel, in which the phosphates are deposited. But its efficacy as a chemical solvent in these cases seems very questionablc, as recent and exact experiments have shewn that the urine is not rendered acid by the use of nitrie acid.

Note.-In the IIonorable Company's Dispensary, nitric acid is male by distilling 30 lhs . of saltpetre and 20 lbs . of dry sulphate of iron from an iron pot, provided with an earthenware head, and connected with a series of 4 stone-ware condensers on the principle of Woolfe's bottles; the first condenser is cmpty, the other three contain each two gallons of water. At a red heat sulphate of iron loses its sulphuric acid, and then the decomposition above explained occurs. The residue in the iron pot is sulphate of potash and red oxide of iron. The distilled acid of the Dispensary is of sp. gr

1400, higlaly coloured, but by redistillation from glasa vessels becomes colorless. Its degree of purity depenls on that of the nitric employed.

Nitric acid has long been prepared by the Kindu chemists by heating together a mixture of sulphate of iron, alum and saltpetre, and under careful management, their process is ecollonical and prodnctive. But wherever sulphuric acid is available, it is preferred by practicnl chemists as the most manageable of the different sub. stances by which saltpetre can be decomposed.

Impurities.-These are sulphuric, muriatic and nitrous acids, and chlorine.

Detection of Sulphuric Acid.-Mix 1 Hllid oz. of strong acid with 10 of distilled water, and add drop by drop a solution of nitrate of baryta. This will precipitate the sulphuric acid-of muriatic acid and chlorine, - to the mixture above described, add a solution of nitrate of silver, chloride of sitver is thrown down; of this washed and dried 143.72 parts correspond to 35.72 of chlorine.

SULPIIURIC ACID, (Pure.)

'Io purify the commercial acid, distil it from glass retorts, adding fur every cight fluid ounces, ten graius of white sugar, (Ed. Pharmacopocia.) This removes nitrous acid if any be present. A few enttings of platinum foil should be placed in the retort, as these are found to moderate the violence of the boiling. A little of the acid first distilled over, slould be rejected.

Sulphuric Acid, (I)ilule.)

Take of the pure concentrated acid one fluid ounce, of distilled water thirteen fluid ounces, mix in a glass vessel. The density is about 1.090 .

This acid cannot be manufnctured on the smail scale, and must consequently be obtained from the manufacturer. In Calcutta, there are now three factories in full work, the proprietors of which supply the acid of its inaximum density ($1.8 \cdot 6$) at 2 amas the pound of

7,000 grains. In Eugland, the price is less than one penny the pound.

Thits acid is transparent, colorless, devoid of odour, of oily appearance. Its maximum sp. gr. is $1.8+7.100$ parts contain 81.54 real acid. It is extremely caustic and corrosive, causing a black stain on orgauic substances ; mixed with water, great heat is evolved. Its neutralizing powers are very great. Several of its compounds are used in medicine; and it is the most generally employed of all pharraceutical agents in the preparation of the chemical remedies.

On the large scale, it is prepared by causing sulphurous acid, (s. $1=\mathrm{ox} 2=$.), nitrous acid, (n. $1=\mathrm{ox} 4=$.), and water, all in the state of vapor, to mix together freely in a leaden chamber of immense dimensions. An ordinary chamber is 100 feet long, 16 and 20 broad $=$ to 32.000 cubic feet.

The sulphurous acid gas is supplied by burning sulphur in iron pans in a furnace at the entrance of the chamber. The nitrous acid vapor is furnished by a mixture of 8 parts sulphur and I part saltpetre, (nitrate of potash) burned aiso outside the chamber, or by a mixture of nitric acid und sugar. A small quantity of nitrous acid vapor suffices, in practice about $\frac{1}{8}$ th part of nitre to the weight of sulphur employed. The steam of water is introduced from a boiler placed near the chamber.

The theory of the reaction of these gases is complex, and we must notice it but very briefly. The sutpharous acid (s. 1. ox. 2,) takes one eq. of oxygen from the nitrous acid, (n. 1. ox. 4,) and becomes sulphuric acid, (s. 1. ox. 3.) This with hyponitrous acid (n . 1. ox. 3,) and with watery vapour forms a crystalline compound, which when dissolved by an excess of water is decomposed, the sulpluric acid being retained in solution, and nitric oxyde, (n. 1. ox. 2,) liberated. This gas when it meets with atmospheric air admitted continually to the chamber takes oxygeu from it, again becomes nitrous acid, (n. 1. ox. 4,) and the same clanges arc repeated while the process lasts.
'The acid first formed after eight hours' work, when drawn off from the chamber is of sp. gr. I.600. It smells strongly of sulphurous acid, contains also nitrous acid, aud ofteu sulphur. Nitrous acid is detected by pouring gently on the surface of the suspected acid by means of a dropping tube a concentruted solution of sulphate of iron. If nitrous aeid be present, there is a brownish red line formed where two liquids meet. In this case it is purificd by filtratiou through clean sand which separates sulphur. It is then boiled down on leaden pans till it reaches the density of 1700 . If the concentration be carried further in these pans, the lead is rapidly acted upon, the acid rendered impure, and the melting of the pan endangered, the melting point of lead and boiling point of the strong acid beiug about 600° Fallt.

The further concentration must be carricd on in porcelain glass or platinum vessels. A platinum retort to contain eight gallons
costs $£ 500$, but such a retort has been worked night and day for twenty years, without any appreciable loss of weight, or other jujury, while on an average, one of every four glass vessels is lost in the concentration, and the eontents usually escape, and much inconvenience and loss are experienced.

Sulphuric acid may also be prepared by heating to bright redness the sulphate of iron (heera kasis) of the bazars, This salt is common in all the bazars, and eosts about 2 rupees 8 anmas the maund. It is composed of one equivalent of acid, one of protoxide of iron, and seven of water. If two equivalents of this be lieated to reduess, the water first passes over with one eq. of sulphuric acid; The second eq. is decomposed into oxygen and sulphurous ucid. The oxygen with the protoxide of iron forms the red peruxide of that melal. Sulphurous acid gas passes over with the water.

The operation may be conducted iu earthenware retorts or iron bottles. It is very difficult to manage on a small scale. The acid it supplies, may be eoncentrated in the usual wray.

Pharmaceutical uses.-Of these, a few examples will be sufficient to shew its great importance to the practical Apothecary, It is used cither in the composition or preparation of the dilute and aromatic sulphuric acid and sulphuric ether, of the sulphates of soda, potash, magnesia, iron, copper, and zine, in the manufacture of ealomel and corrosive sublimate, of the muratic, nitric, acetic, citrie, hydrocyanic and tartaric acids. It is also of unlimited application in the arts, The chief consumption in India is in the manufacture of sodar water, for which it supplies the carbonic acid by decomposing the earbonale of lime. In England and America, is is employed to the amount of thousands of tons annually to decompose common sall, and form sulphate of soda for the preparation of the alkali of that name.

Medicinat uses.-Sulphuric acid is a corrosive poison in the eoncentrated state; diluted as in our formula, it may be given in 10 to 20 minim doses thrice daily. It acts as a tonic and diuretic, and is a very useful remedy, It is usuatly prescrited with a little inucilage, In taking this and indeed all other acid remedies, to proteet the teeth the mixture should be sucked through a quill or glass tube, and the mouth well rinced immediately with water contaning a little earhonale of soda,

Adulteration.-This is very infrequent, but we have known sulphates of zine and soda fraudulently mixed with the acid in the bazar. This as well as the sulphate of lead are detected by evaporating 100 grains weight to total dissipation ; if any saline substance remains; it is an adulteration. The sulphate of soda and zinc are soluble in water, that of lead insoluble even in nitric acid.

Commercial sulphuric acid has of late been frequenly found to contain arsenic in minute quantities. The importance of this fact in mediconlegal investigations is explained in detait in the Dispensatory, article Poisou.

I'ARTARIC ACID.

Take of bitartrate of potash 2 lbs , boiling distilled water $1 \frac{1}{4}$ gallons, boil with one gallon of water, and add gradually prepared chalk thirteen ounces, stirring constantly. When the effervescence is over, add a solution of muriate of lime previously prepared by dissolving 13 ounces of chalk in 26 fluid ounces of muriatic acid and two quarts of water. A copious precipitate of tartrate of lime having subsided, separate this by a eloth strainer, wash it well with cold distilied water, then place the deposit in a poreclain capsule, and pour upon it scren pints and scven fluid ounces of dilnte sulphuric acid; boil for fifteen minntes, allow the mixture to settle, pour off the fluid, add some distilled water and decant again, mix the liquors and concentrate these by a gentle heat till the mixture assumes a syrupy consistence. Set aside for 24 hours in a warm place to erystallize, re.dissolve in clistilled water frequently, and recrystallize till the acid is white ant brilliant.

Tartarie aeid combined with $\frac{1}{2}$ an equivalent of potash exists in the unripe fruit of grapes and tamarinds. In the manufacture of wine, this bitartrate of potash subsides and coneretes on the interior of the vessels. It is all important commereial artiele, of muels use ill the atts. We have prepared it from the tamarind leaves int Bengal more cheaply than it can be proeured from Enrope, and we use this eream of tartar in the above forinula. (See Bitatrate of Potash.)

The first step in the above proeess eonsists in dissolving the litarlrale of potash, whieh at 212° requires 15 times its weight of water for its solurion, being but difficully soluble in cold water. On adding 13 ounces of prepared ehalk, this gradnally neuralizes tralf the tartaric acid, and insoluble lartrate of lime is thrown down. Bul as chalk (carbonate of lime) does not deeompose the neutral tartrate of potash, we next add the muriate of lime, double theeontposition ensues, muriate of potash and tartrate of lime being forned. By beiling with dilnte sulphuric acid, sulphate of lime is formed, and 1artaric acid set free.

The crystallization of this aeid is a troublesome process, luat it succeeds best at a uniformly warm tetn perature, and we have found the manipulation less difficult in Beagal han in Europe.

Turtaric acid when pure, occurs in erystals, is very acid, inodorous, deliquesceut in a moist atmosplere, soluble in 5 parts of cold and 2 of boiling water-also soluble, though difficultly, in alcohol. It is totally destroyed by heat. It is composed of carbon 4, hydrogen 2, oxygen 5 , water 1 eq.

Medicinaluses.-lit is not much used alone, but is chiefly consumed in the preparation of effervescent powders will carbonate of soda.

Tweny-five or thirty grains are used for each draught, being separately dissolved in two ounces of water, ihen added to a similar solution of 25 to 30 grs. carbonate of soda, and the mixture taken while in a state of effervescence.

Tartaric acid is also similarly used in the administration of the Tochelle salt, or tarrate of potasti and soda.

Pharmaceutical uses. - Tartaric acid is an ingredient in the invaluuble preparalion of antimony, named tartar emetic.

It is often adulterated with cream of tartar, which may be detected by its difficult solubility in cold water, and by its leaviug an ash on incineration, which effervesces briskly on being tested by any aeid.

ALCOHOL AND ETIIERS.

AlCOHOL.
Take of rectified spirit one pint aud quick lime eighteen onnces in small fragments.

Nix, and restrain the heat (occasioned by the slaking of the lime) by the application of wet towels to the distilting apparatus, which may be of glass or metal-distil over seventeen ounces, the density of which should not exceed 794 at 79° Farht.

The several warieties of commercial spirits; viz. rum, brandj, arrack, \&c. consist essentially of alcohol and water in tarious proportions.

Alcohol is a compound of Carbou, . . 2 equivalents.
Oxygen, . 1
Hydrogen, 3

Alcolol of this composition is regarded as pure or absolute. It is colorless, transpareut, volatile and fragramt, boils at 174°-is very inflamable and au chergetic narcotic. It mixes and combines with water in all proportions, and during the mixture condensation of bulk occurs ind lieat is evolved; thus, $C O$ mensures of absolute alcohol and 40 of distilled water mised together become marm, and after cooling, ocempy the bulk of $96 \frac{1}{2}$ measures.

The specific gravily of commercinl spirit is the test generally had recourse to in estinating the quantity of pure alcohol it contains. The Excisc use the term alcolsol to designate spirit of the density of 825. The rectified spirit of the Colleges has that of 840 . The diluted, or "proof spirit" of the Excise is rated at 919 ; but for pharmaceutical purposes it should not be more thai1 912, as recommended in the last edition of the Edinburgh Pharmacopein, as at this density the spirit is a mixture of one volume of water and two of the rectified spirit of commercc. The simplest and most certain mode by which the Apothecary can ascertain the density of spirit, is by the use of the specific gravity bottle, described in the Bengal Dispensatory, p. 14 ,

The following table of the correspondence between the density and proportion per cent. of alcohol by volume, is extracted from Dr. Ure's valuable Dictionary of Avts, p. 19 and 20 :-**

[^6]

Preparation.-In Ine process we have given, we follow the Edinburgh in preference to the London Pharmacopeia. The object of both is to deprive the rectified spirit of the water with which its

[^7]alcolol is combinsed. The London College use for this purpose dried muriate of lime, (chloride of calciun,) a salt which is extremely deliqueseent, and separates and combines with water. But its use is open to many objections; it is dear, or troublesome to prepare-it parts with some of the water at the mere leat of distillation, and it does not retain the acrid essential oil, with which most kinds of spirit are associated. Dry carbonate of potash was formerly much employed, but it is difficult, if not impossible, to avoid distikling over much of the water it had separated at a low temperature.

The use of quick lime is free from all these objections. It is cheap, it separates all the water and retains it to very high temperatures, and also retains any aeid, and nearly all the volatile oil, with whieh the spirit may have beers contaminated.

Uses.-Alcohol is a solvent of resins, camplor, vegetable alkalies and most of their salts, of the essential oils, and many fixed oits. On this aceount it is extensively used in pharmaceutical ehemistry. When deprived of its atomic water, it is converted into ether as subsequently described; with as much water as constitutes proof spirit it is employed in the preparation of the medieinal "Tinctures" of the Pharmacopeia.

In large doses, aleohol aets as a sedative uareotic poison of great energy. In the treatment of its effects the stomach pump, emetics of sulplate of zine or sulphate of eopper, and the affusion of cold water are the only useful remedies. Diluted alcohol in its numerous popular forms is stimulant, nareotic, intoxicatirg and diuretic, according to the quantity in which it is employed. Applied externally', strong spirit by its rapid evaporation and the cold thereby produced is often useful as a local applieation to iuthaned parts, or to the head during the exeitement of fever. Dr. Christison strougly recommends a mixture of equal parts of reetified spirit and white of egg to be applied by a brush or feather in the early stages of excoriation from pressure in fever and other diseases. A dry albumimous coating forms over the part, and is to be renewed frequently by re-apllieation of the mixture.

ETHERS.

Sulphuric Etrier.

Take of rectified spirit fifty fluid omees, sulphuric acid ten fiuid ounces.

Place the acid in a leaden pan and add slowly twelve ounces of the spirit, mix thorouglily with a glass or leaden rod, decant inlo a glass or leaden mattrass connected with a
tube condenser at least three feet long, ${ }^{*}$ kept cold by a current of iced water or solution of sal-ammoniac freshly made. Heat the mattrass to 280° Fahrt. and when ether begins to distil over, add fresh spirit to the mattrass in a continuous stream, and in equal quantity to the ether distilled. Continue this until forty-two ounces have been collected.

To free this ether from water and sulphurous acid, agitate it in stoppered bottles with sixteen fluid ounces of a saturatcd solution of muriate of lime and one ounce of quick lime. Pour off the ether which floats upon the mixture, and redistil with a very gentle heat while the product is not of greater sp. gr. than 735.

Sulphuric acid having a powerful aftinity for water, abstracts it in the above process from alcohol, which is a compound of oxygen, hydrogen and carbon, in the same proportions as one of ether and one of water.

> Thus Alcohol, Carbou 4, Oxygeln 2, IIydrogen 6. Ether, Carbon 4, Oxygen 1, Hydrogen 5.

If therefore we separate one eq. of lydrogen and one eq. of oxygen from alcohol, ether is the result. This may be effected by several acids, by the chloride of zinc and many other reagents. In the action of each, however, peculiar circumstances present themselves which render the plenomena coraplex, and are important in a practical point of view as affecting the purity of the ether, or the economy of its manufacture.

Sulphuric acid, for instance, not only tends to abstract water from alcohol, but 2 equivalents of the anhydrous acid combine with one eq. of elher forming an acid, termed the ethero-sulphuric or sul-plo-vinic acid, and this substance is produced in the above process, When heated, this is decomposed and ether is set free; the anhydrous acid combines with water, but at the temperature of 280° this also is separated, leaviug the acid still capable of effecting fresh decomposition of the alcohol supplied; some of the alcohol also passes over, and some paring with all its oxygen is changed into the gaseous carburets of hydrogen, which with carbonic oxyde and carbonic acid, are simultaneously disengaged, and masses of black carbonaccous matter form in the relort or mattrass. This carbon soon reacts upon the sulphuric acid, and sulphurous acid gas is added to the complex products ulready enumerated.

[^8]While theoretically one equivaleut of sulphuric acid is capable of converting an indefinite quantity of alcohol into ether, the action is in practice checked by the decompositions above described, and the experieuce of Dr. Christison shews, that 54 fluid ounces of spirit at 845 yield $20 \frac{1}{2}$ fluid ounces of ether, and $10 \frac{1}{2}$ fluid ounces of spirit at 845 .

The process in the Edinburgh Pharmacopeia, which we have adopted, is that followed in France and Germauy, and is far superior in certainty, safety, and economy to the London method. Heat should be applied by a sand bath, and the utmost care taken that the vapours or distilled liquid should not come in contact with the flame, as an explosion would be the certain result. We have been in the habit of carrying on the process with the condenser led through a partition of tin plate, which moreover screens the receiving bottle from the radiation of the sand bath fire. We havo found the best apparatus to be a leadeu mattrass capable of holding one gallon, of oval shape, with its neck two and a half inches in diameter. A leaden stopper is provided for this, perforated with three apertures ; one half an inch in diameter for the discharge pipe, one a third of an incin for the supply pipe, which may dip into the liquid, and which should be connected with a vessel of alcolol standing on a higher level, a cock boing interposed to regulate the discharge. The third aperture is for a thermometer, which should be graduated to 300°, and dip into the liquid. The thermometer is the only expensive part of the apparatus, and the only part which canuot be made or procured in any bazar. By a little practical experience however, and by carefully noting the time required for each stage of the process in a few expcriments, the thermometer may be dispensed with.

Sulphuric ether is colorless, transparent, fragrant, highly volatile, and produces great cold by its ceaporation, boils at 96° and in vacuo below the frceziug point of water. When free from ulcohol, its specific gravity is 712; above 720 alcohol is present. The pharmaceatical ether of the Loudon College at 750 and of the Dublin at 765, are accordingly to be regarded as impure. Ether is soluble in alcohol, combines with water to the amount of 10 per 100. It dissolves numerous resins, esseutial oils, and organic alkalies. With atmospheric air its vapour forms a highly combustible, and indeed explosive, mixture. Ether is indeed so inflammable, that it burns on the surface of water. The vapour from an open ether bottle may be set fire to, by a taper at three feet distance. Very numerous accidents have been occasioned by the incautious exposurc of this fluid. In 1823 the East India Company's Dispensary was consumed by firc, in consequence of the ignition of the contents of a bottle of ether which an assistant opened at niglt near a lighted cande.
$U_{\text {ses.--Sulphuric ether is employed externally as an evaporating }}$ lotion; the cold thus occasioned giving much relief in many forms
of head-ache and of external inflammations. Its vapour, lowever, is a powerful narcotic, and as it is almost impossible to guard against its inhalation when the ether is applied to the head, much caution must be observed as to its application in cases of cerebral fever. Taken internally, ether is a powerful stimulant and antispasmodic. Its action, however, very soon passes away. One of its most certain and valuable uses is in the relief it affords in many cases of astlıma and of difficulty of breathing, even when dependent on disease of the fieart; from a scruple to a drachm (fluid measure) beiug givell with an ounce of water. Dr. Christison strongly recommends its employment in conjunction with an equal quantity of laudanum or solution of muriate of morphia, repeated, if necessary, in twenty minutes.

> Spimits of Sulpuuric Etier. Take of sulphuric ether a pint. "" rectified spirit two pints.
> Mix-sp. gr. 809.

Ethereal Oil.

In the preparation of sulpluric ether, if the distillation be pushed until the mixture in the mattrass becomes black, the vessel then removed from the fire and the distilled fluid allowed' to settle, a light oily liquid floats on the mixture. After exposure to the air for 24 hours, this slould be agitated with a watery solution of potash. The ethereal oil sinks to the bottom of the vessel.

Ellereal oil is yellow, rather fragrant, insoluble in water, dissolved by the oils, by ether and alcohol, sp. gr. 1050 to 1130. It cannot be regarded as a definite chemical compound, but it seems to be essentially composed of sulphuric acid $\mathbf{1} \mathbf{e q}$. and one equivalent of ether. It is accordingly named the suiplate of ether by many clemists. lts only ase is as an ingredient in the next article.

Compound Spirit of Sulpiluric Ether.

Take of sulphuric ether eight fluid ounces, rectified spirit sixteen fluid ounces, ethereal oil three fluid drachms.
Mix.

This is an imitation of an old and much esteemed remedy-Moffman's anodyne liquor. It is given in doses of half a drachm to two drachms, but is now seldom prescribed, and is rejected from the Edinburgh Plarmacopeia.

Spirit of Nitrous Ether.

Take of rectified spirit fifteen finid ounces, nitrie acid (strongest) seven fluid ounces.

Place one-third of the spirit with some sand in a glass mattrass, provided with a tnbe condenser and a safety tube,* the end of which is an inch above the level of the fluid in the vessel, and its bent portion filled with nitric acid. Add through this tube, and very slowly, three and a half ounces of the acid. Allow the effervescence to subside, and then add the rest of the acid by portions of half an ounce, allowing the mixture to become tranquil after each addition of the acid before the next is made. The distilled liquid is meanwhile collected by the tube condenser, through which a current of iced water should be led; it is then freed from water and aeid by agitation with half its bulk of a cold solution of muriate of lime and with quick lime, as described under the head of sulphuric ether. The density of this ether should be 899 at 60° Fahrt. The process should be conducted during the cold season and before sun-rise, as the ether obtained boils at 70° Fahrt. The ether is lastly to be mixed with four times its bulk of rectified spirit.

In this process the nitric acid (n. 1, ox. 5,) and alcohol are mutually decomposed, and the result is the production of one equivalent of ether, the same as that deseribed in last section, but combined with one eq. of hyponitrous acid, (n .1 , ox, 3.) At the same time other and very complex re-actions occur, and the oxalic acetic hydrocyanic and cyanic acids, and aldehyd, appear in vuriable quantities during the operation.

The process we have adopted is that of the Edinburgh Pharmacopeia. The vague directions of the London Plarmacopeia would inevitably lead to dangerous explosions if adopted by inexperienced persons, and would as certainly fail in affording an ether of the desired quality. Too much eaution cannot be observed in the admisture of alcohol and nitric acid, not only from the violent effervescence which ensues, but the extrenely inflatunable uature of the gases evolved.

[^9]The mixture of hyponitrous ether and spirit resulting from the Edinburgh formula, is that old and favorite remedy called popularly "sweet spirits of niire." It is colorless, fragrant, volatile, highly inflammable; by long keeping, it becomes very acid. It combines readily with water which much facilitates its uses as a medicinal agent.

Uses.-This preparation is a very valuable diuretic and daphoretic. It is also stimulant and antispasmodic; from half a drachm to two drachms may be given repeatedly during a day.
"Franks" notorious specific for the treatment of gonorriea is well imitated by a mixture of one drachm of oil of copaiba, oue drachm of oil of cubebs, and one ounce of spirit of nitrous etherdose 20 to 30 drops, repeated according to occasion.

Acetic Ether.

Take of dried acetate of lead 16 drachms, alcohol (by weight) $4 \frac{1}{2}$ drachms, sulphuric aeid (by weight) 6 drachms.

Distil from a glass mattrass, and agitate the product in a stoppered plial with a little lime.

This etler is a compound of acetic acid (carbon 4, hydrogen 5, oxygen 1 eqs.) with one eq. of ether (carbon 4 , ox. 3, hyd. 3 eqs.) It the above process, the sulphuric acid at the same time evolves ether from the alcohol, and acetic acid from the dried acetate of lead. These substances combine, and the result is acetic ether, a colorless, inflammable, very fragrant fluid; boits at 165°.

A few drops added 10 a pint of the pyroliguleous acetic acid, communieate to it a very agreeable aromatic flavour, and for this parpose it is that we have iutroduced the article in the Pharmacopeia.

ALKALIES.

Ammonia, Water of

Take of muriate of ammonia and quick lime, of each thirteen ounces, and slake the lime with seven and a lialf ounces of water. When cool, powder it and mix it well and quickly with the muriate of ammonia, also powdered. Distil from a glass retort or common earthenware jar, connected with a series of receivers; in the first bottle, place four
ounces of distilled water, in the scoond eight onnces. The receiver and bottles should be kept cold by ice or a solution of muriate of ammonia. The retort should be heated till gas ceases to be evolved, then remove the retort; the liguid in the first receiver should be of the density of 880 . To reduce this to the standaril of the dilute water of ammonia in use in medicine, distil the fluid from the first receiver into the water of the second and third, so as to bring the density of the liquid ammonia obtained to 960 . If lighter than this, add distilled water; if heavier, add some of the contents of the first bottle, till the prescribed density is obtained.

The muriate of ammonia is decomposed by the lime, mariate of lime beiug formed, and gaseous ammonia (a compound of nitrogen, 14, hydrogen 3) being disengaged.

This gas is very pungent and slimulatiug, irrespirable when pure, not inflammable, very soluble in waler. The gas and its solution in water or alcohol are strongly alkaline, reddening turmeric paper, restoring the blue of reddened litnus, saturating acids and forming crytallizable salis.

The dilate solution of the Pharmacopeia contains abont 10 per 100 of pure ammonia.

The solution of ammonia is of much mse in many Pharnatesutical processes, especially in the preparation of the vegetable alkalies.

Medicinal uses.-Externally applied, it acts as an immediate and powerful counter-irrinant and stimulant, cansing redness or blackness of the skin, and vesication in a few minntes. For this the strongest solution is to be preferred.

The vapor of the dilule liquid applied to the nosmrils is a familiar and very useful remedy in head-ache, faining, \&c.

Internally it is employed with great heneft as a general stimulant and antacid. It is usually given in doses of from 10 to 30 drops in water.

Ammonia must not be prescribed along with acids, or with the earthy or metalic salts; all the latter, except the tartrate of potasla and iron, being precipitated by it.

Carbonate of Ammonia.

(Sesqui Carlonate, Lond.)

'lake muriate of ammonia one potmed, chalk one pontad anl a half, powder separately, mix the powders thoronghty, and
sulblime from atu eartheu ressel into a recciver kept cool by damp towels.

The materials decompose each other, carbonate of ammonia and mariute of lime being produced.

The sublimed carbonate of ammonia occurs in colourless, transparent masses of very pungent odour, soluble in water, insoluble in aicohol, alkaline to test paper, decomposed by acids with effervescence of carbonic acid, decomposed by the caustic earths and alkalics, emitting vapors of ammonia. It loses its transparency aud pungency by frequent exposure to the air.

The composition of this salt is $1 \frac{1}{2}$ eqs. Carbonic Acid.
1eq. Ammonia.
1 eq. Water.
Uses.--Stimulant, diaphoretic and nutacid-much used with quick lime in smelling bottles, dose 5 grs . to 20 grs . It is cmetic in 30 gr. doses.

The muriate of lime, which constitutes the residue in both these operations, is to be heated to dryuess, and preserved in stoppered bottles, for use in several Pharnaceutical processes.

Solution of Carbonate of Ammona.
Carbonate of ammonia four otnces, distilled water one pint, dissolve.

Dose 3 j to 3 ii with water or milk.-Uses, the same as of the ammoniacal preparations ubove mentioned.

Solution of Acetate of Ammonia.

'Take of distilled vinegar (sp. gr. 1.005) 24 fltid onnces, carbonate of ammonia one ounce.

Hix and dissolve, and add a little distilled vinegar till any bitter taste is removed; sp. gr. 1.011.-Ed. Ph/

This solntion is the "Mindererus' Spirit" of the Practitioners of the last century; much attention slould be paid to the specific gravity, which is a sufficient check on the strength and purity of ite preparation. If stronger than 1.01 t , the usmal dose given as a diaphorctic causes vomiting.

In doses of two drachms to one ounce every three hours, this sointion is a very useful and certain diaphoretic, and is accordiugly prescribed with great adrautage in fevers, rheumatism, and the milder inflammatory affections of the chest.

Muriate of Ammonia, (Refined.)

Take of bazar sal-ammoninc two pounds, dissolve in boiling water, strain through fine calico while hot, and allow the solution to cool and crystallize, strain and dry the crystals between folds of paper.

This valuable salt is the nowshudur of the bazars, where it is found in a sufficiently pure state for its most important use, the preparation of the ammoniacal compounds of the Pharinacopeia; but as it often occurs in too coarse a form eren for this use, a simple method of refining is given in the above formula,

Muriate of ammonia is a volcanic product, and is also the result of the decomposition of many animal matters; the duog of camels when roisted with common salt, yields it in sufficient quantities to be the chief source of the salt in India and Egypt, In England it is now manufactured from the ammoniacal salts contained in the liquor resulting from the distillation of coat in the gas works. Sulphuric acid is added, and the sulphate of ammonia thus produced, is decomposed by muriate of soda.

Murinte of ammonia is sold in the bazars in thick fibrous semitraushucent cakes, devoid of smell, of bitter acrid taste. It sublitnes when heated, dissolves in its own weight of boiling, or three times its weight of cold water. The hot water solution yields a copious deposit of fine fenthery crystals. During its solution in water, the temperature falls several degrees, and this property is accordingly turned to account where iee is not procurable as a mode of cooling various beveriges, or to aid the condensation of vapours in pharmaceatical experiments. Muriate of anmonia is an auhydrous salt, and contains one equivalens of cach of its constitueuts, or 17.15 ammonia and 36,42 lydrochloric acid.

This salt is very little prescribed internally; a lotion composed of one part of muriate of ammonia, dissotved in 24 parts of rectified spirit, and the same quantity of distilled vinegar, is muel used as an external application to bruised parts and indolent tunours.

ANARCOTINE.

Take of best Bengal opium 2lbs., alcohol at 835°, two gallons.

Break down the opiun by the hand in one-thated of the spirit; when reduced to pulp, add the second, strain through
cloth and press strongly; knead the mass with the last third of the spirit, and strain and press as before ; unite the liquors. To these add enough of the strongest ammonia to cause the mixture to restore reddened litmus paper to a bluc colour; distil immediately, till two-thirds of the alcohol are drawn off. Remove the still from the fire, and decant the fluid into a glazed basin. Let this stand for 12 hours in a place protected from dist,

Collect the crystals which have formed, press them in cloth, and wash them well with distilled or rain water, The washings may be thrown away. Diffuse the mass through two quarts of water, anul add by degrees one ounce of muriatic acid. Pour off the liquor and repeat this process, mix the liquors and then add pure aminonia water in slight cxcess. Throw the precipitate on calico, wash it with two or more affusions of soft water, then press into cakes and dry in the air stove at 130° till it ceases to lose weight.

Properties.-Snow white, not crystalline, insoluble in water, very soluble in ether, soluble in hot alcolol, from which it crystullizes on cooling, soluble in dilute acids, with which it forms uncrystallizable salts. The solutions are intensely bitter, aud are turned bright yellow by nitric acid, It is not narcotic in ally degrec.

In the process above described, the spirit dissolves the meconates and other natural salts of morptia and anarcotine present in the opium, leaving an insuluble mass of gluten and caoutchuce; ammonia being added decomposes these salts, mind liberates the alkaloids, which however remain dissolved in the spirit, together with the salts of ammonia thus formed. On boiling the liquid, the morphia decomposes the ammoniacal salt, becomes sulphate and meconate of morphia, and remains permanently dissolved. Tlue anarcotine docs not decompose ammoniaeal salts at any temperature, and is therefore deposited by the concentration of the solution.

The crystals are coloured brown, and conttitu much resin and meconte of ammonia, a salt difficultly soluble in alcohol. This is perfectly removed by the washing with distilled water,

The resin is separated by the wasking with dilute inuriatic acid, which dissolves the marcotine. 'The solution is of a splendid purple colour, owing to the action of the acid on the meconin of the opium. 2lbs. of opium vield ly this process, one ounce of amarcotine.

The experiments of the Editor of this work, repeated by many officers in all parts of India, have led to the conclusion, that amarcotine is after quinine the most powerful febrifuge we possess. In doses of 3 to 5 grs . dissolved in water, ucidulated by muriatic or sulphuric acid, and repeated thrice daily, it will prevent the return of aguc in all ordinary cases. It has succeeded in many instances in which quinine failed, and has not been unsuccessful in a greater proportion of cases.

Its powers are not so well established in the treatment of remittent fevers, and we should reconmend quinine in preference, because its qualities are proved, and the disease admits of no delay or trifling. But in the event of quinine not being avirilable, or of its use producing the intolerable head symptoms it is known to occasion in many persons, then anareotine may be boldly had recourse to.

When properly prepared in the mamer we have described, it is entirely devoid of any marcotic prupertics, except those which quinine itself possesses, and the production of which by both, confirms the identity of their action on the system.

In ague complicated with dysentery, anarcotine is decidedly superior to quinine, as it does not aggravate the local inflammation, but seems on the contrary, to allay the pain and senesmus.
We append in the nore, the names of the medical officers on whose repurts, cormborative of our own experience, we advance the opinions above recorded. They state, that next to quinine, this substance is the best febrifuge hitherto discovered; that it only requires to be given in doses of one-third to one-half greater ; that thus administered it will cure all ordinary agues, and a large proportion of those of a more complieated kind; that it is not poisonous in the least degree; and that the idea of its being so, origimated in its being, by the nature of the processes used in its preparation, necessarily contaminated with morphia.

In 20 grain doses dissolved in acidulated water, anarcotine is powerfully diaphoretic. In one grain doses, thrice daily, it is a valuable tonic, and has been found especially serviceable in convalescence from parturition, and in the debility which so often succeeds nursing in this country.

The chief value of anarcotine consists in its supplying an easily available and comparatively cheap local substitute for quinine, whencver this inestimable remedy is scarce in the market, or its supply interfered with by accidental circumstances, such as those which took place in 1833, when quinine sold in Calcutta for 80 Rupees the ounce.

[^10]Incompatibles.-All alkalies, ulkaline earlis, and alkaline carbo. nates, by which the anarcotine is precipitated and relldered inert.

Anarcotine, (Crystallized.)

Boil the anarcotine of the last process in rectified spirit in a glass flask, filter throngh muslin, and allow the solution to cool slowly. Beautiful crystals are thus produced, and 9 -10ths of the spirit can be recovered by distillation.
(The muriate of anarcotine first advised by the Editor of this work, having been found extremely deliquescent, is no longer recommended; the extemporaneous preparation of the muriate should be always preferred.)

Morphia, Muriate of.

Take the last opium liquor from which anarcotine has crystallized in the process under that head. For the quantity obtained from two pounds of opium add two ounces of dried muriate of lime, dissolved in eight ounces of distilled water. Mix thoroughly, and set the mixture aside to settle, strain through cloth, and wash the cloth with ten ounces of distilled water, adding the washings to the strained liquid.

Evaporate the liquid on the water bath at the temperature of 160°, till a drop placed on a cold surface concretes into a crystalline mass.

Allow the whole to cool, squeeze the mass, and press it. Re-dissolve in distilled water, a little finely powdered marble being added to saturate any excess of acid ; filter after agitation, add a drop or two of muriatic acid till the liquid faintly redden litmus paper, and then proceed as before to a second crystallization and expression. A white and uncrystalline masṣ will be obtained.

2d Process.

In this process we use opium not previously deprived of its anarcotine.

$$
\begin{aligned}
& \text { Take Opium,..................... } 20 \text { ounces, } \\
& \text {, Water, } 8 \text { pints. }
\end{aligned}
$$

Break the opium down into a pulp by the fingers in the water, strain and press. Concentrate the watery solution over the water bath to a thiek extract. Dissoive this in warm water, boil and add one ounce of muriate of lime dissolved in fom ounces of distilled water.

The remaining steps of the process are the same as in No. l.
Remarks.-The first process gives both the anarcotine and morphia, the second the latter ouly. The use of inuriate of lime is derived from the Edinburgh process.

The watery solution of opium contains the natural acetate, sulphate aud meconate of morphia and anarcotiue. When concentrated and muriate of lime added, double decomposition ensues. Muriates of morphia and anarcotine are formed in solution, and meconate and sulphate of lime thrown dowr. When the solution of muriase of morphia and auarcotine is concentrated, the muriate of morphia crystallizes, white that of anarcotine remains in solution.

In the Editor's process, No. 1, the anarcotine having been previously removed, the muriate of morptiia crystallizes by itself.

In the product obtained from Bengal opium, the muriate of morplia is alwass accompanied by Codeia, (sec that head in the Dispensalory, - -often as much as 8 per 100. Codeia is an acrid stimulaut, of the convulsive narcotic class, and moreover a strong emetic; for this reason it becomes essential to separate this principle by a farther process.

Muriate of Morbila, (Purified.)

1st Step.

Dissolve the muriate of morphia in distilled water, add ammonia drop by drop, stirring repeatedly till the liquil smells strongly of the ammonia; filter quickly through cloth and wash the precipitate with a little very weak spirit.

This precipitate is pure morphia, the codeia remains iu solution as a triple muriate of morphia and codeia. The codeia may be obtained from this by evaporating to the consistence of thin syrup from a water bath, and adding a concentrated solution of pure potash so long as any precipitatc occurs-fitter, wash with a little cold water. Dis*olve the precipitated codcia in boiling spirit; it crystallizes as it cools.

> 2d Step.

Take of pure morphia any quantity, adıl pure muriatic acid drop by drop till the morphia is dissolved, agitating fre-
quently, Evaporate at 160° from a porcelain wessel over a water bath, till a drop concretes into crystals when removed to a cold surface. Allow the fluid to cool, press the sjongy mass and dry it at 120°. The expressed liquor farther evaporated yields more muriate of norphia.

By this metlod ordinary Bengal opsium yielils anarcotine 3, muriate of morpliaa $3 \frac{1}{2}$ per cent. 10 parts of muriate of morphia correspond to $9 \frac{1}{2}$ parts of crystailized morplia.

Properties.-Muriate of morpluia is white, semicrystalline, permanent in the air, soluble in 14 parts of water at 84° and in 6 parts of boiling water; solutious intensely bitter, and highly narcotic, decomposed by all alkalies, alkaline earths, and the carbonates of the aikalies-soluble in alcohol-the solution crystallizes on conceutration, but the crystals fall into amorphous powder on drying.

Medicinal Uses.-The inuriate of morphia is the most valu. able of all the sedative preparations of opium, allayiug spasm, and inducing sleep when administered in doses of one grain,* and without causing the hend-ache and restlessuess, which so often follow the use of the common preparations.

The quantity of codeia present in many specimens of the salt is so considerable, as to interfere materially with their medicinal effects; vomitiug and gastric irritation is a common effect of the drug as we meet it iu Beugal. The purified muriate prepared as above recommenled, is quite free from this objection. For the properties of cedeia, see Dispensatory, $p, 177$.

In the London process for preparing muriate of morphia, the chloride of lead is recommended, instead of the muriate of lime, for precipitating the ineconic acid. The large quautity of water which the chloride of lead requires for its solution, is a serious objection to its use. The water has all to be dissipated by evaporition, and every circumstance which prolongs this process, is a great evil. The size of the vessels used should moreover be so much enlarged, as to render it impracticable to use porcelain or earthenware, the only vessels from which in pure product can he obtained. For the composition of morphia and its salts, the reader is referred to the Dispensatory, p. 176.

Acetate of Morpma.

Dissolve morphia in 12 parts of warm water, adding pure acetic acid till this be in slight excess; conceutrate, crystallize, press, and recrystallize the expressed liquor.

[^11]

The Editor of the London Pharmacopeia erroneously atributes the sickness and head-ache, sometimes caused by this prcparation, as well as the muriate, to the anarcotine he supposes them to contain. But the process followed by the London and Edinburgh Colleges, renders it impossible that anarcotine can be present. Codeia is necessarily associated with it as we have already shewn, and this princinle it is, which produces the effect complained of.

The acetate is a much less certain and valuable preparation thal the muriate, which should be always preferred.

ACONITINA B BIKYA.

Take of the roots of Singeea Bisth, (Aconitum Ferox,) 2 llos. rectified spirit, 8 pints.

Divide the spirit into two portions, and successively boil the powdered root with each portion, straining and pressing. Reunite the liquors. Distil off two-thirds of the spirit. Evaporate the residue to dryness in a water batl. Dissolve the extract in 6 产 of water acidulated with one drachm of sulphuric acid, filter and add ammonia in slight excess; allow the deposit to subside, decant the clear liquor, and filter the thicker portion through fine muslin. Dry between folds of blotting paper, and on a hot-water plate.

Remarks.-This process differs from that givell in the London Pharmacopein in the extract being cvaporated 10 dryness, and sreat ed directly with the ditute acid, instead of a watery extract being made and again evaporated. While these modifications are invariably successful in yielding a good product, the London process is liahle to failure.

