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The genus Aspergillus contains etiologic agents of aspergillosis. The clinical manifestations
of the disease range from allergic reaction to invasive pulmonary infection. Among the
pathogenic aspergilli, Aspergillus fumigatus is most ubiquitous in the environment and is
the major cause of the disease, followed by Aspergillus flavus, Aspergillus niger, Aspergillus
terreus, Aspergillus nidulans, and several species in the section Fumigati that morphologi-
cally resemble A. fumigatus. Patients that are at risk for acquiring aspergillosis are those with
an altered immune system. Early diagnosis, species identification, and adequate antifungal
therapy are key elements for treatment of the disease, especially in cases of pulmonary
invasive aspergillosis that often advance very rapidly. Incorporating knowledge of the
basic biology of Aspergillus species to that of the diseases that they cause is fundamental
for further progress in the field.

Invasive aspergillosis (IA) is one of the most
serious clinical invasive fungal infections, re-

sulting in a high case-fatality rate among im-
munocompromised patients (Lin et al. 2001).
The disease is caused by saprophytic molds in
the genus Aspergillus. Established by Micheli in
1729, the genus Aspergillus was created to ac-
commodate an asexual fungus that produces
spore chains or columns radiating from central
structures. As a priest, Micheli recognized the
resemblance of the spore-forming structures
with that of the aspergillum (holy water sprin-
kler), and therefore applied the name Aspergil-

lus to the fungus. More than 100 years later,
Aspergillus fumigatus, the most important path-
ogenic species of the genus, was described by
Fresenius (1863), and the role of aspergilli in
human disease was first recognized by Virchow
in 1856 (Virchow 1856). Virchow noticed the
similarity between the aspergilli described from
cases of animal infections and those he had
observed in human disease. IA was later first
recognized by Rankin, when he reported dis-
seminated aspergillosis in a patient with aplas-
tic anemia (Rankin 1953). For the subsequent
60 years, the number of cases of IA increased
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substantially because of an increase in the num-
ber of immunocompromised patients, such
as those with malignancies, AIDS, solid organ
transplantation (SOT), and those patients re-
ceiving immunosuppressive treatments for
countless underlying conditions (Denning 1998;
Kontoyiannis and Bodey 2002; Marr et al.
2002a).

MYCOLOGY

Taxonomy and Nomenclature of the
Pathogenic Aspergillus Species

The genus Aspergillus is characterized by the
formation of flask-shaped or cylindrical phi-
alides either in a single or double series on the
surface of a vesicle at the apex of a conidiophore
(Raper and Fennell 1965). Conidia are decidu-
ous and globose, oblong to elliptical in shape,
and present various colors. In 1926, Thom and
Church assembled all available information on
Aspergillus in a monograph (Thom and Church
1926). In 1965, Raper and Fennell expanded this
work by adding many new species and provided
descriptions of the species classified into 18
informal groups (Raper and Fennell 1965). In
1985, Gams and coinvestigators revised the
groups and assigned them to 18 sections as a
formal taxonomic status (Gams et al. 1985).
Currently, there are approximately 250 species
assigned to 17 sections in the family Aspergilla-
ceae (Houbraken and Samson 2011) and this
number will continue to grow as new species
are described. The major species known to cause
disease in humans are found in five Aspergillus
sections: Fumigati, Flavi, Nigri, Terrei, and Ni-
dulante. The most common species causing
invasive disease is A. fumigatus in the section
Fumigati. Aspergillus flavus (section Flavi), As-
pergillus niger (section Nigri), and Aspergillus
terreus (section Terrei) are secondary to A. fumi-
gatus as etiologic agents in SOTand hematopoi-
etic stem cell transplantation (HSCT) recipients
as well as patients with leukemia (Perfect et al.
2001; Marr et al. 2002a; Pagano et al. 2010; Pap-
pas et al. 2010). Aspergillus nidulans (section
Nidulante) rarely causes IA in immunocompro-
mised patients, but is a common etiology of IA

in patients with chronic granulomatous disease
(CGD) (Cohen et al. 1981; Henriet et al. 2013).
A. fumigatus, A. flavus, and A. nidulans repro-
duce asexually and sexually, and their sexual
states have been described in the genus Neosar-
torya (O’Gorman et al. 2009), Petromyces (Horn
et al. 2009), and Emericella (Kwon-Chung and
Bennett 1992), respectively. Because the de-
scription of a sexual state merely completes the
characterization of the fungus that is usually al-
ready known (Kwon-Chung and Bennett 1992),
these names have been abandoned in 2013 as the
fungal nomenclatural rule was changed to use
only one name for one fungal species (Hawks-
worth et al. 2011). Sexual reproduction in het-
erothallic aspergilli, such as A. fumigatus and
A. flavus, requires two strains of compatible
opposite mating types. Sexual reproduction in
homothallic species, such as A. nidulans, is
accomplished by a single strain harboring the
two compatible mating-type loci required for
mating. In heterothallic or homothallic species,
mating produces ascospores, sexual spores
formed by meiosis, which are enclosed inside
sexual fruiting bodies called cleistothecia.
Most ascospores have a furrow or slit (Hou-
braken and Samson 2011).

