Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

The Living World

(Expected Questions in NEET 2022: 1)

Subtopic Name	Number of
	Questions
Taxonomy	10
Taxonomical Aids	4
Sytematics \& Type study	2
Introduction \& Growth as Criterion for Being Living	1
Introduction \& Growth as Criterion for Being Living	1
Reproduction as Criterion for Being Living	1

1. The label of a herbarium sheet does not carry information on
2. date of collection
3. name of collector
4. local names
5. height of the plant
6. Match the items given in Column I with those in Column II and select the correct option given below-

Column I Column II
a. i. It is a place having a collection of

Herbarium preserved plants and animals.
ii. A list that enumerates methodically all the
b. Key
c. iii. Is a place where dried and pressed plant

Museum
d.

Catalogue species found in an area with brief description aiding identification. specimens mounted on sheets is kept.
iv. A booklet containing a list of characters and their alternates which are helpful in identification of various taxa.

1. a-I b-iv c-iii d-ii
2. a-iii b-ii c-I d-iv
3. a-ii b-iv c-iii d-i
4. a-iii b-iv c-i d-ii
5.

Match column I with column II for housefly classification and select the correct option using the codes given below:

Column I	Column II
A. Family	1. Diptera
B. Order	2. Arthropoda
C. Class	3. Muscidae
D. Phylum	4. Insecta

1. A-3 B-1 C-4 D-2
2. A-3 B-2 C-4 D-1
3. A-4 B-3 C-2 D-1
4. A-4 B-2 C-1 D-3
5.

Study the four statements (I-IV) given below and select the two correct ones out of them :
I. Definition of biological species was given by Ernst Mayr.
II. Photoperiod does not affect reproduction in plants.
III. Binomial nomenclature system was given by RH Whittaker.
IV. In unicellular organisms, reproduction is synonymous with growth.

The two correct statements are

1. II and I
2. III and IV
3. I and IV
4. I and II

5.

Nomenclature is governed by certain universal rules. Which one of the following is contrary to the rules of nomemclature?

1. The first word in a biological name represents the genus name and second is specific epithet
2. The names are derived from latin and written in italics.
3. When written by hand, the names are to be underlined.
4. Biological names can be written in any language
5. Which one of the following is not a correct statement?
6. Botanical Gardens have collection of living plants for reference.
7. A museum has collection of photographs of plants and animals
8. Key is taxonomic aid for identification of specimens.
9. herbarium houses dried, pressed and preserved plant specimens
10. Which one of the following is common to multicellular fungi, filamentous algae and protonema of mosses?
11. Diplontic life cycle
12. Members of kingdom-Plantae
13. Mode of nutrition
14. Multiplication by fragmentation

The Living World - NCERT based PYQs

8.

Which one of the following animals is correctly matched with its particular named taxonomic category?

1. Cuttlefish - Mollusca, a class
2. Humans - Primate, the family
3. Housefly - Musca, an order
4. Tiger - Tigris, the species
5. ICBN stands for :
6. Indian Congress of Biological Names
7. International Code of Botanical Nomenclature
8. Indian Code of Botanical Nomenclature
9. International Congress of Biological Names
10. Select the correctly written scientific name of Mango which was first described by Carolus Linnaeus :
11. Mangifera Indica
12. Mangifera indica Car. Linn.
13. Mangifera indica Linn.
14. Mangifera indica
15. The contrasting characteristics generally in a pair used for identification of animals in Taxonomic Key are referred to as :
16. Lead
17. Couplet
18. Doublet
19. Alternate
20. Which of the following is against the rules of ICBN? 1. Hand written scientific names should be underlined.
21. Every species should have a generic name and a specific epithet.
22. Scientific names are in Latin and should be italized.
23. Generic and specific names should be written starting
with small letters.
24. Which one of the following aspects is an exclusive characteristic of living things?
25. Increase in mass by accumulation of material both on surface as well as internally
26. Isolated metabolic reactions occur in vitro
27. Increase in mass from outside only
28. Perception of events happening in the environment and their memory
29. Practical purpose of taxonomy or classification :
30. Facilitate the identification of unknown species
31. Explain the origin of organisms
32. To know the evolutionary history
33. Identification of medicinal plants
34. Which arrangement is in correct ascending order:
35. Species $<$ genus $<$ order $<$ family
36. Genus $<$ species $<$ family $<$ order
37. Order $<$ family $<$ genus $<$ species
38. Species $<$ genus $<$ family $<$ order
39. Biosystematics aims at :-
(1) The classification of organisms based on broad morphological characters
(2) Delimiting various taxa of organism and establishing their relationships
(3) The classification of organisms based on their evolutionary history and establishing their phylogeny on the totality of various parameters from all fields of studies
(4) Identification and arrangement of organisms on the basis of cytological characteristics
40. Species are considered as :-
(1) Real basic units of classification
(2) The lowest units of classification
(3) Artificial concept of human mind which cannot be defined in absolute terms
(4) Real units of classification devised by taxonomists
41. Which of the following less general in characters as compared to genus : -
42. Species
43. Division
44. Class
45. Family
46. Which one of the following belongs to the family Muscidae?
47. Cockroach
48. House fly
49. Fire fly
50. Grasshopper

