Bog People

Hanged with a leather cord and cast into a Danish bog 2,300 years ago, Tollund Man was probably a sacrifice. Like other bodies found preserved in Europe's peat bogs, he poses haunting questions.

BRYOPHYTES

- •The bryophytes includes the liverworts, hornworts, and mosses
- •Found in dry or wet, and warm or cold habitats
- •Mostly terrestrial, some aquatic
- •Sensitive to air pollution

The relationship of Bryophytes to other groups

- •They are transitional between charophycean green algae and vascular plants
- •Along with charophycean algae the bryophytes are characterized by:
 - •Chloroplasts with grana
 - Assymetrical motile cells
 - •Breakdown of nuclear envelope during mitosis
 - •Presence of phragmoplast
 - •Oogamous sexual reproduction
 - •Zygotes retained within the parental thallus
 - •Cells covering the zygotes and involved in transport of sugars to zygotes

- •Bryophytes and vascular plants share:
 - •Presence of male and female gametangia (antheridia and archegonia) with protective layer or sterile jacket layer
 - •Retention of both the zygote and the developing multicellular embryo, or young sporophyte within the archegonium on the female gametophyte
 - •Presence of a multicellular diploid sporophyte with spores
 - •Multicelluar sporangia consisting of a sterile jacket layer and internal spore-producing (sporogenous) tissue
 - •Meiospore with walls containing sporopollenin
 - •Tissues produced by an apical meristem

These features are not share with charophycean algae thus, bryophytes and vascular plants are classified together in the kingdom Plantae

Comparative structure and reproduction of bryophytes

- •Gametophytes are notable
- •Some bryophytes are "thalloid"
- •With surface pores, analogues to stomata
- •Other bryophytes are "leafy"
- •With leaf-like and stem-like features
- •"Cuticle" also present
- •Rhizoids: unicellular or multicellar
- •Cells with plasmodesmata
- •Cells with many small, disk-shaped plastids
- •Hornworts with only a single large plastid

Sperm are the only flagellated cells produced by bryophytes, and they require water to swim to the egg

- Asexual reproduction by fragmentation
- •Gemmae
- •Sperm are the only flagellated cells (no zoospores)
- •Sexual reproduction with antheridia and archegonia
- Male and female gametophytes
- •Antheridium with a sterile jacket layer and spermatogenous cells
- •Each spermatogenous cell forms a single biflagellated sperm
- Archegonia have a long neck and a swollen base or venter with a single egg
- •Neck canal cells disintegrate to form a tube before fertilization

- •The zygote remain in the archegonium where it receives food from the gametophyte (matrotrophy)
- •Placenta with highly branched transfer cells
- •Food transfer is apoplastic (without plasmodesmata)
- •Zygote develops into an embryo
- •Embryo develops into a sporophyte
- •Venter develops into a calyptra
- •Mature sporophyte consists of a foot, seta, and capsule or sporangium

The term "Embryophytes" is an appropriate synonym for Plants

- All embryophytes contain a multicellular, matrotrophic embryo, from bryophytes through angiosperms
- The advantage of matrotrophy and the plant placenta is that they fuel the production of a many-celled diploid sporophyte
- These cells can be used to produce many genetically diverse haploid spores upon meiosis in the sporangium
- Production of greater numbers of spores per fertilization event
 compensate for low fertilization rates when water become scarce

Throughout the evolutionary history of plants, there is a tendency for sporophytes to become increasingly larger in relation to the gametophytic generation

The sporopollenin walls of bryophytes have survival value

- •Spores with sporopollenin to avoid bacterial degradation and drought
- •Spores germinate into protonemata

- •Bryophytes are classified in three phyla
 - •Liverworts: Phylum Marchantiophyta
 - •Mosses: Phylum Bryophyta
 - •Hornworts: Phylum Anthocerotophyta

LIVERWORTS: PHYLUM MARCHANTIOPHYTA

- •5200 species
- •Many terrestrial, some aquatic
- "Liverwort" refers to liver shape
- "Doctrine of Signatures"
- •Gametophytes develop from spores
- •Some may develop from a protonema-like
- •Two clades
 - •Complex thalloid liverworts with internal differentiation
 - •Leafy liverworts

Complex Thalloid Liverworts include *Riccia*, *Ricciocarpus*, and *Marchantia*

- •Found on moist and shaded banks
- •Thallus is 10-30 cells in thickness
- •Differentiated into a thin chlorophyllrich upper portion and a colorless lower portion
- Lower surface bears rhizoids and scales
- •Upper surface with a large pore above a air chamber
- •Sporophyte in *Riccia* and *Ricciocarpus* is simple