A. fumigatus and Other Pathogenic Members
of Section Fumigati

The section Fumigati is of special interest to the
field of infectious diseases because this section
includes not only A. fumigatus but also 11 other
species as the etiologic agents of IA. Section
Fumigati is characterized by the formation of a
conidiophore with columnar conidial heads
consisting of flask-shaped vesicles, uniseriate
phialides, and long chains of conidia. Conidia
are bluish-green to pale green, generally hydro-
phobic, and have a size of 2.5–3.5 mm. It has
been estimated that A. fumigatus is the etiologic
agent of various forms of aspergillosis in more
than 200,000 patients a year (Brown et al. 2012).
It is unclear whether this estimate represents
only those caused by A. fumigatus or includes
its morphologically indistinguishable sister spe-
cies. Molecular diagnostic approaches have re-
vealed that there are at least 11 species that could
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easily be confused with A. fumigatus based on
their conidial morphology. Besides A. fumiga-
tus, the sister species Aspergillus udagawae (Neo-
sartorya udagawae), Aspergillus pseudofischeri
(Neosartorya pseudofischeri), Aspergillus lentu-
lus, Aspergillus felis, Aspergillus hiratsukae (Neo-
sartorya hiratsukae), Aspergillus fischeranus
(Neosartorya fischeri), Aspergillus viridinutans,
Aspergillus fumisynnematus, Aspergillus fumiga-
tiaffinis, Aspergillus novofumigatus, and Asper-
gillus laciniosa (Neosartorya laciniosa) have
been reported sporadically in cases of aspergil-
losis. Of these, A. udagawae, A. lentulus, and
A. pseudofischeri have been reported more fre-
quently (Padhye et al. 1994; Alcazar-Fuoli et al.
2008; Alhambra et al. 2008; Vinh et al. 2009b;
Gyotoku et al. 2012; Zbinden et al. 2012) than
the other eight species (Lonial et al. 1997;
Guarro et al. 2002; Yaguchi et al. 2007; Alca-
zar-Fuoli et al. 2008; Shivaprakash et al. 2009;
Vinh et al. 2009a; Barrs et al. 2013; Malejczyk
et al. 2013; Pelaez et al. 2013; Singh et al. 2013).
A sexual state (Neosartorya) was described in
nine of the 12 pathogenic species in the section
Fumigati (Samson et al. 2007; O’Gorman et al.
2009; Swilaiman et al. 2013). It could be that the
three asexual species, A. fumisynnematus, A. fu-
migatiaffinis, and A. novofumigatus, require
nonconventional growth conditions to undergo
the sexual cycle, as was the case with A. fumiga-
tus (O’Gorman et al. 2009).

ECOLOGY

Aspergillus species from section Fumigati as well
as the other four major aspergilli known to
cause disease in humans (A. nidulans, A. flavus,
A. terreus, and A. niger) are found in a wide
variety of substrata, including soil, compost
piles, fruits, organic debris, animals, and hu-
mans (Thom and Church 1918; Samson et al.
2007; Barrs et al. 2013). Although most of these
species are ubiquitous in the environment
(Raper and Fennell 1965), A. fumigatus remains
the major cause of IA. One reason for the prev-
alence of A. fumigatus as the main clinical cause
of aspergillosis is the exceedingly high abun-
dance of the species, with the average human
inhaling hundreds of airborne conidia daily

(Latgé 1999). A. fumigatus is more ubiquitous
than other aspergilli owing to their superior
ability to survive and grow in a wider range of
environmental conditions compared to other
species. In the saprophytic cycle, conidia re-
leased from conidiophores are readily dispersed
in the environment. Conidia remain dormant
until encountering the environmental condi-
tions that allow activation of their metabolism.
Once metabolically active, conidia swell and
germinate into hyphal filaments that grow
into mycelium and produce conidia bearing
fruiting structures (conidiophores) (Fig. 1).

Although A. fumigatus grows optimally at
37˚C, it can be isolated wherever soil and de-
caying vegetation reach temperatures ranging
between 12˚C and 65˚C, as well as pH between
2.1 and 8.8 (Jensen 1931). Owing to its pro-
nounced ability to tolerate high temperature,
self-heating compost piles are major environ-
mental sources (Latgé 1999; Kwon-Chung and
Sugui 2013). A. fumigatus also contains numer-
ous genes encoding glycosylhydrolases and ex-
tracellular proteinases in its genome, whose
products support the ability to grow success-
fully by degrading polysaccharides from plant
cells and acquiring nitrogen by degradation
of proteinacious substrates (Tekaia and Latgé
2005; Abad et al. 2010). Not only can A. fumi-
gatus grow on a wide variety of substrates, but it
can also tolerate stresses imposed by freezing or
dehydration for prolonged periods (Kozakie-
wicz and Smith 1994). Furthermore, conidia
of A. fumigatus disperse more readily than
most other aspergilli because of the notorious
hydrophobicity of A. fumigatus conidia (Bayry
et al. 2012). The ubiquitous nature of A. fumi-
gatus is also partly because of its ability to pro-
duce potent secondary metabolites and abun-
dant efflux pumps that serve as defense systems
(Kwon-Chung and Sugui 2013).

LABORATORY IDENTIFICATION
AND BIOLOGY

Identification of the Aspergillus species is based
on a combination of biotype and genotype. A
biotype involves cultural and morphological
characteristics, whereas a genotype is defined
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by the sequences of certain genes. Etiologic
agents of aspergillosis are typically very distinct
in their appearance; thus the biotype (shape,
size, and color of the conidial head, thermotol-
erance, etc.) is a good indicator of their identity.
For example, the bluish-green color of A. fumi-
gatus conidial heads is clearly distinct from the
yellowish-green, tan, dark green, or black conid-
ial heads of A. flavus, A. terreus, A. nidulans, and
A. niger, respectively (Fig. 2). In instances in
which differences in the color of conidial heads
are not clear, other characteristics can be helpful
in species identification. For example, A. nidu-
lans possesses deep green conidial heads, which

might be mistaken for the bluish-green color
from A. fumigatus (Fig. 2). Unlike A. fumigatus,
however, A. nidulans conidia are produced by
biseriate phialides. The presence of Hülle cells
enclosing the cleistothecia produced by A. ni-
dulans can also serve as a differential marker.
Hülle cells are thick-walled, variously shaped,
cells that often encase cleistothecia (Raper and
Fennell 1965; Kwon-Chung and Bennett 1992).
Conidial size can also aid in the identification
of some species. A. fumigatus, A. terreus, and
A. nidulans all have conidia ranging from 2 to
3.5 mm, whereas conidia from A. flavus and
A. niger are larger (3–5 mm) (Raper and Fennell

(4) Hyphal extension

(3) Conidial swelling
and germination

(1) Conidial head

Pathogenic
cycle

(6) Inhalation of
airborne conidia

Ciliated
cells

Conidia

Basement
membrane

(7) Conidial germination
and hyphal extension

in the lungs

(8) Invasive growth in lungs

(9) Colony
(2) Conidia released
from conidiophores

(5) Conidia released
from conidiophores

5 µm

5 µm

5 µm

Saprophytic
cycle

Figure 1. Saprophytic and pathogenic cycles of A. fumigatus. Saprophytic cycle: (1) A. fumigatus conidial head
bearing conidia (spores). (2) Mature conidia are highly hydrophobic and readily dispersed. (3) On germination,
conidia swell and germinate into hyphal filaments. (4) Extension of hyphal filaments forms an interwoven net
called mycelia. Pathogenic cycle: (5) and (6) Airborne conidia are constantly inhaled by humans. (7) In severely
immunosuppressed patients, conidia may escape from host defenses and grow invasively. (8) Extensive hyphal
growth in the lungs of an immunocompromised patient. (9) Colony growth.
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1965). Although differences in biotype can of-
ten be sufficient to distinguish A. fumigatus
from other aspergilli, identification should be
confirmed by their genotype. Internal tran-
scribed spacer (ITS) sequences, along with oth-
ers such as fungal sequences from the genes
MCM7, TSR1, RPB1, and RPB2, are useful for
species identification (White et al. 1990; Peter-
son 2008; Schmitt et al. 2009).