Properties.-Soluble in 150 parts of cold and 50 of boiling water, also soluble in alcohol and ether, crystallizes with difficulty; alkuline, melts on the application of heat, calcined with nitrate of ammonia is totally destroyed. The taste is bitter and acrid, the salts it forms with acids do not erystallize.

Effects and Uses.- A formidable poison, 1-10th of a grain killed a goat in one of the Editor's experiments in 12 minutes. The anmal
evinced severe distress and died in convulsions. The pupils were widely dilated.

It is not given internally, but is used as an ointment, one grain being mixed with a drachm of lard. 11 is an invaluable local applilication in many forms of neuralgia, especially in tic doloroux. It almost immediately occasions a tingling sensation in the part, then numbness, and relief of the pain.

DA'TURIA.

Take of the seeds of the Datura (white or black) I lb. in fine powder. Boil for an hour in 3 pints of proof spirit, filter white hot and putinto a stoppered bottle; add 100 grains of magnesia, Agitate tlie mixtmre frequently during 24 hours, collect the precipitate and boil for a few minutes with 12 ounces of rectified alcohol and one drachm of purified animal charcoal; filter, evaporate to one-half, and set aside. Crystals of daturia gradually form.

These are to be purified-by solution in water acidulated with sulphuric acid, again precipitating by magnesia, re-dissolving in alcohol, and crystallizing as before.

Remarks.-Daturia crystallizes in brilliant colourless prisms, is nikaline, inodorous, of slighty bitter acrid taste, soluble in 72 parts of boiling and 280 of cold water; very soluble in hot sleohol, l,u1 slightly in ether, is excessively poisonous; its salts dissolved in water dropped into the eye, cause immediate and great dilatation of the pupil, an effect which somerimes lasts for several days.

Daturia is totally dissipated by burning with nitrate of anmonia. Its satis are highly crystalline, and in concentrated solutions, give 10 alkalies a flake precipitate of daturia.

Uses.-We have introduced this preparation which ean be readily and cheaply made in Bengal, as a substitute for the Extract of Belladonoa of the European Pharmacopeia.

Belladonna is of inestimable value to the oculist in enabling him under many urgent circumstances to cause dilatation of the pupil; for instance in inflammation of the iris, previous to the operation for cataract, \&e.

The Extract of Beliadonna, however, seldom reaches India in an active state, and never retains its activity beyond one season; one grain of neutral sulphate of daturia dissulved in one ounce of water affords a solution, two drops of which introdnced into the eye will oceal-
sion immediate dilatation of the pupil. It seems to be a perfect substitute for the Belladonna.

The corresponding albali of Belladoma, Atropia, is difficult of preparation and preservation, and its volatility a source of much danger to the operator. Daturia is not volatile, is easily made, and dous not spoil on keeping ; its precise composition is unknown.

QUININE, SULPHATE OF

1st Stage.-Take of powdered cinchona bark 1 |b., boil in a glazed earthen vessel for lalf an hour in 1 gallon of water, acidulated with $\frac{1}{2}$ an ounce of sulphuric acid; strain.

2d.-Repeat this with the bark left on the strainer, fresh water and acid, waslo the bark well with warm distilled water, and unite the strained liquors.
$3 d$ - To the mixed liquors (cooled) add carbonate of soda in powder, till the acid is nentralized. Collect the precipitate on a calico filter and wash it with distilled water.

4th.-Boil the precipitate in rectified spirit till nearly all is dissolved; filter. Reeover 2-3ds of the spirit at 180°, and evaporate the last third from the water bath to dryness at 120°.

5th.-Powder the residuum and diffuse it through three ounces of boiling distilled water, add sulphuric acid drop by drop, stirring repeatedly till the whole is nearly dissolved; filter while hot, let it stand till crystals begin to form, then set aside to crystallize.

6th.-If the crystals are discoloured re-lissolve in water, and add two drachms of purified animal charcoal, digest together with a gentle heat for six hours, strain and re-crystallize.

Remarks. - This process is inserted, although it will perhaps never be performed by the Indian druggist, inl order to afford hiin a guide to the examination of barks supposed to contain quinine or some analogous principle.

By boiling in the acidulated water, a sulplate of qquiume is formed and dissolved.

From this solution, the quinine is precipitated with sorne resin and lime, as carbonate and sulplate of those bases, No. 3.

In step 4, the alcohol dissolves the resin and quinine, and leaves the sulphate and carbonate of lime. In No. E, the resin is separated and di- sulphate of quinine formed. Step 6 , is for the purificajion of the ergstals.

Quinine uncombined with an acid is not used in medicine; for its properties see the Dispensatory, page 390.

With sulphuric acid it forms two salts, the sulphate (sulphmric acid l eq. $=40$, quinine $1 \mathrm{eq} .=162$, water 8 eqs. $=72=274$) and the di.sulphate, (sulphuric acid 1 eq. 40 , quinine 2 eqs. $=324$, water 8 eq. $=72=436$.)

It is the di-sulphate which is used in medicine. It is of pearly lustre, in silky crystals, very bitter, soluble in 30° of boiling and 740° of cold water, and 80° of cold alcohol. If heated it melts like wax; by further heating with nitrate of ammonia it is totally dissipated.

At 212° it loses 2 eqs. of water, at $240^{\circ}, 2$ more eqs. For the mode of examining sulphate of quinine and detecting its adulterations, see the list of Materia Medica.

Sulphate of quinine should not be prescribed with alkalies, their carbonates, or the alkaline earths.

Medicinal Uses.-...This invaluable salt is the most powerful of all febrifuge and autiperiodic remedics. In doses of from 3 to 4 grains it prevents the return of agne in a vast proportion of cases, and in the treatment of remittent fevers, it is our only trust-worthy rentedy for preventing the return of the paroxysm.

Sulphate of quinje very commonly induces some distressing nervous symptoms, especially ringing in the ears, coufusion of ideas and restlessness. In some persoms this affection is so distressing, as to reuder the remedy inadmissible; in such cases anarcotine will be of en found to answer.

It is ulso an excellent general tonic when given in doses of 1 to 3 grains llirice daily.

In administering quinine in intermittents it is considered by most gractitioners, that this should only be done when there is a moist skin, a cool head, and after the bowels have been fally relieved.

SJRYCHNINE.

Take max vomica seeds 1 lb ., strew them on a net with fine meshes placed over a pot of boiling water, und steam them for two hours or longer, turning them frequtently. After this, chop them down and dry thoroughly in the hot air-stove at 140°; grind in a coffee milh.

2d. Macerate the powder in a quart of distilled water for 12 bours, boil, strain, express. Repeat this and unite the expressed liquors.

3d. Boil down the liquors to the consistence of thin syrup, and add one ounce and a half of quick lime made into a cream with water. A precipitate occurs, collect this and dry it at 140°.

4th. Powder the precipitate, and boil it with rectified spirit till this ceases to be rendered bitter.

5th. Distil off the spirit to one quarter; allow the remainder to crystallize by cooling and spontancous evaporation. The strychnia may be purified by a second solution and crys. tallization.

Remarhs.-This process was devised by M. Henry, and is ndopted by the Edinburgh Pharmacopeia. Henry states, that a killogramme (one seer) of nux vomica seeds will yield by this method about $1-200$ th part of strychnine. A nearly similar method was published by Dr. Pearson of Calcutta in the Journal of the Asiatic Society for 1833, p. 42. It is far superior in facility of management, economy and productiveness, to the method given in the London Pharmacopeia, which omits moreover the indispensable step of steaming the nuts. These cannot be reduced to powder if the steaming be neglected.

In our process, the natural strychnate of strychnine is dissolved by the water, and separated by the lime ; the strychnine is dissolved by the spirit and crystallized.

Strychnine is alkaline, crystalline, colorless, devoid of odour, most powerfolly bitter. It requires 6600 parts of cold, and 2500 of hoiling water for its solution. It is insoluble in alcohol or ether. With acids it forms neutral crystallizable salts, all of which are formidable poisons.

A single grain of strychuine dissolved in a fery drops of acidulated water, destroys a large animal in about a minute aud a balf, in frightful paroxysms of tetanic convulsious.

Medical Uses. - In doses of $\frac{1}{8}$ th of a grain, it is given internally in the treatment of paralysis in the conditions described under the head of Brucine. It is also made into an ointment, and used externally in some paralytic cases, and in amaurosis; a blistered surface baving been prepared, and the strychnine ointment used as a dressing.

For impurities and their tests, sce the list of Maturia Medica, also see the Dispensatory, page 438.

BRUCINE, SULPHATE OF.

Take of kooehila bark (bark of Strychnos Nux Vomica tree) I lb., treat it with the same ingredients, and precisely in the same manner as in the process for sulphate of quinine, 1 st and 2d steps.
3. To the filtered liquor add a solution of nitrate of lead avoiding any excess of the precipitant, strain and evaporate nearly to the consistence of syrup.
4. Add carbonate of soda in slight exeess, strain and collect the precipitate, and then proceed as in the sulphate of quinine process to the end.

Remarks. The description of the quinine process applies to this with very slight modification. Step No. 3 is recommended, in order to separate the sulpluric acid and some resin, which would interfere with the further stages of the process.

For the properties and composition of the Kooclila bark and Brucire, consult the Dispensatory, page 437, 38.

Medical Uses.-Sulphate of Brucine is a convulsive tonic of greas power ; in doses of half a grain to one graiu thrice daily it is found very valuable in the treatment of shose forms of paralysis which do not depeud on organic disease, inflammatio, nor exuravasation. It possesses considerable antispasmodic virtues, being capable of curing many varielies of agues of long standing. But its use should not be recommended in remitteut fevers.

In paralysis it is usually found that slight convulsive movements in the paralyzed parts precede the successful issue of the case.

Great caulon must be observed in its administration, as in loses of more than three grains it is r formidable poison, causing death by tetanic convulsious. Wireu an over-dose is accidentally taken, instans vomiting is the only remedy on which the least dependence can be placed.

CONFECTIONS.

Confretion of Almonds.

Confectio Amygdalarum.

Sweet almonds eight ounces, gum arabic one ounce, white sugar four ounces.

The almonds are to be blanched by steeping in tepid water, then beaten into a paste, and incorporated with the other ingredients. The mixture should be made only when required, as it soon becomes mouldy.

The above articles occur of good quality in the bazars.
Use.-For preparation of Almond mixture.

Aromatic Confection.

Cinnamon two onnces, nutmegs two ounces, cloves one ounce, cardamoms (lunsked) half an ounce, saffron two ounces, prepared chalk sixteen ounces, sugar two pounds.

Powder separately, then mix intimately and preserve in a well-closed vessel. When required, incorporate the mass with the necessary quantity of water to make it into a stiff paste.

All those ingredients are procurable in the bazars, except the prepared clalk, for which a formula is given elsewhere.

Use.-Stimulant dose, grs. Эi. to 3 i .

Confection of Cassia Fistula, (Amultas.)

Cassia pulp lialf a pound, Manna a. two ounces, tamarind pulp one ounce, syrup of roses eight fluid ounces.

Dissolve the manna in the syrup, mix in the pulps, and evaporate the mixture on a water bath to the consistence of a thick but soft mass.
a. Purified turunjabeen, the manna of the desert, found on the Shutr Khar (Allagi Maurorum) may be substituted for the manna.

Use,-Purgative, dose 3ii. to 3 i .

Confection of Opium.

Hard opium pnwdered, six drachms, long pepper one ounce, ginger two ounces, caraway, a. thrce ounces, tragacanth, b. powdered, two drachms.

Powder the ingredients, mix intimately, and preserve in a close vessel. When required for use, add sixteen fluid ounces of hot syrup.
a. The black caraway (zeera seah) may loe used instead of the English article.
b. Picked latira gum may be substituted for the tragacanth.

Use-Narcotic - dose 20 to 30 grs .
N. B.-Ordinary opium cut in thin slices and heated ou the waterbath may be dried efficienly without loss of narcolic power.

Electuary of Opijm and Catechu.

Catechu, Kino, a. four ounces each, cinnamon and nutmeg, each one ounce, opium diffused through a little sherry, one drachm and a half, syrup of red roses of the consistence of honcy, one pint and a lialf.

Powder the solids, mix the opium and syrnp, then the powder, and beat into a uniform mass.
a. For kino the palass goond (gum of butea frondosa) may be substituterd.

Medicinal Use.-A valuable sedative and astringent remedy, dose Ji to 3 i.

Conpection of Orange Peel. Confectio Aurantii.
Fresh orange rind, rasped, one ponnd, white sugar three pounds.

Incorporate thoroughly in a stone mortar witli a wooden pestle.

A useful adjunct to stimulant and earminative pills. It is not used by itself.

Confection of Black Pepper.

Confectio Piperis Nigri.

Black pepper, elecampane root, a. each one pound, fennel seeds, b. three pounds, honey clarified, and sugar each two pounds.
a. For elecampane root (inula helenium) we recommend the substitution of the goonch root, Abrus precatorius. The Edinburgh Pharmacopeia uses liquorice root. b. For the fennel seeds of the London preparation, the seeds of Panmuhori, or Sonf, (Fœeniculum panmorium,) are an adequate substitute.

Uses.-Only employed as an external application to piles in cases unattended with inflammation. It is nearly the same as the nostrum, called "Wardes' Paste."

Confection of Red Roses.

Confectio Rose Gallice.

Red rose petals one pound, sugar three pounds.
Bruise the petals in a stone mortar, add the sugar and mix thoroughly.

Use.-Whiefly as an addition for pills and confections.

Confection of Rue.

Confectio Rutce.

The herb of dried rue a. caraway seed, b. each one and a half ounce, sagapenum half an ounce, black pepper two drachms, and clarified honey sixteen ounces.

Ruh the dry ingredients together to fine powder-add the honey and mix when required.
a. The sudab of the bazar's of N. W. India, b, the zeera seeah (black earaway,) may be substituted.

Use-Occasionally in injections in hysteric cases.

Confection of Scammony.

Powdered scammony, one ounce and a half. Cloves bruised, ginger powder, each six draehms.

Rub together to a fine powder; when required for use mix with syrup of roses as much as requisite and add a. oil of caraway, half a fluid drachm.
a. The essential oil of eubebs may be substithted for this.

Use, A valuabie cordital carbartic, dose 30 grs. to 3 i .

Confection of Senna.

Senna, eight ounces, figs, a. a pound, tamarind pulp, eassia pulp, and prunes, b. each half a pound, coriander seed, four ounces, and liquorice, c. three ounces.

Tritnrate the senna and coriander, sift and take ten ounces of the powder. Boil down the water with the figs and liquorice to one half, press and strain. Evaporate the strained liquor in a water bath till 24 . fluid ounces remain, then adding 2 lbs , and a half of sngar make a syrnp,-rub the pulps with this, and mix in the sifted powder.
a. Dried plaintains may be used instead, laalf a pound being employed. b. Instead of prunes, Sebestens, the ripe fruit of the cordia myxa. c. For liqnorice, substitute the same quantity of goonch.

Medicinal Use.-Laxative; dose jii, to jiv.

DECOCTIONS.

Decocta.

Decocrion in Pharmacy means a preparation in which the active parts of a substance arc dissolved by boiling water.

If the activity of a remedy depends upon any volatile principle, decoction tends to dissipate this, and should not be resorted to.

Decoctions shonld be strained while hot; the deposit on cooling should not be separated.

When roots contain starch, infusion in hot water is nsually preferred to decoction, as less of the starch is thus separated.

As watery solutions of vegetable matter spoil rapidly, they should be prepared only when required.

Decoction of Aloes.

Extract of liquorice, a, seven drachms, carbonate of potash, one drachm, Socotorine aloes powdered, myrrh powdered, saffron, each a drachm and a half.

Compound tincture of cardamums seven fluid onnces, distilled water, a pint and a half.

Boil the liquorice, carbonate of potash, aloes, myrrh and saffron with the water to one pint measure, strain, and add the tincture.

The carbonate of potash is added to dissolve the resinous prortion of the myrrh and aloes.
a. Exiract of goonch (Abrus precatorius) may he used instead.

Use.-Gently cathartic and toulic, dose 30 grs , to 3 i.

Decoction of Barley.

Decoctum Mordei.
Pearl barley, washed and dried, two ounces and a half, boil in half a pint of the water for two minutes and throw
this water away. Then boil in four pints of water, previonsly heated, boil down to two pints, strain.

Use,-Demulcent, in enemas.

Compound Decoction of Barley.

Decoction of barley, two pints, figs, a. sliced two ounces and a half, liquorice root, b. sliced and bruised five drachms, raisins stoned, two ounces and a half, water a pint, boil down to two pints, strain.
a. Stove-dried plaintains, and b. groonch root, may be used instead.

Use.-A good demulceut.

Decoction of Ceylon Moss.
 Decoctum Lichenis Zeylanici.

Ceylon moss ground to fine powder two drachms, water one quart, boil for twenty minutes, strain through muslin.

Use-Mucilaginous and demulcent. By increasing the proportion of the ground moss to half an ounce, the filtered solution on cooling becomes a firm jelly, which when flavoured by cinnamon or lemon peel, sugar and a little wine, is an excellent article of light food for sick children, and convalescenns.

Decoction of Cinchona.

Cinchona bark bruised ten drachms, distilled water a pint. Boil for a quarter of an hour in an earthen vessel and strain while liot.

This decoction owes its virtues to its coutaining in solution the alkalies quinine aod ciuchonine, together with astringent matter, (tannic acid.) The existence of the last substance renders it necessary to boil the bark in an eartheu vessel, iron vessels blackening the solution.
N. B.-II is seldom or never used, except as an astringeut wash externally. Its properties as a febrifuge and tonic are similar, but far inferior, to those of the sulphate of puriniue.

Decoction of Dulcamara.

Dulcamara ten drachins, water a pint and a half.
Mix and boil and evaporate to a pint, and strain.
The dulcamara contains an active narcotic alkali, Solanine.-This preparation is narcotic and diuretic; dose 3 iv . to f そi. thrice daily.

It is very desirable to ascertain whether the Indian species, solanum nigrum, Arrub-ul-saleb, possesses similar virtues. (See Dispensatory, page 462 .)

Decoction of Gulancha.

Take of the stems of the gulancha two ounces, bruise in a mortar and boil with a pint of water for half an hour, strain the decoction, and boil down to four ounces.

Use.-A valuable bitter tonic and alterative. Dose one ounce flavoured with honey thrice daily. This preparation is the Pachana of the native physicians.

Decoction of Ispaghool.

Ispaghool seeds two drachms, distilled water one pint.
Boil and strain as directed under last head.
Both these preparations are simple demulcents. That of Isphaghool is nsed in dysenteries, and recommended by Mr. Twining.

Compound Decoction of Mallow.

Mallow, dricd, a. an ounce, chanomile dried, half an ounce, water, a pint, boil and strain.

Use.-In enemas and fonentations.
a. The dried capsules of the okra, L/itiscus esculentus, may be substituted.

Decoction of Pomegranate Rind.

Decoctum Granati.

Pomegranate rind two ounces, distilled water a pint and a half, boil down to a pint, and strain.

Medicinal Use.-A slrong astringent, used in ehronic dysentery and tape worm ; dose, 3 iv . to $\overline{\mathrm{j}} \mathrm{i}$.

Decoction of Pomegranate Root Bark.

Decoctum Corticis Radicis Granati.

Pomegranate root bark two ounces, distilled water a pint and a half, boil to one pint, strain.

Medicinal Use, -Deemed specific in tape worm; dose 弓iv, to zi. thrice daily.

Decoction of Poppy Heads.
 Decoctum Papaveris.

Poppy capsules sliced four ounces, water four pints, boil for fifteen minutes and strain.

Use.-A fomentation for painful bruises and swellings, blistered or burned surfaces, \&c.

$$
\begin{gathered}
\text { Decoction of Quince Seeds. } \\
\text { Decoctum Cydonic. }
\end{gathered}
$$

Quince seeds, a. two drachms, distilled water, one pint.
Boil gently for ten minutes and afterwards strain.
a. The bedana of the bazar may be used instead.

> Decoction of Rice.
> Decoctum Oryza.

Rice one ounce, soft water a quart, boil and strain.
Medicinal Use.-Dennlcent, and in enemas as a velicle for active remedies.

Decoction of Romun.

Take of Rohun bark ten drachms, water two pints,
Boil to one pint in a porcelain vessel, and strain. The solution should be of a redilish colour.

Medicinal Uses.-A valuable astringent wash, for gargles, vagiual injectious, and euemas. We intend it as a substitute for the oak bark decoction of the London Phanmacopeia.

Decoction of Sarsaparilla.

Take of sarsaparilla root sliced five ounces, boiling distillell water four pints.

Macerate for four hours in a vessel lightly covered, at 100° Fahrt. Take out the sarsaparilla and bruise it, mace. rate again in the same liquor for two hours, then boil down to two pints, and strain.

The red sarsaparilla should be preferred.
Medicinal Uses.-Alterative and diuretic; dose 乞iv, fo §viij. three or four times daily,

Compound Decoction of Sarsaparilla.

Decoction of Sarsaparilla (boiling) four pints, sassafras sliced, a. guaiacum wood shavings, liquoriee brinised, each ten draehms. Mezereon bark, b. three drachms-boil for a quarter of an hour and strain.

Medicinal Uses.-Stimulant, diaphoretic and alterative, very much given in secondary syphilis and rheumatisro ; dose §iv, to ${ }_{3}$ vi. thrice daily.

Remarhs.-In botl? these processes when sarsaparilla is not oftainable, the China root, (Smilax China,) may be employed.

Ant infusion of the Ilemidesmus Indicus, (Ununtamul,) propared as afterwards directed, is a still better substilute for sarsaparilla. But as much of the virtues of the Ununtanul depend on a voluile
principle, it should not be used in decoction, as the long boiling dissipates the active ingredienl.
a. For the Mezereon of the London Pharmacopeia, (Dapline mezereon) the dried bark of the Nepal paper plant, Daphne cannabina. may be substituted. The bazar mezercon is almosl always inert from age.
l. The Assam sassafras is fully equal to the American kind, and may be introduced accordingly, alihough ils source is as yet not perfectly ascertained.

Lasily, for liquorice, the goonch may be substituted in this as in many olher preparations.

Decoction of Sapan.

Sapan wood in chips one ounce, water a pint, boil down to one half, and add, towards the end, cinnamon in powder one drachm.

This is introduced as a perfect indigenous substilute for the decoction of Hematoxylon of the Edinburgh Pharmacopeia.

Decoction of Senega.

Senega ten drachms, distilled water two pints, boil down to one half, and strain.

Uses.-A slimulant diaphorelic, also much used in typtoid pneumonia and bronchitis, and in chronic rheumatisur ; dose zi. to ziij. every second or third hour.

Decoction of Starch.

Decoctum Amyli.

Starch, n. four drachms, water a pint, rub together and hoil.
a. Instead of European starch we recommend that Indian arrow root (tikor,) especially that of Calcutta and Benares be employed. European starch is often mixed with a portion of powdered blue glass, or cobalt.

Use.-Demulcent.

Decocton of Uva Uasi.

Uva Ursi leares bruised, one ounce, distilled water a pint and a half, boil down to a pint and strain.

Use, - A useful bitter, having a special tendency to remedy purnlent and mucous discharges from the kidıies and bladder; dose 3j to $\overline{3} i j$, repeated according to the effect.

In our list of decoctions we have omited the following, which occur in tho London Plharnacopeia:-

```
. Decoction of Iceland Moss.
    2. ., of Winler green or l'yrola.
    3. " of Oak bark,
    4. ", of Broom, (Scoparia.)
    5. ", of I,ogwood, (Hematox)len.)
    6. " of Elm bark.
    7. ", of White Itellebore.
```

 Substituting as follows: "-
 1. Decoction of Ceylon Moss.
 3. Bark of Kohun.
 5. , Sapan Wood.
 [Nus. 1, '2, 5, 6 and 7 are rejected ar omitted by the last Edinlurgh Pbarmaco-
 peia. 4, we lind is never preseribed or indented for from the llon'ble Company's
Dispensury.]

DIS'TIILED WATERS.

Distilled Water.

Aqua Destillata.
Take of water 10 gallons, distil, reject the first guart and retain the next eight gallons; it should be kept in stoppered bottles.

Nearly all river and spring waters contain implrities, organic and mineral, which render then unfit for the purposes of Plarmacy.

No water should be employed by the Apothecary which is rendered turbid (1) hy nitrate of baryta; (2) nitrate of silver; (3) or oxalate of ammonia; or is altered in colour by solutions of (4) sulphuret of potash; (5) ferrocyanuret of potassium; 1 detects sulphuric acid, 3 lime, 2 chlorine, indicative of common sall, 4 lead or iron, 5 iron, by a blue-or copper by a hrown precipitate.

A cubic inch of distilled water at 62° weighs 252 grains. A pint weighs 8,750 grs. or 20 ounces avoirdupois.

When distilled waters are prepared from dried vegetables, only lialf the materiul should be employed. The aroma of the distilled
water depends on its dissolving a portion of the volatile oil distilled at the same time.

Indeed watery solutions of volatile oils may be prepared extemporaneously by agitating these with water and filtering, but the flavor is not so good as when distillation is performed. A little spirit prevents the water from spoiling.

Dill Water.
 Aqux Anethi.

Bruised dill seed one pound and a half, proof spirit seven fluid ounces, water two gallons, mix and distil one gallon.

Cherry Laurel Water.

> Aqua Laurocerasi.

Take of cherry laurel leaves one pound, water two pints and a half, chop down the leaves, mix with the water, distil off one pint, agitate the distilled liquid well, filter if at all milky after settling; lastly add compound spiril of lavender one ounce.

Use.-This is a sedative narcotic of much power; dose ten to twenty drops. It contains hydrocyanic acid, and a poisonous volatile oil.

Caraway Water.

> Aqua Carui.

Bruised caraway seeds one pound and half, water and spirit as in dill water.

Orange Flower Water.

Aqua Florum Aurantii.
Orange flowers ten pounds, water and spirit as above.
All these distilled waters, except the cherry laurel water, are merely intended as vehicles in draughts and mixtures for the adminisiration of more active remedies.

In the same manner, prepare the distilled water of
Cassia bark. Fennel, (Panmori.)
Cinnamon bark. Peppermint.
Feunel, sweet.
N. B.-Dried leaf 2 lbs ., or fresh leaf 4 lbs . Spearmint.
Dried leaf 2 lbs ., fresh leaf 4 lbs .
Pimento.
Bruised seed 1 Jb .
Penny royal.
Dried leaf 2 lbs , or fresh leaf 4 lbs . Rose water, petals of rosa centifolia 10 lbs .
Rose petals are preserved for this purpose by being beaten well with twice their weight of common salt, and packed in jars; the calyces should be first separated.

Also the following waters using 2 lbs of fresh or 1 lbs. dried leaves to two gallons of water ; of the seeds, one pound.

> Native Names.

Ajwain water, from seeds, Ajouain.
Anise, seeds, Sonf.
Marjoram, dricd lenves, Murwa.
Cajeput, \quad......\quad... fresh leaves, Kyapooti.
Celery, seeds, Huruls.
Coriander, seeds, Duniya.
Indian dill,... sceds, Soya.
Hemidesmus, roots, 2 lbs Ununtamul.
Juniper, berries, Hoober.
Musk hibiscus, seeds, Hub-ul-musk.
Sandal,
Sassufras, Nipal,... ... bark, 1 lb .
Tulsi, white,$\ldots \quad . . . \quad . .$. fresh leaves, Sufed tulsi.
T"ejpata,\quad... leaves,

ENEMAS.

Catilartic Enema.

Take of olive oil, a, one ounce, sulphate of magnesja half an onnce, sugar one ounce, senna half an ounce, and boiling water sixteen fluid ounces.

Infuse the senna in the water for an hour, then dissolve the salt and sugar, add the oil and agitate all together.
a. Poppy seed, til seed or ground nut oil of good quality may be substituted for the olive oil.

Enema of Aloes.

Aloes (Socentorine) two scruples, carbonate of potash fifteen grains.
a. Decoction of harley half a pint, mix and rub together.
a. Decoction of rice watcr may be used instead.

Used as a stimulant eathartic, especially in dislodging worms from the rectum, and in amennhorea.

Enema of Colocyntu.
Componnd extract of colocynth two scruples, soft soap an ounce, water a pint.

Use.-An active enema.

Fetid Enema.

To the cathartic enema, add two drachms of tincture of assafoctida. Used chiefly in liystcric cases.

Opiate Enema.

Decoction of starch, a. four flnid onnces, tincture of opinm thirty minims.
a. Thick rice water may be used instead.

The Edinburgh Cullege use only half this quantity of water.

Use.-An excellent sedative and anodyne injection.

Tobacco Enema.

Tobacco a drachm, boiling water a pint, macerate for an hom and strain.

Use-A drastic cathartic and narcotic, seldon used except in the treatment of strangulated hernia.

Turpentine Enema.
 Enema Terebinthince.

Oil of turpentine a fluid ounce, yelk of egg one, decoction of barley or rice nineteen fluid ounces.

Use.-A powerful cathartic and stimulant, much used in apoplexy, tape worm, and obstinate constipation.

EXTRACTS.

Extracts consist of the principles soluble in water, rectifiell, or proof spirit, dissolved from vegetable substances, and evaporated either to dryness, or to a soft semi-solid mass.

The prolonged application of heat either volatilizes, alters or destroys many active vegetable principles. We should avoid using it therefore beyond the degree or period absolutely necessary for the solution of these principles, and the subsequent dissipation of the solvent.

As evaporation takes place in vacuô with great rapidity at very low temperatures, by remoring atmospheric pressure from the vessels employed, much finer extracts can be obtained than by the common process.

For ordinary plarmaceulical apparatus, the water bath is used.
A vessel with boiling water is placed under the capsule containing the fluid to be evaporated, and heat is applied. The temperature of the evaporating liquid will seldom rise beyond 180°.

Solar evaporation may be practised with great success in India, if proper means be taken to keep off the dust. Mr. Ludlow's exrract of hyosciamus prepared in this manner from the expressed juice of the plant, is an excellent instance of what may be done in this way.

In making the preparatory solution, maceration, infusion or boiling in water and spirit may be severally necessary. This is specified in each particular case. The method of solution by percolation and displacement, recently introduced by the French chemists, is thus performed.

Take a cylinder of tinned iron or an earthen vessel two feet high, and from two to four inches in diameter, provided with a bottom and a stop-cock, or simply a tube closed by a peg. Into this
cylinder is firmly packed a paste made of the substance, preriously powdered with the solvent required ; a piece of calico is tied round the tube after the peg is withdrawn, and as much of the solvent poured over the paste as is equal to the volume this occupies in the eylinder. A highly concentrated solution is thus obtained; whell as mucl fluid percolates as has been added, repeat this with a fresh quantity of the solvent, and thus nearly the whole of the soluble matter will be removed by percolation. To displace a valuable solvent, such as alcohol, water is sometimes poured on, by which the first fluid employed is displaced without admixture with the second.

By this simple but most convenient process, time, spirit and fuel arc in many instances greatly economized, and a far superior volume obtained. It is applicable to most powders of barks and woods and leaves. Many bruised seeds and concrete juices, however, callnot be thus treated, as channels form through the mass by whieh the solvent escapes without coming in contact with its separate particles.

Extract of Aconite.

Take of aconite root, (sungeea bisl,,) beaten to a coarse powder 1 lb ., make it into a paste with the necessary quantity of rectified spirit, and percolate so long as the spirit is mnch coloured, distil off the spirit one-fourth, evaporate the rest on the water bath to the consistence of soft extract.

Use.-Onc-tenth to quarter of a grain in pills, with crumb of bread, thrice daily in chronic rheumatism, neuralgia, and tic-doloroux. It is a dangerous internal remedy, and not so manageable ns the tincture. Externally one drachm of the extract is used in an ointment with an ounce of lard as an application in tic doloroux, sciatica, \&c.

Remarks.-Our article is a substitute for the London and Ediulburgh extracts, which are preparations from the expressed juice of the leaves of the aconitum napellus.

Extract of Aloes.

Soccotorine aloes fifteen ounces, boiling water a gallon, boil and strain, evaporate to a pillular consistence.

Tbe resin is thus separated, and the extract is less irritating, and more active as a purgative than the crude drug. The Deckan mushabhir may be much improved by this process, but it never cau be substituted adequately for the Boonbay article.

Dose,-ITive to lifteeu grs.

Extract of Barberry Bark.

Prepare as extract of cinchona.

This extract is of brown-yellow colour, totally soluble in water, blackens by exposure to the air, is very bitter, solution bright yellow. It is identical with the best kinds of rusot or Indian lycium.

A valuable tonic, aperient and febrifuge in doses of 20 to 30 graius thrice daily. An excellent remedy in mild intermittent fevers.

Extract of Belladonna.

Bruise the fresh belladonna plant in a marble or stone mortar, express the juice, moisten the residuum, and express again, evaporate to the consistence of firm extract.

This extract owes its powers to the presence of the highly narcotic alkali called Atropia. Its most characteristic and useful effect is occasioning great dilatation of the pupil of the eye. Atropin and its salts are very difficultly prepared, and are so volatile as to be very dangerous in manipulation.

The softened extract of belladoma is rubbed over the eye brow or eye-lids to cause the ditatation of the pupil, in iritis, and previous to some surgical operations on the eye. It has been said on iusufficient grounds, to be a prophylactic against scarlatina.

The extract of stramonium when carefully prepared, and the salts of daturia, which are readily obtained from the stramonium of Bengal, afford an admiralle substitute for this article. The substitute is the more valuable as the Atropa belladonna does not occur in Iudia, and is not likely to be successfully cultivated.

Extract of Chamomile.

Extractum Anthemidis.
Chamomile flowers 1 lb ., boil in a gallon of water to forr pints, filter while hot, and evaporate nearly to dryness.

The baboone phat of the bazars may be used instead.
Use.-Tonic and slightly narcotic. Dose five to teu grs.

Extract of Cinghona.
Cinchona bark in fine powder four ounces, proof spirit twenty-four fluid ounces.

Percolate with the spirit, distil off threc-fourths of the spirit, and evaporate the remaining part to the consistence of extract.

Use.-TTonic and febrifuge. Dose ten graina to thirty grains.

Acetic Extract of Colchicum.

Extractum Colchici Acetosum.
Fresh colchicum, (bulb) a pound, acetic acid three fllid ounces, bruise the bulb sprinkled with the acid, and evaporate in a porcelain vessel.

The acetic acid renders the active principles of the bulb more soluble in water. A valuable remedy in gout and rheumatism. Dose oue grain to two grains, tbrice daily.

Practitioners are recommended to try the above formula with the soorinjan tulh, or hermodactyl colchicum, which is reputed to be of similar medicinal virtue.

Extract of Colocyntii.

Dehli colocynth one pound, water two gallons, boil quickly for six hours, keeping up the original quantity of water. Strain while hot, and evaporate to the consistence required.

Use.-Purgative. Dose five to fifteen grains.

Compound Extract of Colocynth.

Take of Delli colocynth (indrayun) sliced, six ounces, Soccotorine aloes twelve ounces, powdered scammony four ounces, powdered cardamoms one ounce, soap tliree onnces; macerate the eolocynth in one gallon of proof spirit for two dlays, strain, (by percolation, a tineture of equal strengtl and quall-
tity is procmrable in an hour.) 'To the tinctnre add the aloes, scaumony and soap, evaporate and mix the cardanoms towards the end.

Use.-This is an admirable cathanic, more prescribed in India perhaps than any other purgative preparation. It is still imported from Eugland at fl I s ibe pound, although all the ingredients are to be lad in ihe bazars, of excellent quality. The preparation can be made thus at less than one-1hird of ihe cost of the imported articte.

Extract of Digitales.

Prepared as directed under the heat of Hemlock.

Use.-A narcolic sedative of great power, supposed to contaitu an alkali called digitalia. When properly prepared, the extract of digitalis if given in doses of quarter a grain to half a grain every two hours, has the property of singularly diminishing the streuglh and rapidity of the heart's action. The effect is sometimes latent or accumulates in the system, being suddenly shewn in terrible and oceasionalty fatal collapse. A suddeu change of posture while a patient is under the action of his remedy, sometinces induces similar symptoms. Digitalis is also a powerful diuretic in every form.

This extract is chiefly used with squill and blue pill in the treatmenn of lyypertrophy of the heart, aneurism of the larger arteries, in dropsies, and ardent inflammatory diseases. Its use demands the utmosi caution.

Extract of Elaterium.

Slice the momordica claterinm, and gently express the juice through a fine sieve. Allow the thick part to subside from the liquid, and collect and dry the deposit.

Of greenish colour, and bitter taste, boiled in alcuhol it deposits, on cooling, crystals of elatin in the proportion of about 10 per 100. According to the experiments of Drs. Morries and Claristison, this is the active priuciple of the drug.

Elaterium is a drastic cathartic in doses of from 1-8th grain to 2 graius. Elatin is at least three times more powerful. The chief utility of this substance is ins enabling us to administer a powerful cathartic in extremely small bulk.

Extract of Gab.

Extractum Diospyri.

Take of gab fruit any convenient number, crush and express the juice, strain and immediately evaporate on the water bath to a perfectly dry mass, (to be preserved in stoppered bottles.)

The gab fruit contains, when ripe, a great quantity of mucilage and tannic acid. The extract is reddish-brown, in flexible plates, and if properly prepared, soluble in water. It is an excellent astringeut, and very useful in diarrhcea and chronic dysentery.

Dose.-One to five grains thrice daily. A solution of 3 jj . in a pint of water is a valuable vaginal injection in leucorrhea.

Extract of Gentian.

Gentian two lhs. and a half, boiling distilled water two gallons, macerate for 24 hours, boil, strain and evaporate to dryness.

A far superior process is that by percolation. The powdered gentian is subjected to the action of half its weight of distilled water at the common temperature for twelve hours, then acted on hy water in the percolator until exhausted, and the solution evaporated nearly to dryness.

Tue Extracts of Cimretta and Justicia, (Kreat,)
Are to be prepared by either of these processes.
These three extracts agree in being valuable bitter tonics. The chiretta extract deserves the preference. Both this and gentian contain a peculiar principle termed the gentisic acid.

Dose.-Ten to thirty graius twice or three times daily, usually preseribed with sarsaparilla, hemidesmus or iron.

Extract of Gulancha.

Take of the stems of the gulancha any quantity, clean well and bruise in a stone mortar, then steep in water for twentyfour hours. Squeeze the mass in a wooden press, and strain
the flind throngh calico ; evaporate the solution to dryness on earthenware vessels by the heat of the sun.

Use-A very valuable bitter tonic; the preparation we give is the Palo of the native physicians. Dose, one drachm and a half 10 three drachms, in divided portious daily, diffused through milk, and the taste disguised by sugar.

Extract of Hemlock.
 Extr. Coniz.

Hemlock leaves a pound, bruise, sprinkle with water in a stone mortar, press out the juice, evaporate to a due consistence.

Use.-This extract owes its sirtues to the presence of the alkali conia. This is a volatile fluid, and of powerful narcotic and anti-convulsive properties. The extruct unless prepured in vacuô or in the very recent state is nearly inert. When good and fresh, it is a servicable anodyne, given in five grain doses twice or three times daily. Its chief use is as a local application when mixed with simple ointment in the treament of paiuful piles, and in cerlain forms of stricture or cancer of the rectuin.

Extract of IJemp.
 Extr. Cannabis.

Gunja tops one lb., strong spirit one gallon, macerate for two days, boil for half an hour and strain, distil off threefourths of the spirit, and with this repeat the maceration and distillation, repeat this again. Evaporate all the liquors to the consistence of soft pillular extract.

Use.-A powerful, but safe narcotic, in large doses producing cataleptic rigidity of the muscles; chiefly used in cholera, delirium tremens and tetanus, also given as a palliative in hydrophohia. Dose half a grain to ten grains, repeated according to the symptoms and effects.

> Extract of Hor.
> Extractum Lupuli.

Prepared from the hop flowers as the extract of sapan wood.

Use.-A gentle anodyne and excellent bitter tonic. Dose as an allodyne, five to ten grains; as a tonic, one or two grains thrice daily.

Extlact of Hyosciamus.

Take of the recent plant any quantity, moisten with water, beat in a stone mortar, press, and evaporate the juice without straining to a proper consistence.

The evaporation may be advantageously conducted by exposure to the sun of the juice spread int thin layers on common earthen vessels. This plan was practised with great success hy Mr. Ludlow, late of the Bengal Mellical Establishment.

This extract contains IIyosciamine, tus alkaline base of highly nareotic properties. The extrach in two to five grain doses is a valuable suodyne and sedative, less stimulatiug than opium, and devoid of any constipating tendency. It is frequently substituted for opium where excitement or constipation must be avoided. Mr. Ludlow's extract prepared by solar evaporatiou we found to be a very superior preparation to that inade by the London process.

Extract of Jalap,

Jalap root powdered, any convenient quantity, Moisten it with rectified spirit, exhaust the powder by percolation, distil off three-fourths of the spirit, evaporate the rest on a water bath to a soft pillular consistence.

This is a much better process than the London one.
The extract of jalap consists cliefly of resin. It concentrales the properties of the root, and in doses of five to ten grains, is one of the best purgatives we possess.

Extract of Kaladana.

Treat the powdered seeds of the kaladana exactly as above described.

The extract is soft, yellowish brown, of slightly acrid taste, insoluble in water, soluble in spirit and the oils. In contains resin and fixed oil.