ALA BARABAR

- Marchantia is dichotomously branched
- •Gametangia on specialized structures or gametophores or gametangiophores
- •Gametophytes are unisexual
- •Antheridia are born on antheridiophores
- •Archegonia are born on umbrella-like archegoniophores
- •Sporophyte consists of a foot, a short seta, and a capsule
- •Spores are mixed with hygroscopic elaters
- •Fragmentation is common for asexual reproduction
- •Gemma cups are also present

Life cycle of Marchantia

Leafy liverworts have a distinctive leaf structure and/or arrangement

- •More than 4000 species
- •Abundant in tropical rain forests
- •Leaves with a single layer of cells
- •Leaves are arranged in two rows of equal-sized leave and a third row of smaller leaves on the lower surface
- •Antheridia on a short branch called androecium
- •Sporophyte surrounded by a tubular sheath known as perianth

Systematics of Marchantiophyta

1. Marchantiales

- 95 Genera and 2000 spp
- Thallose or blade like, flat, dorsiventral Internal differentiation (chlorenchyma, parenchyma, air chambers)
- Sporophyte compact with no seta
- Sporangium with one-layered wall

Marchantia

2. Sphaerocarpales

- Delicate gametophytes, no pores or air chambers
- 2 genera and 20 spp

- Sphaerocarpus
- On soil during fall-winter-spring
- Thallus bilateral with a midportion several cells thick and lateral monostromatic leaflike wings
- No internal differentiation
- Dimorphic with antheridia and archegonia
- Riella
- Submerged aquatic with asymmetrical body
- Erect branched axis with a lateral *Ulva*-like monostromatic wing
- Archegonia surrounded by involucres

3. Monocleales

- One genus, *Monoclea* and 2 spp
- Largest liverwort
- Thallose, with a histologically homogeneous tissue, no air chambers
- Associated with fungi
- Antheridia in moundlike receptacles
- Archegonia covered by an involucrelike flap
- Sporophyte with an elongated seta!

4. Metzgeriales

- 20 genera and 550 spp
- Simple thallose genera that lack air chambers, air pores, ventral scales and pegged rhizoids
- Antheridia and archegonia sessile on the gametophyte
- Sporophyte with elongated seta
- Anacrogynous: Apical cell does not become an archegonium and the growth of the branch can continues after the sex organs have matured

5. Jungermanniales

- Largest order, 180 genera and 7500 spp
- "Leafy liverworts"
- Dorsiventral with axes with two rows of delicate, monostromatic lateral leaves and often a third row of ventral leaves (amphigastria)
- Cell with oil bodies
- Leaves incubous (lower portion of a leaf is overlapped by the upper portion of the next older leaf below it) or succubous (upper portion of a given leaf is overlaid by the lower portion of the next young leaf, just above it

Incubous and Succubous

6. Takakiales

- One genus and 2 spp
- Simple plant with erect delicate branching axes
- No rhizoids but associated with fungi
- Smaller branches often called "phillids" and resembling leaves
- Either a primitive plant or a highly reduced liverwort!
- With non-living conducting cells with pores!

MOSSES: PHYLUM BRYOPHYTA

- •There are several classes
 - •Sphagnidae, the peat mosses
 - •Andreaeidae, the granite mosses
 - •Bryidae, the true mosses
- •Peat and granite mosses diverged earlier
- •Bryidae includes most of the moss species
- •10,000 species of Bryidae

Peat mosses belong to the class Sphagnidae

- •One genus, *Sphagnum*
- •400 species
- •Known from 290 mya
- •In wet areas from bog regions
- •Ecologically and economically important
- •Antheridia and archegonia at ends of special branches
- •Sporophytes are blackish-brown
- •Capsules on a stalk or pseudopodium (gametophytic)
- •Ballistic spore discharge through a lidlike operculum
- •Fragmentation is common

Three features distinguish the Sphagnidae from other mosses

- •Unusual protonema:
 - •Plate of cells with peripheral meristem
- •Gametophyte morphology:

•Leaves one cell thick with two type of cells (large dead cells

and small living cells)

•Explosive operculum

The ecology of Sphagnum is of worldwide importance

- Peatlands with Sphagnum occupy 1% of the world (half the size of USA)
- Peats store lots of carbon
- Highly absorbent and impregnated with antiseptic phenol compounds
- Contribute to the acidity of the area
- Widely used as dressing for wounds, packing material, and soil additive
- It is also burned as industrial fuel and domestic heating
- Ecological concern from overharvesting Sphagnum peatlands

Granite mosses belong to the Class Andreaeidae

- •With 2 genera: *Andreaea* and *Andreaeobryum*
- Andreaea consists of 100 spp of small dark and tufted mosses found on Arctic granitic rocks
- •Andreaobryum (1 sp) is found in NW Canada and Alaska on calcareous rocks
- •Protonema with two or more rows of cells
- •Rhizoids with two rows of cells
- •Capsules open through 4 slits but remain apically attached