Although differentiation between A. fumi-
gatus and the pathogenic species from other
sections of Aspergillus is relatively straightfor-
ward because of their distinct morphology, dif-
ferentiation between A. fumigatus and its sister
species becomes difficult because of their mor-
phological resemblance. In fact, relying solely
on morphological characteristics has led to mis-
identification of several of the sister species.
One of the first clues suggesting misidentifica-
tion of the sister species was the extensive aerial
hyphal growth with delayed and sparser coni-
diation on agar compared to the fast and abun-
dant production of conida in A. fumigatus.
Thermotolerance is another key biotype that

can aid in the differentiation of A. fumigatus
from its sister species. Whereas A. fumigatus is
able to grow at 50˚C but not at 10˚C, the sister
species are generally able to grow at 10˚C but
not at 50˚C (Samson et al. 2007; Sugui et al.
2010; Posteraro et al. 2011; Barrs et al. 2013).
Compared to biotype analysis, which requires a
few days to weeks before the characteristic fruit-
ing structures are produced, genotype analysis
can be performed as soon as the species grows
efficiently to allow DNA isolation. The ITS se-
quence is reliable in determining the Aspergillus
sections, but lacks variability in species identi-
fication within the section Fumigati. Alterna-
tively, the sequences from the genes encoding
b-tubulin, rodlet A, and calmodulin are more
suitable for the distinction between A. fumiga-
tus and its sister species (Samson et al. 2007). A
minimum of 99% sequence identity is the typ-
ical threshold adopted for species determina-
tion in Aspergillus.

Aspergillus species differentiation can be
clinically important for antifungal treatment se-
lection. Two studies analyzing the minimal in-

Aspergillus fumigatus

Aspergillus flavus Aspergillus niger

Aspergillus terreus Aspergillus nidulans

Figure 2. Major pathogenic species of Aspergillus. A. fumigatus, A. terreus, A. nidulans, A. flavus, and A. niger were
inoculated on Czapek-Dox agar and grown at 37˚C.
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hibitory concentration (MIC) distribution of
more than 5000 isolates, including A. fumigatus,
A. flavus, A. niger, A. terreus, and A. nidulans,
showed that some species are significantly more
susceptible to amphotericin B, itraconazole, or
voriconazole (Espinel-Ingroff et al. 2010, 2011).
In the case of A. pseudofischeri and A. udagawae
in the section Fumigati, susceptibility to am-
photericin B and itraconazole is somewhat con-
troversial. For voriconazole, on the other hand,
there is a general consensus that these species
are less susceptible than A. fumigatus (Balajee
et al. 2006; Vinh et al. 2009b; Posteraro et al.
2011). The variable susceptibility to antifungals
may have contributed to the different out-
comes observed in patients; although treatment
with antifungals was effective in several cases
with A. pseudofischeri and A. udagawae, fungal
growth was uncontrolled in other cases despite
antifungal treatment (Coriglione et al. 1990;
Summerbell et al. 1992; Jarv et al. 2004; Ghe-
bremedhin et al. 2009; Vinh et al. 2009b; Poster-
aro et al. 2011; Gyotoku et al. 2012; Toskova
et al. 2013). A. lentulus is overall less susceptible
than A. fumigatus to amphotericin B, itracona-
zole, and voriconazole based on its high MICs
(Balajee et al. 2006; Alcazar-Fuoli et al. 2008;
Symoens et al. 2010). These in vitro suscep-
tibilities correlate, to some extent, with the
findings in clinical settings. Death of a signifi-
cant number of patients infected by A. lentulus,
despite treatment with antifungals, substanti-
ates that A. lentulus is more refractory to anti-
fungal agents than A. fumigatus (Alhambra et al.
2008; Montenegro et al. 2009; Zbinden et al.
2012).

PATHOGENESIS

One of the most relevant questions in under-
standing the pathobiology of A. fumigatus is
identifying virulence determinants. This is com-
plicated because of the redundancyof genes with
the same functions, pleiotropic effects of several
genes, and complex enzymatic systems encoded
by gene clusters. Moreover, as a successful sap-
rophyte, A. fumigatus does not possess any par-
ticular set of virulence factors. According to the
classical definition of “virulence factors,” which

includes genes that affect virulence but are dis-
pensable for normal growth, only a few genes/
molecules fulfill these requirements. Two of
these factors are conidial melanin and gliotoxin.
A. fumigatus does not require either of these
two factors for growth; however, loss of conidial
melanin rendered A. fumigatus nearly avirulent
when inoculated intravenously in BALB/c mice
(Tsai et al. 1998) and, in the absence of gliotoxin
synthesis, virulence was reduced in a host im-
mune-status dependent manner. Reduced viru-
lence was observed in non-neutropenic mice
immunosuppressed with hydrocortisone (Su-
gui et al. 2007; Spikes et al. 2008) but not in
neutropenic mice immunosuppressed with cy-
clophosphamide and cortisone (Cramer et al.
2006; Kupfahl et al. 2006). Melanin and glio-
toxin are part of the fungal defense system to
survive in an extreme environment, such as in
soil in which thousands of microorganisms co-
habit. To a certain degree, such a defense system
may also protect aspergilli in the host environ-
ment (Kwon-Chung and Sugui 2013).