This extract was introduced into practice by the Editor of this work, It has been extensively tried, and most favorably reported on. In doses of fron five to ten grains it proves a quick cathartic, and seldom occasions either griping or vomiting.

dixtract of Liquomice.
 Extractum Glycyrmhize.

Liquorice root two lbs. and a half, boiling distilled water two gallons, macerate for 24 hours, boil down to one-lialf, strain and evaporate to a soft mass on the water bath.

Or the liquorice root in powder may be acted upon by percolation, which will afford a better article.

In this manner prepare the,

Extract on Goonch.
 Extractum Abri.

Both these extraets agree in their general and medicinal properties, being merely sweet demulcents, and sometimes added to other articles to modify or eonceal their flavour. The extract when hardened is often caten in small quantities as a local demuleent in eough, dependent on irritation in the pharyins, or at the top of the trachea.

Extract of Nux Vomica.

Powder the seeds as described under the head of stryehnine, subject the powder to percolation with spirit till the solution is free from bitterness. Recover threc fourths of the spirit by distillation. Concentrate the rest to dryness on the water bath.

Use.-An admirable convulsive tonic, (sec Strychnine.) Dose, 1-8th to l-4th of a grain thrice daily, in pills with crumb of bread.

Extract of Oplum.

Opium one pound, water a gallon.
First soften the opiun in a small portion of water, break it down to a pulp, express, and repeat this with all the water
in successive portions. Evaporate on the water bath to onethird. Decant this from the sediment which has subsided, and which is usually of a black colour ; complete the evaporation to a soft mass. The black powder is to be preserved.*

This is a very grod preparation, containing all the sedative parts of the drug, the insoluble matter being left on the filter. Dose, one to five grains.

Extract of Pareira.

Prepared as the extract of liquorice.

> Extract of Nemooka.

Prejared as the extract of Pareira.
The extrat of Pareira is a valuable astringent diuretic in duses of twenty grains dissolved in water thrice daily. The extract of nemooka affords a good substitute for this useful article.

Extract of Poppy.

Extractum Papaveris.
Poppy heads fifteen ounces, boiling water one gallon, macerate for a day, boil to four pints, strain, evaporate to a soft mass.

This extract is of very questionable ntility, and quite inert if the capsules have been previously subjected to incision for the removal of the opium they afford.

- Dose.-Nine grains to twenty grains in pills.

Extract of Quassia.

Prepared as extract of liquorice.
A valuable bitter tonic. Dose, five grains to ten grains thriee daily.

[^12]
Extract of Rhubarb.

Extractum Rhei.

Rhubarb root one pound, water five pints.
Cut the rhubarb into very small pieces, macerate with half the water for a day, press, repeat this; filter the liquors, and evaporate in a water bath, or if practicable, in vacuô.

The London College direct it to be made with one part spirit and 7 of water, but the Edinburgh method, above quoted, affords a finer and more active extract.

Use.-Purgative, dose ten to twenty grains dissolved in water.
We have received from Dr. Falconer a fine specimen of extract of rhubarb prepared by the hill people in the Iimalayas, and designated Osareh rewund. Their method of preparing it has not been described.

Extiract of Sapan Wood.

Sapan wood in chips one pound, boiling water a gallon, boil to four pints, strain and concentrate.

A useful astringent, (containing much gallic and tannic acid, and a good substitute for the logwood of the British Pharmacopeiæ.

Dose--Five to tell grains twice or thrice daily in chronic dysenteries chiefly. It is seldom piven alune, but usually with quinine, gentian or chiretta. It should not be given with the preparations of iroll.

Fluid Extract of Sarsapamlla.

Sarsaparilla one pound, boiling water six pints.
Digest for two hours in four pints of water, take out the root, bruise it and replace it in the water; boil for two hours, strain and press, boil what is left in two pints of water and heat as before; unite the liquors, evaporate to thin syrup, and add after cooling as much spirit as will make the whole sixteen fluid ounces.

See decoction of sarsaparilla for the uses of this article,

Extract of Scanatony.

Boil powdered scammony in rectified spirit till nothing further is dissolved, filter, recover four-fifths of the spirit
by distillation, pour water ou the residue and strain, wash the deposit with water, and dry on the water bath.

The object of this preparation is to purify the scammony of commerce from the adulterations to which it is commonly subjected, and which wo have alluded to in our materia medica notes.

Use.-Cathartic, dose five grains. It is not used by itself, being usually combined with cream of tartar, jalap, ginger, aloes, \&sc.

Lextract of Stramoniun.

T'ake of seeds of Datura as muclı as convenient. Grind in a coffee mill; make into a paste with proof spirit, and percolate. Distil off the spirit, and evaporate on a water bath to dryness.

Use, An excellent substitute for extract of belladonna, (see that lead.) Internally it is sometimes giveu in asthma and other spasmodic diseases in doses of half a grain to one and a half grain tlirice daily. The effect is purely, but powerfully narcotic.

Extract of Thraxacum.

Taraxacum root fresh and bruised, two and a half lbs., boiling water two gallons.

Prepare as extract of gentian.
Use.-A good tonic and diuretic. Dose five to tell grains thrice daily.

- Extract of Uya Ursi.

Uva ursi two and a half lbs., boiling water two gallons, macerate for a day, boil to a gallon, strain while hot, evaporate nearly to dryness.

Use.-The same as that of the extracts of Pareira and Neemooka.

PREPARATIONS OF IIONEY.

Honiy de Borax.
Mel. Boracis.

Borax one drachm, honey one ounce, mix.
Use.-A good application in apthous affections of the mouth.

Honey or Roses.

Red rose petals dried four ounees, boiling water two pints and a half, honey five pounds.

Infuse the petals in the water for six hours, strain, and add the honey and boil down to the consistence of a syrup.

Use.-In gargles and washes for the throat.

> Oxymel.

Honey ten pounds, acetic acid a pint and a half; heat the honey and mix with the acid.

Use.-In gargles and washes.

Oxymel of Seuills.

Honey three pounds, vinegar of squill a pint and a half; boil down on a porcelain capsulc to the consistence of syrup.

Use.-In chronic cougls and the catarrhal affections of old persons. Dose, half a drachm to two drachns. Emetic in doses of ome to two ounces.

INFUSIONS.

Infuston in Plarmacy means a solution of any vegetable remedy in water, prepared at a temperature below that of boiling. As prolonged boiling destroys or changes some active vegetable prineiples and expels volatilc oils and acids, the form of infusion is in many instanecs preferable to that
of decoction, Infusion may be made either with hot or cold water, as directed in each etse. Distilled or rain water sliould invariably be used.

As infusions very readily spoil, they should be prepared only as required.

Infusion of Ayapana,

Reeently dried leaves of ayapana two ounces, water, boiling, one pint, allow the mixture to stand and settle, then strain.

Use,-A very agreeable diaphoretic and mild tonic, Dose, two fluid ounces thrice daily, The ayapana is a favorite remedy anong the mative Practitioners.

Infusion of Bel,

Fresh or recently dried bel leaf (Crat(cua) two ounces, dis. tilled water, boiling, one pint; prepare as above deseribed,

Use.-Slightly bitter and aromatic; much used by the natives of Bergal, Dose, two to four ounces thrice daily.

Infusion of Buchu, (or Uva Ursi.)

Buchu leaf one ounce, boiling water one pint, infuse for two hours, strain through calico.

Use.-Slightly astringent, and especially useful in purulent and catarrbal discharges from the urinury organs. Dose, two to four ounces thrice daily.

Infusion of Calumba.

Calumba in coarse powder five dracluns, boiling water a pint ; infuse for tro hours and strain.

Use,-A very useful tonic. Dose, two ounces thrice daily.

Infusion of Chamomile.
 > Infusum Anthemidis.

 Infusum Anthemidis.

 Infusum Anthemidis.}Clamomile flowers five drachms, boiling water one pint; infuse for a quarter of an homr and strain.

Use.-A bitter and aromatic tonic. Dose, one to two ounces. It is chiefly employed to promote the action of emetics; a small cupfull being taken warm soon sfter tite emetic has been administered.

> Infusion of Cascarilla.

Cascarilla bruised two ounces, boiling water a pint; infuse for two hours and strain.
Use.-A very agreeable tonic. Dose, one to two ounces thrice daily.

Infusion or Catrchu.

Catechu powdered six draehms, cinnamon powdered one draclim, syrup three fluid ounces, boiling water serenteen fluid ounces ; infuse the powders in the water for two hours, strain and add the syrup.

Use.-An efficacious astringent in relaxation of the bowels. Dose, one to three ounces thrice daily.

Infusion of Cinchona.

Ciuelsona bark powdered one ounce, boiling water a pint; infuse for two hours, and strain.

Use--Touic and febrifuge. Dose, one to two ounees thrice daily.

> Infusion of Cifiretta.

Chiretta half an ounce, boiling water one pint; infuse for two liours, and strain.

Use.-An excellent bitter tonic. Dase, one to three ounces thrice daily.

Infusion of Cloves.
Infusum Caryophylli.
Bruised clores three drachms, boiling water a jint; infuse for two hours in a covered vessel, strain.

Use.-Aromatic and stimulant. Dose, one to two ounces; a very useful adjunct to some purgative mixtures which are apt to cause griping.

Infusion of Cusparta.

Cusparia bark powdered five drachms, distilled water, boiling, one pint, infuse for two hours, strain.

Use,-A febrifuge bitter tonic. Dose, one to two ounces thrice daily.

Infusion of Digitalis.

Digitalis leaves dried one draehm, spirit of cinnamon one fluid ounce, boiling water a pint; infuse the dried leaf in the water for four hours, strain, and add the spirit of cinnamon.

Use.--Powerfully narcotic and diuretic. Dose, half an ounce to one ounce thrice daily. It should be prescribed unmixed with other substances, as it is very readily decomposed. Its operation must be carefully watehed, as it is apt to occasion sudden and dallgerous collapse.

Infusion af Ergot.

Ergot of rye, brnised, one scruple, boiling water three ounces, infuse for half an hour, strain, and sweeten slightly with sugar.

Use- In protracted delivery arising from debility of the uterus, also iu uterine hæmorrhage. The dose may be repeated twice or three times at intervals of fifteen to twenty minutes. Great caution must be observed in its employment, for should there exist any mechanical impediment to delivery, the uterine contractions this remedy occasions, may cause the laceration of the womb.

Infusion of Gentian.

Gentian sliced half an ounce, orange peel dried one drachm, coriander seed bruised one drachm, proof spirit four fluid ounces, distilled water (cold) sixteen fluid ounces. Pour the spirit upon the solids in a covered vessel. After two hours add the water, and in six hours strain.

Use.-A valuable bitter tonic. Dose, one to two ounces thrice daily. It cannot be prescribed with the preparations of iron, lead, or of mally other metals.

Infusion of Gulancia.

Gulancha stems sliced two onnces, cold water two pints, bruise the gulancha with a small portion of the water, when softened add the rest, and allow the whole to remain for six hours, being frequently shaken, strain.

Use.-An excellent alterative, tonic and diuretic. It is especially valuable in convalescence from fevers, and in secondary venereal affections. Dose, two to fonr ounces thrice daily.

Infusion of Hemidesmus, (Ununtamul.)

Hemidesmus bruised four ounces, boiling water two pints, infuse for two hours, strain.

Use.-A fragrant and highly effectual alterative and diurelic, of great service in secondary venereal affections and clronic rheumatism. It is in every respect a perfect substitute for sarsaparilla. Dose, two to four ounces thrice daily. It may be advantageously given in combinalion with the infusion or decoction of gulancha.

Infuston of Kanoor.
Infusum Crini.
Recent root or stems of the kanoor four drachms, cold water two ounces; bruise the root into a pulp in a stone or Wedgewood mortar, adding the water by degrees, press through calico.

Use.-This preparation is a mild and certain emetic. In doses of two drachms, given every twenty minutes, this solution oceasions nausea and perspiralion. It does not cause griping, purging, or any other distressing symptoms. The use of the kanoor was poiuted out by the Editor in 1839. (See Bengal Dispensatory, p. 657.)

Infusion of Kreat.

Infusum Justicic.

Kreat root bruised, one onnec, orange peel dried and bruised one drachm, coriander bruised one drachm, proof
spirit forr fluid ounces, cold water sixteen fluid ounces; prepare as directed under the liead of extract of gentian.

Use,-An excellent bitter tonic. Dose, one to two ounces thrice daily.

Infusion or Kurroo.
Kurroo root, orange peel, coriander, proof spirit and water in the proportions above directed, and prepared in the same manner.

Use-A perfect substilute for the corresponding preparation of gentian.-The kurroo (Gentiuna Kíurroo) is common in the Himalayas, and is much used in native practice.

Infusion of Linseed.
Linseed six drachms, liquorice ront (a) bruised two drachms, boiling water one pint, infuse for four lours and strain.
a-Gounch root may be used iustead.
Use.-Deraulcent ill gonorritea.

Infusion of Neemoka.

Neemooka root two ounces, boiling water one pint, infuse for two hours and strain.

Use, and dose the aame as of the infusion of Pareira,-for which the Neemooka is an efficient substitute.

> Infusion or Orange Peel.
> Infusum Aurantii.

Orange peel dried half an ounce, lemon peel fresli two drachms, cloves brnised one drachm, distilled water (boiling) one pint, infuse for a quarter of an hour and strain.

Use.-Cordial. Dose, one to two ounces.

Infusion of Pareira.

Pareira root six draclims, boiling water a pint, infuse for two hours, and strain.

Usc.-In ardor of urine and irritation of the bladder. Dose, two to four oulces thrice daily.

Infusion of Quassia.

Quassia in chips one drachm, boiling water one pint, infuse for two hours and strain.

Use.--A bitter tonic, not astringent; it may be prescribed with the preparations of iron. Dose, one to two ounces.

Infusion of Rilubarb.

Infusum Rhei.

Rhubarb powdered one ounce, spirit of cinnamon two fluid ounces, boiling water eighteen fluid ounces; infuse the rhubarb for twelve hours in a covered vessel, add the spirit and strain.

Use.-Stonachic and tonic. Dsee, one to two ounces.

Infusion of Roses.

Dried rose petals three drachms, dilute sulphuric acid one fluid drachm and a half, white sugar six draclims, boiling water one pint; infuse the petals for one lour in the water in a glass or poreelain vessel, covered, then add the acid, strain through calico, and lastly add the sugar.

Usc.-Astringent and tonic, Dose, one ounce to two ounces. Alkalis and earthy salts, as well as those of iron and lead, should not be prescribed with this preparation,

Infusion of Senta.

Senna an ounce and a half, ginger bruised, four scruples, boiling water a pint ; infuse for an hour and strain.

Use.-Purgative. Dose, three to four ounces.

Iniusion of Pata.

Infusum Sida.

Pata root sliced and bruised two ounces, ginger bruised two drachms, boiling water one pint; infuse for two hours and strain.

Use.-A very useful bitter tonic and astringent. Dose, one to two ounces hirree limes daity. It should not be given with iroul in ally form.

Infusion of Pedalium.-(Gokeroo.)

Fresh leaves of pedalium two ounces, cold water a pint; allow the mixture to stand for two hours; strain and sweeten witl sugar.

Use.-A good mucilaginous demulcent, much used by the natives as a driuk in gonorrhea.

> Infusion of Selipentaria.

Serpentaria half an ounce, boiling water a pint; infuse for three hours in a covered vessel, and strain.

Use.-Tonic, and diaphoretic. Dose, one to two ounces three limes a day.

Infusion of Simarouba.

Simarouba bruised three drachms, boiling water a pint; infuse for two hours, and strain.

Use-Tonic, astringeni, and mueilaginous; should not be prescribed wilh alkaline or earthy salts, or those of lead or irou. Dose, one to two ounces three times a day.

Colipound Infusion of Sollunjuna.

Soliunjuna root bruised, mustard seed bruised, each one ounee, compound spirit of solıunjuna a fluid ounce, distilled water, boiling, one pint, infuse the root and seed in the water for two hours in a covered vessel, strain and add the compound spirit.

This preparation represents the compound infusion of Horse Radish of the Loudon Pharmacopeia. The root of the Moringa pterygosperma, Sohunjuna of Bengal, is a perfect substitute in flavour and properlies for the European article.

Use.-A valuable stimulant. Dose, one 10 two vances.

Infusion of Vaberian.

Valerian root, (α.) half an ounce, distilled water boiling, a pint; infuse for half an hour in a covered vessel and strain.
(a.) The jatamansi valerian of the Himalayas, (Balchur, Hind.) is all efficient substitute for this article.

Use-A very useful stimulant and antispasmodic remedy, chicefly employed in liysteric cases. Dose, one to two ounces three tinces daily.

> Infusion of Violet, (Banopsha.)

Dried violet plant two drachms, boiling water a pint, infuse for twenty minutes.

The "Banopsha" of the bazars is the dried plant of the Viola odorata. The infusion is a good nauseant and diaphoretic.

METALLIC PREPARATIONS.

ALUMINIUM.
 (Compounds of)

The metal Aluminiun is not found in nature in the simple state, but combined with oxygen it forms the basis of all clays, and enters into the composition of a vast number of minerals and ores. Its oxide is called alumina. This unites with, acids forming salts, of which the sulphate is a common natural production, of which the salajit of Behar and Nipal is an example. The metal aluminium is often naturally associated with sulphur and iron.

Metallic aluninium can only be prepared in very misute quanties, by decompusing its chloride by metallic potassium.

It is obtained in scales of steel grey colour. It decomposes water slowly at a boiling heat, and is dissolved by diluted acids and alkalies, hydrogen gas being evolved. Its symbol is Al, its eq. 171.2 on the oxygen, 13.7 on the hydrogen scale.

Alumina or the sesqui-oxide of aluninum, is the chief ingredient of all earths. It may be obtained by addiug carbonate of potash to a solution of alum, (the phitkari of the bazars,) filtering and drying the precipitate. This oxide is white, infusible, soluble in acids and alkatine solutions before ignition, not afterwands. It has a sirong disposition to unite with organic matter. Thus whell cotton cloth is steeped in a solution of acetate of alumina, the alumina is deposited on the cotton, leaving the acid fres.

Alumina also combines with coloring matters, and thus forms the basis of several valuable dyes. The composition of this oxide is thus expressed:-

$$
\left.\begin{array}{c}
\begin{array}{c}
\text { Oxygen } \\
\text { scale. }
\end{array} \\
\text { Alumina, } 2 \text { eqs. } \ldots \ldots .342 .4 \\
\text { Oxygell, } 3 \text { eqs. } \ldots . .300 .0
\end{array}\right\}=642.4\left\{\begin{array}{c}
\text { Mydrogen } \\
\text { scale. } \\
\text { Al... } 27.4 \\
\mathrm{Ox} . .24 .0
\end{array}\right\}=51.4
$$

Dried Alum.

Alumen Exsiccatum.

Liquify alum (phitkari) in an earthen vessel over the fire till it ceases to effervesce or emit fumes, then powder.

Remarks.-Alum occurs in commerce in large crystalline masses, the usual form of the individual crystals being eight-sided double pyramids. It is soluble in 18 parts of water at 60°, and three-fourths its weight at 212°; the solution is slightly acid, and of sweetish, astringent taste.

The salrjit of Nipal is a mixture of sulphuret of aluminium, sulphate of alunina and sulphate of iron; its composition is very uncertain.

Alum is composed of
Ore eq. sulphate of potasl1,.....$\quad 88$
Three eq. sulphate of alumina, $. . .58 \times 3=174$
Twenty-five eq. water, $9 \times 25=225$
Equiv. of alum, .. 487
In the process above described, the salt melts in its own water of crysullization, which is driveln off by a continuance of the heat.

Use.-A powerful astringent in hemorrhages, diarrhces and mucous discharges.-It is much used in gargles and eye washes. Dose, when given internally ten to twenty grains-it cannot be pre-
scribed with alkalies, their carbonates, lime or magnesiu, the acefate of lead aud many otter remedies, as these effect its decomposition.

Compound Solution of Alum.

Alum, sulphate of zinc, each one ounce, boiling water three pints, dissolve together and strain.

Use.-A very powerful stgptic and astringent.

ANTIMONY.

(Preparations of)

Antimony is a very abundant metal, not found uncombined, but usually in the state of sulphuret or oxide, and of these united as the oxy-sulphuret. The sulphuret of antimony (surmeh,) is the most abundant ore, existing in immense quantities in the Malayan Archipelago and Eastern Islands, and being largely exported from Singapore.

Native sulphuret of antimony (surmeh) is dark grey, of metallic listre, usually striated in structure, easily powdered. In the bazars we have found the following substances sold by the native dealers as this ore: 1, sulphuret of lead; 2, sulphuret of molybdenum ; 3, fused sulphuret of lead with arsenic and antimony; 4, grey manganese ore.

These may be distinguished thus:-
By the blow pipe on charcoal, by which

1. Gives concentric riugs of red and yellow oxide on the char. cooal, and to the inner flame, a globute of soft metal.
2. Is tolally unaffected.
3. Fuses, emits fumes of a garlic odour, and leaves a red and yellow ash.
4. Is little affected with borax, gives a glass of splendid red colour wohile cooling, nearly black when cold.

In distiuction to these, the genuine ore emits copious white fumes, leaves a pure white oxide on the clarcoal, and gives with difficulty a britile metallic globule.

These substances may be distinguished also by the colour of the powder, if rubbed in a Wedgewood or porcelain zwortar.

1. Crystalline mreytish black.
2. Unctuous black brilliant flakes.
3. Brick red powder.
4. Brownisb powder.

The powder of the true ore of Antimony is a dull black.
They may also be recognized by muriatic acid.

1. Dissolves easily, solution not precipitated by distilled water, liquid blackened by hydrosulphuret of ammonia.
2. Unaffected.
3. Partially dissolved, a red powder (realgar) subsiding, solution partially precipitated by water, solution blackened by bydrosulphuret of ammonia.
4. Partially dissolved; hydrosul phuret of ammonia gives a yellowish brown precipitate to the solution which is not precipitated by water.

In muriatic acid the genuine ore is freely dissolved, the solution gives a perfectly white and very copious precipitate to distilled water. The washed precipitate is turned orange red by the contact of hydrosulpburet of ammonia.

Lastly, pure sulphuret of antimony is soluble in a hot solution of caustic potash, by which 1, 2 and 4 are undissolved, and an orange brown precipitate snbsides on cooling.

The great importance of this ore as the basis of the antimonial preparations, renders close atteution to these tests absolutely necessary.

From this sulphuret, metallic antimony may be best obtained by metting it at a bright red heat, with twiee its weight of black fux. This is a mixture of carbon and carbonate of potash prepared by defligrating equal parts of cream of tartar and salcpetre. Sulphuret of potassium and oxide of antimony are first formed, the carbon decomposes the oxide, and metallic antimony separates.

Metallie autimony is brilliant, white, britnle, crystalliue, sp. gr. 6.8 , mejts at 800°, and burns, if violently heated, with a splendid white flame and copious fumes; if pure, it is not acted upon by air or water, sulphuric or muriatic acids, but it is rapidly oxydized by the mitrie acid.

$$
\begin{aligned}
& \text { Oxygen scate. Hydiogen scale. } \\
& \text { Equivaleut, } 161.3 \text {. } 129 .
\end{aligned}
$$

Antiluvily las three oxides; viz. the sesfui-oxide, and the autimonisus and autimonic acids; the first being the basis of all the renlly useful medieimal compounds of this metal.

Oxide of Antimony.
 (Antimonii Oxydum.)

Sulphtret of antimony in fine powler four ounces, muriatic acid one pint.

Dissolve by a gentle heat, boil for half an hour, filter, and pour the liquill into three parts of water. A copious preci-
pitate subsides, filter through calico, and waslı with cold water containing a little carbonate of soda, till the washings cease to redden litmus paper. Dry the powder on the water bath.

In this process the following decomposition occurs :-

Sulphuret of Antimony. Sulphur,*
Antimony, \dagger
Muriatic Acid.
*Hydrogen.
\dagger Chtorine.

* * Form sulphuretted hydrogen which escapes, and $\dagger \dagger$ chloride of antimony which is dissolved.

Some uncombined sulphur in the solid state is liberated also in yellow globules. It is to separate these that the first filtration is directed.

On the solution of the chloride of antimory being poured into water, further decomposition ensues.

Chloride of Antimony.
Chlorine.*
Antimony. \dagger

* * Become muriatic acid, which is removed by the excess of water.
$\dagger \dagger$ Form sesqui-oxide of antimony, which is precipitated.
The precipitate being moistened by an acid solution must be well washed with water and a weak alkaline solution, till all the acid is removed, as indicated by the litmus test.

The sesqui-oxide thus prepared is a white powder, yellow when heated; if heaved 10 redness in the open air it is still further oxydized, forming antimonious acid. Witl tartaric or other vegetable acids, and their salls of potash, it forms several double ealts, of which tartar emetic is the most important.

This oxide of antimony is not used separately in medicine, and in Pharmacy it is employed for the preparation of tartar emetic.

When muriatic acid cannot be procured, this oxide may be obtained by the following process, which will ofien be adopted in ludia.

Crocus of Antimony.
Sulphuret of antimony and common saltpetre, each in powder two lbs.

Moisten with water, and make the paste into a pyramidal cone, which dry by exposure to the sun or hot air. When dry, ignite the apex with a red hot iron; after the combustion has ceased rub what remains to a fine powder, and wash
it in boiling water till the solution does not blacken lead test paper, nor precipitate the nitrate of baryta test.

In this process the following re-action takes place:-

	Nitrate of Potash.	
Sulphuret of Antimony.Sulphur, \dagger	Nitric Acid.	Potash.
	Nitrogen,	\dagger *Potassum.
* Produce Sulpl	Oxygen, § \dagger	* \dagger Oxygeu..
	assium.	
+	ash.	
§ - Oxide	ony.	

The powder thus prepared is called the crocus of antimony, the colour of the crocus is yellow. When moistened, it exhales an odour of sulphuretted hydrogen. The proportion of oxide of antimony it contains is very variable. In practice it is found preferable to use the common instead of the refiued saltpetre. The forrner contains some mariale of soda, which is decomposed during the ignition, eroitting nitric acid fumes, and saturating some free alkali formed by the ignition of the saltpetre, and also decomposing part of the sulphuret of potassium. These objects are gained in the London Pharmacopeis by the direct addition of muriatic acid during the process. In the proportions above directed, whell the sulphuret of potassium, sulphate and muriate of potash, and all soluble matter are removed, the residues still contains a mixture of some sulphuret of antimony with the sesqui-oxide of this melal.

Tartar Emetic.

(Antimonium Tartarizatum.)

Take of the precipitated muriatic oxide of antimony above described three ounces, cream of tartar powdered four ounces and two drachms, and water twenty-seven ounces.

Mix, boil for an hour and filter. Remove the crystals deposited on cooling. Concentrate the liquor and crystallize again. The second crystals must be redissolved and re-crystallized.

Or take the crocis resulting from the process, and in the quantities above described, cream of tartar fourteen ounces. Mix and boil for half an hour in a gallon of distilled water,
strain white hot and crystallize. Dry the crystals, and concentrate the liquor as above directed.

Remarks.-The first of these processes is far preferable to the second, as the oxide of antimony is used in the pure state, while in the latter it is mixed with the sulphuret, aud that in uncertain proportions.

Cream of tartar contains-
Tartaric acid, 2 equivalents.
Potash, , । "
In the above process, the second equivalent of acid unites with two equivalents of sesqui-oxide of antimony. The ditartrate of antimony thus formed, with tartrate of potash and three equivalents of water form together the double salt, termed by the London Coilege, potassio-tartrate of antimony; 100 parts of this salt conntain

Potash, .. 13.3
Sesqui-oxide of antimony,.................................. 42.6
Water, ... 7.5
Tartar emetic crystalizes readily, the erystals being rhomboidal in the middle, and termimating in four-sided truncated pyramids. When pure, these crystals are colorless, iuodorous, of slightly astringent taste, soluble in fifteen times their weight of water at 60°, and twice their sweight at 212°, insoluble in alcohol.

For the adulterations and tests, see the List of Materin Medica.
Cream of tartar is perhaps the most common adulteration. It is detected by a saturated solution of cream of tartar, which will dissolve the tartar emetic, but uot the cream of tartar, which accordiugly remains behind.

Tartar emetic is decomposed by acids, alkalies, alkaline carbonates, several earthy and metallic solutions, also by bitter and astringent vegetable substances.

Use in Medicine.-This preparation is the most certain and valuable of all emetics, two grains being dissolved in a piut of water and a wine glassfull taken every quarter of an hour, aided by draughts of tepid water till free vomiting is produced.

The same mixture in much smaller doses, given at longer intervals, uauseates without causing vomiting, and occasions profuse diaploresis.

The eighth of in grailu added to two of the ordinary eathartic pills, increases the certainy of their action.

In the treatment of ardent fevers and of acute inflammation of many important viscera, unuseating doses of tartar emetic are ouly inferior to venesection in their power of repressiug inflammatory action.

In the acute inflammation of the central tissue of the lungs, (preumonia,) large doses of tartar emetic, amounting from twenty to thirty grains daily, have been given with great success in oue-lhalf grain doses every half hour, dissolved in a very weak solution of cinchoua bark. No emetic effect is produced, but the iuflammatiou yields as if the remedy exerted a direct sedative action.

Externally.-One drachm of tartar emetic made iuto an ointment with one ounce of lard or simple liniment, rubbed on the skin in sinall portions, and the friction repeated twice or thrice daily, will in two or three days (and frequently sooner,) oceasion the ermption of large pustules. The irritation and inflammation hus caused, are ofien found to be very beneficial in the treatment of the early stage of consumption, and in several other inflammatory states of internal organs.

Antimonial Wine.
 Vinum Antimoniale.

Tartar emetic two scruples, sherry wine one pitut, dissolve.
Each fluid ounce contains two grailus of the tartar emetic. To be used according to the suggestions under the last section. The ordinary dose is fifteen mimims to one fluid drachm.

Antimonial Powder.
 Pulvis Antimonialis.

Sulphuret of antimony one pound, shavings of deer's hortn two pounds, mix and throw into a crucible, and make this red hot, stirring until no vapour is emitted. Powder what is left, and keep it red loot in a crucible for two hours. Reduce to very fine powder.

The shavings on being incinerated, leave phosphate of lime; the sulphur is expelled as sulphurous acid, and the antimony remains as antimonious acid.

Antimonious acid (Ant. O. 4,) is insoluble in water, not voletile, forms salts with alkalies. It is quite inert when administered to animals or man.

According to Mr. Phillip's analysis, the antimonial powder of the shops, and the celebrated "James' Fever Powder," contain, tlie former thirty-five, the latter fifty-six of antimonious acid, per 100. It is difficult to conceive how pilher of these preparations enil produce the effects generally ascribed to them. The majority of practitioners consider them valuable diaphoretics, and capable of produciug the effects of small doses of solution of tartar emetic. We slould prefer the tatter remedy in all cases, but we have given the usual formula for this preparation.

The dose usually given is from five to ten grains, it is mostly prescribed with calomel, which may probably account for its supposed activity.

Goeden Sulphuret of Antimony.

Sulphuret of antimony one ounce, solution of potash cleven flind ounces, water two pints ; boil for an hour in a porcelain vessel, filter immediately, and precipitate while hot with an excess of dilute sulphuric acid. Collect on a calico filter, wash with water, and dry on the water bath.

This preparation is of bright orange colour, taste rather astringent, insoluble in water, loses twelve per cent. of the sesqui oxide of antimony when boiled with bitartrate of potash.

According to Mr. Phillip's analysis it contains:-

$$
\text { Sesqui-oxide of antimony, } 12
$$

Sesqui-sulphuret of antimony, 765
Water, 11.5

When the substances used are boiled together, most of ilie sulphuret of antimony is dissolved without alteration. A small portion however is converted into sesqui-oxide which is also dissolved; on adding the acid, sulphate of potash is formed, and the oxysulpharet of antimony is thrown down, while sulpheretted hydrogen is expelled. Other and more complex changes are supposed to take place, but minute details of the re-action would be misplaced in this work.

Use.-The golden sulphuret of antimony is an ingredient in the compound calomel pill. It is now seldom or never given intermally by itself. The usual dose was one to four grains twice daily; we have seen half drachm doses given every third hour without ally perceptible effect.

ARSENIC, (Preparations of)

Arsenic is a metal resembling steel in colour, crystalline, volatile below a red heat, vapor of strong garlic odour; readily oxydized. With one equivalent of oxygen it forms the arsenious, with two equivalents the arsenic acid. With sulphur forms the yellow sulphuret, orpiment, and the red, realgar. Equivalent 38 .

Arsenious acid.-(As. 2, ox. 3,) this occurs ill powder or white masses of two varieties, one porcelainous, the second glassy in appearance; hard, brittle, inodorous, lasteless ; sp. gr. of the glassy kind 3.715 , of the porcelainous 3.260 ; volatile at 380°. A thousaud parts of water at seventy-five dissolve betweel ten and eleven parls of the porcelainous kild in twenty-four hours; 1000 parts of boiling water dissolve ninety-scven, and deposit serenty-uine on cooling, in small eight-sided crystals.

Arseutious acid combines with the oxides and alkalies, forming salts called arsenites.

A solution of arsenious acid is precipitated yollow by anmoninconitrate of silver, green by ammonitco-sulphate of copper, yellow by sulpluretted hydrogen and hydrosulphuret of ammonia, on a little acetic acid being added.

Arsenious acid mixed with dry black flux and heated to low redness, gives off metallic arsenic.

A solution of this acid is decomposed by hydrogen, the metal is volatilized with the gas, and on burning this, metillic arsenic, arsenious acid and water are reproduced. The ino former are deposited on cool glass or porcelain surfaces, with which the flame is brought into contact. This constitutes the basis of Marsil's invaluable process for detecting arscuical poisons, a full description of which is given in the Appendix to the Dispensatory,

Arsenious acid is a formidable poison. The symptoms produced are chiefly those of imtense irritation and inflammation of the alimentary canal.

Several cases have recently heen published, which shew, that the hydrated peroxide of iron given in large doses is a useful antidote to this poison, For the mode of preparing and using this substance, see the Preparations of Iron.

The stomach pump, emetics, copious draughts of milk and other demulcents, oily purgatives, free leeching of the abdomen, and large opiates, constitute the chief remedial measures in poisoniug by this substarce.

Reinsch's Process for deterting Arsenic.

A process still more delicate than that of Marsh has receutly been invented by Reiusch, and is already adopted ly the highest anthorities on the subject of toxicological chemistry:. It cunsists in boiling the suspected subslance with metallic copper and strong muriatic acid. Metallic arsenic is deposited as a black coating on the copper, and by removing this metal from the liquid, washing it with a litule water and allowing it to dry, on hentillg it in a glass tube the inetallic arseuic and crystals of arsenious acid subline.

The exceeding delicacy of this process is monnt incredible, and it is this which constitutes the most serious objection to its adoption. This will be understood when we state that a drachm weight of the
copper of commerce as it occurs in Beugal, gives, after laving been boiled with msuriatic acid, a copious arsenical sublimate.

The only mode of obviatiug this fallacy is by the use of electrotype copper, whieh is of absolute purity, When this copper is atvailable, and the experiment is conducted by a competent haud, Reinsch's plau is as superior to Marsh's process, as that was to the old method of precipitation by sulphuretted hydrogen.

Arsenic acid.-(As. 2, ox. б,) is prepared by boiling arsentious acid with nitric acid. It is more soluble than the arseuious acid, and precipitates the ammoniaconitrate of silver of a brown red colour. its sults are temmed arseriates.

Realgar.-(Bi-sulphuret of ursenic, As. 1, S. 2,) exists in the native state, in brilliant red crystalline masses.

Orpiment, (or kitu's yellow) ter-sulphuret of arsenic, (As. 1, S. 3,) is found native, and is also prepared by the action of sulphuretted hydrogen or lydro-sulpluarets on a solution of arsenious acid. It is of yellow colour, fusible, volatile, soluble in alkalies, in soluble in acids, decomposed and oxgdized by boiling with nitric acid. It unites with buses to form salts iermed sulpho-arsenites, and is reduced to the metallic state by being heated with the black fux.

Tlise paiut called kiug's yellow, is usually adulterated with lime and sulphur.

Solution of Arsenite of Potasil.

Arsenious acid in small pieces, carbonate of potash eacli eiglity grains, boil in balf a pint of distilled water in a glass wessel until dissolved. Add compound tincture of lavender five fluid drachms, and distilled water sufficient to bring the entire accurately to one pint.

The compound tiucture of lavender is added merely to colour the inixture, and as a preventative of accidents; an equal quausity of tincture of turmeric may be substituted.

In this process, arsenite of potash is formed and dissolved. The solution is decomposed ly acids, soluble sulphurets, lime water, earthy and metallic salts, and ustringeut solutions.

Use-Arsenic expecially in this form las long eujoyed high reputc as a febrifuge, and as an alterative in syphilis, scrofula, cleplantiasis, and in inany cutaneous diseases. The formula above given is tizat formerly called "Fowler's Solution."

Many forms of aguc which lave resisted every other remedy, have been successfully 1 reated by this. Its use is not contra-indicated by cusarged spleen; but chronic hepatitis and dysenteric symptoms
should forbid its admiuistration. The anti-periodic effects are too slow for the treatment of remittent fevers.

Dose-Four to twenty minims twice or thrice daily. $120 \mathrm{mi}-$ nims contain one grain of arsenious acid. Its use must be at once disconlinued if vomiling, purging, pain at the epigastrium, convulsive twitchings or intense itching of the eyelids supervene. These symptoms are best combated by oily purgatives, diluent drinks and leeching the epigastrium.

BARIUM, (Preparations of)

Barium is the metallic base of the alkaline earth Baryta. It occurs chiefly as the sulphate and carbonate, and is artificially prepared from its oxide by voltaic analysis, or by the vapour of potassium. It is a dense white metal like silver.

> Oxygen scale. Hydrogen scale. Symbol Ba., equivalent,,\ldots. 856.9 68.7

Barium forms two oxides, the protoxide is the earlh barytes. This with sulphuric acid forms sulphate of baryta, a substance insolu. ble in water or in the strongest nilric or muriatic acid.

The carbonate and all the soluble salts of baryta are acrid poisons. The sulpbate of soda or magnesia is a perfect antidote, the insoluble sulphate of baryta being formed by the mixture of the two substances.

Sulphuret of Barium.

Take of sulphate of barytes (a) in fine powder one pound, lamp black four ounces, make into balls with a little water and allow these to dry, then heat them intensely in a draught furnace in an carthen crncible for two hours; boil the mass in water; the solution is deep yeliow, and gives crystals of sulphuret of barium on cooling.

In this process the carbon takes the oxygen both of the acid and the baryta, and sulphuret of barium remains.

This sulphuret of barium is soluble in dilute nitric, acetic, and muriatic acids, which it neutralizes. On evaporating the solutions the nitrate, muriate, or acetale of baryta are oblained.
a. Sulphate of baryta was imported into Bengal in large quantities about four years since, under the name of "Inperial white," and sold as a substitute for white lead. It sold at two annas the ponud, and was purchased up, chiefly to adulterate that article. Small casks
of this substance are still to be met with. The sulphate of baryta may be separated from carbonate of lead by acetic acid, which dissolves the lead and leaves the sulphate of baryta untouched.

Muriate of Baryta.

Decompose the sulphate of baryta by lamp black as above directed, and to the solution add muriatic acid till sulphuretted hydrogen ceases to be evolved ; filter, concentrate, and crystallizc.

Muriate of baryta is colorless, occurs in rlombic plates; forty parts dissolve in 100 of water at 60°. Its solution is precipitated by sulphuric acid and sulphates, not by ammonia.

Use.-Muriate of baryta was once employed in medicine in the treatment of scrofula chiefly, but the practice has become rare, and is not recommended. The most valuable application of this substance at present is the detection and estimation of the quantity of sulphuric acid or sulphates prescut in a solution. For the details of its employment for this purpose, see the article-Tests.

Nitrate of Baryta.

Prepared as above, substituting the nitric acid.
The disengaged gas in all these decompositions is very offensive and deleterious, and the experiment should be performed, so that the fumes may be directed into a chimney, or otherwise frecly carried off.

When curbonate of baryta is procurable, it should be substituted for the sulphate in the processes above described.

BISMUTH, (Preparations of)

Bismutl is a brittle white metal, with a tinge of red, crystalline, readily fusible (at 476°), sp. gr. 98.82. Symbol B., equivalent 80°; is oxidized by heat and air, and violently acted upon by nitric acid.

White Oxide of Bismuth.

Bismutl in fine powder an ounce, nitric acid a fluid ounce and a balf, water one ounce, dissolve the bismuth, decant the solution, and add the remainder of the water; let the
powder subside, decant and wash the residue with distilled water. Dry it witl a gentle heat.

In this process the bismuth is oxidized by the uitric acid and tren dissolved. On the affusion of water, the solution is decomposed, and a white precinitate subsides, this is composed of

One eq. nitric acid, 5t
Tliree eqg. oxide of bismuth, $(80 \times 3) 240$
294
This substance is white, crystalline, insoluble in water, blackelled lyy sulphuretted hydrogen.

Use.-Much givers in gastrodynia, and some forms of dyspepsia. Dose, from five to fifteen grains thrice daily.

CALCIUM, (Preparations of)

Caloum is the metallic basis of lime. It is only procured in exceedingly minute quantities by the action of potassitm or voltaic analysis on lime, the oxide of the metal.

> Lime, (Culx.)