"True Mosses" belong to the class Bryidae

- •Includes most of the species of mosses
- •Protonemata with single row of cells and slanted cross walls
- •Leafy gametophytes appear from minute budlike structures on protonemata
- •Tissues specialized for water and food conduction
- •Hadrom: central water conducting tissue with cells called hydroids (dead cells with no lignin)
- •Leptom: food-conducting tissue with cells named leptoids
- •Conducting cells similar to fossil protracheophytes

Sexual reproduction in Mosses is similar to that of other Bryophytes

- •Involves the production of male and female gametangia, an unbranched matrotrophic sporophytes, and specialized spore dispersal processes
- •Gametangia are produced either on the tip of the main axis or on a lateral branch
- •Gametophytes unisexual or bisexual
- •Antheridia on splash cups

- •Sporophytes with short foot, a long seta, and stomata
- •Capsule covered by a calyptra (remnants of archegonium)
- •Operculum is released to reveal the peristoma
- Teeth can be hygroscopic

Life cycle of a Moss

Moss gardens business

Mosses exhibit "cushiony" or "feathery" growth patterns

- •In "cushiony mosses" or acrocarps, gametophytes are erect and little branched with terminal sporophytes
- •In the "feathery mosses" or pleurocarps, the plants are creeping, highly branched, and sporophytes are borne laterally (in tropical rainforests with humidity)

Fissidens

- In moist habitats
- Leaves in two alternating rows
- Leaves with a dorsal winglike lobe and a midrib
- Sporophyte with single peristome

Physcomitrium or "urn moss"

- On roadsides
- Acrocarpic
- Capsule globose-pyriform
- With operculum but lack peristome

Splachnum or "petticoat moss" or "umbrella moss" or "dung moss"

- Growing on dung or bones
- The base of the capsule, the hypophysis, becomes expanded and maybe skirt—or umbrella-like

Mnium

- 80 spp
- Worldwide distribution
- On swamps, soil, rocks or tree bark
- Leafy gametophores with capsule pendent
- Peristome double and opercula with long beaks

Fontinalis "water moss"

- Aquatic moss with 50 spp
- Leaves three-ranked and without midribs
- Sporophyte almost hidden
- Capsule with double peristome with the inner circle united into a coneshape lattice

HORNWORTS: PHYLUM ANTHOCEROPHYTA

- •300 species
- *Anthoceros* is common
- •Similar to thallose liverworts
- •Cells with single large plastid and pyrenid
- •Gametophyes are rosettelike
- •Internal cavities filled with *Nostoc*
- •Uni or bisexual
- •Antheridia and archegonia sunken on dorsal surfaces

- •Sporophyte is upright and elongated
- •It consists of a foot and a long cylindrical capsule or sporangium
- Meristem between foot and sporangium
- •Sporophyte covered by cuticle and stomata
- •Dehiscence from the apex
- •Spores mixed with elater-like cells

SUMMARY TABLE Comparative Summary of Characteristics of Bryophyte Phyla

PHYLUM	NUMBER OF SPECIES	GENERAL CHARACTERISTICS OF GAMETOPHYTE	GENERAL CHARACTERISTICS OF SPOROPHYTE	HABITATS
Marchantiophyta (livenworts)	5300	Free-living generation; both thallold and leafy genera; ports in some thallold types; unicellular rhigoids; most cells have numerous chloroplasts; many produce gernmet; protonema stage in some; growth from apical meristem	Small and nutritionally dependent on gametophyte; unbranched; consists of Strie more than sporangium in some genera, and of floor, short seta, and sporangium in others; phenolic materials in epidermal cell walls; lacks stomata	Mostly moist temperate and tropical; a few equatic often as epiphytes
Bryophyta (mosses)	12,800	Free-living generation; leafy; multicellular rhizolds; most cells; have numerous chloroplasts; many produce generals; protonersa stage that grows by marginal meristem followed by further growth from an apical meristem in Sphagnum; growth by apical meristem only in Bryldiae; some species have leptoids and nonlightfield hydroids.	Small and nutritionally dependent on gametophytic; unbranched; consists of foot, long seta, and sporangium in Bryklaic; phenolic materials in epidermal call wells; stomata; some species have leptoids and nonlignified hydroids	Mostly moist temperate and tropical; some Arctic and Antarctic; many in dry habitats; a few aquatic
Anthocerotophyte (homworts)	300	Free living generation; thalfold; unicellular misside; most have single chlorogilast per cell	Small and nutritionally dependent on gametophyte; unbranched; consists of foot and long, cylindrical sporangium, with a meristen between foot and sporangium; cuticle; stomats; no specialized conducting travets	Moist temperate and tropical

SUMMARY

- •Plants most likely evolved from a Charophycean green alga
- •The Bryophytes are the Liverworts, Hornworts, and Mosses
- •The sporophytes of the Bryophytes differ from one another
- •Bryophytes are important ecologically