As an opportunistic pathogen, nearly all
published A. fumigatus mutant strains defective
in genes responsible for its normal growth
through proper hyphal extension exhibit a vir-
ulence defect in murine models. However, it is
clear that not every A. fumigatus mutant strain
with an in vitro growth defect displays a viru-
lence defect. Similar to in vitro growth, lung
fungal burden has been repeatedly directly cor-
related to virulence in the murine model of IA.
Several of these genes can be considered as vir-
ulence factors because they are crucial for fungal
establishment within nutrient-limited host tis-
sue. For instance, iron and zinc are of prime
importance for A. fumigatus growth. Conse-
quently, genes encoding proteins involved in
acquisition of these two metals are indispens-
able for A. fumigatus to cause disease (Moreno
et al. 2007; Haas 2012; Moore 2013). The calci-
neurin signaling pathway is another example of
a system that is required for normal growth and
that deeply impacts virulence of A. fumigatus
(Steinbach et al. 2007). Deletion of the cnaA
gene encoding the catalytic subunit calcineurin
A affects the extension process of hyphal fila-
ments. Without the ability to extend, hyphal
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invasion of the host tissue and virulence is com-
promised; thus, even if the fungus is able to
withstand host defenses it will not cause IA. In
fact, virulence of a cnaA deletion mutant in a
murine model was greatly reduced compared to
the wild-type strain (Steinbach et al. 2006; da
Silva Ferreira et al. 2007). In general, the array of
genes and molecules associated with A. fumiga-
tus virulence can be classified based on their
involvement in specific biological processes.
Thermotolerance, cell-wall composition and
maintenance, defense against host immune re-
sponse, toxin production, and nutrient uptake
during host invasion are just some examples of
the processes involved (Fig. 3). The importance
and the role of genes involved in these processes
in A. fumigatus pathogenesis have been exten-
sively reviewed (Hohl and Feldmesser 2007; As-
kew 2008; Abad et al. 2010; Sales-Campos et al.
2013).

The epithelium is the first point of contact
for fungal conidia within the lung and repre-
sents an important surface of interaction. De-
spite this, the interactions between epithelial
cells and A. fumigatus remain poorly under-
stood (Svirshchevskaya et al. 2012). It has been
reported that epithelial cell lines, such as A549,
are able to internalize conidia readily, whereas
primary cell lines are not. A major innate im-
mune response to inhaled conidia is the synthe-
sis of proinflammatory cytokines, such as IL-8,
Granulocyte macrophage colony-stimulating
factor, and the proapoptotic factor tumor ne-
crosis factor-a. Inhibition of apoptosis, which
has been regarded as a mechanism by which a
pathogen overcomes host defense, has been
shown to be specifically induced by conidia. In
addition, conidia are in contact with many dif-
ferent fungicidal factors present in the upper
layer of the mucous epithelium. Among them,

Cell wall Thermotolerance Germination

Invasion

10 µm

Nutrition
acuM
areA

sidA, sidC, sidD, sidF
zafA

Toxins
gliP
laeA

Response to stress
cat1, cat2

cycA
ireA
pes1

ppoA, ppoB, ppoC
sebA
srbA

afmnt1
cgrA

Signaling and metabolism regulation

afpig-a
ags3

alb1/pks
chsC, chsG

ecm33
glfA
gel2

ace2
cnaA
cpcA
crzA
dvrA
gpaB
mcsA
medA
pkaC1
pkaR

rasA, rasB
rhbA

Figure 3. Select genes associated with A. fumigatus virulence. The listed genes interfere with various aspects of
A. fumigatus survival, growth, and response to host defenses. Growth stages of A. fumigatus inside of lungs of
mice immunosuppressed with hydrocortisone are represented. Fungal cells were stained with Grocott’s methe-
namine silver stain. This list includes: genes controlling the cell wall (Mellado et al. 1996; Langfelder et al. 1998;
Tsai et al. 1998; Mouyna et al. 2005; Maubon et al. 2006; Romano et al. 2006; Li et al. 2007; Schmalhorst et al.
2008), signaling and metabolism regulation (Panepinto et al. 2003; Krappmann et al. 2004; Liebmann et al. 2004;
Fortwendel et al. 2005, 2012; Steinbach et al. 2006; Zhao et al. 2006; da Silva Ferreira et al. 2007; Cramer et al.
2008; Ibrahim-Granet et al. 2008; Soriani et al. 2008; Ejzykowicz et al. 2009, 2010; Gravelat et al. 2010),
thermotolerance (Bhabhra et al. 2004; Wagener et al. 2008), nutrition (Hensel et al. 1998; Schrettl et al. 2004,
2007; Hissen et al. 2005; Moreno et al. 2007; Liu et al. 2010), toxin genes (Bok et al. 2005; Sugui et al. 2007; Spikes
et al. 2008), and response to stress (Paris et al. 2003; Tsitsigiannis et al. 2005; Reeves et al. 2006; Willger et al. 2008;
Feng et al. 2011; Dinamarco et al. 2012; Grahl et al. 2012).
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the most active factors are the surfactant pro-
teins SPA and SPD, the pentraxin-3-ficolin
complexes, and the b-defensins (Okamoto et
al. 2004; Alekseeva et al. 2009; Madan et al.
2010; Ma et al. 2013).

After A. fumigatus conidia bypass mucocilli-
ary clearance and epithelial defenses, they reach
the lower airways (Cohen et al. 2011). Conidia
that reach the alveoli are unable to withstand the
immune assault mounted by normal hosts and
are effectively removed by innate immune cells
(Tekaia and Latgé 2005). When they reach the
alveoli, conidia are phagocytosed by alveolar
macrophages. Although these conidia present
several antigens and allergens, it remained an
enigma as to why airborne conidia do not con-
tinuously activate host innate immune cells and
induce detrimental inflammatory responses fol-
lowing their inhalation. This mystery was solved
when it was shown that the hydrophobin layer
organized in a rodlet configuration on the sur-
face of the dormant conidia imparts immuno-
logical inertness. This was shown using conidia
that were lacking the rodlet protein (RodAp)
after it had been removed biologically (germ
tube), chemically (hydrofluoric acid treatment,
HF), or genetically (rodA mutant) (Aimanianda
et al. 2009). For example, in contrast to wild-
type conidia, and despite being dormant, co-
nidia of the DrodA mutant and HF-treated
conidia that lack RodAp but have exposed im-
munogenic determinants induced significant
up-regulation of cytokines as well as costimula-
tory and antigen presenting molecules on hu-
man dendritic cells. The immunosilencing role
of the surface hydrophobins is not only seen in
A. fumigatus but is a common feature of all ae-
rial airborne molds. Considering the fact that
dormant conidia are ubiquitous in the atmo-
sphere, the inert nature of the hydrophobin rod-
let layer makes teleological sense, as it prevents
undue and exacerbated host response by innate
immune cells, and hence avoids inflammation
and host damage (Aimanianda et al. 2009).
Once internalized by macrophages, microbes
are usually killed by reactive oxygen species
(ROS). In the case of A. fumigatus, resting co-
nidia are extremely resistant to ROS. Although
this resistance is also caused by the presence of

hydrophobins, the most important defense
mechanisms against ROS are the underlying lay-
er of melanin (Heinekamp et al. 2013) that scav-
enges host ROS in a more efficient way than the
classical catalases and superoxide dismutases, as
well as the many antioxidant proteins controlled
by the transcriptional regulator Yap1 (Lessing
et al. 2007).