Pure lime is procurable as a bazar article. The purest is that made by ealcining slells. Before use, it sbould be subjected to a strong red heat; chalk may be used instead of shells. In shells and clalk the lime is combined with one eq. of earbonic acid, which is expelled by the lieat.

Lime is white, acrid, corrosive, soluble in water. Composition, Calcium, one eq. $=20$ Oxygen, 1 eq. $=8=28$. Lime is powerfully alkaline, unites with the acids to form salts; of these the carbonate, plosphate, and oxalite are very insoluble in pure water, the sulphate difficulty so. The uitrate, muriate, mud acetate are deliquescent. When water is sprinkled on recently burned lime, much heat is evolved, the lime falls to powder, aud every twenty-eight parts combine with nine of water forming a solid hydrate; on this depeuds the property of absorbing water from marty substances for which lime is employed in several pharmaceutical and chemieal processes.

Lime Water.
 Aqua Calcis.

Lime recently burned half a pound, slake it with a little water, and then agitate with as mucl water as will make the whole twelve pints. Keep the solution and the deposit together in stoppered glass vessels,

Lime is more soluble in cold than in hot water; according to Mr. Phillips -

A pint of water at 32° dissolves 13,25 grs.
60°-_- 11.6
212° —————6.7
Lime water is highly alkaline. By exposure to the air a white crust of carbonate of lime forms upon its surface, and this soon renders the solution inert. Lime water is not precipitated by sulplurie acid. Wilh oil it forms a useful liniment or fuid soap.

Uses.-Employed against acidity, in dyspepsia, and diluted as au external application chiefly in leucorrhoea. It has been given also, but we think with very questiouable benefit, in chronic dysentery, and diarrhcea. It is usually takeu in doses of from one to four fluid ounces, administered in milk.

Mirtiate of Lime,
 Murias enlcis.

Chaik or powdercd marble or weil burned sliells, ten ounces, commercial muriatic acid and water each onc pint. Add the lime or chalk by degrees, agitating and stirring the mixture till it is nentral to litmus paper, filter, evaporate on a porcelain or silver capsule at a brisk heat to complete dryness, remove quickly, break the salt into pieces, melt these in a clean iron crucible. When fised, pour the liquid on a marble or metal slab, and the moment it concretes, divide into pieces and place these in an accurately stoppered bottlc.

The muriatic acid first dissolves the lime with which it forms muriate of lime, thus -

$$
\begin{aligned}
& \text { Wuriatic acid-IHyd. 1, chlorine } 36, \\
& \text { Lime - calcium } 20 \text {, oxygen } 9,
\end{aligned} \ldots, \quad . . .37
$$

On drying and fasing this, the oxygen and hydrogen (9) are expelled as water, and dry chloride of calcium (chl. 36, cal. 20) remains.

Properties.-Colorless, inodorous, bitter, extremely deliquescent; at 60° water dissolves four times its own weight of this salt. It is also soluble in alcohol.

Use-For abstracting water from various solutions, drying gases, for testing ether and in other experiments, and in the preparution of the muriate of morphia.

For most of these purposes, except the last, the residue of the process for obtaiaing ammonia, which consists of muriate of lime and excess of lime and water, by concentration, drying and fusion, may be used instead of this preparation.

In Medicine, small doses of muriate of lime have been given with doubtful benefit in bronchocele and scrofulous diseases.

Culoride of Lime. Calx chlorinata.

Slaked lime a pound or more, strew this in thin layers on earthenware plates, and having piled these on each other, leaving an interval of an inch at least, (the upper vessels ean be supported on pieces of wood or earthenware,) cover the entire by inverting over it a large earthen pot, surround the edges with sand or a paste of clay. A leaden pipe is led through a cork in the side of the jar, and runs within an inch or so of its lower edge when inverted. A cork or a wooden stopper is introduced into a corresponding opening at the top of the jar.

This cork being removed, fill the earthen vessel with chlorine disengaged from the materials, and in the vessels deseribed under that head. When greenish yellow fumes begin to be disengaged at the upper opening, close it for a time.

In commerce this is called bleaching powder or chloride of lime. It is maufactured in immeuse quantities for the dyers and bleachers.

The usual composition of this substance is Chlorine, 36
Lime (hydrate) 2 eqs., 74

As found in commerce it is white or greyish, of acid taste, weak odour of chlorine, partially soluble in water. If exposed to the air it is decomposed, carbonate of lime being formed, and chlorine disengaged. It is a powerful bleacher, as may be seen by addiug it gradually to a solution of Indigo in sulphuric acid.

The chlorine it diseugages is an efficient corrector of the putrid odour of animal or vegelable matters in a state of decomposition. Hence it has been celebrated as a destroyer of the iniasmata of IIospitals, and as a preventative against the spread of epidemic diseases. The prevalence of cholera in inore than one of the large establishments in Europe where this sinbstance is manufactured, and where the workmen are continuatly inhaling ins fumes, has deprived the chloride of lime of much of the confidence it possessed for this atleged properly, It certainly corrects disagreeable odours, but whether its use extends further is very questionable.

Use,-For furuigating hospitals, prisons, \&c. pans containing the chloride may be placed throughout the wards, or the solution sprinkled about. As the vapour often proves very distressing to persons unaccustomed to such exhalations, or sufferiug from inflammatory diseases of the luugs, the quantities used, and the repetition of the fumigation should be regulated with care.

The inhalation of the vapour arising front a very weak solusion of chloride of time has been recommended on strong authority for patients labouring under consumption. They are made to inhale its fumes from a convenient vessel; slight irritation of the ulcerated surfaces, it is said, has thus been occasioned, and in some cases a cure effected. Iodise has been similarly used, and with alleged sinilar results. The practice is not as yet established, nor the results described genterally admitied.

Prepared Chalk.

Creta Praparata.

Take good chalk, reduce it to fine powder with a little water in a stone or marble mortar. Pour it into a large vessel containing water, and agitate it briskly, After the coarser particles subside, pour the milky liquor into another vessel and let it deposit. Repeat this process with the coarse residue of the first portion as often as necessary, collect the fine chalk on a calico strainer, and wash with distilled water and dry,
(Chatk (narlonate of lime) is composed of-
Carbonic acid $1 \mathrm{eq} .=22$
Lime .. 1 eq. $=28$
Equivalent, ... 50
The whitest chalk should be employed; in India this is sometimes adulterated with pipe clay. This is detected by the action of dilute nitric, muriatic, or acetic acid, which dissolves the chalk and leaves the clay.

Prepared chalk is used as an ingredient in the aromatic confection, mercury with chalk, chalk mixture, compound chalk powder, compound lead ointment. It is also used in the preparation of cirric and tartaric acid, the sesqui carbonates of ammonia and soda, and bicarbonate of potash.

Use-A valuable remedy in acidity, much given to children. Dose, ten grains to a drachul.

COPPER, (Preparations of)

Cupri praparata.

Metallic copper is too familiarly known to need description ; it symbol is $C u$. equivalent $32-\mathrm{sp}$. gr. 8.9. It forms two oxides, a din oxide containing 1 eq. of oxygen (8) and two of copper $64=72$; and the protoxide of copper, one eq. copper, 32 , oxygen one eq. $8=40$.

The protoxide of copper is black, soluble in the sulpluric, nitric and acetic acids, forming corresponding salıs, from the solution of which it is precipitated as a greemish hydrate by alkalies; the precipitate is dissolved by ammonia, the solution being of a rich blue colour.

The black oxide of copper is much used in organic analysis, and is best prepared for this purpose liy calcining the mitrate of copper at a red heat.

Sulptiate of Coprer.

Sutphas Cupri.

Thte Sulphate of copper (neel tutiya) is a common bazar article, being manufactured in many parts of Bengal and the
eastern Islands; it is easily prepared by leatilg copper to redness in contact with the air, removing the black scales which form, and dissolving these in dilute and boiling sulphuric acid, and crystallizing, In the refining of silver it is incidentally prepared in very large quantities.

Sulphate of copper is composed of -
Sulphuric acid I eq. $=40$
Oxide of copper I eq. $=40$
Water $\cdots \quad$..
eqs. 125
Sulphate of copper occurs in splendid blue crystals, is insoluble in ulcohol, decomposed by alkalies and alkaline carbonates. The solution is precipitated brown by ferrocyanuret of potassium, black by lydrosulphuret of ammonia, and deposits metallic copper upon iron or zine.

Sulphate of copper sometimes contains sulphate of iron. This is detected by adding ammonia in excess, which precipitates both the oxides of copper and iron, but re-dissolves the former.

Use.-Escharotic, astringent and emetic.
Externally it is much used as a caustic and stimulating application to indolent ulcers, chancres, \&sc. In doses of half a grain to one grain thrice daily, combined with opium, it is much giveu as an astringent in chronic dysentery ; five grains dissolved in half a pint of water prove almost instantly emelic, and sulphate of copper is often given for this purpose to persons labouring under dyspmoca produced by accumulations of mucus or pus in the lungs. The mechanieal shock dislodges these fluids, while the patiem does not suffer from nizusea as with other emetics.

Acetate of Copper.

Acetas Cupri.

Acetate of copper (arugo, verdigris) is like the sulphate a common bazar artiele, being imported chiefly from Frapce. It is a compound of one equivalent acetic acid and two of oxide of copper ; murjatic acid should dissolve it, leaving about five per cent, of impurities. It is also almost entirely soluble in dilute sulphuric aed and in ammonia, and partially in water.

Verdigris is prepared on the large scale by strewing copper plates with grape husks. During the fermentation of the traces of sugar in the fusk, the copper combiues with oxygen, and the oxide with acetic acid formed by the grape sugar. 'the process is extremely tedious. We have made a very good aricle by using tamarind pulp instead of the grape.

Acetate of copper is astriugent and escharotic. For its use, see the Liniment of Verdigris.

Ammonto-Sulphate of Coppele.

Cupri Ammoniuretum.
Sttphate of copper an ounce, sesquit-carbonate of ammonia an ounce and a half, rub together in a glass or Wedgwood mortar. Effervescence takes place, and the mixture becomes semi-liquid. Wrap the mass in filtering paper, atd preserve it without further drying in a stoppered bottle.

This is a mixture of carbonate of copper, sulphate of copper and sesqui-carbonate of ammonia. When recently prepared it is of a fine blue colour and strong ammoniacal smell.

Use--It is given in doses of a quarter of a grain gradually inscreased, in pills with crumb of bread, as a tonic and antispasinodic, especially in clorea and some forms of epilepsy. When these affections depend on organic disease this substance is likely to do harm.

Solution of Ammonio.sulphite of Copper.

Dissolve one drachm of the ammonto-sulphate in one piut of water, filter.

Use.-Diluted with water this solution is much used as au application for the removal of specks on the cornea.

IRON, (Preparations of)

Ferri Preparata.

Iron.-Pure iron is bluish-white, brilliant, soft, flexible, malleable and ductile, very infusible, welds at a high tem-
perature, sp. gr. 7.8, combustible in oxygen gas, oxydized by damp air, the mineral and several organic acids; decomposes water at a red heat. There is still some doubt about the equivalent of iron. The latest authorities fix it at 27.2 on the liydrogen, 338 on the oxygen scale. Symbol Fe , from the Latin Ferrum.

The oxides of iron are two-the protoxide (Fe. 27.2,0x.8, eq. 35.2, the basis of severai important salts. The peroxide (Fe. 2,0x,3.) = 78.4, also the hasis of salts of much value. These two oxides of iron again form different compounds with each other.

Chloriue, iodine, and sulphur also unite with iron, forming analogous compounds.

The protosalts of iron are soluble in water, precipitated of a dull green, (the liydrated protoxide) by alkalies, and alkaline carbonates, and the precipitate very rapidly passes into the peroxide. The salts of the peroxide are precipitated brown-red by the same reagents.

The ordinary salts of iron found in commerce and medicine when dissolved in water, give the following precipitates or colours with the tests named.

Prussiate of Potash, protosalts,	
Tincture of galls and astringent solutions,	... blue-black
Meconic acid,	
Sulpho-cyanate of Potash, $\}$	
Hydro-sulphuret of ammonia, in neutral	
lutions,	

Pure protosalts are distinguished from the pure persalts by the \boldsymbol{r} ed or ferro-sesqui-cyanuret of potassium, which gives Prussian blue with the proto-salts, and does not affect the salts of the peroxide.

Sulphate of Iron.

Sulphas Ferri.-Green vitriol.-Heera kasis.
This salt is formed abundantly by the natural oxidation of the sulphuret of iron, a mineral common especially in coal districts.

It occurs in the bazars in large masses of green crystals, and in a state of considerable purity. For medical use select the greenest
and most transparent crystals. If impure, dissolve in warm water acidulated with sulphuric acid, and set aside till crystallization occurs. The crystuls are to be kept in closely stoppered bottles. If not procurable in the bazar, it may be made artificially, thus :

Iron filings or wire eight ounces, sulphuric acid fourteen ounces, water four pints. Mix in a capacious carthen ware vessel; when no more gas escapes strain and set aside for crystallization. The residual liquor will give mure crystals.

In this process water is decomposed, its hydrogen escapes, its oxygen unites with the iron, and the resulting oxide with the sulphuric acid forms protosulphate of iron. The crystals are composed of -

1 eq. Sulphuric acid,	\ldots	\ldots	\ldots	\ldots	40
1 eq. Protoxide irons,	\ldots	\ldots	\ldots	\ldots	35.2
7 eq. Water,	\ldots	\ldots	\ldots	\ldots	\ldots

The crystals are bluish-green, insoluble in alcohol, soluble in two parts of cold water, the solution attracts oxygen from the air, and deposits peroxide of iron; taste styptic. The solution whell free from peroxide is precipitated white by prussiate of potash, but the precipitate rapidly chariges to a deep blue.

By exposure to heat, the crystals lose six equivalents of water, and the satt becomes a white powder. At a red leiut, the sevenilh equivalent of water and the acid are cxpelled. The acid is a mixture of dry sulphuric acid, sulphurous acid and water, and is prepured on the large scale in Germany for the use of dyers. There rewains in the retort the red alhydrous peroxide of iron.

Incompatibles.-Alkalies and their carbonates, alkaline or earthy soaps, astringent matter, salts of lead, silver, baryta, all astringent solutions.

Use.-Tonic and astringent in doses of from one to four grains. It is usually given with the extrac18 of gentian or chiretta, or with sulphate of quiuine. It enters into the composition of some chatybeate mineral waters.

Iron, leroxide of,
Ferri Peroxidum.
Sulpliate of iron six ounces, sulphuric acid three and a half finid drachms, water two pints; dissolve and add by degrees nitric acid nine fluid drachms, boiling after each
addition (in at porcelain ressel.) Boil till the liquid assmmes a yellow-brown colour, filter, cool, and when cold, add at once water of ammonia three fluid ounces and a half; agitate the mixture, strain throngh calico and waslı with distifled tepid water till the washings do not precipitate the nitrate of baryta test; squecze and dry the precipitate at 180° on the water batlı.

In this process the protosulphate of iron is peroxydized by the nitric acid, and the peroxide separatell by ammonia in the state of fiydrate, sulphate of anmonia being formed.

This preparation is intended as an amidote to poisoning by arsenic, and for this purpose it should be kept in the moist stale, and balf ounce doses given every half an hour, diffused throngh two to four ounces of waler. The mode of action of the antidote is uncertain, but its success is asserted on the evidence of some very strong cases,

This compound is mearly the same is that resulting from the London process for preparing the old carbonate of iron. This preparation derived from the Edinburgh Pbarmacopeis, is much more certain and definite.

Use-Tonic. Used in half drachm doses in tic doloronx ; and in duses of from five to twenly grains with aromatics every six hours in diarchoea.

We believe that the powers of his subslance in the Ireatment of those diseases have been much overrated.

Proto-sulphuret of Iron.

Heat a piece of iron to a white heat in a smith's forge, and rub it with a piece of sulphur. The sulphuret falls down in fused drops.

This preparation is not used in medicine, bnt it is much employed for ilie preparation of sulphuretted hydrogen gas, which it yields abundantly whell acted upon by very dilute sulphuric acid.

Tincture of Prrauriate of Iron.

Peroxide of iron dried six ounces, muriatic acid a pint. Mix in a glass vessel and let it remain, stirring it frequently till dissolved, then add rectified spirit three pints.

This is a simple solution of resqui or perchloride of iron in spirit. Perchloride of iron contains

$$
\begin{array}{lllllll}
\text { Chlorine, eqs. } 1 \frac{1}{2}, & \ldots & \ldots & \ldots & \ldots & \ldots & 54 \\
\text { Iron, eq. } 1, & \ldots & \ldots & \ldots & \ldots & \ldots & 27.2 \\
& & & \text { Equivalent, } & \ldots & 81.2
\end{array}
$$

This tincture is of yellowish-red colour, acid reaction, and assringent tasle, sp. gr. 992 ; a fluid ounce yields to potash 30 grains of hydrated sesqui-oxide of iron.

It is decomposed by ali the substances mentioned under the bead of sulphate of iron.

Use.-An excellent tonic, especially in chlorosis, amenorrhcea and scrofula. Dose, ten to thirty minims thrice daily-very useful in splenitis, scury and the convalescence from many acute diseases and fevers. In retention of the urine from spasmodic slructure, it has gained great celebrity almost as a specific, being given in ten minim doses every ten minutes till a decided effect occurs. It is also much used in chronic hœomorrhage, suppuration and catarrh of the kidneys, bladder, and urinary organs. Exiermally it is a powerful styptic to bleeding or ulcerated surfaces.

Tartrate of Iron and Potash.

Prepare the peroxide of iron in the manner and proportions indicated under that head. Take the moist oxide, mix with four pints of water, and add eream of tartar pow. dered five ounces and one drachm.

Boil till the peroxide is dissolved, cool and test with litmus paper; if acid, neutralize carefuliy with a little of the solution of carbonate of ammonia. Evaporate the whole to dryness on the water bath, and preserve the product in wellstoppered bottles.

> This product is composed of
> Tartrale of potash 1 eq., 1 It
> Tartrate of peroxide of iron \ddagger eq... 106
> 220

It contains eighteen per 100 of peroxide of iron. (Phillips.)
Use.-A very useful tonic, having but little tastc. Dose, ten to lhity grains in solution. Well adapted for children.

Muriate of Iton and Ammonia.

Dried peroxide of iron three ounces, muriatic acid half a pint ; dissolve by a gentle heat, then add muriate of ammonia two pounds and a half, distilled water three pints ; strain, cvaporate to dryness, powder, and preserve in stoppered phials.

The product is, according to Phillips, a mixture of -
Perchloride of irou, 15
Muriate of ammonia,... 85
100
Color orange, deliquescent, soluble in alcohol, taste sharp and styptic. It is decomposed by the same agents as the sulphate of iron.

Use.-A tonic and supposed emmenagogue, but little used by modern Practicioners.

A tincture is prepared by dissolving four ounces of the solid product in a piut of proof spirit. A fluid ounce coutains five-eigluths of a grailu of peroxide of iron. (Phillips.)

Use, as above, dose 3i, to 3 ij , in water.

Ioduret of Iron, (Solution of)

Iodine (dry) one liunilred and ninety grains, clean and thin iron wires one hundred graius, distilled water six fluid ounees; boil in a narrow necked flask for an hour till the lijuid becomes colourless, filter through calico, (previously well washed in boiling water to take away any starch,) ald boiling water to make up six fluid onnces. Preserve in stoppered ounce phials, each loolding a coil of elean irou wire, and covered with paper to excluile light.

Ioduret of Iron, (solid.)

Proceed as above in preparing the solution, but concentrate to one-sistlu before filtering. Put the strained liquor into a capsule, and surround this with a quantity of quicklime, cover the whole with a tin plate cover, painted black cxternally, and expose it to the sun's rays. Examiue occa-
sionally, and it will be soon found to be perfectly dried. In the rainy season, the ajpraratus must be heated very gently in the stove. 'Ihe dried iodide must be kept in carefully stoppered bottles.
[For the properties of iodine, sec that head.,]
In this process a proto ioduret of iron is formed, composed of I eq. Iodinc,.. 126
1 eq. Iron, 27.2
5 eqs. Water, $4 \dot{\text { ju }}$
198.2

We have adopted the Ediuburgli process, which is rouch more certain is its results than the London.

The solution rapidly atracis oxygen from the air, to prevent which, the iron wire is directed to be kept in the bottles.

The solution is decomprosed by all those reagents which affect the salts of iron, also by starch.

Use.-A very valtable remedy in serofula, secondary syplilis, anil in many cases of enlarged spleen, also in amenuorhcea, Dose, one 10 two grails.

LEAD, (Preparations of)

Plumbi Preparata.

Lead is a metal of considerable importance in medicine. Its sp. gr. is 11.381 , its symbol Pb., equivalent 103.7. It forms but two oxides; the protoxide is yellow when anlyydrons, white if combined with water; the peroxide is of dull dark brown colour.

The red lead of commerce (sendur) is a mixuure of the protoxide and peroxide, consaining three eqs, lead and four eqg, of oxygen.

The litharge of the bazar (moordar sang,) oceurs it fused semierystalline masses of yellowish colour, suluble in acetic acid. It is forned incideminly in large quantisies during the refining of silver by cupellation.

Achiate of Lead.
 Acetas Plumbi.

Take of powdered litharge two ounces, acetic acid and distilled water each four pints ; mix and dissolve by a gentle heat, strain, evaporate to erystallization.

The product, acetate of lead or sugar of lead, is crystallite, colorless, inodorous, swectish and astringent to the taste. It is soluble in four times its weight of water at 60°, solubility but little increased by heat, aud the solution is decomposed by a current of carbout acid gas.

Compositiou-
Acetic Acid, 1 eq. $=51$
Oxide of Lead, 1 eq. $=112$
Water, $\ldots 3^{2}$ eqs. $=27$
Equivalent, $\quad \ldots \quad 190$

This and the other salts of the protoxide of lead are precipitated white, by alkalies, alkaline carbonates and lime water; back, by sulphuretted hydrogen and the soluble hydrosulphurets; yellow, by chromate of potash and ioduret of potassium; metallie zine decomposes concentrated solutions, the lead being reduced and crystallized and the zine dissolved in its stead.

Use,-An cxcelleut ustringent both for internal and exterial use, especially in ophthalmia, gonorrboa, and externalinflammation generally. In two or three graiu doses thrice daily, it is given with the best results in dysentery and diarrbœa. In internal hæmorriages even from the lungs, the astringent effects of this preparation are very dccided.

In several years' experience of the free administration of this preparation, we have never known an unfavorable symptom produced, although we have seen ten grain doses given every second hour till jij. laad been taken.

Solution of Dracetate of Lead.

Liquor Plumbi Diacetatis.

Acetate of lead six ounces and six drachms, litharge powdered foar ounces, and water a pint and a half; boil for lalf an hour, strain, and add water to make up six pints; sp. gr. 1,260.

This preparation is a solution in water of 1 eq . Acetic Acid, 51
2 eqs. Oxide of Lead, 112×2, 224
275
The solution of the diacetate of lead is a useful application in external inflammations. It is popularly ealled Goutard's Lotion. The solution is alkaline to test paper, and is a very delicate test of carbonic acid.

Nitrate of Lead.

Lead six ounces, diluted nitric acid six fllid ounces, and water six flud ounces, dissolve by a gentle heat and crystallize.

The crystals are used as a test, and in preparing ioduret of lead.

loduret of Lead.
 Plumbi Iodidum.

Nitrate of lead and ioduret of potassium each one ounce, water a pint and a half. Dissolve separately; mix, strain, and collect the precipitate. Then boil the powder in three gallons of water acidulated with three fluid ounces of concentrated acetic acid, pour off the clear liquor, which on cooling gives a deposit of scaly golden-yellow crystals of ioduret of lead.

The Loudon College direct nine ounces of acetate of lead and seven ounces of ioduret of potassium to be dissolved in a gallon of water, and the precipitate to be merely washed and dried. The Edinburgh process, derived from Soubeirall, affords a much more beautiful article.

Ioduret of lead and nitrate of potash are the results of the decomposition, the ioduret of lead being composed of -

Iodine, one eq. $=126$
Lead, one eq. $=104$

- Equivalent, ... 230

Use- In smalt doses internally (a quarter to half a grain thrice daily,) with crumb of bread in pills, and made into an ointment externally applied, in painful scrofulous tumours and ulcerations.

MAGNESIUM, (Preparations of)

The magnesian preparations are the product of a metal discovered by Sir H. Davy, and termed Magnesium. It is obtained by decomposing the chloride of magnesium by potassium in a glass tube.

Magnesinm is brilliant, white, fusible, and malleable at a red heat, does not decompose water, and oxydizes very slowly in the air unless whenh eated to redness; symbol Mg., equivalent 12.7 on the hydrogen, or 158.3 on the oxygen scale.

Magnesium forms one oxide, the base or eonsituent of the medicinal preparations.

Magnesia.

Carbonate of magnesia any convenient quantity. Heat iu a perforated crucible to a white heat for two hours.

The carbonate of magnesia parts with its carbonic acid, and pure tnaguesia remains.

Calciued magnesis is a beautifully white, very bulky powder, devoid of colour, taste, or odour; does not slake. When boiled in water, a very minute trace is dissolved, but sufficient to restore the the colour to reddened litmus paper.

Composition, - Magnesium, 1 eq.,	\ldots	\ldots	\ldots	\ldots	\ldots	12
Oxygens, 1 eq.,	\ldots	\ldots	\ldots	\ldots	\ldots	8
			Equivalent,	\ldots	20	

Use.-A very valuable antacid and aperient. Dose, from five grains to one drachm.

Carbonate of Magnesia.

Sulphate of magnesia foir pounds, carbonate of soda four pounds and eight ounces, and water four gallons. Dissolve the salts scparately, each in lialf the water, mix and boil in porcelain vessels, stirring with a wooden rod for a quarter of an hour. Decant the liquor. Wash the sediment with boiling distilled water, till the washings cease to give a precipitate with nitrate of baryta. Strain and compress between folds of eloth. Dry in the stove or before the sun.

In this process donble decomposition ensues, thus-

* Carboluate of
\dagger Soda.
\dagger Sulphate of
* Magnesia.

Form :-

The proportion of water is sometimes as ligh as 23 per 100 .
Carbonate of magnesia is white, tasteless, insoluble in water, and loses its carbonic acid at a bright red heat.

Medicinal Uses.-The same as those of the calcined magnesia, but less suitable for persons labouring under flatulence; a favorite remedy for children. Dose Эi. to 3 i .

Brcarbonate of Magnesta, (Solution of)

This valuable solution is prepared by subjecting carbonate of magnesia diffused through water to the action of a current of carbonic acid gas under pressure, an additional equivalent of carbonic acid is taken up, and the resulting bi-carbonate remains in solution.

This excellent preparation was invented by Sir James Murray.
The solution is transparent, colorless, very nauseous, effcrvesces very slightly when exposed to the air. By prolonged exposure, it deposits carbonate of maguesia. This is immediately separated by boiling the solution.

Tests.-One fluid ounce should on boiling for ten minutes deposit as much carbonate of magnesia, as when washed and dried on the water bath will weigh seventeen grains. The washings will slightly precipitate nitrate of baryta, but the precipitate should not be sufficient to be collected. A fluid ounce, neutralized with dilute sulphuric acid, should not be blackened by sulphuretted lydrogen, or hydro-sulphuret of ammonia.

Usc.-This gives a most agreeable aperient draught ; half an ounce to one ounce being taken mixed with lemon syrup while in effervescence ; citrate of magnesia is thus takeu.

As an antacid, it is inferior to the old dry preparations, from its excessively disagreeable taste.

Sulphate of Magnesia.

Magnesite powdered two pounds, sulphuric acid one pound, and water one gallon. Mix the acid and water, and
boil in a porcelain vessel. When boiling, add the powdered magnesite gralually and boil, stirring with a glass rod till a slip of reddened litmus paper recovers its blue colour in the solution ; filter while hot, and concentrate in a porcelain capsule till a pellicle begins to form on the surface of the liquor. Set aside for twenty-four hours to crystallize.

Any corresponding quantities of the ingredients may be used, and in large operations leaden pans may be employed.

The magnesite of Madras is a white, hard mineral, composed of one equivatent of carbonic acid and once equivalent magnesia. It courtains 110 water, is very brittle, and is readily reduced to a flue powder by stamping in a metal or stone mortar; one of stone should be preferred with a heavy stone or hardened irou pestle,

In this process the sulpluric aeid displaces the carbonic acid. The solution is slow uuless pronoted by beat, and with the quantity of water specified, gives more rapid decomposition thau with a greater or less proportion.

Where carbonate of magnesia is to be manufactured, the thick mother liquor from which this salt has crystallized, may be used for precipitation by the carbonate of soda, she quantily required being astertained by ats experiment on one fluid ounce.

In Eugland this salt is prepared from maynesian limestone by a much more tedious and troublesome process than that above recommended: Formerly it was manufactured frum the bittern of salt works, but this method has been long abandoned, as the product was found, notwithstandiug every precaution, 10 deliquesce on exposure to moist air. Nevertheless, we deem it useful to give a process fur this mode of preparation, as bittern can he found in many localities in Rengul, while magnesitc must be obtained fiom Madras,

Bittern is the liquor which remains at the salt works after common salt has been separated by boiling. It is acrid and bitter, of yeliowish colour, strongly impregnated with iron, contaius muriates of line and magnesia, and bromide (and often jodide) and ebloride of sodium, potassium, and other metallie bases.

Take of bittern one gallon, solution of carbonate of soda as muclı as reguired. Mix the solutions intimately adding the carbonate of soda while any precipitate occurs, filter through cloth, and wash with water till the washings are tasteless, and do not precipitate with nittate of baryta, compress the precipitate by screw pressure.

The precipitate is a mixture of carbonate of magncsia and carbonate of linee in variable proportions. Dry one hundred grains of the pressed precipitate on a water bath, and ascertain thus the proportion of water.

Take of the press-eake as much as would give in the dried state two pounds, sulphuric acid one pound, water one gallon, dissolve by a gentle heat, filter and concentrate till it becomes turbid. Allow it to cool and filter again; this separates much of the sulpliate of lime, now boil down till a pelicle forms, and set aside to erystallize. The mother liguor should be rejected.

This process is troublesome and comparatively unproductive. The product is always contaminated by sulphates of lime and iron, and although by the modification we have introduced of precipitating by carbonate of sod:s, it is freed from muriate of lime, still the article is in every respect inferior to that prepared from magnesite.

Preparation of sulphate of magnesia from magnesian limestone.

This mineral abounds in Sylhet. The sp. gr. is 2.86 ; it is of yel-lowish-brown or greyish colour, soluble slowly in dilute muriatic acid with effervescence. It contains one eq. of carbonate of lime $=50$, and one eq. carbonate of magnesia $=42$.

It should be stamped to coarse powder and boiled in dilate sulplurie acid in leaden pans, the sulphate of lime will gradually deposit, and the sulphate of magnesia will crystallize from the concentrated solution.
The process is difficult, the product never so pure as that from the magnesite.
Dr. Henry first subjects the powdered stone to the action of dilute muriatic acid, which acts on the lime before the magnesia. The liquor should be tested from sime to time, and when a little precipirates copiously by ammonia, the muriatic acid should be decanted, the powder well washed with soft water, and then dissolved by boiling dilute sulphuric acid on the plan mentioned under the first had.

Where acids are very cheap, this process, although more tedious, is the most economical of all, and affords a very pure product.

Sulphate of maguesia crystallizes in small silky prisms with rhombic faces. It is of intenscly bitter taste, soluble in an equal weight of cold, and still less of hot water, inalterable by exposure to the air; on being heated it fuses, and its water of crystallization is expelled. Comprosition,-

Sulphuric Acid, 1 eg. $=40$
Magresia, 1 eq. $=20$
Water, $. . . \quad . . \quad . . . \quad . . . \quad . . . \quad 7$ eqs. $=63$
Equivaleınt, $=123$

The solution is precipitated by soluble carbonates, but not by bicarbonates; ammonia gives a faint cloud.

Use.-This article is very much used as a purgative. Dose half all ounce to oue ounce dissolved in water or given in an infusion of Senna. It should not be administered during the prevaleuce of chotera, as it is apt to oceasion too profuse and exhausting evacuations, and thus to bring on an attack of that terrible disease.

(To distinguish it from Oxalic Acid.)

Tests.-In Europe it has frequently happened that a formidable poison, oxalic acid, has been sold by inistake for this salt, and thus many lives have been lost. The resemblance of the salts in crystalline aspect has led to this deplorable result.

Dissolve in water and taste a single drop of the solution. That of oxalic acid is excessively sour, that of sulphate of magnesia bitter. The former reddens litmus paper, and precipitates lime water white.

(To distinguish Sulphate of Magnesia from Sulphate of Zinc.)

In 1836, several cases of unusual and alarming illness having occurred in Calcutta, from doses of a supposed Epsom satts, one of the specimens sent to the Editor for examination was found to consist of pure sulphate of zine, (white vitriol,) a very dangerous and poisonous salt, only used as a medicine in smail doses as an emetic. The specimen was labelled "Coward's Epsom Salts," but the label had evidently been forged.
On searching the bazars with the Police authorities, the Editor detected and seized some hundred pounds weight of this salt marked as "Epsom Salts." Much of it was bottled, part in chests, and a considerable quantity mixed in variable proportions with real sulphate of magnesia.

The detection is very simple. The great weight of a large sample is sufficient. For small quantities, dissolve a dessert spoonful in a wine glass full of water, and add strong water of ammonia drop by drop. The fluid will nearly gelatiuize from the separation of oxide of zinc; place a little of this on a piece of red hot charcoal, and urge the heat by a bellow or blowpipe. It will become yellow and phosphoresce like the fire-fly, and the oxide will be chiefly volitilized in white fumes; what remains is jellow while hot, but on cooling, resumes its white colour.

Therc are many other tests, but this is sufficient.

MERCURY.

(IIydrargyri Praparala.)

Merculzy. (Para.) is a white, brilliant liquid metal. Sp. gr. 13.5. Symbol Hy. eq. 202, boils at 670°. It freezes
at 72° below the freezing point of water; is oxydized and dissolved by nitric aeid and by boiling sulphuric aeid, but not affected by muriatic aeid or alkalies.

Mercury as found in commerce is usually adulterated with lead, inn and bismuth. It is best purified by the addition of some clippings of iron wire and distillation from an iron bottle, fitted with a bent gun barrel. The impurilies remain, and the mercury distils over and may be condensed under water. The iron wire moderates the violence of the boiling. One of the iron bottles in which the metal is imported may be used in this process.

Mercury forms two series of compounds with oxygen, chlorine, iodine and sulphur, in which the metallic element is as one, the uon-metallic element as one or two proportions.

The protoxide of mercury is black, the peroxide brick red, or orange yellow in the state of hydrate.

The soluble proto-salts give a black precipitate with alkalies and sulphurets; yellow with hydriodate of potash. The soluble persalts, yellow wish all alkaline bodies except ammonia, with this white, liydriodate of potash carmine red. All solutions of mercury deposit the metal on gold or copper, if a piece of iron or zinc be brought in contact with this metal.

Mercury witn Chalk.

Hydrargyrum cum Cretâ.

Mereury three ounces, prepared chalk five ounces. Triturate together till no metallic globules are perceptible when a portion is rubbed on paper with the point of the finger.

Mr. Phillips states, that a small quantity of water"accelerates this very tedious operation. On repeating the process, we found the addition a great improvement. A stone or marble mortar, and pestle of very lard wood should be employed.

A small portion of the mercury is converted by the trituration into protoxide.

Use.-An excellent alteralive and antacid, much used, especially in the treatment of chronic diarrbea in young children. The dose ranges from one to ten grains according to the age of the patient. It must not be prescribed wish acids, as these dissolve the chalk.

Corrosive Muriate of Mercury.
Syn : Bi.chloride of Mercury, Corrosive Sublimate, Sublimatus corrosives.

Mercury four ounces, sulphuric acid two ounces and three drachms, pure nitric acid lalf an ounce. Mix in a porcelain vessel, dissolve by a gentle heat, evaporate to dryness.

Triturate the dry salt with common salt three ounces.
Sublime in a glass flask, half imbedded in sand which can be heated gently, so as first to expel all moisture; when this is done, place an earthen cup over the neck of the flask and lieat more strongly, till the sublimate forms. Take great care to avoid the fumes. If the produet be loose and flocculent, dissolve in the smallest possible quantity of boiling water, and crystallize in the usual manner.

In the first step of this process, the mitric acid gives oxygen to the mercury and forms the peroxide of mercury, M. 202, Ox. $2=$ $16=218$. With each equivalent of this two atoms of sulphuric acid combine, forming bi-persulphate of mercury. But as hot sulphuric acid is capable, although more slowly, of giving oxygen to mercury, sulphurous acid gas being evolved, the like effect takes place at the same time through its action. The nitric acid much facilitates the process, and renders the composition of the product more certain.

In the second stage, one equivalent of bi-persulphate of mercury decomposes two equivalents of chloride of sodium, (common sall,) thus-

	1 eq .		
Bi-persulphate	* Mercury 202, 2 eqs.	2 eqs .	Chloride of So-
of Mercury 298 ,	\dagger Oxygen 16,	* Chloriue 72,	dium 120,
1 eq .	2 eqs.	2 eqs.	2 eqs.
	\dagger Sulphuric		
	Acid 80.		

** Form bi-chloride of mercury, 274
十† + Forin 2 eqs. of suiphate of sodat (oxide of sodium,)... 144
This is the Edinburgh process; although superior to the London it is still difficult, and ofter fails in inexperienced hands.

Corrosive sublimate is white, crystalliue, volatile, inodorous, excessively acrid and caustic, soluble in one-third of its weight of boiling and twenty times its weight of cold water; very soluble in alcohol, ether and muriatic acid, and in solutions of muriate of ammonia or of common salc, precipitated yellow by potash, soda and lime, white by ammonia, carmine red with a beautiful play of yellow and crimson by ioduret of polassium.

Corrosive sublimate is a violent acrid poison, causing besides the ordinary symptoms of that class of poisons, profuse salivation and the other special effects of mercurial preparations, in the most ag-
gravated degree, The best antidote is the white of egg in the liquid state, several of these should be swallowed at once, and free vomiting excited.

In Mcdicine, corrosive sublimate is used in very minute doses, 1-8th to 1-4th of a grain, in the treatment of secondary syphilis and lерга.

Corrosive sublimate is much used as a preservative of timber, canvas, \&cc. from the ravages of mildew, the dry rot and of white ants. A solution is made in the proportion of one pound to four gallons of water, and in this the article to be protected is steeped for a variable time according to its nature.

Calomel.

SYn: Proto-chloride of Mercury; mild Chloride of Mercury, Sub-murias Hydrargyri, §c.

Prepare the bi-persulphate of mercury as above directed. Add mercury four ounces, common salt three ounces; triturate well together till the mercurial globules entirely disappear. Sublime in a flask heated by sand, reduce the sublimate to very fine powder, which is to be washed with distilled water till the washings are not coloured by ioduret of potassium.

In this process by doubling the quantity of mercury we deprive the bi-persulphate of one equivalent of oxygen and one of eulphuric acid, and the whole is converted into su/phate of the protoxide of mercury.

This being sublimed with common salt, double decomposition thus ocemrs-

** Form protochloride of mercury, ealomel. $\dagger \dagger \dagger$ Form sulphate of sodia, (protoside of sodinm.)

Henry;s Calomel is prepared from the same materials, but the sullimed vapors are conducted into a vessel filled with steam, by which they are precipitated in exceedingly fine powder.

Calomel may also be made ly precipitating a solution of any protosale of mercury by muriate of soda. We do not insert any
process of this kind, as the product is invariably contaminated by the presence of the di-pernitrate or di-persulphate of mercury, and thus rendered dangerous and uncertain for medical use.

Calomel as met with in commerce is a white heavy powder, It sometimes occurs in large crystalline cakes. It is inodorous, tasteless, perfectly insoluble in water, alculol or ether; decomposed by the alkalies, converted by chlorine or nitric acid into corrosive sublimatc, also decomposed by sulphurets; volatilized by heating, lime water and the fixed alkalies decompose and blacken it-Composition, Chlnrine leq 36. mercury leq. $202=238$.-

Use and effects. -These vary according to the dose; one to two grains given twice or thrice daily, especially if combined with opium, causes increased secretion, soon occasions tenderness of the gums, and lastly determines copious continucd salivation, If the adminisIration of calomel be persisted in beyond this point, ulceration and gangreue of the mouth and salivary glands may take place.

A single dose of five to ten grains is purgative, and tends espefially to excite the action of the liver. Such a dose is generaliy given at night, and followed the next morning by a saline cathartic, to prevent the effects of the mercury on the system generally.

In doses of twenty grains it is deemed liy many practitioners to possess decided sedative powers in allaying irritation and inflamination of the alimentary canal, and for this purpose these large doses are frequently given in choleratand dysentery, by many experienced practitioners,
Calomel in wery small doses tends strongly' to promote absorption, and is thus giveu in dropsies, in enlargement of the viscera, (in that of the spleen it is prejudicial), in deposits of lympl within the chambers of the eye, \&c. \&c.

Besides these effects, the establishment of the mercurial action in the system is by many deemed incompatihle with the existence of ardent fever, and a powerful mode of corubating inflammatory and rhcumatic action.

Lastly, in syphilis, in most of the forms of that malady. Calomel in cominon with other mercurial preparations porsesses unequivocal and specific virtues; there can be no doubt, however, that other measures and remedies are also capable of curing this disease.