After phagocytosis, conidia germinate in-
side the phagolysosome (Ibrahim-Granet et al.
2003) and shed their rodlet layer that is then
degraded in the phagolysosome. The release of
the rodlets results in the exposure of polysaccha-
rides and immunogenic proteins that initiate
a proinflammatory response. In addition, the
melanin layer ruptures because of the internal
osmotic pressure resulting from conidial swell-
ing. Both events facilitate contact of host cells
with the fungal PAMPs and increase cell-wall
permeability to phagocyte toxic molecules. An-
other major consequence of this germination
process is the recruitment of the neutrophils to
the site of infection. Like alveolar macrophages,
neutrophils are professional phagocytes whose
function is essential to kill inhaled conidia as
well as germinating conidia. Killing is caused
by two different mechanisms: In the case of co-
nidia, it is an intracellular killing with granules
fusing to the phagolysosome; in the case of hy-
phae, neutrophils are able to secrete antifungal
compounds from their arsenal of toxic mole-
cules present in granules. However, with the ex-
ception of the ROS, the nature of the molecules
responsible for the killing remains unknown to
date. A recent discovery associated with the clus-
tering of the neutrophils with hyphae and other
immune cells has been the discovery of neutro-
phil extracellular traps (NETs) consisting of nu-
clear DNA decorated with antifungal proteins
(Urban et al. 2006). However, the efficacy of
hyphal killing by this extracellular mechanism
remains controversial (Bruns et al. 2010; Mc-
Cormick et al. 2010).

In the absence of sufficient pulmonary de-
fenses, because of either immunosuppression
that renders the human host neutropenic or
cortisone injection to fight graft versus host dis-
ease that results in deficient phagocytic defense,
conidia establish themselves in the lung and
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adapt their physiology to overcome the stress
imposed by the host environment. Because the
optimum temperature for conidial germination
and growth is between 37˚C and 45˚C, they
germinate readily into hyphae by 6–8 h in
mammalian tissue (McDonagh et al. 2008).
During this early stage of germination, A. fumi-
gatus utilizes a highly coordinated gene expres-
sion program that allows adaptation to nutrient
deprivation, iron limitation, hypoxia, and other
unfavorable growth conditions in the host en-
vironment (McDonagh et al. 2008). Excessive
hyphal growth and dissemination follow in the
profoundly neutropenic host, leading to in-
creased risk of IA resulting in thrombosis and
hemorrhage (Fig. 1) (Hohl and Feldmesser
2007; Dagenais and Keller 2009).

CLINICAL PRESENTATIONS

Aspergillus species are relatively unique among
pathogens as they are responsible for a gamut of
infections extending across the clinical spec-
trum to include primary allergic reactions, sap-
rophytic involvement, and invasive disease. The
type of Aspergillus infection generally depends
on the immunologic background of the infected
host, with immunodeficient patients develop-
ing invasive disease, whereas immunoreactive
patients develop allergic disease. The most fre-
quently encountered clinical presentations in-
volve the lungs, such as acute or chronic IA
and allergic bronchopulmonary aspergillosis
(ABPA). Other common infections caused by
Aspergillus include acute invasive or chronic si-
nusitis, cutaneous aspergillosis, aspergilloma,
and cerebral aspergillosis. In some immuno-
competent patients, inhalation of conidia could
result in nonpathogenic saprophytic coloniza-
tion; however, in the immunocompromised pa-
tient this conidial acquisition will likely result in
establishment of invasive disease (Tomee and
van der Werf 2001). The large burden of Asper-
gillus infections is sustained by immunocom-
promised individuals, including those who
have undergone HSCT, SOT, cancer patients,
patients with various congenital immune defi-
ciencies such as CGD, and patients treated for
autoimmune diseases (Richardson 2005).

Although cancer patients undergoing treat-
ment constitute the a majority of patients at
risk for Aspergillus infections, patients with
CGD have an estimated 33% lifetime risk of
IA, and IA may in fact be the first manifestation
of CGD. Although disease in a majority of pa-
tient groups is caused by either A. fumigatus or
A. flavus, most cases of A. nidulans infection
have been reported in patients with CGD (Co-
hen et al. 1981; Henriet et al. 2013). In addition
to differences in the epidemiology of specific
Aspergillus isolates, the clinical presentation in
patients with CGD is characterized by an insid-
ious onset of fatigue, fever, increased sedimen-
tation rate, and pneumonia (Segal et al. 1998).
In early disease, there is an acute neutrophilic
response in which the neutrophils surround
hyphae. However, in patients with CGD, the
hyphae remain intact owing to impaired neu-
trophil-mediated killing of hyphae.

Fungal sinusitis can manifest as allergic,
saprophytic, or invasive disease. Invasive Asper-
gillus sinusitis is likely underdiagnosed because
of its variable clinical presentation and diffi-
culty in establishing the diagnosis (Denning
1998; Ho and Yuen 2000; Marr et al. 2002b),
possibly owing to a decreased inflammatory re-
sponse in affected patients.

Aspergillus infections most commonly in-
volve the lungs, but disease can disseminate
via the bloodstream and involve distant organs.
One of the most frequent sites of dissemination
is the central nervous system (CNS) (Groll et al.
1996). There are studies that have estimated that
CNS aspergillosis may be found in 40%–50%
of patients with IA and acute leukemia or allo-
geneic stem cell transplant (Saugier-Veber et al.
1993; Jantunen et al. 2000).

Chronic aspergillosis is less frequently en-
countered than acute disease and the patient
population affected is typically distinct as well.
A degree of immune suppression does exist in
these patients and exposure to corticosteroids is
common. Underlying conditions include corti-
costeroid use for chronic lung disease, diabetes
mellitus, and alcoholism (Denning 1998).

ABPA occurs in asthmatic and cystic fibrosis
patients and is a pulmonary disease caused by
types I and III hypersensitivity reactions to
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A. fumigatus allergens. Exposure and inhalation
of Aspergillus conidia result in saprophytic
(noninvasive) colonization of the bronchial air-
ways, which then triggers an IgE-mediated al-
lergic inflammatory response. Over time, bron-
chial obstruction develops and patients can
present with productive cough, wheezing, and
chest pain; fever and malaise are also presenting
symptoms (Stevens et al. 2003). Treatment de-
pends on relieving inflammation via an extend-
ed course of systemic corticosteroids and anti-
fungal agents to decrease the fungal burden and
diminish the inciting stimulus for inflamma-
tion (Stevens et al. 2000; Caputo 2003; Conway
et al. 2004).