In spleen, scrofula and scurry, is is held by the best authorities that the administration of mereury is likely to be attended with bad results.

It is a remarkable fact, that comparatively larger doses of calomel may be given to young children shan to persors of adult age. In infantile diarrhoea and fever it will be often found, that a grain of calomel will a littlc prepared chalk will prove of great benefit. But the dose must nat be repeated more than twice without the bowels being freely acted upon, otherwise ulceration of the mouth is very apt to take pluce.

The natives of Indin have long been its tle habit of preparing a mixture of the two chlorides of mercury. We extract a notice of the details of the process from the Liditor's "Mantal of Chemistry," (2d edition, p. 287.)

INDIAN WERCCRIAL PIEPARATIONS,

Sevelal plopalations of mernary havn bnen deselibed by thn Sanskrit and Tamul writnrs, nspecially in tho "Purana Sustram," a wouk on matelia mediea and rellgious obsel vances. Tbn processns 1 havo examined genetally lnad to tho production of a mixinro of nalomel and corroslve bublimatn, and acnordingly the amalysls of all tho bazar preparations I can nollect, sbnws thoir composition to be a mixture of varying propotions of these substanees.
The Raskarpúr is gnnerally considornd to bo nol rosive snblimate, bnt on anslysis 1 fl nd that it is usnally catomet. Onnn, bownvor, 1 mot a specimen villeh was collosive sublimato of the finest kind. The equse of the uncertainty is to bo traend in thn different propertions of the inglediens recommnadod by diffecat nativo writels, and which of nonrse must lnad to the resnlts desnibitnd.
I Insoil fom Dr, Ainslio's work, an aecount of the plepalation of the Rarsapuspum and thn Shaeirum, a componnd simllal to the Reskarphit.

nAssaruslum

"This is a solt of muriate of melewi, in glent repulo amonget tho Tamnls, and whieh ay. poars 10 bo adminlstolod by them tn largne doses than any othm prepalatlons of this mntal. Thn following is takon from' Aghastier Yytink Anyotron :' ${ }^{\text {' T Twetve pagodas weight of sni- }}$ phul Is to ho put into an earthen pol, and fnsed ovel a slow, butstrong flin: whon in a stal 0 . of fnsion, nighty pagodas weighl of quainksilger must bn addnd to it, and kept genlly stirrod till the wbole is indnnod to a hlank powder : anothet pot ls then to bolaken, and filind half tull of small pinees of briek, ovel whiteh is to bolaid one measuro of common eatt: on thn top of this salt is to be pni thn lilank powdel jnst mentionnd; coveling the whole with anothel eallhen sessel; the pait where llin nonits of the two vessnls neel is 10 be well noatnd ovel with aoft nlay, and afterwards bonnd lound with tive plins of noarse eloth; the pots, tins foined, aro then to bo placed on a slrong firc, and there to be kept for twmlve honrs; aftm whinh timo thny aro to be taken offand left 10 eool, whnn thn rassaptrspum will be found eolinnind in tho ippermost.'"
llero we havo a bisulphnet of silver first formed, whieh decomporns the nliloride of axdium and forms bi-chtortde of merenry. It is voly inmarkahle llat the quanlilies employed are nnally in strict aceordance with tho indications of tho atoulic docirinn Thns tho alomic wrighl of 2 eq , of snlphul is 32 , of meleuly 202 , or nnarly in thn eamn plopoltion as 12 of sul. phnr and 80 of meleuty nmployed by tha Indian drugist. The 2 cq. of snlphns again decomjlose 2 neq. of sall, liborating 2 of nhlorino, which, with ihn mnennry, ploduce the bi-chloride or norrosivo sublimate, 13 m it gnnnrally happnns that tlironglı dofective manipulation a mixture of ealomel and tho bi-nhlorido is formed,

The next oxtrant is still mone interesting :

Abstract

"Thls stiango nomponnd is administernd by thn Tamuls in very small quantities; and well It ought to be, as it is evidently a lialsb, uneeitan, and dangeions preparation. The following procoss fol making lt is taknn from lhe 'Purana Sastrim;-First, make rassapuspnm, of the strength that will be formed by nsing thn proportions of sixtoen pagodas weight of anlphnt, eighly pagodas weight of qninksllyor, and lubif a measure of nommon all. Thnn, to elglity pagodas weight of iliis rassaptispum, edd tho samn quantiy of ronsted salt ; to these, again are to bo addod the fullowing suhstances: forty pagodas wnight of roasted Iulnsbn (sul phato of eoppnr), twenty pagodas wrigbl of paddicaruin (alum), twenty yagodas wnight of polilo upptu (nitre), twnnty pagodas welglin of punith ia sorı of atkaline narihl, ten pagodas weight of anna liaydin (snlplas ferri), and five pagodas woight of navanlarnm (sal ainmonian). All theso to hn woll Iubbod tognilins till formoil into an unifolm powdel, whiel is to bn pint into a nooppie suffieiently large to holld tho whole inone-half of in; atter whinh, it is to bo welt coated lound with nlay, and sel ovef an ovnn liko the shadilingum, whele it is to bo knpt for thirly six hours, taking nare that the fire, though slow, Is strong ; the cooppie is then to be brokm, and in thnmonth of it will be fonnd thn shavirnm, in a Inrap.' In this proenas, tho mixed nhlolints of moleury, ahovo deselfed, alo theatnd so as to combine them with still mole ehloline, mid bring all to tho stale of the bi-chlolide. Tlin sntpbate of coppor and alum (ter-sulphsto of alnmana and potasht, witb tho snlphatn of iron, when lieated, tvolve snlphnrin acid, whilh, denomposing the saltpetie, liberates nitric snld. Tho muriale of ammonia is decomposed at the samo imm, anlphain of ammonia being formed, and muriatin anid set free. Thn muriatin and nitrie anids mneting in vapour, form wal er and ovolvnchtorine, The vapours of nalomol sloultaneously ilsing and meeting the elionine are convented into the biechloride of mercury, tho preparation deseribed,

The eloze resemblance of thla ancient method to that practised in llolland at this day is pery remarkable. lodeed, were it an object to devise a procens for the cleap mannfacture of corronive anblimate from the bazar materials and bazar veascla, the most accouplished chemist could make bnt little lmprovement in the aagacions though empiric fonmula of the ${ }^{\text {a }}$ Tramuts.
These precepts could only have resulted from the closest combination of obscryation of chemical phenomene, and of the medicinal effecta of the remedies prepared. With precisely similar habits, aod wlth all the aid of modern acience, the descendants of thesc extroordinary men may be reasonably expected to contribute mnch to the progress of chemoleal aod pharmaecutical knowledge.

Solution of Corrosiye Sublibate.

Corrosive sublimate and muriate of ammonia each ten grains, distilled water a pint.

A fluid ounce contains half a grain of corrosive sublimate, the muriate of ammonia is merely added to increase the solvent power of the water.

Use and dose as above.

White Precipitate of Mercury.

Syn : Hydrargyri precipitatum allum 1_{1} Ed. Hydrargyri ammonio.chloridum, Lond.

Corrosive sublimate six ounces, water six pints; dissolve by heat, allow it to cool, and add solution of ammonia eight fluid ounces. Agitate, strain, and wash the powder thrown down till it is inodorous, and does not change the colour of a solution of ioduret of potassium.

IIalf the chlorine is removed by the ammonia, and the precipitate is formed, according to Phillips, of -

1	eq. Peroxide of Mercury,...	\ldots	\ldots	\ldots
1	eq. Bichloride of Mercury,	\ldots	\ldots	\ldots
274				
2	eqs. Ammonia,	\ldots	\ldots	\ldots
		\ldots	\ldots	34
			Equivalent,	\ldots

A light, white powder, inodorous, insipid, insoluble in water, soluble in the mineral acids, is turned yellow, and emita ammonia when heated with potash.

Use.-In ointments in cutaneous diseases.

> Black Oxide of Mercury.
> Iydrargyri Oxydum Nigrum.

Calomel one ounce, lime water a gallon, mix well and agitate in a large stoppered ressel. When the oxide las
subsided, pour off the liquors, wash well with distilled water, wrap the precipitate in filtering paper, and dry it in the dark on the water bath,

Considering calomel as the protochloride of inercury, in this process oue equivaleut of water is decomposed; ils oxygen with one equivalent of mercury forms protoxide (black oxide) of mercury; ils hydrogen with one equivalent of chlorine produces muriatic aeid-and this with the lime forms muriate of lime.

The protoxide of mercury is black, by heat it is changed into metallic mercury. It is dissolved by the sulphuric, dilute nitric and acetic acids; and gives sulphuret and chloride containing one equivalent of the non-metallic elemeut, when its salts are treated by sulphuretted hydrogen or cllorine.

Use.-This is the oxide contained in blue pill, mercurial ointment, the powder of mercury and chalk, and all the milder mercurial preparations.

It is sometimes, but very rarely, given internally as an alteralive, in doses of one to two grains twice or thrice daily,

Red Oxide of Mercury.
 Hydrargyri Oxydum Rubrum,

Mereury eight ounces, diluted nitric aeid, (1,280), five fluid ounces. Dissolve half the mereury with the aeid by a moderate heat, and continue this till a dry salt is procured.

Triturate the salt with the rest of the mereury to a fine powder, and heat in a porcelain capsule till aeid fitmes eease to be evolved,

Or, mercury any quantity, nitric aeid half its weight, distilled water two pints to every three lbs. of mereury. Mix, dissolve by heat, and evaporate to dryness. Powder the residue, and strew the powder on a shallow earthen vessel kept hot, until there be no brown fumes perceptible.

In both these processes mercury is oxidized to the maximum by the nitric acid which undergoes decomposition, brown fumes of nitrous acid being generated. Peruitrate of mercury is formed, and the entire of the niiric acid is subsequenlly expelled by heat.

The product is bright red and crystalline, It sometimes contains a lithle undecomposed nitrate of mercury.

The peroxide of mercury may also be prepared by decomposing auy soluble persalt of mercury by potash, soda, or their carbonates, or by lime water.

The London binoxide of mercury is a preparation of this kind, made by decomposing four ounces of corrosive sublimate in six pints of water, by twenty-eight fiuid ounces of solution of potash.

This preparation is never employed internaity, and is only used for preparing bi-cyanuret of mercury with Prussian blue.

Use.-It is only used externally as a caustic and escharotic: pow der, and in the ointment which bears its name.

Brcyande of Mercury,
Iydrargyri Bi.cyanidum.
Prussian blue eight ounces, finely powdered red oxide of mercury ten ounces, distilled water four pints ; strain, evaporate till crystals form. Wash the residue well, and concentrate the washings to crystallization.

Prussian blue is a compound of
Nine eqs. of Cyanogen, \quad.. $. . \quad 26 . \times 9=234$
Seven eqs. Iron, \quad... $\quad . . \quad \ldots \quad 28 . \times 7=196$
430
Cyanogen is a compound gas, contuining
$\begin{array}{lllll}\text { Cyanogen, } & \ldots . & \ldots & \ldots & 2 \text { eqs. } \\ \text { Carbon, } & \\ \text { Nitrogen, } & \ldots & \ldots & \ldots & 1 \text { eq. }=14\end{array}$
26
Prussian bhec is prepared by adding the ferrocyanaret of potassiun to a solution of any per-salt of iron.
lu the above process two equivalents of cyanogen combine with one of mercury, and a correspondiug quantity of per-oxide of iron is formed.

Properties.-Colorless, crystalline, soluble in hot water, slightly in alcohol; heat resolves it into cyanogen and mercury, The alkaties do not decompose the watery solution, The cyanide of mercury is soluble in nitric acid. The sulphuric and murjatic acids dissolve and decompose it, liberating bydrocyanic acid.

Use, For the preparation of hydrocyantic acid.

Red Ioduret of Mercurx.

Corrosive sublimate two hundred and seventy-four grains, ioduret of potassinm three hundred and thirty.two grains,
distilled water two pints. Dissolve the corrosive sublimate in one pint and sixteen ounces of the water, the ioduret of potassium in fonr fluid ounces. Mix and agitate well, a carmine red precipitate takes place; dissolve this in a boiling solution of muriate of soda, filter while hot through calico, and collect the dry crystals which form on cooling.

In this process two equivalents of ioduret of potassium decompose one equivalent of corrosive sublimate, chloride of potassiun and biniodide of the mercury being the result.

This preparation is of splendid red colour, fusible, volatile at high temperatures. When heated it becomes yellow, but regains i1s red colonr on cooling. It is insoluble in water, but readily dissolved by hot afcohol or solution of muriate of soda from which it crystallizes on cooling.

Use.-Recommended strongly by Lugol and others for syphilitic scrofula. Dose, haff a grain to a grain daily. It is most enployed however in an ointment, for which a formula is given under that head.

Red Sulphuret of Mercury.

Mercury one pound, sulphur two and half ounces; melt the sulphur, add the mercury till the mixture swells up, remove the vessel quickly, and cover it with a well fitting lid, lest the mixture take fire; rub it to powder when cool, and sublime in suitable flasks.

Reduced to powder, this sublimate is identical with the vermillion of commerce. It consists of $2=$ sulphur, \ldots... 32 I eq. Mercury, 202

This product occurs in the bazars in crystalline masses of great purity.

It is only used for fumigations, half a drachm being placed on a hot iron.
N. B.-The \dot{P} roto ioduret of mercury of the London College is omitted on account of the unecrtainty of the product.

The Sulphuret of mercury with sulphur of the same College is also omitted, from its total inertness and inutility.

PO'TASSIUM, (Preparations of)

Preparata Potassii.

Porassium is the metallic base of the fixed alkali potash. It was discovered by Sir H. Davy in I80\%. It is obtained by decomposing potash by iron or charcoal. Potassium is white, semi-fluid at 90°, melts at 120°; sp. gr. 0.865 . It floats on water, which it decomposes so violently, that it takes fire and burns with a beautiful rose-coloured flame. It inflames even on ice; equivalent 40. It forms two oxides, of which the protoxide alone is of importance in Pharmacy.

Tlise neutral salts of potash are precipitated by tartaric acid in excess. Chloride of platinum also gives a yellow precipitate. The suiphate of soda is efflorescent and soluble in its own weight of water, the sulphate of potash is permanent in the air, and requires sixteen times its weight of water for its solution. The salts of potash are not blackened by sulphuretted hydrogen.

As the carbonate of potash is the object of large trade, and affords the crude material from whence the pure pharmaceutical articles are derived, we slall treat first of the preparation of this article.

Carbonate of Potasil.

Pure saltpetre in fine powder two pounds, powdered charcoal one pound. Mix well together, and project the mixture by small quantities at a time into a common earthen vessel containing a piece of red-hot charcoal. Melt the salt and throw in pieces of charcoal while deflagration occurs; when the deflagration has ceased throw the mass into one gallon of water, strain and boil in a porcelain vessel, and evaporate to dryness.

Saltpetre consists of
Nitric Acid, l eq., 54
Potash, 1 eq., 48
Equivalent, ... 102
The carbon forms carbonic acid with the oxygen of the nitric acid. Part of the carbonic acid is expelled, the rest unites with the potash, forming carbonate of potash.

In Europe, the commercial carbonate of potash occurs chiefly in the rough state as potushes, or partially refined as pearlush. Both there products are obtained by the incineration of various land vegetables and trees, washing the ashes, and evaporating to dryness.

These articles contain many impurities, especially sulphurets of potassium and iron, compounds of lime, with sand, clay; \&cc. The value of the salt depends on the quantity of pare alkali it contains, and this is estimated by ascertaining the quantity of sulphuric acid of a given strength, which one hundred graists of the alkali under examination are sufficient to neutralize.

A very iropure and useless carbonate of potash is prepared in some parts of India by the incineration of palm leaves or plantain leaves.

Crude argol, the bitartrate of potash or cream of tartar, deposited during the fermestation of grape juice, affords by incineration a misture of pure carbonate of potash and charcoal. The tartaric acid contains 2 eq. oxygen, 5 eq. hydrogen, and 4 eq. carbon. During the incincration, these constituents form water and carbonic acid, the former being expelled, the latter retained with the potash. The carbonate of potash is separated from the carbon by washing with water. This is the process adopted by the Edinburgh College.

The London College direct the pearl ash of commerce to be refined by simple solution, straining and evaporation to dryness. This does not separate any of the numerous soluble impurities it contains, for instance, the sulphate and sulphurets of soda and salts of iron. The process we give affords a perfectly pure articte.

> Carbonate of potash is a compound of $\begin{array}{cccccc}\text { Carbonic Acid, 1 eq, } \\ \text { Potashl, } 1 \text { eq., } & \ldots & \ldots & \ldots & \ldots & 22 \\ . . . & \ldots & \ldots & 48\end{array}$

70
This salt is white, inodorous, acrid, deliquescent, soluble in its own weight of water, powerfully alkaline and corrosive, insoluble in alcohol ; at a red heat, it loses six per cent. of water. It crystallizes with great difficulty. The ordinary dry carbonate is combined with one and a half equivalents of water.

It is generally and erroneously called sub-carbonate of potasl, and always sold under that name by the druggists.

Medicinal Use.-As a diuretic and antacid. Dose, ten to thirty grains in milk or mucilage. It is often given with citric acid in an effervescing drauglt, but in then ceases 10 act as the alkaline carbonate, as it is decomposed and neutralized by all the ordinary acids.

Solution or Carbonatie of Potast.

Dissolve twenty ounces of carbonate of potash in one pint of distilled water. Preserve in green glass bottles. S_{p}. gr. 1.473.

Properties.-As above. Dose, ten minins to one fluid drachm.

Bicarbonate of Potassi.

Carbonate of potash six ounces, carbonate of ammonia three ounces and a half; mix in very fine powder and make into a pulp with a little water, dry this at a temperature not exceeding 140°, stirring occasionally until the powder is free from any ammoniacal smell.

This is the process adopted by the Edinburgh College. The carbonate of ammonia parts with ins acid to she carbonate of potash, and aminonia is set free.

Composition,--

101
Properties.-Crystalline, taste not disagreeable, reachion scarcely alkaline, soluble in four times its weight of water at 60°, decomposed by boiling water. Insoluble in atcohol. It does not precipitate a solution of sulphate of magnesia until boiled.

Use, -As with preceding preparations. Dose, ten to thirty grains.
Remarks.-The London Coilege prepare this compound by passing a current of carbonic acid gas through six pounds of carbonale of potash, dissolved in a gallon of water. The carbonic acid required is disengaged from a mixture of chalk and sulphuric acid. 'This may be made in a common earthen vessel, with a wooden stopper (luied,) and a ben leaden tube. 'The sulphuric acid should be added to the chalk througln a similar tube provided with a leaden funnel.

Potash Water, (Effervescing.)

Bi-carbonate of potash one drachm, distilled water a pint; to be charged with carbonic acid gas under strong pressure, as in the process for preparing soda water.

Solution of Potash.

Carbonate of potash one pound, water ten pounds; boil briskly, and add gradnally staked lime in fine powder one ponnıl, boiling strongly till a small portion of the clear liqnor
when tested with muriatic acid does not effervesce. Bottle the liquor while hot in green glass bottles; when the precipitate has subsided, decant rapidly into other bottles of green glass. The density should be 1.063 .
In this process, the lime removes the carbonic acid from the solution of carhonate of potash, setting the alkali free, carbonate of lime being deposited.
The above process is that followed in Dublin, and is preferable to the London method, the carbonate of lime being formed very rapidly in the crystalline state, aud falling down as a dense powder.

The solution of potash is very powerfully alkaline and corrosive. It acts rapidly on ordinary white glass dissolviug its silica; green glass it does not affect.

Use.- In medicine it is used as described under the previous head, also as a remedy in stone and gravel. Dose, tell to thirty minims given in milk, broth, or beer free from acidity.

Caustic Potash.

Solution of potash a gallon, evaporate rapidly from an iron or silver vessel, till the whole of the water is expelled, and the potash melts. When this takes place, it should be cast into moulds of brass or iron.

This is a compound of 1 eq. potash and 1 eq. water $=57$. As sold by the Apothecaries it is brownish white, very deliquescent, and contaius much oxide of iron. It is a very energetic caustic, destroying every tissue with which it is brought into contact, soluble in its own weight of water, also soluble in alcohol, by which it can be separated from the usbal impurities, and obtained in a pure state:

Use.-As a caustic externaily, but it is now so little employed that the Edinburgh College have expelted it from their list of preparations. The chief objection to its use is its extreme deliquescence, causing it to dissolve and flow beyond the part to which its action should be restricted.

Potasil with Lime.

Caustic potash and lime equal weights, rub well together, and preserve in glass bottles.

The addition of the lime is to moderate the action of the potash. This preparation is also omitted from the Edinburgh Pharmacopocia.

Acetate of Potasil.

Pyroligneous acetic acid a pint and a half, dry carbonate of potash seven ounces, or the quantity requisite for neutralization. Evaporate till on cooling it becomes a concrete mass, which is to be preserved in stoppered bottles.

The carbonic acid is expelled with effervesence, and acetate of potash formed.

Composition, -
1 eq. Acetic Acid, 51
1 eq. Potash,... 48
99
This salt is white, crystalline, of pungent taste, deliquescent, soluble in water and alcohol. At a red heat it is changed into carbonate of potash.

Use.-Diuretic in doses of $Э \mathrm{i}$. to 3 j . Cathartic in doses of 3 ji . to 3 sse. It is given in solution in water.

Sulpiate of Potash.

Bisulphate of potash* two pounds.
Ignite in a crucible till all the excess of sulphuric acid is expelled, then dissolve in two gallons of water, concentrate to crystallization.

Or, neutralize a solution of the bisulphate of potassa with carbonate of potassa, strain if necessary, and crystallize.

Compasition,--
Sulphuric Acid, 1 eq. 40
Potash, 1 eq. 48
88
The sulphate of potash is usually in bi-pyramidal crystals, colonrless, bitter, soluble in sixteen times its weight of water at 60°, insoluble in alcohol, is not efflorescent, has no water of crystallization, and therefore does not melt on being heated below redness.

It is seldom or never prescribed unless in conjunction with other remedies. Owing to the great hardness of its particles, it is used in powder as a constituent of Dover's Powder, being employed to render the subdivision of the opium and ipecacuamha more minute.

[^13]
Bi-suliphatr of Potash.

The residue of the distillation of nitric acid two pounds, sulphuric acid seven flnid ounces and one drachm, and boiling water six pints. Dissolve, mix, and concentrate to crystallization.

The addition of the acid is intended to prevent the deposition of any sulphate containing less than two equivalents of acid to one of potash.

This salt occurs in tabular crystais with bevelled ednes, very acid and bitter, soluble in water.

Composition,-
Sulphuric Acid, 2 eq. 80
Potash, 1 eq. 48
Water, 2 eq. 9
Equivalent, ... 137
Use.-Given with other purgatives in doses of from twenty grains to one drachm.

Tartrate of Potasif.

Bi-tartrate of potash three pounds, carbonate of potash sixteen ounces, boiling water six pints; dissolve the carbonate in the water, then add the bi-tartrate and boil, strain and concentrate to crystallization. The product should be neutral to test paper.

Bi-tartrate of Potash is composed of two equivalents of tartaric acid and one of potash. In this process the second equivalent is neutralized by potash, and the result is two equivalents of the neutral tartrate of that base.

This salt is bitter, soluble in twice its weight of water, deliquescent in damp air, insoluble in alcolol; by ar red heat it is clanged into carbonate of potasi.

Use. -It affords a valuable purgative in doses of from 3 i . to $\overline{3}$ sse. in solution. It is much used with senua, under the idea that it prewents the griping usualiy produced by this purgative.

Br-tartrate of Potasif.

Cream of Tartar.

In Europe this salt is formed incidentally in large quantities during the manufacture of wine, being deposited from the grape juice during its fermentation. It is usually of a reddish colour, and in the impure state, is called argol in commerce. It is chiefly manufactured in the South of France, at Teneriffe, and the Cape of Good Hope. Being of considerable utility in dyeing, it finds a very ready market; indeed the supply is scarcely cqual to the demand.

The crude argol is purified by boiling with albuminous fluids, which coagulate and involve the red colouring particles and other impurities which are removed by skimming from the mixture. The refined article is called cream of tartar, which besides its commercial value, is a very useful remedy.

There being no wine manufacture in India, we made many attempts, but ineffectually, to obtain this substance from the juice of the wild grape, and even from the cultivated kind. But we have succeeded in obtaining it economically from a much more available source, the leaves of the tamarind tree, by the following process.

Tamarind leaves, dried before the sun or in the stove, and rubbed to coarse powder, one pound. Divide into two portions and boil each separately in porcelain vessels in a quart of water, stirring constantly for twenty minutes ; strain while hot and press. To the hot liquor of one, add solution of carbonate of potash to neutralization; strain if necessary; now mix the contents of both vessels and boil for ten minutes or a quarter of an hour, with a little moist white clay free from lime. Strain while hot, and set aside for crystallization.

The proportions above indicated may be observed on any scale. The product will by proper management amount to half an ounce of pure cream of tartar for every poind of the dried leaves.

Bi-tartrate of potash occurs in white hard crystals, of acid taste, soluble in 60 parta of cold and 15 of boiling water. Heated to redness, it is changed into carbonate of potash.

Composition,-
Tartaric Àcid, 2 eqs., $\quad . . \quad . . . \quad 66 \times 2=132$
Potash, 1 eq., 48
Water, I eq., 9
189
Use,-Dissolved in water, the solution sweetened, and a little lemon peel added, it makes an excellent drink for fever patients, It promotes the action of jalap and scammony, and is accordingly added to these powders in their ordinary form of administration.

Tartrate of Potasil and Soda.

Bi-tartrate of potash sixteen ounces, carbonate of soda twelve ounces, boiling water four pints; conduct the process as in that for the ncutral tartrate of potash.

The product is the well known Rochelle Sall.
Composition, -
'Tartrate of Potash, I eq., 114
Tartrate of Sodn, I eq., 98
Water, 8 eqs.,... 72
Equivalent, ... 284
In large and beautiful crystals, soluble in five times their weight of water at 60°.
 with half at drachm of carbonate of soda in six to eiglit ounces of water. A solution of half a drachm of tartaric acid is added, and the mixture taken while in effervescence.

Nitrate of Potash.

Saltpetre, Shora, Nitras Potassce.

This article occurs in the bazars in Bengal, in the refined state, (see Materia Medica, Nitrate of Potash.)

Saltpetre crystallizes in six-sided prisms, soluble in 7 parts of water at 60°, and in less than its own weight of water at 212°, insoluble in alcohol, taste cool, sharp, slightly bitter. At a red heat it
melts, evolves oxygen and nitric oxide, and leaves the peroxide of polassium.

Nitrate of Potash is composed of
Nilric Acid, $. . \quad . . . \quad . . \quad . . \quad 1 \mathrm{cq}=54.15$

Potash, $\quad . . \quad \ldots \quad \ldots \quad . . . \quad 1$ eq. $=47.15$
Equivalent, ... 101.30
Pharmaceutical use, for preparation of nitric acid.
Medical use. -The only really valuable or certain effect of nitre in medicine, is that it produces as a diuretic, and for shis purpose it is very jnferior to the acetate of the same alkali. Dose, two scrisples to one dracha in solution with syrup and ciunamon water. In large doses, mitre is an acrid irritant poison.

Bromide of Potassium.

Bromine two ounces, carbonate of potasl two ounces and one drachm, fine iron filings one ounce, water three pints; pour half the water on the iron filings, which must be thoroughly clean, then add the bromine. Let the mixture rest for two hours in a stoppered bottle, occasionally agitating it. Then immerse the bottle in warm water occasionally renewed till the mixture becomes greenish. Then add the carbonate of potash dissolved in the rest of the water. Strain, wash the residue with two pints of boiling water, and strain again. Mix the liquors and crystallize.

This is the London process for the preparation of this bromide now introduced into medicine as a remedy in enlarged spleen.

The theory of the preparation is exactly the same as that of the next process for the ioduret of potassium.

For the properties of Bromise and its mode of preparation, see that head.

Properties.--In white cubical or quadrangular crystals, inodorous, anhydrous, of pungent 1aste, very soluble in water, and slightly in alcohol.

Composition, -

$$
\begin{array}{lcccccc}
\begin{array}{l}
\text { Bromine, } 1 \text { eq. } \\
\text { Potassium, } 1 \text { eq. }
\end{array} & \ldots & \ldots & \ldots & \ldots & \ldots & 78 \\
& & & \ldots & \ldots & \ldots & 40 \\
& \text { Equivalent, } & \ldots & 118
\end{array}
$$

Use.-In enlarged spleen. Dose, three to ten grains thrice daily. Its effects are not warranted by experience, but it is a remedy of much promise.

Iodide of Potassium.

Iodine (dry) fire ounces, fine iron wire three ounces, water four pints, prepare with these materials the solution of ioduret of iron directed under that head; add while hot, carbonate of potash tro ounces and six drachms previously dissolved in a little water, filter while hot, wash with distilled water, unite the liquids, concentrate by deposition till a dry salt is obtained.

Boil this in twice its weight of rectified spirit, filter and crystallize.

In this process ioduret of iron is decomposed by carbonate of potash thus-

Iodiue, \uparrow	* Carbonic Acid,
lron,*	* Oxygen.
	\dagger Potassium

* Carbonate of Iron. $\quad \dagger$ † Ioduret of Potassium.

The iodide of potassium occurs in colourless cubical crystals, anhydrous; soluble in its own weight of water at 90°, very soluble in rectified spirit, is not decomposed by a very high heat.

Composition,-

Iodine, 1 eq....	\ldots	\ldots	\ldots	\ldots	\ldots	126
Potassium, 1 eq.	\ldots	\ldots	\ldots	\ldots	\ldots	40

Equivalent, .. 166
Use.-In scrofula and secondary syphilis it is given with great advantage in ten grain doses thrice daily. In chronic rheumatism it is also most beneficially employed in the same doses, especially when dissolved in the infusion of the hemidesmus, (ununtamool.) Much larger doses may be taken with no more marked effect than copious diuresis. This salt rapidly pasess by the urine, in which it inay be detected by starch and sulphuric acid, which strike a blue colour. Iodide of potassiurn in solution dissolves iodine, and gives the best vehicle for administering that remedy, as in the subjoined formula.

Solution of Iodureted Iodide of Potassium.
Iodide of potassium ten grains, iodine five grains, and water a pint. Dissolve.

The solution is brown, gives a blue colour with starch. Use, in enses above cited. Dose, half an ounce to one ounce diluted with water.

Sulphuret of Potassium.

Sulphur one ounce and carbonate of potash four ounces. Mix well and melt in a crucible, till they anite; break the mass into fragments, and preserve in stoppered bottles.

(For the properties of Sulphur, see that head.)

During this process the carbonic acid is expelled, a small portion of sulphate of potash is formed, and the greater part of the mass becomes sulphuret of potassium.

Composition,-

Sulphuret of Potassium,	\ldots	\ldots	\ldots	3 eqs. $=168$
Sulphate of Potash,	\ldots	\ldots	\ldots	1 eq. $=88$

Equivilent, .. $25 \overline{6}$
This preparation, from its colour, was formerly called Liver of Sulphur. When moistened it smells of sulphuretted hydrogen, it is soluble is water, taste acrid. It absorbs oxygen readily from the air, and passes into sulphate of potash. With many metallic solutions it forms insoluble sulphurets, and lence has been much used as all antidote to several metallio poisons. It is, however, a powerful poison itself, and can only be administered with safety where no doubt exists of the nature of the poison taken, and of its actual presence in the alimentary canal. The use of the stomach pump and of emetics will usually render the employment of this substance superfluous.

It is very seldom given internally. Externally it is emplosed in lotions and baths in several cutaneous diseases. It enters into the composition of some artificial sulphureous mineral waters.

SIL. VER, (Preparations of)

Argenti Praparata.

Silver when pure, is white, brilliant, soft, exceedingly ductile and malleable, melts below a white heat, sp. gr. 10,51. symbol Arg. Equivalent, hydrogen scale 108, oxygen scale 1351.6. In the Company's rupees, silver is alloyed with onetwelfth of copper. The sycee silver of China contains traces of gold.

Silver is violently acted upon by nitric acid. Muriatic acid if devoid of free cllorine searcely affects it. Hot sulphuric acid oxydizes
and dissolves it. The ordinary salts of silver are transparent and colorless, their solution if mixed with organic matter darkeus rapidly oul exposure to the solar ray, aud a black powder falls coulaining reduced silver. The oxides and oxywals of silver are reduced by a red heat. The chloride and sulphuret of silver are also casily reduced by earbonate of potash or soda, at a bright red lieat.

The oxysalis of silver in solntion are reduced to the metallic stale by plates of copper, zinc or iron; the silver being deposited iu a fine crystalline powder on the reducing metal.

Nitrate of Shlver.

Nitras Argenti, Lunar Caustic.

Take of refined silver an ounce and a half, beat ont into a thin plate, cut four rupees' weight of this into strips and dissolve with a gentle heat in pure nitric acid one fluid ounce, distilled water two fluid ounces; continue the heat to dryness and melt the salt in a porcelain crucible; the heat must not be earried beyond the melting point; when melted, cast it into iron moulds previously and slightly greased with tallow or suet. Wrap the product in paper, and preserve in stopuered glass vessels.

To refine silver for this preparalion, may be done by either of ike two following processes :-

Dissolve rupees or currency silver in dilute nitric acid, dilute the solution with distilled water, introduce a slip of, polished copper. Remove the silver deposited from time to time, and throw it into a vessel of distilled water slightly acidulated with sulphuric acid, wash it well with distilled water, and dry the precipitate. A rupee should yicld 165 grains of pure silver to this process.

Or, dissolve as above, and add a solution of common salt in excess, chloride of silver is precipitated; filter on ealico, wash with distilled water, dry and mix with twice its weight of equal parts of carbonate of soda and carbonate of potash. Melt in an iron cup at a bright red heat. On cooling the
refined metal is found in a button at the bottom of the crm. cible; it sloould be washed with a little acidulatell water and beaten into a thin plate.

Composition. - Nitrate of silver is a compound of One eq. Nitric Acid, (N. O. 5,) 54
One eq. Oxide of Silver, (Arg. 0 ,)...... ... 116
170
One hundred parts of the fused salt contain 31.76 , metallic silver. Nitrate of silver is soluble in its own weight of water at 60°. If the solution be slowly concentrated, large crystals are deposited, the essential form of which is the right rhombic prism. They are not deliquescent, and not altered by light; they readily melt at a gentle heat, and cool in a white radiated mass. At a red heat, nitrate of silver evolves oxygen, nitric oxide, and nitrous acid, and the metal remains.

The watery solution of nitrate of silver is precipitated by all natural waters except the purest rain water, by all alkaline solutions, soluble muriates, sulphates, carbonates, phosphates, acetates tartrates and sulphurets, by astringent and albuminous fluids. The chloride of silver is white, blackens rapidly on exposure to the air and light, is soluble in caustic ammonia, and insoluble in nitric acid.

Use.-Nitrate of silver is the best caustic we possess; one of the fused cylinders is scruped to a point, moistened, and the part we wish to affect, tonched to the extent we desire. On exposure to light, the cauterized parts are intensely blackened. A wash of nitrate of silver, four grains to the ounce, is much used in the treatment of many affections of the eye, and also as an application to claneres and indolent sores.

Internally, it is given as an autispasmodic tonic ; especially in epilepsy, when there is no indication of plethoric or iuflanmatory action or organic disease. Dose, one-eighth of a grain gradually increased to a grain, made into a pill with crumb of bread and a little sugar. The pills slould be given at as long an interval as possible from the usual meals, in order to avoid decomposition by the salt these contain.

The internal administration of the salts of silver is in fair skinned persons often followed by the clange of colour of the skin, especially where exposed to the light, to a deep brown or purplish colour.

SODIUM, (Preparations of)
Sodium is the metallic basis of the valuable alkali soda, (oxide of soditum), of common salt, (chloride of sodium), of
the sulphate of sorla, extracted in India from the earth called kari noon, of carbonate of soda obtained from the mineral saji mati, \&c.

Sodium is silver-like in nspect, sp. gr. 972. It is obtained by processes sinilar to those for potassium. It decomposes water very rapidly, solution of soda being formed. Eq. 24, symbol Na. from the Greek Natron.

Carbonate of Soda.

The mineral called saji mati any quantity, heat it in lumps to low redness for an hour, and then throw the lumps into water. Those which do not fall to pieces are to be taken out and crushed, and returned to the water. Strain throngh cloth, and continue washing the earth till a portion of the washings does not effervesce when mixed with a little acid.

Evaporate the washings rapidly till a pellicle forms on the surface, and then set aside to crystallize.

The process ought to be performed during the cold season, and the crystallization done at night.

The mother liquors should be again concentrated, and will yield fresh crystals.

Saji mati is a mineral which exists in immense quantities in many parts of Bengal, especially in the districts of Monghyr, Purnea, and Cawnpore. It contains from 40 to 50 per 100 of carbonate of sodr, traces of sulphate of soda, organic matter, clay, sand, and oxide of iron.

The salts can be extracted by washing the mineral without incineration, but the organic matter is dissolved at the same time, and gives a deep brown solution from which pure crystals cannot be obtained. The firing destroys this suhstance, and then the solution is colorless. But care must be taken not to push the heat heyond Low redness, for the alkali at a higher temperature combines with the sand and clay, and the whole runs into green glass, imsoluble in water.

Carbonate of soda is comp					
Carbonic Acid, one eq.,	\ldots		22
Soda, one eq.,	...	\cdots	\cdots		32
Water, ten eqs.,	\ldots		90
		Equi			144

In Europe this salt is prepared either by burniug sea weeds and lixiviating the ashes, the product beilug termed keip and barilla, or by decomposing common salt by sulphuric acid and then ronsting the resulting sulphate with chalk, saw dust, and fragments of iron. The mass when washed gives the carbonate of soda.

The article prepared by the process we have adopted is of greater purity than any met with in commerce, and equal to the refined carbonate of soda of the druggist. It occurs in colorless crystals, highly alkaline, soluble in twice their weight of water at 60°.

Uses.-The same as those of carbonate of potash, to which it is universally preferred from the greater milduess of its action, and its more agreeable fluvour. Dose, ten to thirty grains three times a day. It is very much used in effervescent draughts, with the citric or tartaric acid, thirty grains of each being separately dissolved in three or four ounces of water, and the mixture taken while effervescing.

Dried Carbonate of Soda.

Sode Carbonas Siccata.

Carbonate of soda one pound, heat it in a porcelain vessel till dried, then heat it to redness, and rub it to powder and preserve in stoppered vessels.

In this process the water of crystallization is expelled- 144 parts are equal to 54 of antiydrous salt.

Dose.-Five to fifteen grains, given with other remedies.

Bi-carbonate of Soda.

Carbonate of soda seven pounils, water a gallon. Dissolve and pass carbonic acid through the solution from any appropriate apparatus.

Being less soluble than the carbonate, this salt crystallizes as fast as it is formed.

A very elegant process is given in the Edinburgh Pharmacopocia, which we have found to answer perfectly. It consists in disengañing carbonic acid muder pressure in an extemporaneous gasometer, and bringing the gas into contact with a mixture of out part of common earbonate of soda, and two parts of dried carbonate of soda powdered and well mixed together.

The comnon carbonate affords the water required. We give a sufficient description of the arrangement: a glass wall-shade inserted answers very well for the first vessel, the tubes being of lead, half an inch in diameter inserted as good corks.

1. A glass vessel filled with fragments of chalk or marble, the open end haviag a piece of coarse canvas, gunny cloth or net, tied round it to keep the marble in its place, is placed in a copper or tinned iron jar, the inside of which is to be protected by lard cement or lac varnish. Muriatic acid is poured into this vessel one-third of its depth; this acts on the chalk and expels its carbonic through the bent tube.

This is led into a wide-mouthed botlle, No 2, having a second tube issuing from it ; this bottle is intended to receive any portion of the contents of No. 1, which might bubble over.

No. 3, is a smaller vessel with two openings, the tube from 2 passes to the bottom of 3 , which is then filled with the Soda powder, and the second opening corked after the action has commenced bet ween the acid and carbonate of lime. No. 3 may be made of tin plate or copper. After twenty-four hours, remove the darap salt and dry it at 110°.
Composition,-

l_{t} is distinguished from the earbonate by its not precipitating a solution of sulphate of magnesia till heat is applied.

Use - ln effervescing powders, as before pointed out.

Sulphate of Soda.

Sode Sulphas, or K/aari Noon.

Bazar khari noon any quantity. Dissolve in boiling water, strain tlirough cloth, boil down to the formation of a pellicle, and crystallize.

Khari noon is an impure sulphate of roda extracted from an earth in which the salt exists in the proportion of from ten to fifty per 100. It is prepared in large quantities by simply washing the earth.

It is usually sold in crystalline dirty-brown masses. These are purified by the simpte process above described.

Sulphate of soda is very bitter, efflorescent, 3 parts of water at 60° dissolve one of this salt, boiling water dissolves its own weight.

Insoluble in alcohol. At 212° its water of crystallization dissolves it. At a higher heat, it dries altogether, and a red heat melts.

Composition,-

Sulphuric Acid, one eq.,	\ldots	\ldots	\ldots	\ldots	40	
Soda, one eq.,	\ldots	\ldots	\ldots	\ldots	\ldots	32
Water, ten eqs.,	\ldots	\ldots	\ldots	\ldots	\ldots	90
				Equivalent,	\ldots	162

Use,-A brisk eathartic. Dose, two drachms to half an ounce and upwards.