EPIDEMIOLOGY

IA was the most common mold infection in a
review of approximately 5500 patients who un-
derwent HSCT; although .7% of HSCT recip-
ients had mold infections, Aspergillus infections
were the most common, followed by Fusarium,
Mucorales, and Scedosporium infections (Marr
et al. 2002a). A large prospective French study
analyzed 424 cases of IA and found an incidence
of 0.9% in autologous and 8.1% in allogeneic
HSCT patients, respectively (Lortholary et al.
2011), highlighting a consistent finding that
IA occurs much more readily in the allogeneic
HSCT recipient. Among SOT recipients, the
highest incidence of IA was for heart transplant
recipients (4.8%), followed by lung (4.1%), and
significantly dropping for liver (0.8%) and kid-
ney (0.3%), findings that have also continued
throughout most other larger studies.

The Transplant Associated Infection Sur-
veillance Network (TRANSNET) study eval-
uated HSCT and SOT recipients from 23 U.S.
medical centers (2001–2005) and included eval-
uation of a total of 642 cases of IA (Baddley et al.
2010). The 12-month cumulative incidence of
IA in all HSCT recipients was 1.6%, compared
to 0.63% in SOT recipients. The 12-week all-
cause mortality was 57.5% among HSCT recip-
ients and 34.4% among SOTrecipients.

There is a well-characterized bimodal dis-
tribution of aspergillosis in HSCT recipients
that correlates with pre-engraftment neutrope-

nia (median of 16 d after transplantation) and
the peak of graft-versus-host disease (GVHD)
(median of 96 d after transplantation) (Wald
et al. 1997). This likely relates to the two major
mechanisms of protection against IA: alveolar
macrophages and granulocytes. Most patients
(86%) with autologous transplants were diag-
nosed with IA while neutropenic, whereas pa-
tients with allogeneic transplants were at great-
est risk after engraftment or during impairment
of cell-mediated immunity attributable to cyto-
megalovirus or GVHD (Wald et al. 1997).

DIAGNOSTIC STRATEGIES

The diagnosis of IA is often not straightforward.
The “gold standard” of tissue biopsy is often
considered too invasive and complicated by
bleeding in high-risk patients. Aspergillosis di-
agnosed by blood culture is rare (Girmenia et al.
2001). In general, the Aspergillus hyphal mass
that develops in the lumen during angioinva-
sion remains in place until the force of blood
flow causes hyphal breakage, which then allows
the mass to circulate. The likelihood of a blood
culture capturing these irregularly and infre-
quently discharged units is small. The difficulty
in detecting A. fumigatus in blood culture stands
in contrast to other angioinvasive filamentous
fungi (e.g., Fusarium species, Paecilomyces lila-
cinus, Scedosporium prolificans, Acremonium
species) that have the ability to discharge a
steady series of unicellular conidia into the
bloodstream that are more likely to be captured
in a blood sample. This ability to sporulate in
tissue and blood has been termed adventitious
sporulation (Schell 1995). As A. terreus also dis-
plays adventitious sporulation, histopathologic
examination of these spores can allow rapid,
presumptive identification of A. terreus. There-
fore, a positive blood culture with A. terreus or
another mold that shows adventitious sporula-
tion should not be ignored, whereas a positive
blood culture with other Aspergillus species
should be further evaluated.

Serological testing for antibodies to Asper-
gillus antigens is helpful to diagnose aspergil-
loma or allergic bronchopulmonary aspergil-
losis in immunocompetent individuals, but
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unfortunately serology plays little role for diag-
nosis in the immunocompromised patient be-
cause Aspergillus growth does not correlate with
an increase in anti-Aspergillus antibody titers
(Latgé 1999).

Galactomannan (GM) is a major cell-wall
component of Aspergillus and it is known that
the highest concentrations of GM are released
in the terminal phases of the disease (Latgé
1999). An enzyme-linked immunosorbent as-
say (ELISA) technique was introduced using a
rat anti-GM monoclonal antibody, EB-A2,
which recognizes the 1!5-b-D-galactofurano-
side sidechains of the GM molecule (Maertens
et al. 1999). A sandwich ELISA technique was
introduced in 1995 (Stynen et al. 1995), and by
using the same antibody as both a capture and
detector antibody in the sandwich ELISA (Pla-
telia Aspergillus, Bio-Rad, France), the thresh-
old for detection can be lowered to 1 ng/ml.
This technique is used in the current commer-
cially available GM assay for diagnosis of IA. In
a meta-analysis conducted to characterize the
clinical utility of GM assay, 27 studies were iden-
tified and overall the GM assay had a sensitiv-
ity of 71% and a specificity of 89% for proven
cases of IA as defined by the specific clinical
criteria (Pfeiffer et al. 2006). In patients with
hematologic malignancy or who have under-
gone HSCT, the assay was most useful but in
SOT recipients, the sensitivity and specificity
were 22% and 84%, respectively. Serial testing
at least twice a week is recommended (Denning
et al. 1997). Unfortunately, the galactomannan
assay has decreased sensitivity in the setting of
a patient receiving anti-Aspergillus (mold-ac-
tive) antifungals, although the specificity for
detection does not change (Marr et al. 2004).
Although GM has been extensively validated
in patients with hematologic malignancy and
those who have undergone HSCT, for unclear
reasons, GM appears less useful in SOT recipi-
ents. False-positive results with GM can hamper
its clinical utility and are seen in patients con-
currently receiving some b-lactam antibacteri-
als such as piperacillin-tazobactam, amoxicillin,
and amoxicillin-clavulanate.

(1,3)-b-D-glucan is an integral cell-wall
component and, in contrast to GM, is not nor-

mally released from the fungal cell (Latgé 1999).
Factor G, a coagulation factor of the horseshoe
crab, is a highly sensitive natural detector of
(1,3)-b-D-glucan (Obayashi et al. 1995). The
“G test,” which detects (1,3)-b-D-glucan via a
modified limulus endotoxin assay, is useful for
detection of fungi such as Aspergillus, Candida,
and even Cryptococcus; however, it does not
identify the genus of the fungi (Obayashi et al.
1995). A meta-analysis of cohort studies of
(1,3)-b-D-glucan for IA revealed that using a
single test resulted in a pooled sensitivity of
57% with a specificity of 97% (Lamoth et al.
2012). A study comparing galactomannan, po-
lymerase chain reaction, and (1,3)-b-D-glucan
on patients with hematological disorders and
the receiver-operating characteristic (ROC)
analysis showed an area under the ROC curve
that was greatest for the galactomannan assay,
using two consecutive positive results. This sug-
gests that the galactomannan was the most sen-
sitive at predicting the diagnosis of IA in high-
risk patients with hematological disorders (Ka-
wazu et al. 2004).