Epfervescing Solution of Soda.

Sesqui-carbonate of soda a drachm, distilled water a pint, dissolve. Force carbonic acid into the solution, and preserve in well-corked bottles.

This is the common soda water; of course it is never prepared on this small scale, large condensing machines being employed, and correspondingly large quantities of the materials used,

Solution of Chlorinated Soda,

Liquor Soda Chlorinata.

Carbonate of soda one pound, water forty fluid ounces; dissolve and pass through the solution the chlorine gas evolved from peroxide of manganese three ounces, common sait four ounces, sulphuric acid four ounces.

This mixture may be placed in a leaden retort and gradually heated, the gas should first be passed through five ounces of water in an interposed bottle.

For details as to the preparation and evolution of Chlorine, see that head.

This solution is the celebrated Labarraque's Disinfecting Liquid.
It contains chlorous acid and carbonate of soda. The colour of the liquid is pale yellow, smell that of diluted chlorine; it bleaches powerfutly, and is used in fumigation, and for destroying the smell of decaying animal matters.

Muriate of Soda.

Syn. Chloride of Sodium, Common Sall.

Dissolve common salt in boiling water till no more is taken up, then boil briskly, and as fast as crystals form on the surface remove these and press them in filtering paper.

$$
\begin{array}{llllll}
\text { Cominon Salt is composed of,-- } \\
\text { Chlorina, one eq.,.... } & \ldots & \ldots & \ldots & \ldots & 35.42 \\
\text { Sodium, one eq., } & \ldots & \ldots & \ldots & \ldots & \ldots \\
\hline & & & \\
& & \text { Equivalent, } & \ldots & 59.42
\end{array}
$$

The usual impurity of common salt in Bengal is sulphate of soda which, by the process above mentioned, remains in solution while the salt erystallizes. Common salt is equally soluble in hot and cold water, while sulphate of soda increases much in solubility on its solution being boiled.

Use.—A table spoonful dissolved in water acts as a speedy emetic. It is employed in Pharmacy, chiefly iu preparing muriatic acid and the chlorides of mercury.

Borax.

Bi-borate of Soda, Sohaga.

Take of bazar sohaga one pound, water three pints, quicklime one drachm, boil, strain through cloth and crystallize.

Sohaga is brought to the Bengal bazars from Thibet, Assam and Nipal. It is readily purified by simple solution and crystallization, as above directed. The lime is added to remove a little oily matter with which it is often associated.

Refined borax contains--

\[

\]

Borax is soluble in 12 parts cold and 2 of boiling water ; melts iu its water of crystallization, and effervesces much; and if the heat be continued, fuses into a glass.

Borax is sometimes adulterated with alum and common salt. Ammonia gives a white precipitate (alumina) if the former, nitrate of silver a white precipitate, if the latter be present.

Use.-With cream of tartar, borax forms a very soluble mixture; with honey it constitutes the honcy of borax of the Pharmacopocia, a useful application in apthous ulcerations.

Piosphate of Soda.

Bones burned to whiteness ten lbs. sulphuric acid two pints and four fluid ounces; powder the bones and mix with the acid, add six pints of water, digest for three days, adding water as required. Then add six pints more boiling water and strain tlirough cloth; wash, strain again, concentrate all the liquors to six pints, boil the clear liquor, and add carbonate of soda to exact neutralization, crystallize and keep the crystals in stoppered phials.

Bones are composed chiefly of gelatine and phosphate of lime, the former is burned off. The residue when acted upon by sulphuric acid, yields to it half its lime which forms insoluble sulphate of lime, while bi-phospate of lime is dissolved. On neutralizing this with carbonate of soda, phosphate of lime (one eq.) subsides, and one eq. of plosphate of soda remains in solution.

Composition, -

The salt is slightily efflorescent and alkaliue, of nearly pure saline taste. It is a valuable aperient for children, to whom, from its slight taste, it is easily administered. Dose, one to four drachms. It is also used as a test for magnesia.

ZINC, (Preparations of)

Zinc is a well known metal, brilliant, bluish-white, melts at $7 \% 3$, is volatilized at a full red heat, and its vapour burns with a fine white flame. Symbol Zn. equivalent 32.3, hydrogen, or 403.2 , oxygen scale. It is rapidly oxidized and dissolved by the dilute mineral acids. There are two oxides, the sub-oxide and protoxide; the latter is formed when zinc is exposed to a red heat in contact with air. This oxide is yellow when hot, but of a pure white on cooling ; it constitutes the base of the zinc salts. These are precipitated white
by alkalies, the deposit being soluble in excess of the reagent; white by hydrosuiphuret of anınonia from neutral solutions.

There is a natural sulphuret of zine (zinc blende), aud two natural carbonates (calamine,) one containing silicic acid.

Sulphate of Zinc.

Dissolve pieces of zinc in dilute sulphuric acid till a neutral solution is obtained, filter and evaporate to crystallization.

Onide of Zinc.

Sulphate of zinc twelve ounces, dissolve in two pints of water, and add carbonate of ammonia six ounces; collect the precipitate, wash, press and dry it, and heat it to redness for two hoirs.

In the first of these processes water is decomposed, its hydrogen escapes, and its oxygen uuites with the zinc. The oxide of zinc combines with the sulphuric acid, and forms sulphate of zive.

Composition,-

Sulphuric Acid, one eq.,	40
Oxide of Zinc, one eq..,	40
Water, seven eqs.,	63

Equivalent, .. 143
Sulphate of zinc resembles the sulphate of magnesia very closely in appearance, and is distinguished by the tests pointed out under that head. It is soluble in two and a half parts of cold, in an equal weigit of hot water, insoluble in spirit, of excessively nauseous astringent taste.

Use.-Chiefly as an emetic, given in doses of from ten to thirty grains in eight outuces of water in cases of poisoning. A very dilute solution (ten drachms to eight fluid ounces) is found to be a useful astringent wasl.

Oxide of Zine.- In the formula for this preparation, sulphate of zine aud carbonate of ammonia naturally decompose each other, carbonate of zinc being thrown down, and sulphate of ammonia formed. This is removed by washing, and on heating the carbonate of zine to redness, the carbonic acid is expelled.
$\begin{array}{cccccccr}\text { Composition,— } & & & & & \\ \text { Zine, } \ldots & 32 \\ \text { Oxygen, } & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & 8 \\ & & & & & \text { Equivalent, } & \ldots & 40\end{array}$

White while cold, yellow on being heated, dissolves in acids, forming the ziuc salts.

Use-Tonic and astringent, given internally chiefly in chronic dysenteries. Dose, one to four grains thrice daily in pitls; it is also used in an astringent ointment.

Prepared Calamine.

Calcine calamine ore, and then reduce it to very fine powder, as directed for prepared chalk.

Calamine is a native carbonate of zinc, containing also oxide of iron, clay, and other impurities.

Use.-The fine powder is used to prevent or allay the irritation of excoriations, and is also used in the well known calamine cerate.

The Edinburgh College have omitted this substance from their last Plarmacopceia, using the oxide instead.

Caloride of Zinc.

Dissolve metallic zinc in dilute muriatic acid (free from iron) till a neutral solution is obtained, strain if requisite, and evaporate to dryness; melt the residue in a porcelain crucible, and ponr it on a slab, and divide the mass into small portions, which must be carefully preserved in a stoppered bottle.

In this process water is decomposed, hydrogen escapes, and muriate of the oxide of zine is formed in solution; on evaporaniug this to drymess, the fydrogen of the acid and oxygen of the oxide are evolved as water, and chloride of zinc remains.

Chloride of zinc is a whitish brown substance, excessively delequescent.

Composition,-

Chlorine,	36
Ziac,	U.	32

Equivalent, .. 68
Use-Made into a paste with variable proportions of finely powdered cluy or plaster of Paris, it has been very strongly recommended as an irritating external application in sehirrous sores or tumors. The paste is applied for a day or longer, when it is stated Ilat inflammation of the healthy tissues beneath the schirrous part occurs, leading to suppuration, aud the separation of the diseased structure.

We have seen it to occasion precisely 1 his effect in one very remarkable instance. The paste applied consisted of one drachim of clloride of zinc, with three of plaster of Paris. Fine white clay answers just as well, and is more easily procurable in Bengal. Its use is to moderate the action of the chloride, and to prevent its spreading by deliquescence.

OXIDIFIABLE NON-METALLIC ELEMENTS.

ANIMAL CIIARCOAL, (Purified.) Carbo Animalis Purificatus.

Calcine the bones of sheep or deer in an iron cylinder protected from the contact of air, and until all volatile matter is expelled. Reduce the residue to extremely fine powder, of this to eacli pound add water twelve fluid onnces, common muriatic acid twelve fluid ounces, agitate occasionally for two days, then boil, dilute with one gallon of water, filter through calico, and wash the black deposit with water, till the washings give no precipitate with carbonate of soda. Dry the charcoal, and heat it slowly to redness in a closed cruciblc.

Bones consist chiefly of gelaine and phosphate of lime. Gelatine is a compound of carbon, hydrogen, oxygell, and nitrogen; on buraing in close vessels the phosphate of lime and carbon remain, and by wastring with dilule muriatic acid, the former is dissolved.

Use.-Charcoal thus prepared, possesses considerable bleaching and disinfecting power, and is oflen used for rendering syrups, vegetable acids, and alkaloids colourless.

BROMINE.

Bromine is a simple substance obtained from sea-water in which it exists combined with magnesium or sodium, and in the extremely minute proportion of $3 \frac{1}{3} \mathrm{~d}$ grains to 100 lbs . of water. A current of chlorine is passed throngh bittern. This separates the bromine from the metals; on agitating the mixture with sulphuric ether the bromine is dissolved, and
the solution floats on the saline liquid and may be removed by a syplion.

Bromine is a brown liquid, of heavy offensive odour, sp. gr. 3, soluble iu alcohol, difficultly so in water, volatile with evolution of reddish fumes, boils at 116°, gives a yellow colour to starch.

Equivalent, 78
Use.-For preparation of Bromide of Potassium.

CHLORINE, (Solution of)

Muriate of soda sixty grains, sulphuric acid two fluid drachms, red oxide of lead three hundred and fifty grains, water eight fluid ounces. Triturate the salt and oxide together, put them into the water contained in a bottle with a glass stopper, add the acid, agitate occasionally till the red oxide becomes almost white. Allow the insoluble matter to snbsite before using the liqnid.

For this beautiful, and in India most useful process, we are indehted to the last Edition of the Edinburgh Phamacopocia. It supersedes the use of manganese, which in India can only be procured from European druggists.

Common salit contains 1 eq. chlorine, 1 eq. of metallic sodium. Red lead contaius 1 eq. lead, 2 eqs. oxygen ; on adding sulphuric acid, 1 eq . there are formed-

Oxide of lead, which becomes the sulphate of lead, and falls dowl2.

Oxide of sodium, which with stulphuric acid remains in soluion, as sulphate of soda.

Chlorine dissolved in the water.
The presence of the sulphate of soda in solution, does not interfere with the uses of the chlorine liquid.

Use.-For bleaching, also for inhalation, and for the furnigation of infected apartments.

CHLORINE GAS.

Black oxide of manganese one ounce, common salt three ounces, sulphuric acid two ounces, water three ounces, in-
troduce the manganese and salt into a leaden retort, pois in the water, and then add the sulphoric acid. Iead the gas wherever required by leaden pipes.

The chloride of sodium is decomposed, its chlorine set free, its sodium oxidixed by one eq. oxygen, derived from the peroxide of manganese. Tlye sulphnric acid with the oxide of sodium and protoxide of inanganese forms sulphate of soda, and protosulphate of manganese.
Chlorine is a greenish yellow gas, excessively acrid, and irritating to the respiratory organs, soluhle in water, a supporter of enmbustion. It unites with the simple subsances, and also with many compound bodies, bleaches powerfilly; combining equivalent 36 .

Use.-For preparing the chloride of lime and soda, and for fumigations.

1ODINE.

Take of commercial iodine any quantity. As this always contains water and cannot be deprived of this by heat, which would volatilize both, the Edinburgh College directs its being dried by being placed in a slatlow plate under a bell glass, and slmrrounded by tell times its weight of fresh burned lime.
'Ihis will remove its moisture in abont three days.
Iodine is of deep bluish colour, totally volatile by a moderate heat, vapour of fine violet colour; sp. gr. 3. combining equivalent 126 ; uniles with metals, forming iodides. Of these, the iodides of potassinm, lead, iron, arsenic, and inercury are used in medicine.
Iodine is procurable by burning large quantities of sea weed or of the conferva of the salt water lake near Calcutta. Wash the residue with water, evaporate the washings to dryness. Act on these by n small portion of water ; much sulphate of lime is left with other difficultly soluble matters. This being repeated till no firther deposit takes place, the liquid is mixed, in a leaden retort, with peroxide of manganese and sulphuric acid. Vapors of iodiue are set free, and may be collected in glass receivers, on the sides of which they condense.

This process is only economical where the weeds yield enough of inpure carbonate of soda, to cover the general experise of this operation. This is not the case with the Calcutta conferva,
(For detection of Adulteration, see Materia Medica.)
Use.-For the preparation of the tincture of iodine and of the iodides ahove mentioned.

SULPHUR.

Sublime common sulphur, wash the powder with successive quantities of lot water till the washings cease to have a sour taste or redden litmus paper. Then dry the sulphur by a gentle heat or exposure to the sun.

Sulphur is a yellow solid, sp. gr. 1.99. insoluble in water, or the acids, dissolved by fixed alkalies with decomposition of water, sulphurous and sulphuric acids and sulphuretted ligdrogen being formech, which combine with the alkali present. Equivalent 16.

Use.-In ointment as a remedy for tich and other cutaneous maladies, also aperient and diaphoretic in doses of one to three drachns given with milk or as an electuary.

MIXTURES.

Misturce.

This term is applied to flutd remedies composed of different ingredients, not necessarily and chemically united with each other, but either dissolved or suspended by means of mucilage, Sc.

Mixture of Ammoniacum.

Ammoniacum five drachms, water one pint, mix well together by trituration.

Use.-Much given (generally with tincture of squill) as ant expectorant in chronic coughs. It should not be prescribed with acids, as these coagulate the mixture. This preparation is not included in the Edinburgh Pharmacopecia.

Almond Mixture. Mistura Amyflalarum.

Confection of almonds two and a half ounces, water a pint, mix gradually and strain.

Use.-This is a solution of sugar, gum, and the albumen of the almond in water. It is a very palatable demulcent. It should not be preseribed with spirit or tinctures, by which it is purtially coagulated.

Assafetida Mixture.

Assafoetida five draehms, water a pint. Rub and mix thoroughly.

Use.-Given in doses of half a fluid ounce to one ounce, as an antispasmodic.

Barley Mixture.
Mistura Hordei.
Barley (cleaned by wasling, slieed figs, and raisins freed of seeds, each two ounces and a lalf, liquorice root or goonch root five drachms, water five pints and a half. Boil the barley with four and a lialf pints of water down to two pints, add the rest of the water with the figs, raisins and liquorice; boil again to two pints and strain.

Use.-Merely as a demulcent; it may be taken to any desired extent.

Mixture of Brandy.

Mistura Spiritus Galliei.

Brandy and cinnamon water, each four fluid ounces, yelks of two eggs, purified sugar half an ounee, oil of cinnamon two minims.

This is the formula of the London College. We think the eggs and oil of cinnamon might be left out, the quaatity of water doubled, plain hot water being used, and a little rind of lemon added.

Use, -A stimulant in low fever, cholera, \&c. Dose, one ounce as required.

Campior Mixture.

Camphor half a drachm, rectified spirit ten minims, water a pint. Pour the spirit on the camphor, by which means it is very casily reduced to a fine powder, diffuse this through the water, and strain throngl calico.

This is the Londort preparation. As a fluid ounce contains but a trace of camphor, it must be regarded as inert, having merely tie smell, but none of the stimulsting powers of the drug.

The Edinburgh College direct-
Camphor one scruple, sweet almonds and pure sugar each half an ounec. Blaneh the almonds, triturate the camphor and sugar, then add the almonds, beat into a pulp, lastly and gradually add the water and strain.

This formula contaius a notable portion of eamphor undissolved by the sugar.

The slraindug must not be ueglected, otherwise the undissolved camphor would rise to the top of the liquid, aud might be taken in a single dose.

Use.-A valuable stimulant in the collapse of fever and cholera, in syncope, and many olher diseases of debility. Dose, one to three ounces.

Compound Cascarilla Mixture.

Infusion of casearilla seventeen fluid ounces, vinegar of squill (a), a fluid ounce, compound tineture of camphor tro fluid ounces.
Mix.-A valuable stimulant and expectorant. (a) When squill catmot be obtained, the Vinegar of the Kanoor may be substituted.

Chalk Mixture.
 Mistura Cretce.

Prepared clalk half an ounee, sugar three drachms, gum mixture a fluid ounce and half, cinnamon water cight fluid ounces. Rub the sugar and chalk together, then add the ghun mixture, and lastly the cinnamon.

Use.-Antacid and slightly stinulant ; much used with other remedies, especially opium and calechu, in diarrhæea. Dose, one to two fluid ounces. It should not be prescribed with acids or strongly acid salts, such as alum.

Creasote Mixture.
Creasote and acetie acid each sixteen ounces, syrup a fluid ounce, compround spirit of juniper or eardamoms a fluid
ounce, water fourteen fluid onnces. Mix the creasote and acid, then the water, lastly the syrup and spirit.

The aceric acid dissolves the creasote, and the sugar and spirit tend to diminish ins acrid and disagreeable flavour.

Use.-Recommended as a powerful diuretic, and to stop vomiling in cases of irritation of the stomach not deprendenl on iuflammalion. Dose, half all ounce to an ounce; also as a wash to indolent ulcers aud tinea of the scalp.

Compound Mixture of Gentian.

Compound infusion of gentian (a) twelve fllid ounces, compornd infusion of senna six fluid ounces, compromed mixture of cardamoms two fluid ounces.
(a) Compound infusion of Chiretta or of Kurroo may be used instead.

Use.-Aperient and tonic. Dose, olle to two ounces.

Mixture of Guaiacum.

Guaiacum resin three drachms, sugar half an ounce, gran mixture half a fluid ounce, cinnamon water thirteen fluid ounces. Rub the guaiacim and shgar, then the gum mixture, and lastly the cinnamon water.

Use.-A stimulant diaphorelic. Dose, half a fluid ounce to aul ounce and a half, two or three times daily.

Gum Mixture.
Mistura Acacice.
Powdered acacia gum (a) ten ounces, boiling water a pint, dissolve the gum by rubling, and if necessary, strain.
(a) The best kinds of babul gum may be used instead of the true gum arabic. Where neiher can be obtained, the fibrous parls of the rool of the cotton tree, (sufed mooslie,) powdered and used in the proportion of four ounces to the pint of water and strained, afford an excellen 1 substitule.

This is the mucilage of the Edinburgh Pharmucopecta, which directs but nine ounces of gun with cold water.

Use.-Demulcent, and an ingredient in many other mixtures.

Compound Iron Mixture.

Mistura Ferri Composita.

Myrrh (a) two drachms, carbonate of potash onc drachm, rose-water eighteen fluid ounces, sulphate of iron powdered two scruples and a half, spirit of nutmeg a fluid ounce, sugar two drachms. Rub the myrrin, the spirit of nutineg and carbonate of potash togetlier; while rubbing add the rose-water and sugar, lastly the sulphate of iron, and pom immediately into a glass stoppered bottle.
(a) The googul of the hazars may be substitmed for myrrh, when his subslance is not procurable.

The nixture contains sulphate of potasla and proto earbonate of irom in addition to the vegetable ingredipms. It soon spoils, the peroxide of iroa being formed.

It should only be prepared when required.
Use.-A very uscful 10 nic, somewhal asiringent and stimulant; much given in the atonic diseases of females, especially in chlorosis and amennhorroe. Dose, one fluid ounce to two ounces two or three times daily. Il inust not be prescribed with acids, alum, or vegelable astringents.

Magnesia Mixture。

Carbonate of magnesia one drachm, sulphate of magnesia two drachins, fresh lemon juice three drachms, toln syrup and spirit of nutmeg each one drachm, distilled water nine drachms. Nix.

This is Mr. Nicolson's "White Draught,"
It contains essentially sulphate and citrate of magnesia, and is an excellent mode of administering those aperient salts.

Mixture of Mecca Balsam.

Acacia or white mooslie mixture cight fluid ounces, Balsam of Mecca (Roghen bulsan) two fluid drachıns, rub well together.

Use- - A valuable stimulant and tonic, mucls prized by the Mahumedulis of India. Dose, half a fluid ounce to one ounce thee times daily.

Musk Mixture.

Mistura Moschi.

Musk, gum arabic and sugar, powdered, each three drachms, rose-water a pint, rub the musk and sugar together, then the grom and rose-water.

Use.-A valuable stimulant, especially in low typhus fever, the collapse from delirium tremens, \&c. Dose, one to two fluid ounces, repeated according to symptons.

Scammony Mixture.

Resin of scammony seven grains, milk tliree fluid ounces, triturate together.

Use, -This is a good mode of administering scammony. Dose, according to circumstances, half or the whole of this inixture.

Tragacanth Mucllage.

Tragacanth two drachms, boiling water nine fluid ounces, maccrate for twenty-four hours, triturate in a mortar, and press through calico.

Usc.-In making lozenges or troches.

VOLATILE OILS.

These oils differ from the fixed, in being rolatile by lieat without undergoing decomposition.

Mixed with water a small proportion is dissolved, on applying leat the vapour of water and that of the oil distil over together. A few require rather a higher temperature than that of boiling water, for example, that of a solution of salt, for their distillation.

Essential oils are usually obtained from the fruits, of from from the fowers or bark, occasionally from roots. The natural families of Umbellifera, Laurinece, and Composita yield the greatest number of those emplojed in Phartnacy.

In the distillation of essential oils, it is uecessary to prevent the substance acted upon from being charred or in auy degree burned by the heat applied, for by this buruing many products of disagreeable smell and acrid taste would be generated, and the fragrance of the oil injured. This is avoided by preventing the matter from touching the botton or sides of the vessel in which it is to be disilled. In some cases, she article may be enclosed in a net or cloth, in others it is necessary to place it in a second vessel well perforated with holes, und stauding within she first at an iuch distant from its botom.

> Adulterations,-These are chiefly-
> The fixed Oils.
> Oil of Terpentine.
> Alcohol.

1. The fixed oils are detected by volatiliziug a few drops of the liquid on paper, the fixed oil remaias, leaviug a greasy stain.
2. Oil of iarpemine can only be recognized by ins smeth.
3. Alcohol is detected by water, which renders the mixture mitky if alcohol be presemt.

In the distillation of volatile oils, we strongly recommend that instead of the worm coudenser, the straight tube condeuser be used,

This consists of a glass tabe one to two feet tong, half an inch in diameter, terminatiug in a widened neck to receive the end of the distilling vessel. The glass tube is enclosed in a larger tube of timsed irou or copper, closed round the glass tube by corks, and these sccured by cemeut. This outer tube is to contailu water for effecting the condensation, but as the water soon becomes hot, it is neeessary to provide for its constant flow through the tube; this is done by a shin pipe provided with a fuunel, the pipe runuing to the lower end of the tube, so that cold water dropping into the fumel from any of the vessel above it, would proceed to the lower end of the large sube, thence risiug as it becomes warm to the upper end where it is discharged from a small opening left for the purpose.

The udvumages of this apparatus are, that after each disilitation it may be horoughly cleaued by a spouge moissened with spirit and fastened to a wire, and all trace of the odour of the last oil distilled effectually removed. This cilunot be done with the ordinary worm still.

In sone cases, such as the distillation of water and ether, the imer - tube may be of lead.

In distilliug flowers, as much water should be used as will cover them in the vessel. Seeds must be bruised, roons rasped or shaved. The distitled oit is somesimps heavier, usualty ligher than water. A small portion is retained in solution in the water to which it imparts its flavour. The "Distilled Waters" of the Plarmacopceia are preparutions of this kiud.

Volatile oils are of various colours, very inflammable, some congeat by a very slight reduction of temperature, many tiake fire when nitric acid is poured upon them, several deposit camphor on keeping,
or by a current of muriatic aeid gas are made to yield crystals of that substance. In composition they are found to consist essentially of a basic compound of carbon and hydrogen, united with oxygen in various proportions.

> Bergamot Oil, (Or Oil of Rind of the Bergamot Lime, Citrus Limetta.)

Rasp the rind, express the raspings between flat poreelain slabs, allow the oil to settle, and then filter.

The exquisite flavor of this oil is injured by distillation. It is used chiefly as a perfume, colour yellow, sp . gr. 0.898 , freezes at 32°.

Purified Oil of Turpentine.

Olewn Terebinthince Purificatum.

Oil of turpentine one pint, water four pints, distil together.

Use.-A powerful purgative in doses of one ounce; diuretic in doses of one drachm; a specific in tape worm in the former dose; usually given in emulsion with gum water, sugar and a litule spirit; much given with castor oil in the proportion of two drachms of turpentine to half an ounce of eastor oil. Oil of turpeutine is also a very useful extermal stimulant.

Oil of Copaiba.

Copaiba balsam one ounce, water a pint and a lalf. Distil, return the water to the still, and repeat this while any oil comes over.

Use, see next article.

Gurgun Oil.

Gurgun balsam one pound, dried muriate of lime one ounce, agitate well for an hour in a stoppered bottle and then distil from a eapaeious leaden bottle.

Gurgun balsam contains fixed resin, essential oil, and water. If the latter be not separated, it boils with explosive violence. The separatiou is effected by the dried rouriate of lime. A small portion of the esseutial oil may be obtained by distillation with water in the common way. By the above process 35 to 50 per 100 are obtained. The boiling point of the oil is 313 .

Use.-A good substitute for copaiba balsam in the treatment of gouorricea, given diffused through almond mixture or gum water. Dose, ten to fifteen minims repeated thrice daily, or as often as ue* cessayy.

We append a table of volatile oils employed in medical practice. They are almost all powerful stimulants and carminatives. A drop or two dissolved in a few minims of spirit, and an ounce of water added, gives an extemporaneous substitute for the distilled water of the plant, and a useful velicle for many drauglits or mixtures. These oils are often added in ininute quantities to pill-masses, either to give an agreeable flavour, or counteract their tendency to griping.
TABLE OF VOLATILE OILS.

OINTMENTS, CERATES, POULTICES, PLAS. 'IERS AND LINIMENTS.

Ontments, (Ungnenta.)

Antimonial Ointment-Tartar Emetic Ointment.

Tartar emetic one ounce, lard (a) four ounces. Mix.
Use, - A little of this ointment rubbed on the skin thrice daily, in two or three days causes an eruption of large pustules. The counter-irritation thus occasioned proves of great service in many inflammatory states of internal organs.
(a) For lard in this and all the subsequent formulæ, an equal weight of simple ointment may be substituted for practice among the natives; this substitution is often absolutely necessary.

Ointment of Cantharides.

Powdered cantharides(a) one ounce, distilied water four fluid ounces, cerate of resin fonr ounces. Boil down the water with the cantharides to half, strain, mix the cerate with the strained liquor, and evaporate to a proper consistence.
(aa) For cantharides in both these formulo, substitute 1-4th less in quantity of the Telini, or Bengal fly.

This is one of the Lordon preparations, and is atmost inert.

Ointment of Infusion of Cantharides.-Ed.

Cantharides powder,(a) resin, wax, gunda. barosa and lard each two ounces, boiling water five fluid ounces. Infise the cantharides in the water for twelve hours, press strongly, add the infusion to the meltell lard, and boil away the water, then add the wax and resin. When these are liquid, remove the vessel from the fire, add the gunda-barosa and mix thoroughiy.
(a) Spe above formula.

U/se.-This is a very valuable stimulatiog ointment. It is slowly episplastic.

Charoon Ointment.

Chakoon seed very finely powdered and sifted, any quantity. Beat into a paste, with as much simple ointment as may be required.

Use.-An excellent native application to ringworm.

Chaulmoogra Ointment.

Chaulmoogra seed any quantity, remove the husks, and beat the seed into a paste with as much simple ointment as may be requisite.

Use,-A favorite and good application among the native practitioners for the treatment of several cutaneous diseases, especiaily herpes and tinea.

Compound Cinnabar Ointment.

Sulphur half an ounce, borax two drachins, cinnabar (răsa sendur) two drachms, wood oil (gurjun-ke-tel) fonr drachms, make into the consistence of an ointment.

Use.-This is Captain Aitkin's well known and useful "ringworm ointment."

Creosote Ointment.

Creosote half a drachm, spermaeeti ointment one ounce. Mix.

Creosote is an oily liquid obtained during the distillation of wood, sp. gr. 1037, boiling point 397°. It is partially soluble in waler, soluble in alcohol, ether, and naptha; highly antiseptic and coagulates albumeu.

Use.-Creosote applied to a carious tooth often gives iustant relief to tooth-ache. The watery soiution and the oinument are valuable applications in many cutaneous diseases. Inlernally, creosote has been employed as a stimulant and to stop vomiting, given in doses of one minin dissolved in any aromatic distilled water. The luste and odour are sinoky and penetrating.

Dad. Murden Ointment.

Fresh leaves of daoud-murden any quantity bruised into a paste, simple ointment an equal bulk. Ikul well together.

Use.-Almost specific in ringworm.
Compound Gall Ointment.
Galls finely powdered two drachms, hard opinm powdered half a drachm, spermaceti ointment half a drachm. Nix. A good application to hæmorrhoids.

The chebulic myrobalon finely powdered may be substituted for the galls. We employ spermaceti cerate instead of the axuige of the London College.

Ointment of Gunda Barosa.
Sesamum or poppy oil, white wax, and gunda barosa each one ounce.

Use.-This is the late Mr. Muston's Boil Ointment, and is a very useful application. It is an excellent substitute for the Elemi Ointment of the London Pharmacopœeia.

Compotind Iodine Ointment.
Iodine half a drachm, ioduret of potassium one drachm, rectified spirit one fluid drachm, lard two ounees.

Rub the iodine and ioduret of potassium with the spirit, and then with the lard.

Use.-An application to indolent tumours, especially to bronchocele.

Compound Lead Ointment.

Prepared chalk cight ounces, distilled vinegar six fluid ounces, lead plaster three pounds.

Melt the plaster in the oil with a gentle heat, gradually add the chalk previously mixed with the vinegar till effervescence ceases, stir constantly till cool.

Use.-A dressing to indolent uleers.

Ointment of Acetate of Lead.
Simple ointment twenty drachms, acetate of lead in fine powder one drachm.

Mix thoroughly.
Ointment of Carbonate of Lead.
Simple ointment five ounces, carbonate of lead one otmce.
Mix thoroughly.
These are Edinburgh preparations, and in every respect superior to the London.

Ointment of Ioduret of Leal.

Joduret of lead one drachin, lard eight drachms.
Mix intimately. Use.-In glandular and chronic enlargements, and scrofulous ulcerations.

Strong Mercurial Ointment.

Mercury two pounds, lard twenty-three ounces, snet one ounce; rub the mercury in a marble mortar with a wooden pestle, with the suet and a little of the lard until globules are no longer seen, add the rest of the lard, and mix.

The fatty matters first subdivide the mercury, and this is then partially oxidized in the first degree. The preparation is very tedious.

Use.-Rubbed into the skin in portions of half a drachut to one drachun twice or more frequently daity, it soon excites mercurial action in the system. This method is much resorted to in venereat affections and chronic hepatitis.

Mifi Mercurial Ointmen'r.

Strong mercurial ointment one pound, lard two pounds.
Use. -In cases similar to the last. It contains one sixib its weight of mercury.

Ointment of Nitrate of Mercurx.

Mercury one ounce, nitric acid eleven fluid drachms, lard six ounces, poppy oil four fluid ounces. Dissolve the mercury in the acid, mix the hot solution with the lard and oil melted together.

This is a mixture of nitrate of the peroxide of mercury with the fatty matters; mixed with twice or thrice its bulk of simple cerate, it. is a very useful stimulating application.

Citrine Ointment.

Pure nitric acid eight ounces, mercury four ounces, lard fifteen ounces, olive or poppy oil thirty two ounces. Dis. solve the mercury in the acid with a gentle heat, melt the lard in the oil. While the mixture is hot add the hot solution of mercury, great effervescence occurs, or if this does not take place, increase the heat till it does so. The vessel used must be of earthenware, and of very large capacity. The ointment should be kept in earthen or glass vessels unexposed to the light.

This is "Duncan's Golden Eye Ointment," and the best prepa. ration of the kind we know of. It is applied with great benefit in chronic inflammation of the edges of the eye lids, \&cc.

Ointment of Nitric Oxide of Mercury.

Nitric oxide of mercury, finely powdered, one ounce, white wax two ounces, lard six ounces. Melt the wax and lard together, and mix the peroxide intimately.

Use.-The same as the last ointment.

Ointment of Binioduret of Mercury.

Binioduret of mercury one drachm, white wax two drachms, lard six drachms; melt the wax and lard, and mix the binioduret.

Use.-As a specific stimulant to scrofulous and syphilitic sores.
Ointment of Ammonio-Ciloride of Mercury.
Anmonio-chloride of mercury one drachm, lard one ounce and a half; melt with a gentle heat and mix.

Uss.-Stimulant.

Compound Myrobalon Ointment.

Chebulic Myrobalon dried and reduced to fine powder, catechu powdered equal weights, simple ointment as much as requisite to give the consistence of a paste.

Use.-A valuable ointment for excoriated surfaces.

Pitch Ointment.

Black pitch, wax, and resin each nine drachms, poppy oil sixteen drachms. Melt together and press throngh cloth.

Use.-Stimulant.

Resinous Ointment.

Resin five ounces, lard eight ounces, bees' wax two ounces. Melt witl a gentle heat, stirring briskly as it cools.

Use.-A common stimulant dressing.

Simple Ointment.

Poppy oil five and half fluid ounces, bees' wax, white, two onnces. Melt and stir briskly during cooling.

Spermaceti Ointment.

Spermaceti six drachms, white wax two drachms, poppy oil three fluid ounces. Melt over a slow fire and stir constantly till cold.

Use,-A simple dressing.
Ointment of Sal-Ammoniac and Borax.
Borax and sal-ammoniac each half a drachm, white precipitate of mercury one scruple, oil of turpentine one fluid drachm, flowers of sulphur half an ounce, lard, simple ointment, each two ounces. Mix intimately.

Use.-This formula supplied by the Medical Board, affords a favorite and useful remedy for ringworm.

Sulphur Ointment.

Sulphur three ounces, lard half a pound, oil of bergamot or of sassafras twenty minims.

Use,-Common itch ointment.

Tar Ointment.

Tar and suet each one pound, melt together, and press through a clotli.

Used as an applicatiou in herpetic eruptions and tioea.

> Ointment of Verdigris.

Resinous ointment fifteen ounces, verdigris powdered one ounce. Melt, mix, and stir constantly till the mixture cools.

Use.-A good stimulant and mild escharotic io maoy cases of chronic aleerations.

Ointment of Verdioris and Pitch.

Dried pitch four drachms, yellow wax three drachms, oil of turpentine two drachms, verdigris one drachm. Mix intimately.

Use.-This is Mr. Martin's " Corn Plaster," and a very good applicatioo.

Zinc Ointment.

Oxide of zinc one ounce, laxd six ounces. Mix.
Use.-Useful in chronic ophthalmia, being ruhbed at night on the edges of the eyelids.

CERATES.

Calamine Cerate.

Calamine and white wax each half a pound, poppy oil sixteen fluid ounces. Mix the oil and melted wax, then add
the calamine as they thicken, and triturate well to a uniform mass.

Use.-Commonly called Turner's Cerate, a popular dressing to sores and excoriations.

Cantharides Cerate.

Cantharides finely powdered (a) one ounce, spernaceti cerate six ounces; add the cantharides to the cerate previously meited. Mix intimately.
(a) The country fly (Telini) may be substituted in the proportion of six drachms.

Use.-After a blister has been successfully applied, this cerate is used to keep up the discharge.

Telini Cerate.

Telini fly (the spotted kind) six drachms, spermaceti cerate six ounces. Preparation and use as above.

Cerate of Acetate of Lead.

Acetate of lead powdered two drachms, white wax two ounces, poppy oil eight fluid ounces. Dissolve the wax in three-fourths of the oil, rub the acetate of lead with the rest of the oil, and then stir briskly till they unite.

Use.-A favourite dressing to bruised and excoriated surfaces.

Compound Lead Cerate.

Solution of sub-acetate of lead eight fluid ounces, wax four ounces, poppy oil half a pound, camphor half a drachm. Mix three-fourths of the oil with the wax as above. As they cool, stir in the sub-acetate of lead, and when cold mix the camphor dissolved in the rest of the oil.

Use.--This is the well known Goulard's Cerate, used as the last, und of popular repute an an application to the edges of the eyelids in clronic ophthalmia.

Compound Mercurial Cerate．

Stronger ointment of mercury four ounces，soap cerate and camphor（powdered）each one ounce．Triturate together well．

Use．－An applieation to indurated glands and chronic swellings．

Resinous Cerate．

Resin and wax each one pound，poppy oil sixteen fluid ounces．Melt the wax and resin by a soft fire，add the oil， and mix intimately．

The troublesome step of pressing through a cloth，directed by the London College，is quite unnecessary，if the materials be pure．

Use．－This is the Basilicon Ointment of popular notoriety，in com－ mon use as a gently，stimulating application to old and fout sores．

Savine Cerate．

Savine bruised one pound，simple cerate two pounds；melt together，mix intimately and press through cloth．

We substitute the simple cerate for the lard，directed in the Lon－ don Pharmacopceia．

Canella Cerate．

Prepared as the last，substituting dried and powdered Canella leaf six ounces．

Use．－The same．

Simple Cerate．

Poppy oil four fluid ounces，wax（bleached）four ounces； melt the wax，add the oil，and mix．

Use，－A common dressing．

Soap Cerate．

Ceratum Saponis．
Soap ten ounces，wax twelve and a half ounces，oxide of lead powdcred fifteen ounces，poppy oil one pound，vinegar
one gallon. Boil the litharge and vinegar slowly until they unite, add the soap in shavings, and boil again till all the water is driven off; lastly, mix the wax dissolved in the oil.

Use.-A cooling dressing.

Spermaceti Cerate.
 Ceratum Cetacei.

Spermaceti two ounces, white wax eight ounces, poppy oil one pound; melt the wax and spermaceti together, and add the oil, stirring briskly till cool. .

Use.-An excellent cooling dressing.

POULTICES.

(Cataplasmata.)

Poultice of Arun.

Orissa arum (Ghet Kuchoo) bruised to pulp with tepid water, any quantity.

Use.-A stimulant rubefacient and counter-irritant, applied to indolent buboes and tumors by the native practitioners, and with frequent advantage.

Poultice of Coronilla Leaf-Poultice of Nuteeya Leaf.

Prepared as Nim leaf poultices.
Use.-Favourite external emollients among the native practitioners.

Poultice of Datura.

Datura leaves fresh and bruised, flour, equal weights, water sufficient to make into a paste.

Use.-A good narcotic proultice to inflamed tumors, and to extersal, but not to ulcerated, piles.

Poultice of Hemlock.
 Cataplasma Conii.

Extract of hemlock two ounces, water one pint. Mix and add bruised linseed meal to give a proper consistence.

Use.-A good application to painful sores and scrofulous tumors.

Lal. Chitra Poultice.

Bark of the root of the lal-chitra bruised and made into a paste, with water any quantity.

Use.-A powerful, cheap and excellent blister. (See Dispensatory, page 508.)

Poultice of Linseed.

Gatup. Lini.
Linseed powdered any quantity, boiling water enough to give it the consistence of a thick paste.

Use.-The usual hospital poultice.
Poultice of Mustard.
Catap. Sinapis.
Powdered mustard seed and tepid water sufficient to make a thick paste.

This is the sinapism of practice. The London College direct an equal weight of linseed to be added, and boiling vinegar as the fluid. This is unnecessary complexity. Sinapisms act by the irritation they occasion, and this depends on their volatile oil. They are of the greatest utility in cholera, low fever, colic, and many other maladies.

The Bengal mustard seed if previously deprived of its oil by expression, yields a powder of nearly equally stimulating power to the English article.

Poultice of Nim Leaf.

Fresh Nim leaves bruised and moistened with tepid water any quantity.

Use, - A favorite application among the native practitioners, especially in swelled testis, and to foul indolent uleers.

Poultice of Yest.

Cataplasma Cerevisia.

Flour one poind, yest half a pound; mix by a gentle heat.
Use.-This is commonly called the Fermenting Poultice. The yesl and flour undergo fermentation, and carbonic acid is gradually formed. It is a very useful application in sloughing and foetid sores.

LINIMENTS.

Liniment of Ammonia.

Poppy oil two fluid ounces, water of ammonia, (sp. gr. 960 ,) one fluid ounce. Mix well together, and preserve in a stoppered phial.

Use.-An excellent counter-irritant for external application. In inflamed tonsils and inflammatory states of the uvula and pharynx, it is rubbed on the throat with much benefit.

The London College have an inefficient preparation called the Linimenl of the "Sesqui-Carbonate of Ammonia," which is omitted, as almost inert.

Camphor Liniment.

Poppy oil four fluid ounces, camphor one ounce. Triturate together till the camphor is dissolved.

Compound Camphor Liniment.
Tincture of camphor two fluid ounces, water of ammonia, (stronger) five fluid ounces, spirit of cinnamon one fluid ounce. Mix well together.

The spirit of cinnamon is substituted for the spirit of lavender of the London Coliege.

Use.-Both these liniments are used as counter-irritante, and as application to indolent tumours.

Lime Water Liniment.

Linimenum Aque Calcis.

Linseed oil or til oil, lime water equal measures. Mix well together.

Use.-As an application to excoriated surfaces, in scalds and burns.

Compound Mercumal Linimext.

Linimentum Hydrargyri Compositum.

Stronger mereurial ointment and simple ointment eacli fonr ounces, camphor one ounce, reetified spirit a fluid drachm, solution of ammonia four fluid ounces; rub the camplior with the spirit, then with the simple and mercurial ointment ; lastly, add the ammonia, and mix intimately.

Use-To stimulate and promote the absorption of tumors, and to convey inercury into the system; one drachm, equal to ten graius of mercury, inay be rubbed in morning and evening. The preparatiou is derived from the London Plarmacopocia.

Liviment of Opium.

Windsor or Castile soap six ounces, opium an ounce and a half, camphor three ounces, oil of sandal six fluid drachuns, rectified spirit two pints; macerate the soap and opium in the spirit for three days, filter throngh calico, add the oil and camphor, and agitate well together.

Use, - A favorite application to bruises, painful swellings, in rlecumatism, lumbago, \&c.

Simple Linimen't.

I'oply oil four parts, white wax one part, tissulve the wax in the oil by a gentle heat, and mix well toncther while the mass is cooling.

Use-As an addition to othor lintments fur frictions, and as an application to ulcerated and excoriated surfaces.

Soap Liniment.

Linimentum Saponis.

Castile or Windsor soap five onnces, camphor two ounces and a half, sandal wood oil six fluid drachms; digest the soap in the spirit for three days, add the camphor and oil, and mix well by agitation.

Use, - A stimulant and sedative liniment.

Linment of Turpentine.

Linimentum Terebinthince.

Resinous ointment four ounces, oil of turpentine five fluid ounces, camphor half an ounce; melt the ointment and mix it well with the camphor and oil.,

Use,-A very stimulating application.

Liniment of Verdigris.

Lininentum AEruginis.
Verdigris in powder an ounce, vinegar seven fluid ounces, honey fourteen ounces; dissolve the verdigris in the vinegar, strain through calico, then pour in the honey, and boil down to the consistence of a thick soft paste.

Use. - A mild caustic.

PLASTERS.

Emplastra.
 Ammoniacum Peaster.

Ammoniacum five ounces, distilled vinegar eight ounces. Dissolve the ammoniacum in the vinegar. Evaporate gently to the consistence of a soft but firm mass.

Use.-A atimulant application to indolent swellings.

Ammoniacum Plaster with Mercury.

Ammoniacum one pound, mercury three onnces, poppy oil one fluid drachm, sulphur eight grains. Heat the oil, add the sulphur and make them unitc by stirring, then rub the mercury with this till no metallic globules are perceptible; lastly, add the ammoniacum melted. Nix thoroughly.

Use, -As above, but more powerful and used chiefly to venereal tumours.

Belladonna Plaster.

Resin plaster eight ounces, alcoholic extract of belladonna one and a balf ounce. Add the extract to the plaster, melted by a water bath, and mix.

Use.-Anodyne; applied near the eye, it causes dilatation of the pupil.

Datura Plaster.

Preparation and use as above; effect nearly as powerful.

> Cantiarides Plaster.

Cantharides finely powdered one pound, wax plaster one pound and a half, lard half a pound.

Melt the lard and wax plaster together, and before they concrete, stir in the powdered flies.

Telini Plaster.

Prepared as above, using one-fourth less of the fly.
Use.-These are the ordinary blistering plasters. They are solid masses; in speading them they should be softened by the heat of the thumb or exposure to the sun, as a very moderate heat destroys the blistering principle.

Galbanum Plaster.
Galbanum eight ounces, lead plaster three pounds, gundabarosa four ounces. The gunda-barosa is added instead of
the turpentine, and resin of the spruce fir directed by the London College.

Use.-A stimulant application to indolent tumours.

> Lead Plaster.

Litharge fiuely powdered six pounds, poppy oil a gallon, water two pints. Boil together over a slow fire, constantly stirring till the oil and oxide unite into the consistence of a plaster. It may be necessary to add a little boiling water, if that previously used is all evaporated too soon.

Use.-This is one of the articles most consumed in Pharmacy, and enters into many other plasters.

Mercurial Plaster.

Mercury three ounces, lead plaster one pound, poppy oil one fluid drachm, sulphur eight grains. Prepare in the sane manner as the mercurial plaster with ammoniacum.

Use--The same as that of the article last mentioned, but the effecl is less powerful.

Opium Plaster.

Hard opium half an ounce, gunda-barosa, hardened on the water bath, three ounces, lead plaster one pound, water eight fluid ounces. Melt the plaster, then atd the other ingredients and mix, and heat by a gentle fire till they mite in a consistent mass.

Use.-Anodyue.

Purch Plaster.

Gunda-barosa two pounds, dammar and wax each four ounces, expressed oil of nutmegs one flitid onnce, poppy oil and water each two fluid ounces. Melt the wax, dammar, and gunda-barosa together, when melted add the oil of
nutmegs, poppy oil and water; mix and boil down to a proper consistence.

Use.-An external stimuhant and rubefacient. It is spread on leather or paper, the edges of which are made to faslen on the skin by adhesive plaster. It is a very useful applicalion in chronic coughs, when applied to the chest, and it is usually left on for seve. ral days.

Resin Plaster.

Resin half a pound, lead plaster three pounds. Melt the plaster, and gradnally add the powdered resin. Mix.

Use -Stimulant.

Soap Plaster.

Soap sliced half a pound, lead plaster three pounds. Melt the lead plaster and mix in the soap, boil down to a fit consistence.

Use.-To indolent tumors, and to protect ulcerated or wounded parts.

$W_{\text {ax }}$ Plaster.

Wax and suct each three ponnds, resin one pomed. Melt togetlier and strain.

Use.-An ingredient in blistering plaster.

PILLS AND POWDERS.

Pills.

Pillula.

I'ills are round, soft, solid masses, not exceeding five grains each. 'Illey are generally sprinkled with magnesia or liquorice powiler, to prevent their adhesion to each other.

They may be coated with gold or silver leaf by placing a leaf of the metal in the pill box, dropping on it the pills previously moistened with gum water, and then agitating strongly. This coating disguises the flavor without interfering with the medicinal effect.

Compound Aloetic Pill.

Aloes powdered an ounce, extract of gentian half an ounce, oil of carraway forty minims, syrup as much as may be necessary. Beat them together till they are mixed into a uniform mass.

The extract of chiretta or of kurroo may be substituted for that of gentian.

Use.-Aperient and tonic. Dose, fifteen to thirty grains, generally given with other remedies.

Pills of Aloes and Myrril.

Aloes, saffron and myrrl , each half an ounce, syrup as much as required. Mix well into one mass.

Use.-Stimulant and aperient. Dose, ten to thirty grains.

Pills of Aloes and Soap.

Socotorinc aloes and Castile soap equal parts, conserve of red roses a sufficiency. Beat into a mass.

Use,-A very valuable aperient in eases of habitual costiveness. Dose, five to twenty grains.

Pills of Aloes and Asargetida.

Alocs, asafoctida and soap, equal parts. Make into a pill mass with conserve of roses.

Use.-Given as an aperient and antispasmodic in hysteria, chlorosis, amennhorrea, \&c. Dose, tel 10 twenty grains.

Pills of Aloeg and Iron.
Sulphate of iron thirty-six grains, aloes twenty-four grains, aromatic powder seventy grains, conserve of red roses one hundred grains. Mix, divide the mass into fortyeight pills.

Use.-Aperient and tonic. Dose, five grains to one scruple.
Pills of Asafetida and Pepper.

Asafoetida, black pepper and opium each one scruple; beat well together, and divide into twelve pills.

Use.-This is well known in Bengal as Colonel Galloway's Cholera Pill. It is a very valuable remedy, and often succeeds in arresting the progress of this disease. Dose, five grains, or one pill, repeated in an hour if required.

Compound Gamboge Pill.

Gamboge powdered a drachm, aloes powdered a drachm and a half, ginger powdered half a drachm, soap two drachms. Mix the powders, add the soap, and then make into a uniform mass.

Use.-A strong purgative. Dose, ten to twenty graius.

Compound Hemlock Pill.

Extract of hemlock five drachms, ipecacuanha powdered a drachn, gum mixture as much as required. Mix well.

Use--Diaploretic and sedative. Dose, five to ten graius thrice daily.

Compound Iron Pill.
Pil. Ferri Compositce.
Myrrh two drachms, carbonate of soda, sulphate of iron and treacle each a drachm; rub the inyrrh and carbonate of soda, then the sulphate of iron, lastly the treacle.

Carbonate of iron and sulphate of soda are formed in this process.
'Tlese pills should not be kept long, as they harden and turn red owing to the ehange of the carbonate into the sesqui-oxide of irom.

Use.-Tonic, stimulant. Dose, ten to thirty grains.

Compound Galbanum Pill.

Galbanum, myrrl and sagapemm each an ounce sud is half, asafoctida half an ounce, syrup as much as necessary. Beat into a uniform mass.

Use-Stimulant, emennagogue. Dose, ten 10 tweuty grails.

Mercurial Pill.
 Pillula Hydrargyri.

Mercury two drachuns, confection of red roses three drachms, liquorice powdered a drachm; rub the mercury with the confection till no globules can be seen, then add the liquorice, and beat together into a uniform mass,

Use,-Alterative in doses of from four to six grains. If this be repeaned frequently, salivation ensues, The addition of opium renders this effect more certain and speedy. Purgative in doses of ten to twenty grains,

Compound Calonel Phl.

Calomel and red sulphuret of antimony each two drachms, gnaiac resin haff an ounce, treacle two drachms; rub the calomel and red sulphuret, then the guaiac resin, lastly the treacle, and beat into a mass.

Use,-Alteralive. Dose, five to twenty grains.

Pills of Calomel and Opiuge.

Calomel twenty-four grains, opinm eight grains, conserve of roses a sulficiency; beat into a mass and divide into twelve pills,

Usc.-To salivate or rather to induce the action of nercury rapidty this is perhaps the best formula; one pill to be given every second or laird hour.

Pills of Calomel and Colocynrif.

Calomel half a draclın, compound extract of colocyntli one drachm, oil of carraway six minims. Mix and divide into eighteen pills.

Use.-This formula constitates the "Cholera Pill" of the Medical Board. A dose is to be given iu four to five hours after the disease has abated.

Pills of Calomel and Antimony.

Calomel three grains, antimonial powder two grains, extract of liquorice (or goonch) one grain. Beat into a mass.

Usc.-This is a useful preseription, much employed by Dr. Duncau Stewart in the treatment of the febrile diseases of young persons. It is termed the "College Pill" iu the H. Co.'s Dispensary.

Colocynth Pills.

Aloes and scammony each eight parts, colocynth pulp in powder four parts, sulphate of potash powdered, and oil of cloves, each onc part.

Mix the powders, add the oil of cloves, and beat into a mass witl a sufficient portion of rectified spirit.

The Bengal colocynth should be employed.
Use.-Tie mixture is a very good and efficient purgative, especially in Hospital practice. Dose, ten to fifteen grains.

Compound Ipecachuan Pills.

Compound ipecachuan powder three drachms, squill, ammoniacum each a drachm, gum mixture a sufficiency; incorporate well together.

Use-A powerful diaphoretic, Dose, tell grains at night.

Pills of Opium and Acetate of Lead.

Acetate of lead serenty-two grains, Bengal opinm twentyfour grains, conserve of red roses as much as sufficient. Make into a mass and divide in twenty-four pills.

Use.-A most effectual anodyne and astringent, of great value in incipient cholera, and in both acute and chronic dysentery. Each pill contains one grain of opium and three of acetate of lead.

Pills of Kaladana.

Extract (alcoholic) of kaladana a drachm, oil of cloves four drops. Beat well together, and divide into twelve pills.

Use.-An excellent cathartic. Dose, ten to twenty grains.

Compound Rilubarb Pills.

Pil. Rhei Comp.

Powdered rhubarb one ounce, aloes six drachns, myrrh half an ounce, soap a drachm, essential oil of cubebs half a fluid drachm, syrup as required.

Use.-Laxative. Dose, ten to twenty graius.

- Compound Sagatenua Pills.

Sagapenum an ounce, aloes half a drachm, syrup of ginger as much as sufficient ; incorporate together.

Use.-A warm laxative. Dose, five to ten grains.

Compound Soap Pill.

Hard opium powdered half an ounce, soap two onnces incorporate together.

Use-Narcotic. Dose, three to ten graius; it coutains one-fifth of opium.

Coaround Squile Pills.

Squill powdered a drachm, ginger powdered and ammoniacum powdered, each two drachms, soap three drachms, syrup as much as necessary. Mix the powilers, then beat with the soap, and add the syrup. Beat into a uniform mass.

Use.-Expectorant and diuretic. Dose, ten to twenty grains.

Compound Storax Pill.

Storax melted and strained three drachns, hard opium powdered and suffron each a drachm. Beat into a uniform mass.

Use.-Slightly expectorant. Dose, three to ten graius.

POWDERS.

> Pulveres.

Compound Powdrir of Alogs.
Aloes an ounce and a half, guaiac resin an ounce, compound powder of cinnamon lalf an ounce. Mix.

Usc.-Aperient and diaphoretic. Dose, ten to twenty grains.

> Compound Powder or Cinnamon.

Cinnamon two ounces, cardamoms one ounce and a half, long pepper half an ounce. Rub into a very fine powder.

Use,-Aromatic and stimulant. Dose, five to ten grains.

Aromatic Powder.

Cimamon, cardamoms and ginger in powder, each equal parts. Mix and preserve in well stoppered bottles.

Use, Aromatic, seldom gives alone, but very oftett added to other formulte to prevent griping, disguise unpleasant flatwotr, or to prove gettly stimulant.

Compousd Cilalk Powdir.

Prepared chalk half a pound, cinnamon four ounces, roluun bark powdered, gum arabic each three ounces, long pepper half an ounce. Rub separately to a fine powder and mix.

Use,-Astringent and antacia. Dose, five to thirty grains, much given to cliildren, and often added to other powders. It should not be used with acids or iron preparations. Powdered Rohun bark is rubstituted for the Tormentil of the London Pharmacoperia, which is only used for its astringency.

Compound Cialk Powder with Opium.
 Pulv. Crelæ Comp. cum Opio.

Compound chalk powder six ounces and a half, hard opium in powder four scruples. Mix well.

Use.-Astringent, antacid and slightly narcotic, forty grains contain one grain of opium. Dose, five to thirty grains, not to be prescribed with acids, aciduloua salts, or preparations of iron.

Compound Powder of Jalap.

Jalap three ounces, bi-tartrate of potash six ounces, ginger two drachms. Mix.

Use.-An excellent purgative. Dose, Iwenty to forty grains.

Compound Powder of Kaladana.

Kaladana seed finely powdered, bi-tartrate of potash each tliree ounces, ginger two drachms. Mix.

Use.-An efficient substitute for the above. Dose, thirty grains to olle drachm. The seeds of the kaladana are found in all the bazars. This powder is much less nauseous than the compound powder of Jalap.

Compoind Ipecacuanifa Powder.

> P'ulv. Ipecacuanhe Comp.
lpecacinania and hard opirm each one drachm, sulphate of potash powdered, one ounce. Mix well.

The sulphate of potash is merely added from its hardness to effect the finer subdivision of the other ingredients.

Use.-This preparation is perhaps our best and most certain sudorific, and is of the greatest value in the treatment of many forms of rheumatism and dysentery. Dose, five graius to twenly grains. If the ordinary opium of Bengal be used, one third more than the quantity above directed should be employed in the preparation of this powder.

Compound Powder of Mudar.

As above, substituting for ipecacuanha twice the quantity of the powdered mudar.

Use.-When a supply of ipecacuanha is not obtainable, this article will be found a moderalely good substitute. Many practitioners atiribute to the mudar specific utility in the treatment of several cutaneous diseases and leprosy.

Kutkuleja Powder.

Kutkuleja nut shelled and finely powdered, black pepper powdered, eaclı one drachm. Mix intimately.

Use.-Tonic and febrifuge, given in ague with decided benefit. Dose, six to twenty grains three limes daily.

Compound Rilubarb Powder.

(Commonly called Gregory's I'owder.)
Magnesia one pound, ginger in fine powder two ounces, rlubarb ditto four ounces, preserve in well closed bottles.

Use.-A very valuable antacid and aperient, much given 10 children. Dose, five grains to one drachm according to age and cir. cumstances.

Compound Kino Ponder.
Kino fifteen drachms, cinnamon lialf an ounce, lard opium one drachm. Mix intimatolv.

For Kino the palass goond, or Bengal kino, may be sulsstituted.

Use,-Aromatic, astringent and sedative, Dose, five to twenty grains. Twenty grains contain one grain of opium.

Kuchila-Mulung Powder.

Knchila-mulung leaf powdered one scruple, white sigar in powder two scruples. Mix intimately, and divide into sixty papers.

Use. - A powerful convulsive tonic, producing the snme effects as the strychnic and brucinic preparations. Each powder contains one-third of a grail. Dose, one powder gradually increased.

Compound Scammony Powder.

Scamuony, hard extract of jalap, each two ounces, ginger hālf an ounce. Powder and mix,

Hard extract of kaladana may be substitnted for that of jalap.

Usc.-An excellent purgative, Dose, five to twenty grains,

Compound Tragacantir Powder.

Tragacanth, gum arabic, and starch, each one ounce and a half, sugar three ounces. Mix.

Picked pieces of gum kalira and babul gum may be substilment for the tragacanth and gum arabie.

Use.-As a demulcent iu colds and irritation of the throat and air passages, also in slight diarrlmea and in chronic dysentery. Dose, ter grails to one drachm.

Worm Sefd Powder.

Indian worm seed (Suhehs) fincly powdered and sifted.
Use.-A populur worm remedy, especially in the round and long worns of children. Dose, hiree to len grains given in honey or milk.

SYRUPS.

Syrups are solutions of sugar in water, usually associated with some active medicinal substanee. Their chief utility seems to be for the exhibition of remedies in a rather agreeable form, or for the communication of a swect or pleasant flavour to other mixtures. Syrups readily ferment, and form alcohol and vinegar. The rapidity with which this change occurs in India is so great, that syrups should alwatys be prepared as required from day to day.

Simple Syrup.

Sugar (white) one pound, water six flyid ounces. Dissolve with a gentle heat.

Syrup of Marsi Mallow.

Syrupus Allhece.
Marsh mallow root one ounce, sugar fomr omnces, water ten fluid ounces. Boil the water with the root to one-half, press, allow it to cool and settle, pour off the liguor, add the sugar and boil down.

Use,-A mucilagirous demulcent.
Accordiug to this formula and for the smine parposes, prepare
Syrup of Soofed moosli root, - of driel Hibiscus capsules, (olira), _- of Asparagus sarmevtosus, (soota moolli), _-_ of Bilva fruit, (bel)

These syrups all spoil very readily.

Syrup of Orange Perl. Syrupus Aurantii.

Fresh orange peel two onnces and a half, boiling water one pint, sugar three pounds. Macerate the peel in the water for twelve hours, pour off the liquor, and add the sngar:

Use, for its agreeable flavour.

Syrur of Saffron.

Syrupus Croci.
Saffron ten draehms, boiling water a pint, sugar three pounds. Prepared as abore.

This preparation is exclusively used for its fine colour.

Syrup of Lemons.
 Syrupus Limonum.

Lemon jutee strained a pint, sugar two pounds. Dissolve, set aside for twelve hours, and remove any scum; deeant if there be a sediment.

Use.-A pleasant acid syrup used for effervescing draughts, especially witl the solution of bi-carbonate of magnesia.

Syrup of Mulberries.

Syrupus Mori.

Mulberry juice strained a pint, sugar two pounds and a half. Prepare as above. It is used for the same purpose, and has a fine red colour.

Syrup of Poppy Heads.
 Syrupus Papaveris.

Poppy heads without seeds one pound, sugar two pounds, boiling water ten pints. Boil down the eapsules in the water to one-third and press strongly, strain and boil down again to one-sixth the original quantity, and strain while hot. Allow the dregs to settle; deeant, and dissolve the sugar by a gentle heat.

Use.-Slightly anodyne. Dose, one fluid drachm to a fluid ounce. It is chiefly given to young children. It spoils so readily in India, being clanged into vinegar, that it usually does more harm tham good.

Syrup of Red Poppy.
 Syrupus Rhoxados.

Red poppy petals one pound, boiling water one pint, sugar two pounds and a half. Add the petals gradually to the water, stirring constantly, then macerate for some hours; press. When clear add the sugar.

Use.-Solely for its fine red colour.

Syrup of Roses.

Damask rose petals dried seven ounces, sugar six pounds, boiling water three pints. Macerate the petals in the water for twelve hours, strain, evaporate to two pints, add the sugar.

Use._-Very slightly aperient. Dose, two fluid drachms to one ounce.

Syrup of Sarsaparilla.

Syrupus Sarze.
Sliced sarsaparilla fifteen ounces, boiling water one gallon, sugar fifteen ounces. Macerate the root in the water for six hours, strain, boil down to four pints, strain while hot, add the sugar, and evaporate to the consistence of syrup.

According to the same formula prepare-
Syrup of Hemidesmus.--(Ununtamul.)
Syrup of China Root. - (Chob Chinee.)
Use.-These three preparations are alterative and diuretic, and are used to sweeten the decoctions and infusions of the same articles.

Syrup of Senva.
Senna two ounces and a half, fennel bruised (a) ten drachms, manna(b) three ounces, sugar fifteen ounces, boiling water $3:$
one gallon. Macerate the senna and fenuel in the water at a gentle heat for an hour, mix the manna and sugar with the strained licguor, boil to a proper consistence.
(ab) The Panmuhori and Turunjabin may be used where procurable.

Use.-Purgative. Dose, for children two to four fluid drachms.

Syrup of Tolu.

Balsam of tolu ten fluid drachms, boiling water a pint, sugar two pounds and a half. Boil the balsam in the water for half an hour, frequently stirring, strain the cooled liquor, and add the sugar.

Use.-For its pleasant flavour.

> Syrup of Vinegar.
> Syr. Aceti.

French vinegar eleven fluid ounces, pure sugar fourteen ounces. Boil together in a porcelain vessel.

Use.-For its agreeable flavour.

> Syrup of Ginger.

Syr. Zingiberis.
Ginger sliced two ounces and a half, boiling water a pint, sugar two pounds and a half. Macerate the ginger in the water for four hours, strain and add the sugar.

Use-Stimulant and aromatic, a good addition to many purgative and bitter mixtures.

Syrup of Squile.

Vinegar of squill three pints, sugar seven pounds. Disw solve by a gentle heat in a porcelain vessel.

Use.-A good nauseant remedy for children, much given in hooping cough. Dose, a tea spoonful and upwards.

Syrup of Kanoor.

Syr. Crini.
Fresh kanoor sliced eight ounces, boiling water one pint, sugar one pound. Macerate the kanoor in the water for two hours, beat in a mortar, press through calico, and then dissolve the sugar.

Use,-Nauseant and emetic for children. Dose, a desert spoonful repeated as required.

SPIRITS.

Spirit of Ammonia.

Rectified spirit two pints, caustic lime twelve ounces, muriate of ammonia fincly powdered eight ounces, water six and a half ounces. Slake the lime when the powder is cold, mix it thoroughly and quickly with the muriate of ammonia, and introduce into a glass retort. Heat this in a sand bath, and let the disengaged gas pass through the spirit by a bent tube. The bottle should be kept cool, and be capable of holding three pints.

The receiver should be kept very cold. If ice cannot be procured, advantage may be taken of this process for refining the crude bazar Nowshader, or muriate of ammonia, by dissolving this around the receiver.

This preparation belongs to the Edinburgh College, and is far superior to that of London. According to the London formula carbonate of ammonia is formed, which is insoluble in the spirit. In the process wc adopt, purc gascous ammonia is conducted through the spirit till this is saturated.

Spirit of ammonia thus prepared is a transparent, colourless solution, excessively pungent and alkaline.

Use,-An external stinulant of great power, and an ingredient in the aromatic and foctid spirits of ammonia.

> Aromatic Spirit of Ammonia.

Spirit of amnonia eight fluid ounces, oil of lemon peel one fluid drachm, oil of rosemary (a) one fluid drachm and a half. Dissolve by agitation.
(a) Half a druclim of oil of cloves may be sulstituted.

Use.-A powerful stimulant. Dose, half a fluid drachm to one drachm in two fluid ounces of water. In the London preparation muriate of ammonia, carbonate of potash, cinnamon, cloves, lemon peel, rectified spirit and water are all mixed together and distilled. The result is a product of comparatively disagreeable flavour, and containing carbonate of ammonia instead of the pure alkali.

Feitid Spirit of Ammonia.

Spirit of ammonia ten fluid ounces and a lialf, asafretida half an ounce. Digest the asafoetida in the spirit for twelve hours, and distil over ten and a half fluid ounces from a retort by a water bath.

Properties.-Colorless, acrid, fæetid.
Use.-Stimulant and antispasmodic. Dose, half a fluid drachm to one drachm in water.

Spirit of Anise.

Anise seed bruised ten ounces, proof spirit one gallon, water two pints. Mix and distil a gallon.

This is a solution of essential oil of aniseed in spirit.
Use.-Cordial and antispasmodic. Dose, two to four fluid drachms in water.

The Star anise, (Badian Katai,) may be used instead of common anise.

Spirit of Caraway.
Caraway bruised twenty-two ounces, proof spirit one gallon, water two pints. Mix, let a gallon distil.

Use.-Cordial, stimulant. Dose, two to four fluid draclims.

Spirit of Cinnamon.

Cinnamon oil two fluid drachms. Prepare as above.
Use and dose the same.
Remarks.-The oil of cinnamon is preferred to using the bark itself, from the uncertain strengih of the latter. When this is of good quality, use a pound of the bruised bark to seven pints of proof spirit, macerate for a day in a covered vessel, and distil off seven pints.

Compound Spirit of Juniper.
Juniper berries bruised twenty ounces, caraway bruised and fennel each two ounces. The Panmuhori may be substituted for the fennel. Prepare as the spirit of earaway.

Use.-Stimulant, diuretic. Dose, two to four fluid drachms.

Spirit of Lavender.

Fresh lavender two pounds and a balf. Preparc as above.
Use.-Not given by itself internally; an ingredient in compound camphor liniment and compound tincture of lavender.

> Spirit of Peppermint.

> Sp. Menthee Piperitce.

Oil of peppermint three fluid drachms. Prepare as the spirit of cinnamon.

Use....Cordial, especially in flatulence. Dose, two to four fluid drachms.

> Spirit of Spearmint.
> Sp. Menthe Viridis.

Oil of spearmint three fluid drachms. Prepare as above.
Use and dose, the same as of the last article.

> Spirit of Penny-Royal.
> Sp. Menthe Pulegii.

Oil of penny-royal three fluid drachms. Prepare as above.

Use and dose, the same.

> Spirit of Nutmeg. Sp. Myristice.

Bruised nutmeg two ounces and a half. Prepare as above.

Use and dose, the same.

Spirit of Pimenta.

Bruised pimenta half a pound. Prepare as the spirit of caraway.

Use and dose, the same.

Spirit of Rosemary.

Oil of rosemary two fluid drachms. Prepare as above.
Use.-An ingredient in the soap liniment, and compound tincture of tavender.

Compound Spirit of Sohifinuna.

Sohunjuna sliced and dried, orange peel each twenty ounces, bruised nutmegs five draehms, proof spirit one gallon, water two pints. Mix and distil a gallon.

Use.-Stimulant. Dose, two to four fluid drachms in water.

TESTS.

Ammonia, Oxalate of.
Oxalic acid four drachms, carbonate of ammonia eight drachms, distilled water ten fluid ounces. Dissolve the carbonate in the water, add the acid by degrees, and concentrate the liquid to crystallization.

The oxalic acid is most readily prepared by the action of nitric acid on half its weight of fine sugar in powder; half the acid should be poured on the sugar, and when the action of this portion has ceased, the resulting fluid should be concentrated on the water bath to one-fourth, and allowed to cool. Crystals of oxalic acid are deposited, and these should be removed and dried by compression between folds of porous paper. To the remaining liquor add the second portion of the nitric acid, and proceed ns before.

The oxalate of ammonia is much used as a test for lime, with which it yields a white insoluble white precipitate. When this is collected and dried on the water bath, 64 parts correspond to 28 of lime.

Ammonia, Hydrosulpiluret of.

For the preparation of this test, a current of sulphuretted hydrogen gas is conducted through a solution of water of ammonia. The gas is generated by acting on a mixture of proto-sulphuret of iron and water by dilute sulpliuric acid. The current of gas should be continued so long as the bubbles passing through the ammonia diminish in size as they ascend. The double-necked bottle, figured in plate 5, fig. 41, Bengal Dispensatory, provided with a bent tube, is the best apparatus for this process.

The hydro-sulphuret of ammonia is a valuable test, which gives coloured precipitates with several metallic solutions, thus:-

Solutions of.		Colour.	Distinguished.
Arsenic,	(Solution acidulated with acclic acid,)	Yellow.	
Antimony;	(Dillo wilh tartaric acid.)	Orange.	
Bisuruth,			Turned green by nitric acid.
lron,	(Neutral.)...	Black,	Soluble in dilute sulpharic
Mercury, ..	(Neutral or acid.)	Black,	olatilized by heal. [acid.
Lead,	(Exactly ncutral,)		[and not yolatilized by heat.

Ammonia, Nitrate of

To nitric acid diluted with twice its volume of water, add small pieces of carbonate of ammonia till effervescence ceases : and then cvaporate on the water bath to dryness.

This salt is erpuloyed in testing to effect the combustion of orga. nic matter, to which it gives off oxygen freely and thus causes its dissipation without leaving any residue itself.

Baryta, Nitrate of

For the preparation of this test, see the salts of baryta.
It is used to detect and estimate the quantily of sulphuric acid, free or combined, in a solution. Being dissolved in water and the solution added drop by drop till precipitation ceases, all the sulphuric
acid combines with the baryta and subsides as a heavy white powder, insoluble even in nitric acid. Of this when washed will water acidulated with nitric acid, and dried on the water bath, 116 parts are equivalent to 40 of real suiphuric acid.

Ioduret of Potassium. (For Preparation, see that head.)
This salt gives a brilliant yellow precipitate with salts of lead, which when dissolved in boiling water, crystallizes on cooling in slining spangles like gold-leaf.

Ferro-Cyanuret of Potassium.

Take any convenient quantity of animal matter, especially wool, hair, skin, or eggs. Calcine at a low red heat in an iron vessel, provided with a tube for the discharge of the gases. Of the animal charcoal thins prepared, take two parts by weight, of dry carbonate of potash one part, and add about four per 100 by weight of iron filings. Mix well together, and throw the mixture into a red hot iron crucible, provided with a lid which should be at once applicd. Every ten minutes remove the lid and stir the mixture well with an iron rod. Continue this until the vapour does not inflame on uncovering the crucible. Remove the fused mass with an iron ladle, and place it in small heaps in order to cool it ra* pidly. Then introduce it into a pan of cold water, licat gently, and strain througl calico.

To this solution add a solution of green sulplate of iron, (heera kasis) so long as a white precipitate is formed and redissolved. Now cvaporate to crystallization.

[^14]This salt is very soluble in water, insoluble in alcoltol, unaffected by alkalies, decomposed by sulphuric acid, the hydrocyanic acid being formed and disengaged. When added to metalic solutions, it in many cases effects their decomposition, a triple compound of one equivalent of cyanogen and iron (ferro-cyanogen) with two of cyanide of the metal, beiug formed. These metallic ferro-cyanurets are of different, often brilliant, colours, and from this property it is that this salt becomes so valuable to the experimental chemist. With solutions of the pharmaceutical metals, the precipitates are as follow:-

Silver, mercury, bismuth, lead, zinc, white.
Copper, chesnut-brown; iron, proto-salts whitish, ditto per-salts Prussian-blue.

By passing a current of chlorine gas through a solution of this salt uutil it ceases to precipitate the per-salts of iron blue, we obtaiu a green liquid, which on evaporation affords the red or ferro-sesquicyanuret of potassium in smalk ruby-red crystals, soluble in water, and affording a test still more useful than the yellow salt ; thus it yields with-

Solutions of -	Precipitates.
Mercury,	
Silver, \ldots \}	White.
Zinc,)	
Copper, .	Yellowish-brown.
Bismuth,	
Iron, proto-sal	Prussian-blue. None.

It is a very remarkable fact in the history of these salts, that the iron they contain cannot be detected in them by the ordinary tests, such as ammonia and the tincture of galls.

We have given the preceding details in order to enable the Apothecary to prepare for himself the material from which IIydrocyanic acid is procured. The process is to a certain exteut troublesome, and may fail on the first attempt, but a little perseverauce will soon render it invariably successful, even when no more than one pound of the animal charcoal is employed.

Solution of Nitrate of Silver.

Nitrate of silver forty grains, distilled water sixteen hundred grains. Dissolve.

This solution is employed as a test for detecting and estimating the quantity of chlorine, free or combined, in at given solution.

On adding this solution to one containing any chloride, (say that of sodium, common salt,) double decomposition ensues, and a white precipitate of chloride of silecr is formed. This precipitate is insoluble in water or nitric acid, but is freely dissolved by ammonia. Washed and dried on the water bath, 144 parts are equivalent to 108 silver and 36 chloriue, or to 60 of common salt.

Solution of Ammoniaco-Nitrate of Silver.

Take the solution above prepared and add water of ammonia drop by drop till the preeipitate at first formed is nearly, but not altogether, dissolved.

This test affords a brilliant yellow precipitate, with solutions containing the common white arsenic, arsenious acid.

Solution of Ammoniaco-Sulpliate of Copper.
Take a strong solution of sulphate of copper, and add ammonia gradually until the precipitate occasioned is nearly re dissolved.

This test gives a fure green precipitate (Scheele's green,) with solutions of arsenious acid. For the precautions to be observed in applying these tests, sce Bengal Dispensatory, Article Poisons, p. 726.

Sulpilate of Indigo.

Boil some powdered Indigo with strongest snlphuric acid, till a fine blue liquid is produced.

This liquid added to water so as to give it a fine transparent blue colour, is used as a test to detect free chlorine, by which the blue liquid is instantly bleached.

TINCTURES.

Tinctures are solutions of medicinal substances in spirit of various degrees of strength.

Tinctures usually contain the resinous and alkaloid principles of the substances from which they are prepared.

Tinctures are prepared by iofusion and trituration, prolonged contact, boiling and percolation. In some cases the last method is of great advamtage over the others.

Excess of spirit should be avoided in the preparation of tinctures, as the effect of the spirit may interfere with the medicinal action of the substances it dissolves.

Preparation of Tinctures by displacement or fillration.

In this process the spirit is filtered through a mass of the substance under preparation, previously powdered and made into pulp with spirit. A mass of this pulp is pressed into a cylinder, closed below by a piece of strong cloth firmly tied on. The pulp may occupy one-third of the cylinder, and over it is poured the remainder of the spirit to be used. When the fiftration ceases, an additional quantity of the solvent is poured on to displace that retained in the interstices of the pulp. The tincture which passes through, must equal the quantity of the spirit directed in each formula. The last portion of spirit ordered may be recovered, by pouring water over the mass, and thus forcing the spirit through.

This plan, for some years extensively followed by continental apothecaries, has been lately advised by the Ediuburgh College. It is certainly the best mode of preparing a great many tinctures, being more expeditious and productive than the common plan. But there are many substances, opium for example, which cannot be treated in this manner, and special directions are therefore given under each head.

Boiling.-l'inctures may be very expeditiously prepared by boiling the substance with a portion of the spirit. This process is especially useful, where small quantities of a particular substance are urgently required. But on a very large seale, such as in the Goverument Dispensary, the old mode is preferable. The risk from fire inseparable from numerous and large operations with bot spirit, is a sufficient reason for this preference.

Tincture of Aloes.

Aloes in powder one ounce, extract of liquorice (a) three ounces, water a pint and a half, rectified spirit half a pint. Triturate with the water, add the spirit, and strain.

The maceration for fourteen days directed by the London College is unnecessary.
(a). -Extract of goonch may be substituted for the liquorice.

Use.-Purgative, Dose, half a fluid ounce to one ounce.

Compound 'Iincture of Aloes.

Aloes powdered four ounces, saffron two ounces, tincture of myrrl two pints.

Triturate the aloes and saffron with half a pint of the spirit separately, gradually add more spirit, and lastly the tincture of myrrh; strain.

Medical Use-Pargative and stimulant. Dose, one to two fluid drachms.

Compound Tincture of Ammonla.
(Commonly called Eau-de-luce.)
Mastich two draelms, rectified spirit nine fluid drachms, oil of lavender fourteen minims, oil of amber four minims, strong solution of ammonia one pint. Dissolve the mastich in the spirit and agitate all together. The oil of amber may be omitted, and that of lemons substituted for the oil of lavender.

Use.-Eau-de-luce is a milky fluid of strongly ammoniacal smell. It is a powerful stimulant, and is much used in the reatment of snake-bites. Dose, five to ten minims in water. It should nut be given with acids, metallic, or earthy salts.

Tincture of Asafgetida.

Asafoctida five ounces, rectified spirit two pints. Triturate the asafoeticla with half a pint of the spirit, gradually add the rest, agitate in a stoppered bottle for a quarter of an hour, strain.

Usc.-Stimulant and antispasmodic. Dose, one to two fluid drachms.

Tincture of Barberry.

Barberry bark powdered coarsely eight ounces, proof spirit two pints ; moisten the bark with a little of the spirit for six loours, then percolate the rest of the spirit.

Use.-Febrifuge, tonic, and aperient. Dose, two fluid draclums to four draclims.

Tincture of Cinchona Bark.
Cinchona bark bruised cight onnces, proof spirit two pints. Prepare by percolation.

Use.-Felrifuge, tonic. Dose, one to four flaid drachms.

Compound Tincture of Bark.

Cinchona bark bruised four ounces, orange peel (dry) three onnces, serpentary (a) bruised six drachms, saffron two drachms, cochincal powdered one drachm, proof spirit two pints. Preparc by percolation, as the compound tincture of cardamom.
(a) The Assam sassafras root may be substituted for the serpentary, and the cochsineal onitied.

Use.-The same as the simple tincture, but more stimulating.

Tincture of Tolu Balsam.

Balsam of tolu two fluid ounces, rectified spirit two pints. Mix and agitate to solution and strain.

Use,-Expectorant, given in cough mixtures.

Compound Tincture of Benzoin.
Benzoin three ounces and a half, storax purified two ounces and a half, balsam of tolu ten drachms, aloes five drachms, rectified spirit two pints. Dissolve the aloes by trituration with half a pint of the spirit, and add the tolu balsam; treat the benzoin and storax similarly by trituration and agitation in a stoppered bottle. Mix the whole, and agitating occasionally, filter after one day's maceration.

Use.-Expectorant, stimulant. Dose, one to two drachms. Like all resinots tiuctures, it is decomposed by water. Formerly it wes much insed as an application to womids and ulcers, under the name of the "Friar's Balsam."

Tincture of Buchu.

Buchu leaves dried and powdered two ounces and al lalf, proof spirit one pint. Prepare by percolation.

Use.-All astringent diuretic, valuable in chronic diseases of the urinary organs. Dose, one to two fluid drachms.

Tingture of Calumba.

Grated calumba threc ounces, proof spirit two pints. Prcparc by percolation, or mix and agitate occasionally for : day, strain.

Use.-Bitter, tonic. Dose, one fluid drachm to two drachms.

Tincture of Misime Teeta.

Mislime teeta root powdered threc omes, proof spirit two pints. Prepare as above.

Use and Dose, the same; flavour and colour much more agrecable.

Tincture of Campior.

Camphor five ounces, rectified spirit two pints. Mix and dissolve.

Use.-As an external application in rheunatism, partial paralysis, \&c. It is decomposed by water.

Compound 'I'incture of Camphor.

Camphor two scrmples and a half, hard opium and benzoic acid eaclı seventy-tro grains, oil of anise one drachm, proof spirit two pints. Triturate the solid ingredients with half a pint of the spirit; strain.

Use.-Anodyne and diaploretic. Dose, one to three fluid drachus. A fluid ounce contains about two grains of opium.

'I'ingture of Cantharides.

Bruised cantliarides four drachms, proof spirit two pints; preparc by picreolation or by agitation in a stoppered bottle.

Tinoture of Telini.

Telini fly three drachms, proof spirit two pints; prepare as above.

Use.- Both these preparations are used chiefly as external stimulants and blisters; also given in doses of ten minims in mucilage for gonorrbcea, incontinence of urine, leucorrbcea, and similar disenses. It is a very dangerous internal remedy.

Tincture of Capsicum.

Capsicum (dried) bruised ten drachms, proof spirit two pints. Boil the capsicum in half a pint of the spirit in a flask for ten minutes, strain, and add the rest of the spirit.