TREATMENT

Overall success in treating IA is dependent on
numerous factors, not simply the choice of a
specific antifungal therapy. As with all immu-
nocompromised patients, detailed knowledge
of host factors, underlying disease, concomitant
infections, and degree and duration of immu-
nosuppression are keys to overall treatment. It is
well known that immune reconstitution is par-
amount to successful IA therapy, whereas con-
tinued exposure to certain immunosuppressive
medications, such as corticosteroids, worsens
IA. Any antifungal prophylaxis used before the
diagnosis of IA could also have an effect on the
ultimate choice of targeted therapy. Although
the diagnostic work-up needs to be aggressive,
it should never delay antifungal therapy in the
setting of true concern for IA. As such, the cor-
nerstone of antifungal therapy for IA is prompt
and aggressive institution of antifungal therapy,
based not only on diagnostic tools but also on
clinical suspicion of infection. Antifungal resis-
tance is slowly and steadily increasing among
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Aspergillus isolates and continues to have spe-
cific geographic trends that could influence an-
tifungal choice. There is also the question of
using antifungal monotherapy or combination
antifungal therapy, and, if so, which classes of
agents. Finally, although immune reconstitu-
tion is paramount, the role and real benefit of
adjunctive immunotherapy remains somewhat
unclear.

Voriconazole is the preferred antifungal
agent for the primary therapy of IA. The global
clinical trial that led to its approval was a pro-
spective comparative study showing that vori-
conazole had a superior response rate in the
primary treatment of IA compared to ampho-
tericin B, 52.8% versus 31.6%, respectively
(Herbrecht et al. 2002). These and other studies
led to the very clear guideline recommendations
of the Infectious Diseases Society of America to
use voriconazole for the primary treatment of
IA (Walsh et al. 2008) in all clinical sites. Al-
though voriconazole is the guideline-recom-
mended first line agent for primary therapy of
IA, it is not completely clear when the alterna-
tive agents, such as amphotericin B lipid formu-
lations or echinocandins or the other triazoles
(posaconazole or itraconazole), should be used
in place of voriconazole. The most common
reason for using an alternative agent is refracto-
ry disease following primary antifungal therapy
and the need to transition to salvage therapy.

CONCLUSION

The clinical diseases caused by Aspergillus spe-
cies are diverse and often dependent on host
immune status. Although there are hundreds
of recognized Aspergillus species, it was origi-
nally thought that only a handful caused human
disease. However, the breadth of infecting spe-
cies is increasing as more and more sibling
species are identified. Accurate identification
is not only an interesting taxonomic phenome-
non, but clinically relevant as many of these
newly characterized species have unique and
potentially dire antifungal susceptibility pat-
terns. The Aspergillus field is rapidly advancing
on all fronts, including basic biology and labo-
ratory identification, fundamental pathogene-

sis, and fungal–host interactions, as well as
diagnostic and therapeutic challenges for im-
proved clinical outcome. This bodes well for
future advances to impact patient care and sur-
vival.
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Diamond RD, Latgé JP. 2003. Catalases of Aspergillus
fumigatus. Infect Immun 71: 3551–3562.

Pelaez T, Alvarez-Perez S, Mellado E, Serrano D, Valerio M,
Blanco JL, Garcia ME, Munoz P, Cuenca-Estrella M,
Bouza E. 2013. Invasive aspergillosis caused by cryptic
Aspergillus species: A report of two consecutive episodes
in a patient with leukaemia. J Med Microbiol 62: 474–
478.

Perfect JR, Cox GM, Lee JY, Kauffman CA, de Repentigny L,
Chapman SW, Morrison VA, Pappas P, Hiemenz JW, Ste-
vens DA, Mycoses Study Group. 2001. The impact of
culture isolation of Aspergillus species: A hospital-based
survey of aspergillosis. Clin Infect Dis 33: 1824–1833.

Peterson SW. 2008. Phylogenetic analysis of Aspergillus spe-
cies using DNA sequences from four loci. Mycologia 100:
205–226.

Pfeiffer CD, Fine JP, Safdar N. 2006. Diagnosis of invasive
aspergillosis using a galactomannan assay: A meta-anal-
ysis. Clin Infect Dis 42: 1417–1427.

Posteraro B, Mattei R, Trivella F, Maffei A, Torre A, De Ca-
rolis E, Posteraro P, Fadda G, Sanguinetti M. 2011. Un-
common Neosartorya udagawae fungus as a causative
agent of severe corneal infection. J Clin Microbiol 49:
2357–2360.

Rankin NE. 1953. Disseminated aspergillosis and moniliasis
associated with agranulocytosis and antibiotic therapy.
Brit Med J 183: 918–919.

Raper KB, Fennell DI. 1965. The genus Aspergillus. Williams
& Wilkins, Baltimore.

Reeves EP, Reiber K, Neville C, Scheibner O, Kavanagh K,
Doyle S. 2006. A nonribosomal peptide synthetase (Pes1)
confers protection against oxidative stress in Aspergillus
fumigatus. FEBS J 273: 3038–3053.

Richardson MD. 2005. Changing patterns and trends in
systemic fungal infections. J Antimicrob Chemother 56:
i5–i11.

Romano J, Nimrod G, Ben-Tal N, Shadkchan Y, Baruch K,
Sharon H, Osherov N. 2006. Disruption of the Aspergillus
fumigatus ECM33 homologue results in rapid conidial
germination, antifungal resistance and hypervirulence.
Microbiology 152: 1919–1928.

Sales-Campos H, Tonani L, Cardoso CR, Kress MR. 2013.
The immune interplay between the host and the patho-
gen in Aspergillus fumigatus lung infection. Biomed Res
Int 2013: 693023.

Samson RA, Hong S, Peterson SW, Frisvad JC, Varga J. 2007.
Polyphasic taxonomy of Aspergillus section Fumigati and
its teleomorph Neosartorya. Stud Mycol 59: 147–203.

Saugier-Veber P, Devergie A, Sulahian A, Ribaud P, Traore F,
Bourdeau-Esperou H, Gluckman E, Derouin F. 1993. Ep-
idemiology and diagnosis of invasive pulmonary asper-
gillosis in bone marrow transplant patients: Results of a 5
year retrospective study. Bone Marrow Transplant 12:
121–124.