Use.-Stimulaut. Dose, ten minims to one drachm with water. A useful application to relaxed uvula.

Tinoture of Cardamoms.

Cardamoms bruised three ounces and a half, proof spirit two pints. Boil the cardamoms in one pint of the spirit for ten minutes, strain on cooling, and add the rest of the spirit. This tincture may also be well made by percolation.

Use.-Stimulant, cordial. Dose, one to two fluid drachms.

Compound Tinoture of Cardamoms.

Cardamoms and caraway bruised each two drachms and a half, cochineal powdered half a drachm, cinnamon bruised five drachms, raisins deprived of their seeds five drachms, proof spirit two pints. Prepare by percolation or agitation, and after one day, strain.

The cochincal is merely to give a colour to the mixture, and may be omilted or replaced by an equal weight of red Sanders wood (rukta chundun); for the raisins half their weight of white sugar may be advantageously substituted.

Use.-An excellent cordial aromatic, much given with bitters, such as gentian and chiretta. Dose, one to two fluid drachms.

Tincture of Cascarilla.

Cascarilla bruised five drachms, proof spirit two pints. Best prepared by percolation.

Use--Tonic, stomachic, and febrifuge. Dose, one fluid drachm to two drachms.

Tincture of Castor.

Castor powdered two ounces and a half, rectificel spirit two pints. Prepare by agitation or percolation.

Use.-Antispasmodic. Dose, half a fluid drachm to two drachms.

Tincture of Catechu.

Catecliu three ounces and a lialf, cinnamon bruised two ounces and a half, proof spirit two pints. Preparc by nercolation. Or, boil the cinnamon with half a pint of the spirit for ten minutes in a flask. Bruise the catechu with half a pint of the spirit, and add the spirit in which the cinnamon was boiled. Agitate with the remainder of the spirit in a stoppered bottle occasionally for two hours.

Use.-Astringent and stimulant. Dose, one fluid drachm to four drachms.

Tincture of Cinnamon.

Cinnamon bruised three ounces and a half, proof spirit two pints, boil for ten minutes with one pint of the spirit, strain; add the rest of the spirit to that in which the cinnamon was boiled.

Use-Stimulant, and as an adjunct to bitter remedies, or to those which are apt to occasion griping.

Compound Tincture of Cinnamon.

Cinnamon bruised onc ounce, cardamoms bruised half an ounce, long pepper powdered, ginger sliced, each two
drachms and a half, and proof spirit two pints. Prepare by pereolation, or boil the solid materials for ten minutes in one pint of the spirit, strain and press, and add the rest of the spirit to the expressed liquor.

Use.-Cordial, stimulant. Dose, one to two fluid drachms.

Tincture of Colchicum.

Colchicum seeds, bruised, five ounces, proof spirit two pints ; prepare by percolation.

Use.-In rleumatism alll gout. Dose, twenty to thirty minims.

Tincture of Cubebs.

Cubebs, bruised, five ounces, reetified spirit two pints; prepare by pereolation or agitation.

Use-Stimulant and diuretic in gonorrhoea.-Dose, half a fluid dractm to one drachm.

Oleo-resinous Tincture of Cubebs.

Oleo-resinous extraet of cubebs four ounces, rectified spirit a pint, dissolve.

Use. -The same as that of the ordinary extract, but this preparation is much more concentrated and effectual. Dose, one to two drachins or more according to the casc. For the preparation of the oleo-resinous exiract of cubebs, see the Dispensatory, p. 574.

Tincture af Dtgitalis.

Digitalis leaves, dried, four ounces, proof spirit two pints.
Prepare by pereolation, or agitate occasionally in a stoppered bottle for a day and strain.

Use,-A powerfnl narcotic and diuretic, generally preseribed with tincture of squill, and ofien with tincture of opium ; given chiefly in inflamation of the lungs, in aneurism, incipient pthisis and inflammatory dropsy. Dose, ten to thirty minims repeated twice or thrice daily. Its effect may remain latent in the system for several days, and then suddenly display itself with accumulated violence.

Tixotuhe of Galls.

Galls bruised five ounces, proof spirit two pints ; prepare by displacement.

Use,-A powerful astringent. Dose, twenty minims to one fluid drachm. A valuable test for salts of tron, which it blackens.
Tinoture of Myrobalon.

Chebulic myrobalon powdered five ounces, proof spirit two pints; prepare as above.

Use.-The same.
Compound Minture of Gentian.
Gentian sliced two ounces and a half, orange peel dried ten drachuns, cardamoms, bruised, five drachms, proof spirit two pints. Preparc by percolation, or boil the gentian in cight ounces of the spirit for ten minutes in a glass flask. Agitate the orange peel and cardanoms with the cold spirit in a stoppered bottle for a quarter of an hour, mix the two solntions.

Use.-Bituer and cordial tonic. Dose, one to two drachros.
Compound Tingeture of Chiretta.
Prepare as above.
Use and Dose - The sume.

Tincture of Gualacum.
Guaiacum resin, bruised, seven ounces, rectified spirit two pints; triturate the resin gradually with half the spirit. Then agitate it repeatedly for half an hour with an ounce of powdlered glass and the rest of the spirit in a stoppered bottle. Strain carefully through fine calico.

The glass is used to keep the resiu from forming lumps during the agitation.

Use.-Stimulant, tovic, and diaphoretic. Dose, one to tro fluid dracluas.

Compound Tincture of Guaiacum.

Gnaiacum resin, bruised, seven ounces, aromatic spirit of ammonia one pint, rectified spirit one pint.

Our aromatic spirit of ammonia being much stronger than the preparation called by that name in the London Pharmacopceia, we have subslituled the above proportions for the two pins directed by the London formula.

Triturate the guaiacum resin with the pint of rectified spirit, and agitate for half an hour, then add the spirit of ammonia, and let the whole rest for a day before straining.

Use.-Stimulant, diaphoretic. Dose, half a fluid drachm to one drachm.

Tincture of Gulancha.

Gulancha stems, bruised, eight ounces, proof spirit two pints. Prepare as the Tincture of Barberry:

Use.-Tonic and febrifuge. Dose, two to four fluid drachms, repeated as required.

Compound Tincture of Guruun.

Essential oil of gurjun, one fluid drachm, essential oil of cubebs one fluid draclim, spirit of nitrous ether one fluid ounce. Dissolve.

Use.-An efficient substitute for" "Frank's" well known specific for the treatment of gonorrhœea. Dose, twenty to thirty minims, in a litle milk or sugared water.

'lincture of Ginger.

Tinctura Zingiberis.

Giuger sliced two ounces and a half, rectified spirit two pints; prepare by percolation.

Use.-Cordial, stimulant. Dose, one fluid drachm to two drachms in water; much used in flatulent colic and in gout, also to prevent? the gripiug of purgative medicines.

Tincture of Hemp.

Gunjah tops two pounds, rectified spirit one gallon. Macerate for two days, then boil for twenty minutes in a distilling apparatus, strain while liot.

Use.-Narcotic, stimulant and anti-convulsive, given in cholera, delirium tremens, tetanus and other convulsive diseases, also in neuralgia, is tic doloroux, \&c. Dose, twenty minims and upwards, according to the symptoms, administered in syrup.

Tincture of Hermodactyl.
Hermodactyl (soorinjan tulk) powdered five ounces, proof spirit two pints; prepare as above.

Use and Dose.-The same as of the colchicum tincture, for which on emergency this may be substituted.

Tingture of Hemlock.

Hemlock leaves dried and powdered five ounces, cardamoms, bruised, one ounce, proof spirit two pints; prepare by percolation or agitation.

Use.-Narcotic. Dose, half a fluid drachm to one drachm.

Tincture of Hops.
Tinct. Lupuli.
Hops six ounces, proof spirit two pints, boil with half tlie spirit for ten minutes, agitate with the remainder, and strain when cool.

Use.-Bitter tonic, reported to be sedative, hut on insufficient evidence. Dose, half a fluid drachm to two drachms.

> Tincture of Ilyoscianus.

Henbane leaves dried, five ounces, proof spirit two pints. Boil with half the spirit for ten minutes, strain when cold, and add the rest of the spirit.

Use.-A very effectual narcotic, less exciting or constipating than the tincture of opium. Dose, half a fluid dracbm to two drachms.

Compound Tincture of Iodine.

Iodine one ounce, iodide of potassium two ounces, rectified spirit two pints. Dissolve.

Use.-(See Iodide of Potassium.)

Tincture of Jalap.

Jalap bruised ten ounces, proof spirit two pints, prepare by percolation, or boil in half the spirit for twenty minutes, replacing what may be lost by exaporation; strain and mix the rest of the spirit with the strained liquor.

Use.-Cathartic. Dose, one fluid drachm to two drachms.

'Incture of Kaladana.

Kaladana seed bruised eight ounces, proof spirit two pints, treat as above.

Use and dose the same as last article.

Compound Tincture of Kreat.

Kreat root six ounces, myrrlı and aloes each one ounce, French Brandy two pints, macerate for three days and strain.

Use.-This is equivalent to the celebrated "drogue amere." Its effects are tonic, stimulant, and gently aperient. It is a valuable preparation in the treatment of several forms of dyspepsia and torpidity of the alimentary ennal. Dose, one fuid drachm to half an ounce.

Tincture of Kino.

Kino bruised three ounces and a half, rectified spirit two pints, treat as above.

Use.-Astringent. Dose, one to two fluid drachms.

Tincture of Palass Kino.

I'repare as above. Dose and use the same.

Compound Tincture or Lavender.

Spirit of lavender one pint and a half, of rosemary half a pint, cinnamon bruised and nutmeg bruised eacli two draelims and a half, red sanders wood sliced five drachms; agitate well at intervals for a day, and strain.

Use,-Stimulant, employed to colour the arsenical solution.

Tincture of Myrrif.

Myrrlh bruised tliree ounces, rectified spirit two pints, prepare by pereolation, or triturate the myrrl and agitate in a stoppered bottle with half the spirit and an ounce of powdered glass. Repeat this at intervals during a day, next day strain.

Use.-Tomic Dose, one to two fluid drachms, much used, diluted with water, as an application to sore gums.

Tincture of Guogul.
Prepare as above.
Use and dose, the same as the tincture of myrrb.

Tincture of Mugrela.

Mugrela seeds ground four ounces and a half, proof spirit two pints, prepare by percolation.

Use.-Stimulant and diaphoretic, recommended by native practitioners 10 promote the secretion of milk. Dose, half a fuid drachm to two drachins.

Tincture of Opius.

Best Bengal opium powdered four ounces, proof spirit two pints. Rulb by the hand with one-fourtlo the spirit for ten minutes, or till thoronghly broken into pulp; add the
rest of the spirit, agitate for half an hour in a stoppered vessel, after settling decant, and wress the residue through eloth.

This tincture is of deep browa-red colour. Twenty minims are equal to one grain of solid opiun. We recomnend a larger proportion of opium than the London College by one-fourth, as we employ opiurn which contains less morphia than the Turkey kind used in the London process.

Tincture of opium or laudanum is decomposed by water, the alkalies and alkaline carbonater, solutions of lead and many other metallic salts, also by tincture of galls.

Use.-An invaluable stimulant and narcotic ; the dose, according to circumstances, varies from ten minims to a fluid drachm.

Ammoniacal Tincture of Opium.

(Commonly called Scotch Paregoric.)
Benzoic acid and saffron finely dried each two drachms, opium sliced two drachms, oil of anise half a drachm, spirit of ammonia eight fluid ounces, rectified spirit two fluid onnees. 'Iriturate the opium with two ounces of spirit and pour the pulpy mixture into the bottle containing the other ingredients, agitate well for fifteen minutes and strain.

Use-Diaphoretic and sedative, much used in irritating coughs and asthonatic affections; eighty rumims are equal to oue grain of optum. Dose, balf a drachom and upwards.

Campholated Tincture of Oplum.
 (Commonly called English Paregoric.)

Camphor fifty grains, opium sliced cighty grains, benzoic acid seventy-two grains, oil of anise one fluid drachm, proof spirit two pints; digest for three days and filter.

Use.-Diaphoretic and sedative. Dose, one to four fluid drachins; four drachms are equivalent to one grain of opium.

Atherial Tincture of Opiual.

Tineture of opium, spirits of sulphurie ether and aromatic spirit of ammonia each one fluid ounce. Mix.

Use.-This is one of the "cholera tinctures," recommended by the Medical Board. Dose, two tea-spoonsful repeated every half hour till the symptoms abate, given in balf a wine glass full of what is termed the "cholera mixture."

This is composed of tincture of calumba four ounces, wine of aloes and spirits of caraway each one ounce, aud pepperwint water twelve ounces.

> Tincture of Orange Peel.
> Tinct. Aurantii.

Dried orange peel three ounces and a half, proof spirit two pints, macerate for three days and strain, or beat into a pulp with a little spirit, and then follow the percolative process.

Use.-Cordial, stimulant, chiefly given with other remedies, such as bitters, to cover their unpleasant flavour.

Tincture of Quassia.

Quassia chips ten drachms, proof spirit two pints ; boil in half the spirit for fifteen minutes, strain and add the remainder of the spirit.

Use.-Bitter tonic. Dose, one to two fluid drachms.

Compound Tincture of Rhlbarb.
 Tinctura Rhei Composita.

Rhubarb sliced two ounces and a half, liquorice bruised six drachms, ginger sliced and saffron each three drachms, proof spirit two pints. Boil the rhubarb, ginger and liquorice with one pint of the spirit for fifteen minutes, replacing what is lost; agitate the saffron with the rest of the spirit occasionally for an hour, strain and mix the liquor.

Tincture of Squill.

Squill sliced and powdered five ounces, proof spirit two pints; boil in half the spirit for ten minutes, strain, mix the liquor with the remainder.

Use.-Diuretic, expectorant. Dose, ten to thirty minims.

Compound Tincture of Senva.
Senna three ounees and a half, caraway bruised three drachms, eardamoms bruised one drachm, raisins, five ounces, proof spirit two pints. For raisins, sngar may be substituted, two ounees being employed. Boil the senna with eight nunces of the spirit, agitate the bruised caraway and eardamoms with the remainder. On cooling, strain both liquors and mix.

Use.-Cordial and purgative. Dose, two fluid drachms to one ounce.

Tincture of Serpentary.

Serpentary bruised three ounces and a half, proof spirit two pints. Boil in half the spirit for ten minutes, strain, and add the rest of the spirit.

Use.-Tonic and diaphoretic. Dose, one to three fluid drachms.

Tincture of Toddalia.

Toddalia (inner bark of root) powdered coarsely, eight ounces, proof spirit two pints ; prepare by percolation.

Use.-A powerful slimulant and diaphoretic, also considered tonic and febrifuge. Dose, one to three fixid drachms. This bark is a native remedy of high repute in the 1reatruent of the collapse from jungle fever.

Tincture of Valerian.

Valerian root bruised and powdered five ounees, proof spirit two pints ; prepare by agitation.

Use.-Stimulant, antispasmodic, chiefly used in chlorosis and hysteria. Dose, one to two fluid drachms.

Tincture of Jatamansi Valerian.

Jatamansi valerian five ounces, proof spirit two pints ; prepare as above.

Use and dose, the satue as of the last ariciele. The roots employed must be recent, and of the best quality.

Compound Tincture of Valerian.

Valerian bruised five ounces, aromatic spirit of ammonia one pint, proof spirit one pint; agitate the valerian briskly with the spirit for twenty minutes, strain, and add the aromatic spirit of ammonia.

Use.-The same as of the simple tincture, but a more powerful stimulant. Dose, half a fluid drachm to one drachm. It should not be given with acids or coetallic salts.

'IROCHES, OR LOZENGFS.

Lozengrs of Gum Arabic.

Gum arabic four ounces, arrow root one ounce, white sugar one pound. Mix and powder, and with rose water beat into a mass, to be divided into lozenges, and dried over the water bath, or by exposure to the sun in the hot season.

Hibiscus Lozenges.

Arrow root one ounce, white sugar one pound, libiscus mucilage concentrated to one third, and strained, as much as required to form a mass, to be divided into lozenges and dried.

Use-A good demulcent in irritating coughs.

Chalk Lozenges.

Prepared chalk four ounces, gum arabic one ounce, nutmeg powdered one drachm, white sugar six ounces. Porder and make into a mass with water, dry over the water batl.

Use.-Antacid; a nseful lozenge to persons liable to heart burn.

Liquorice Lozenges.

Extract of liquorice (a) gum arabic, each six ounces, pure sugar one pound. Dissolve in boiling water, and concentrate to a proper consistence.
(a) Or of gooneh.

Use,-Demuleent in irritating coughs.

Magnesia Lozenges.

Carbonate of magnesia six ounces, sugar three ounces, nutmeg one scruple. Pulverize and with tragacanth mucilage make into lozenges.

Use.-Antacid, like the chalk lozenges.

The Edinburgh College give formulæ for lozenges of muriate of morphia, ipecacuanha, anil opium, but the dangerous mistakes to which childreu are exposed by the form of these preparations prevent our inserting them.

VINEGARS.

Aromatic Vinegar.
Acetum Aromaticum.
Rosemary, marjoram, lavender, each dried one ounce, cloves bruised a drachm and a half, acetic acid one pint and a lialf. Macerate for three days and filter the liquor.

Use,-As a stimulating perfume.

Camphorated Vinegar.

Camphor half an ounce, acetic acid six and a half fluid ounces. Powder the camphor with a little spirit and dissolve in the acid.

Use, A stimulating perfune, and a counter irritant application for external use.

Vinegar of Cantharides.

Cantliarides powdered two ounces, acctic acid one piut. Percolate frequently for a day.

Use.-An excellent liquid blister, being rubbed on the skin with a feather.
Vinegar of Telini.

Preparation and use as above,-but more active.

Vinegar of Colchicum.

Colchicum bulb fresh and sliced one ounce, distilled vinegar sixteen fluid ounces, proof spirit one fluid ounce. Macerate for three days, press, strain, and add the spirit.

Use -Given in gout and rheumatikm ; effect diaretic and anodyive, often cathartic. Dose, half a fluid drachm to one drachm.

In the same manuer, and for the same purpose, prepare the Vinegar of the Hermodactyl.

Vinegar of Squill.

Squills recently dried fifteen ounces, distilled vinegar six pints, proof spirit half a pint. Infuse the squill in the vinegar in a stoppered bottle for a day, agitating frequently, press, allow the liquor to settle, decant, and add the spirit to the clear liquor.

Use-Expectorant and diuretic. Dose, half a fluid drachim to two drachms, usually given in peppermint water.

WINES.

Vina.
Solutions of medicinal solbstances in Sherry wine.

Wine of Aloes.

Alocs powdered two ounces, canella powdered four draclms, slierry two pints. Powdered cinnamon may be
substituted for the canella, when this cannot be conveniently procured. Triturate the aloes with half a pint of the sherry, mix the ingredients into a pulp, and prepare by percolation.

Use.-Aperient and cordial. Dose, one to two fluid drachms.

Wine of Colchicum.

Dried eolchieum powdered eight ounees, sherry two pints. Prepare by percolation.

(See Vinegar of Colchicum.)

Use.-Narcotic and diurelic, given chiefly in gout and rheumatism. Dose, ihirty minims to one fluid drachm.

Wine of Ipecacuanha.

Ipecacuanha bruised and powdered two ounces and a half, sherry two pints. Prepare by percolation, or by maeeration for seven days.

Use.-Diaphoretic and emetic. It is of great value in the treatment of mavy of the diseases of infants and young children, its operation being mild, speedy and certain. Dose, a tea spoonful or half a fluid drachm, repeated every quarter of an hour till full vomiting is induced.

The uctive principle of this root is called Emetine, which the root coutains in the proportion of aboul 14 per 100 .

Wine of Cuiretta.

Chiretta in eoarse powder half an ounce, Peruvian bark ditto one ounce, orange peel dried two draehms, einnamon powdered one drachm, proof spirit four and a balf fluid ounces, sherry thirty-six fluid ounces. Boil the powdered barks in the spirit for ten minutes, replacing what may be lost by the boiling, strain and press, mix the liquor with the sherry, and let the whole stand with the orange peel and
cinnamon a day, agitating frequently. Strain and press, and filter the liquors.

Use.-Cordial, bitter and tonic. Dose, two fluid drachms.

Wine of Opium.

Watery extract of opium two ounces and a half, cinnamon powdered, cloves powdered each two drachms and a half, sherry wine two pints. Reduce the opium to a pulp by the hand with half a pint of the sherry gradually added. Then triturate the more solid matter with the cinnamon and cloves, and place the pulp in the percolator; pass through this the rest of the sherry.

Use.-This is "Sydenham's laudanum," it is a much more agreeable and certain preparation than the ordinary tincture of opium. Dose, ten minims to a fluid drachm.

Wine of Rhubarb.

Rhubarb in coarse powder tro ounces, canella one drachm, proof spirit two fluid ounces and a half, slierry sixteen fluid ounces and a half. An equal weight of cinnamon may be used instead of the canclla.

Prepare by percolation, or maceration and agitation for two days.
Use.-The same as that of the tineture of rhubarb. Dose, one to two fluid drachms.

A PPENDIX.

APPENDIX.

Specific Gravity of Alcohon axid Spirits.-Use of the Hydrometer.

The apothecary should bear in mind carefully, that the density of spirit changes in an important degree with changes of temperature: thus a spirit which at 85° Fahrt. is of the density of 833 , at 60° Fahrt. has that of 845 . The table we have given at page 250, affords the means of ascertaining the density at 60°. The following table taken from Dr. Christison's Dispensatory, shews how to convert the density into the usual Hydrometer expression of above or below Proof.

There are several Hydrometers in popular use. The best is that of "Sykes," which is accompanied by copious tables and instructions for its use.

$\begin{aligned} & \text { 㐫 } \\ & \text { 部 } \end{aligned}$		Baume.	did	$\begin{aligned} & \text { G. Lus. } \\ & \text { by vol. } \end{aligned}$	Density.	$\begin{gathered} \text { Spir, } 822 \\ b y \end{gathered}$	Raume,	Dicas 8 Sykes.	G. Luss by tol.
795	\ldots	47.7	...	100	820	...	42.0	...	
796			\cdots	...	82.2	94
798	\ldots	\$7.0	...	\cdots	824	...	41.2		...
800	\ldots	\ldots	...	99	825	1000	41.0	63	
802	...	46.0	...	\cdots	826	993	...	62	93
805	\ldots	.	\ldots	98	828	984	...	61	92.3
806	\ldots	45.2	8.30	975	39.9	60	91.7
808			\ldots	\ldots	832	966		59	91
810	...	44.2	\ldots	97	834	957	39.0	58	90.3
812	\ldots		836	949	...	57	89.7
814			\cdots	96	838	940		56	89
816	\cdots	42.9	840	932	37.8	55	88.5
818	\cdots	95	842	924	...	54	88.8

$\begin{aligned} & \text { 玄 } \\ & \text { 言 } \\ & \text { a } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Spir. } 825 \\ \text { by wt. } \end{gathered}\right.$	naumé,		$\begin{aligned} & \text { G. Lus, } \\ & \text { by yol, } \end{aligned}$	Density.	splr. 89s	Raumé.	$\underset{\text { Dicas }}{\text { Dices }}$	G. Luss, by vol,
844	916	37.0	53	87.3	922	540		- 2	57
846	908		52	86.7	921	531	22.0	-4	56
848	898	36.2	50	86	926	521		- 6	55
850	888	...	49	85.3	928	510		-7	54
852	878		48	84.7	930	500	21.0	- 9	53
854	868	35.0	47	84	932	480		-11	52
856	857		46	83.3	984	479		-13	51
858	8.19	34.2	45	82.7	936	468	20.0	-15	50
860	840		45	82	988	456	20.0	-17	49
862	833		44	81.3	940	414		-19	18
864	823	33.0	43	80.3	042	4.32	10.0	-21	46.5
866	813		42	79.6	944	421	...	-23	45.5
868	807	31.2	40	79	946	411		-24	44
870	798	...	39	78.3	918	397	18.0	-26	43
872	787		38	77.7	650	382	...	-28	41.5
874	776	31.0	36	77	952	370		-31	40.5
876	768	...	31	76	954	358	17.0	-34	39
878	757		32	75.3	955	346		-36	38
880	716	30.1	30	74.3	958	333		-39	36.5
882	738		29	73.7	060	315	16.1	-42	3.5
884	729	29.1	28	73	962	300		-45	34
886	719	...	27	72	964	28.		-48	32
888	709		25	71	066	270	15.1	-51	30
890	699	28.0	21	70.3	963	253		-54	28
892	689	...	22	69.3	970	236	...	-57	26
894	680		20	68.7	972	218		-60	24
896	671	27.0	19	68	974	200	13.9	-64	22
808	662		17	67.3	976		18.3		20
900	649	26.2	15	66.7	958	175		-72	18
902	641	...	14	66	980	150	13.0	-75	16
004	631		12	65	982	135		-77	14
906	621	25.1	11	61	984	120		-80	12
908	612	...	10	63.3	986	105	12.1	-82	10.5
910	602		8	62.3	988	90	...	-85	.
912	591	2.4,1	7	61.5	990	75		-89	7
914	581			60.5	092	60	11.2	-92	6
916	571	23.0	3	59.5	994	45		-95	4
918	562			50	996	30		-06	3
920	550	\ldots	0	. 58	998	15		-98	1

PRICE OF DRUGS.

The anncxed list affords the bazar prices of some of the most important drugs in the Calcutta market. No fixed price can be assigned to tbe artieles wbich are only retailed in small quantities.

HYPOTHETICAL OPJNJONS AS TO THE NATURE OF AM及ONiACAZ SALTS.

Abstract

" In mentioning the salt formerly called sal-ammoniac, afterwards muriate of ammonia, and more recently bydrocblorate of ammonia, I considered it, as the last-mentioned name imports, as a compound of bydrochloric acid and ammonia, in which neither the acid nor the alkali undergoes decompositiou. It has, however, been supposed by Berzelius when these substances act upon each other, that hydrogen is transferred from the hydrochloric acid to the ammonia, and consequently that the salt, which considered as hydrochlorate of ammonia would he written $\mathrm{NH}^{3}, \mathrm{HCl}_{\text {, hecomes }} \mathrm{NH}_{4}, \mathrm{Cl}$, in which NH'represents ammonium, an hypothetical compound, possessing to a certain extent the properties of a metal, and this combining with the cllorine deprived of bydrogen, becomes chloride of ammonium.

When on the contrary, an oxacid, as sulphuric acid, is added to a solntion of ammouia, this bypothesis supposes that an equivalent of water suffers decomposition; so that the salt usually called sulphate of ammonia, $\mathrm{NH}^{3}, \mathrm{SO}^{3}, \mathrm{HO}$, hecomes sulphate of oxide of ammonium, or $\mathrm{NH}^{4}, \mathrm{O}, \mathrm{SO}^{3}$: in this case the ammonia hecomes ammonjum by combining with the hydrogen of the decomposed water, and this is simultaneuusly converted into oxide by uniting with its oxygen; and being thus analogous to a metal combined with oxygen, it has acquired the condition requisite to its combination with an acid, and consequently unites like a metallic oxide with the sulphuric acid, as ahove-mentioned, forming the sulphate of oxide of ammonium.

Professor Graham appears to adopt the above-described hypothesis, regarding sal-ammoniac as chloride of ammouium, and sulphate of ammonia a sulpbate of oxide of ammonium; but in the case of the sulphates of metallic oxides, he seems to favour the opinion, that the oxygen of the base is transferred to the acid; so that while the oxide is reduced to the metallic state, the sulphuric acid hecomes, by the addition of the oxygen, a compound represented by SO4, for which Profcssor Graham proposes the name of sulphatoxygen, and that of sulphatoxide, to express a compound of it and a metal; so that on the "old view" that which was called sulphate of soda, is on the "new view" sulphatoxide of sodium, or Na, SO; instead of, as formerly, NaO , SO^{3}.

Professor Danicll, grounding bis opinion on the results of electrical decompositions, lias also offered an explanation of the constitution of
some ammoniacal and other salts. With respect to sal-ammoniac, ?c admits the views of Berzelius, that it is a chloride of ammoniun; or, adopting his words, this salt is an "electrolyte whose simple anion is chlorine, and compound cathion nitrogen with 4 equivalents of hydrogen." With respect to the salt ohtained by the action of hydrated aulphuric acid upon ammonia, he considers it, as Professor Graham does, a sulphate of a metallic oxide, as a compound, in which all the oxygen is combined with the sulphur, forming a substauce whose symbol is SO^{\prime}, combined with ammonium NH^{\prime}; and this salt, usually termed hydrated sulphate of ammonia, Professor Daniell describes as an oxysulphion of ammonium, and the sulphates of metallic oxides lee regards as oxysulphions of their respective metals.

Dr. Kane, on the other hand, considers that ammonia, instead of acquiring an equivalent of bydrogen to become ammonium, loses one to form aminogene, represented by NH^{2}; and he regards sal-ammoniac neither as bydrochlorate of ammonia nor clloride of ammonimm, but as a chloro-amidide of hydrogen: $\mathrm{NH} * \mathrm{H}$ ($=$ ammonia) represents amidide of hydrogen, and this combined with chloride of hydrogen, IICl (=hydrochloric acid) yields $\mathrm{NH}^{2}, \mathrm{H}, \mathrm{HCl}$, chloramidide of hydrogen ($=\mathrm{NH}^{3}, \mathrm{HCl}$, bydrochlorate of ammonia). The nature of the salts formed by the action of oxacids upon ammonia, corresponding to this vicw of the action of lyydracids, is this: taking sulphuric acid as an example, when this acid acts upon ammonia, there results neither sulphate of ammonia nor sulphate of oxide of ammonium, but sulphate of amidide of hydrogen, $\mathrm{NH}^{2}, \mathrm{H}, \mathrm{SO}^{3}$. This may be considered as a type of the compounds resulting from the action of oxacids upon ammonia, on Dr. Kane's hypothes is.

It has been supposed that the bypotheses ahove described offer a more simple and philosophical explanation of the action of acids on metals and of the nature of the resulting compounds, than those hitherto adopted. As, however, neither ammonium, oxide of ammonium, amidogene, nor sulphatoxygen has ever heen isolated, it is correctly observed by Professor Graham, that to whichsoever of the bypotheses " we give preference, we can scarcely avoid using the langnage of the old theory in the present state of chemical science."-From Phillips's translation of the Pharmacopcia, Londinensis, 1841.

I N DEX.

	Ране. 300		'are.
Cerates, spermaceti, ..		Decoction mallow.	- ${ }^{277}$
	320		278
Charcoal, auimal, ..	368	pomegranate, (pars,)	${ }_{278}$
Chenopodea. ..	75	quince seeds,	278
Chloranthea,	88	rice.	278
Chlorine,	368	- rohun,	279
Cliob clinee. ..	409	sarsajarilla,	279
China root, syrup of, 409	compound ditto.,	279
Cholera pill, ..	399	- china root, ..	279
Cinchonacez,	41	-- sapan,	280
Citriac ointinent,	355	--.- senega,	280
College pill,	401	starch,	280
Combretacez,	32	uva ursi,	281
Conpmetiozs,	270	Demulcents...	13
Confection of almonds.	270	Diaphoretics.	123
	271	D] ${ }^{\text {d }}$ lents, . .	113
- of cassia, .	271	1) ${ }^{\text {asco rex, }}$	103
- opium,	272	Dipsicere.	43
-- of upium and catec	, 272	Dipterocarpem.	12
-- orange $\mathrm{l}^{\text {eel }}$,	-. 277	Distilled Watbrs,	281
-- pepper, ..	-. 273	Distilled water of dill,	282
--- roses,	273	eherry lailrel.	52
- rue.		caraway. ..	S2
-- scammony,	27.1	- - orange fiower,	282
senna.	274	- cassia. .-	282
Conspsctus of materia medi		-	282
Conspsctus of materia medi 7herapeutic system,		fennel.	282
Conspectus of melicinal pla		ajwain	282
N'atural system, ..	\cdots	anise,	282
Convolvulacex.	70	- marjoram,	182
Conpulsiyes,	.. 174	- cajeput,	288
Copper, ammoniacorsulphate of,	418	- celery	282
Copper, -̈ ..	-. 322	coriander.	292
-- sulphate of.		- hemidesmus,	282
-_- acetate of.		-- juniper.	288
- ammonto-sulphate of,	321	--Cmusk libiscus,	252
Cordiaces.		andal.	82
Сотiaracea.	.. 20	- sassaftas,	282
Corn plaster,	.. 387	- tulsi.	.. 282
Cornem, -		-- tejpata,	282
Corrosive sublimate,	.. 338	Diaretics.	141
Crassulacem.	35	Dover*s powder,	40.2
Gream of tartar,	.. 353	Drogue ancre,	429
Crucifere, .		Droseraceac.	11
Cuyptogania,	.. 100		
Cucurbitacer,	32	B.	
Cycatacez,	97		
Cyperacex,	100	Eaurde.luce,	420
Cyrland racex,		E'beracea,	49
		Emetics.	132
D.		Fmmenagougues,	148
		Emollients.	113
Daoil-murden ointment,	-. 383	Endogener,	93
Daturia, .- ..	266	Enemas,	283
Decoctions.	275	Encma, cathartic,	-. 283
Decoction of aloes,	. 275	-... of aloes,	-. 281
barley.	-. 277	-- culocynth,	.. 284
- compound ditto,	276	-- fertid,	284
-- ceylon moss		-_- opliate,	81
- dulcamara, ..			285
gulancha. 287	Lepsom salis.	331
ispaghool,	277	titgot of R「e.	$\because 300$

	l’age. 18		Page. 375
Firicaces. Ether, sulphuric.	$\begin{array}{cr}.98 \\ \cdots & 35\end{array}$	(roogul mixiure,	$\begin{array}{r} 375 \\ \therefore \quad 430 \end{array}$
- nitrous,	255	Goulard's cerate,	388
acetic,	256	Goulard's lotion,	331
Ethereal oil,	254	Gramiлею.	100
Euphorbiacem,	83	Gritnatex.	31
Exilectorants.	131	Green vitriol,	325
Extracts,	285	Grejucry'z powder.	405
Extract of aconite.	286	Gressularim,	35
	286	Gunda barosa matment,	383
- barberry,	287	Guttiferæ, ..	14
\qquad belladonna.	287		
\qquad chamomile,:	287	H.	
-....- cinchona...	288		
\qquad colchicum, acetic, \qquad colocrenth.	288 28	Heera kasis, Ilemp, tincture of,	. 422
-_-_ compound ditto.	289	Flermodactyl, tincture of,	428
	289	Hernandiaceæ, ..	80
- elitersuta,	\%89	Houcy. ${ }^{\text {. }}$	297
	290	-- of borax,	297
-_-_-_gentian, - chireta,	290	- - roses.	297
	290	-- squills,	297
-_-_justicia, ..	290	Hur vinegar,	297 71
--...-...stancha,..	290	Hydrolaceæ, ${ }^{\text {H }}$, ${ }^{\text {a }}$	71 250
-_-.... hemlock, .	291	Hyzrouteter, table for,	415
......- hemp,	291	Hydro-sulphuret of ammonia,	414
...-- hop,	291	hypericinea. -	14
-_- jalap. ..	292	1.	
_-maladana,..	292		
-———位morice, .	293	Iodine, ..	
	293	Indigo, sulphate of,	41
- - nux romiea,	293	Infusions,	297
-_-n- ppium,	293	Infusion of ayapana,	298
	294	be	298
-_- peempy.	294	buchu.	298
	294	calumba.	298
__-_ ruassia.	294	chamomile, .	298
	295	cascarilla, ..	299
-----sapan,	295	catechu, ..	299
\qquad sarsaparilla. scammony.	295	cinchor	299
	296	- cloves	299
————— taraxactim.	296	- cusparia, ..	300
	296	- digitalis,	300
		- ergot.	30
F .		- of gentian,	310
		gulancha...	301
Fermenting poultice...	391	hemidesmis.	301
Ferro-cyanuret of potassium,	416	kanoor.	301
	35	kreat,	301
Filices, .	110	- kurroo. ..	320
Flacourtiaces,	9	- linseed.	302
Frank's apecific, substitute for.	427	ncemooka.	302
Friar* Balsam. \quad.	421	--- orange peel.	302
Fungi,	3	- pareira	302
	111	- quassia. ..	303
		--. rhubarh,	313
		- roses,	303 303
Gentianee.		- senna,	304
	56	- pata,	304 304
Geraniaces,	17	-- pedalium.	304
Ghet-kuchoo,	390	-- serpentaria,..	304
	71	- simaruha,	304
Golden eje ointmeut.	385	- sohunjuna. .	301

INTDRX.
453

Ununtamal. syrup of, .	l'age.	Wines of celchicum,	Eage. .. 437
Uricere,	90	--- aloes. ..	- 436
		ipecacuanha,	-. 437
V.		chiretta,	$\cdots 437$
		--- epium,	438
Vaccinea, \quad Valerianem. \quad.	. 48 $\cdots \quad 43$	-- thubarts,	438
Verbcnacem, ..	.4 .$\quad 63$		
Verligris.	. 323		
VInegars.	.. 485	X.	
aromatic,..	-. 435		
-- canmphorated,	.. 435	Xanthoxylacear. 19
- of cantharides,	-. 436		
-- telini, .*	.. 436		
-- colchicum,	- 436	Z.	
	-. 436		
Violacex,	- 10		
Yitacex,	- 17	Zinc. ${ }^{\text {a }}$	365
		-. oxide of.	- 366
W.		-- sulphate of.	366
Wax plaster.	.. 397	- chloride e	367
Weights and Measures.	$\cdots \quad 1$	Zingiberaceæ,	367
White precipitate ef mercury,	. 313		105

APPENDIX.

?

[^0]: Berberis，asiatica or tinctoria，

[^1]: Salicornia indica. Monand. Monog.

[^2]: Agave vivipara ?* Hexand. Monog.
 americana.* .

[^3]: Dracæna Draco. Hexand. Monoy.
 Aloe barbadensis. * Hexand. Monog...

[^4]: Water (tepid, in copious draughts,
 AnTinony. l'otassio-tartrate of-tartar emetic.
 CoPPEn, Sl:tphate of,
 Zinc, Sulphate of,

[^5]: lot Water,
 Acetic Acid,
 Tartrate of A.stlmony and Porash (Producc an epuption of pustules.
 $\begin{array}{lll}\text { CitRate of Anilmony, } & \ldots & . . \\ \text { HYDRIODATE of I'OTASi, } & \ldots & .\end{array}$

[^6]: The following table gives the per centage of alcohol for the specite gravllies corresponding 10 lhe secompanying lemperalures,
 For example : if we liave a spi rilnous liquor al $80^{\circ} \mathrm{Fahr}$., whose specific gravity is 0.9312 , the alcohol presenl is 45 per cenl, of ilee volume, or thal speefic gravily al ilial iemperalute is equal 10 the specific gravily 0.9427 al the normal templeralnre of 60° Falr. This lable may also be employed for every degrec of lhe liermometer sad every per cenlage, so as 10 tave computaliou for lhe inlervals. It is evideul fron inspeclion that a diffetence of 5° Fshr, in lio jempetalute rlanges the specifle gravily of the fiquor by a difference nearly equal lo 1 volume per cenl. of alcolol ; ilius al 350 and 850 Fabr, the very sane specific grsvily of the liquor shows nearl; 10 volumes per eenl, of alcohol mote or less ; lho sante, for example, at 60 and 40 fer cenl.

[^7]: * An additionat tabIe, and its use with the HI ydrometer, which it would be inconrenient to insert here, will le fonnd in the Appendix.

[^8]: *See Bengal Dispeusatory, p. 40, ptate 4, fig. 36.

[^9]: * Sce Bengal Dispensatory, page i2, fig. 40.

[^10]: * Dr. Slewari, Presidency Surgcon, Calcutta; Dr. Drummond, Surgeon to the Governor General ; Dr. Chapman, l'residency Surgeon, Catcutia; Lr. Strong, Surgeon do the Mysore l'rinces; Dr. Green, Civil Surgeon, llowrah; Dr, tiperton, Surseol, 10 the Eye lnfirmary; Dr. Goodeve, Professor in the Medical Colloge; Mr. R. O'Shaughncssy, Surgeon of Caleusta; the late t)r. liaio, Jolice Sitrgeorn ; Dr, tiolland; Dr. Smith, Uivit Surgeon, Hidgelee; Dr. Decken, Bala. some; the late Dy, Slerift; Horsc Artitery, and several Native V'ractitioners.

[^11]: * The Editor of the London Pharmacopeia says, 1.8th to I-IIlh of a grain, but no useful cffecl can be expected from such small doses.

[^12]: * 'Tho black powder contains about forly per hondred of anarcoline, whieh it yields in fine crystals, by solution in boiling alcohol, and fillering while hot.

[^13]: * Or the sait which remains after the distillation of nitric aeid by sulphuric acitt,

[^14]: The ferro-cyanuret of potassium crystallizes in beautiful yellow rhomboidal masses witla thin bevelled edges, of slightly bitter tasse, inodorons, efflarescen1 at 110°, and losiug ail their water of cryslallization and falling into a white powder at 212°. The crystallized salt contains-

 $$
 \begin{aligned}
 & 1 \text { eq. Cyanide of Iron, }=54 \\
 & 2 \text { eqs. Cyanide of Polassium, } \quad . \quad . \quad . \quad=132 \\
 & 3 \text { eqs. Water, }=27
 \end{aligned}
 $$