Schell WA. 1995. New aspects of emerging fungal pathogens.
A multifaceted challenge. Clin Lab Med 15: 365–387.

Schmalhorst PS, Krappmann S, Vervecken W, Rohde M,
Muller M, Braus GH, Contreras R, Braun A, Bakker H,

Routier FH. 2008. Contribution of galactofuranose to the
virulence of the opportunistic pathogen Aspergillus fumi-
gatus. Eukaryot Cell 7: 1268–1277.

Schmitt I, Crespo A, Divakar PK, Fankhauser JD, Herman-
Sackett E, Kalb K, Nelsen MP, Nelson NA, Rivas-Plata E,
Shimp AD, et al. 2009. New primers for promising single-
copy genes in fungal phylogenetics and systematics. Per-
soonia 23: 35–40.

Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, Arst HN Jr,
Haynes K, Haas H. 2004. Siderophore biosynthesis but
not reductive iron assimilation is essential for Aspergillus
fumigatus virulence. J Exp Med 200: 1213–1219.

Schrettl M, Bignell E, Kragl C, Sabiha Y, Loss O, Eisendle M,
Wallner A, Arst HN Jr, Haynes K, Haas H. 2007. Distinct
roles for intra- and extracellular siderophores during As-
pergillus fumigatus infection. PLoS Pathog 3: e128.

Segal BH, DeCarlo ES, Kwon-Chung KJ, Malech HL, Gallin
JI, Holland SM. 1998. Aspergillus nidulans infection in
chronic granulomatous disease. Medicine (Baltimore) 77:
345–354.

Shivaprakash MR, Jain N, Gupta S, Baghela A, Gupta A,
Chakrabarti A. 2009. Allergic fungal rhinosinusitis
caused by Neosartorya hiratsukae from India. Med Mycol
47: 317–320.

Singh PK, Kathuria S, Agarwal K, Gaur SN, Meis JF,
Chowdhary A. 2013. Clinical significance and molecular
characterization of non-sporulating moulds isolated
from the respiratory tract of bronchopulmonary mycoses
patients with special reference to basidiomycetes. J Clin
Microbiol 51: 3331–3337.

Soriani FM, Malavazi I, da Silva Ferreira ME, Savoldi M, Von
Zeska Kress MR, de Souza Goldman MH, Loss O, Bignell
E, Goldman GH. 2008. Functional characterization of the
Aspergillus fumigatus CRZ1 homologue, CrzA. Mol Mi-
crobiol 67: 1274–1291.

Spikes S, Xu R, Nguyen CK, Chamilos G, Kontoyiannis DP,
Jacobson RH, Ejzykowicz DE, Chiang LY, Filler SG, May
GS. 2008. Gliotoxin production in Aspergillus fumigatus
contributes to host-specific differences in virulence. J In-
fect Dis 197: 479–486.

Steinbach WJ, Cramer RA Jr, Perfect BZ, Asfaw YG, Sauer
TC, Najvar LK, Kirkpatrick WR, Patterson TF, Benjamin
DK Jr, Heitman J, et al. 2006. Calcineurin controls
growth, morphology, and pathogenicity in Aspergillus
fumigatus. Eukaryot Cell 5: 1091–1103.

Steinbach WJ, Reedy JL, Cramer RA Jr, Perfect JR, Heitman
J. 2007. Harnessing calcineurin as a novel anti-infective
agent against invasive fungal infections. Nat Rev Micro-
biol 5: 418–430.

Stevens DA, Schwartz HJ, Lee JY, Moskovitz BL, Jerome DC,
Catanzaro A, Bamberger DM, Weinmann AJ, Tuazon CU,
Judson MA, et al. 2000. A randomized trial of itracona-
zole in allergic bronchopulmonary aspergillosis. N Engl J
Med 342: 756–762.

Stevens DA, Moss RB, Kurup VP, Knutsen AP, Greenberger P,
Judson MA, Denning DW, Crameri R, Brody AS, Light
M, et al. 2003. Allergic bronchopulmonary aspergillosis
in cystic fibrosis—State of the art: Cystic Fibrosis Foun-
dation Consensus Conference. Clin Infect Dis 37: S225–
S264.

Stynen D, Goris A, Sarfati J, Latgé JP. 1995. A new sensitive
sandwich enzyme-linked immunosorbent assay to detect

J.A. Sugui et al.

16 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a019786

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg

 on April 23, 2024 - Published by Cold Spring Harbor Laboratory Press http://perspectivesinmedicine.cshlp.org/Downloaded from 

http://perspectivesinmedicine.cshlp.org/


galactofuran in patients with invasive aspergillosis. J Clin
Microbiol 33: 497–500.

Sugui JA, Pardo J, Chang YC, Zarember KA, Nardone G,
Galvez EM, Mullbacher A, Gallin JI, Simon MM,
Kwon-Chung KJ. 2007. Gliotoxin is a virulence factor
of Aspergillus fumigatus: gliP deletion attenuates viru-
lence in mice immunosuppressed with hydrocortisone.
Eukaryot Cell 6: 1562–1569.

Sugui JA, Vinh DC, Nardone G, Shea YR, Chang YC, Ze-
lazny AM, Marr KA, Holland SM, Kwon-Chung KJ. 2010.
Neosartorya udagawae (Aspergillus udagawae), an emerg-
ing agent of aspergillosis: How different is it from Asper-
gillus fumigatus? J Clin Microbiol 48: 220–228.

Summerbell RC, de Repentigny L, Chartrand C, St Germain
G. 1992. Graft-related endocarditis caused by Neosar-
torya fischeri var. spinosa. J Clin Microbiol 30: 1580–1582.

Svirshchevskaya E, Zubkov D, Mouyna I, Berkova N. 2012.
Innate immunity and the role of epithelial barrier during
Aspergillus fumigatus infection. Curr Immunol Rev 8:
254–261.

Swilaiman SS, O’Gorman CM, Balajee SA, Dyer PS. 2013.
Discovery of a sexual cycle in Aspergillus lentulus, a close
relative of A. fumigatus. Eukaryot Cell 12: 962–969.

Symoens F, Haase G, Pihet M, Carrere J, Beguin H, Degand
N, Mely L, Bouchara JP. 2010. Unusual Aspergillus species
in patients with cystic fibrosis. Med Mycol 48: S10–S16.
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