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get
 FREE ACCESS for 3
 days of ANY NEETprep

course

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Biological Classification

(Expected Questions in NEET 2022: 3)

Subtopic Name	Number of
	Questions
Kingdom Monera	25
Virus, Viroids \& Prions	20
Kingdom Fungi	13
Kingdom Protista	6
Different Classification Systems	3
Lichens	3
Protozoa	2

1. Which of the following are found in extreme saline conditions?
(1) Archaebacteria
(2) Eubacteria
(3) Cyanobacteria
(4) Mycobacteria
2. Which one of the following is wrong for fungi?
3. They are eukaryotic
4. All fungi possess a purely cellulosic cell wall
5. They are heterotrophic
6. They both are unicellular and multicellular
7. Methanogens belong to
8. eubacteria
9. archaebacteria
10. dinoflagellates
11. slime moulds
12. Select the wrong statement.
13. The walls of diatoms are easily destructible
14. Diatomaceous earth' is formed by the cell walls of diatoms
15. Diatoms are chief producers in the oceans
16. Diatoms are microscopic and float passively in water
17.

Which among the following is not a prokaryote?

1. Saccharomyces
2. Mycobacterium
3. Nostoc
4. Oscillatoria
5.

Select the wrong statement:

1. Cell wall is present in members of Fungi and Plantae
2. Mushrooms belong to Basidiomycetes
3. Pseudopodia are locomotory and feeding structures in Sporozoans
4. Mitochondria are the powerhouse of the cell in all kingdoms except monera
5.

After karyogamy followed by meiosis, spores are produced exogenously in

1. Neurospora
2. Alternaria
3. Agaricus
4. Saccharomyces
5.

Which of the following organisms are known as chief producers in the oceans?

1. Dinoflagellates
2. Diatoms
3. Cyanobacteria
4. Euglenoids
5. Viroids differ from viruses in having;
6. DNA molecules without protein coat
7. RNA molecules with protein coat
8. RNA molecules without protein coat
9. DNA molecules with protein coat
10. Which among the following are the smallest living cells, known without a definite cell wall, pathogenic to plants as well as animals and can survive without oxygen?
11. Pseudomonas
12. Mycoplasma
13. Nostoc
14. Bacillus
15.

Chrysophytes, euglenoids, dinoflagellates and slime moulds are included in the kingdom

1. Protista
2. Fungi
3. Animalia
4. Monera
5.

The primitive prokaryotes responsible for the production of biogas from the dung of ruminant animal, include the

1. thermoacidophiles
2. methanogens
3. eubacteria
4. halophiles
5.

Which one of the following statements is wrong?

1. Golden algae are also called desmids
2. Eubacteria are also called false bacteria.
3. Phycomycetes are also called algal fungi.
4. Cyanobacteria are also called blue-green algae.
5.

One of the major compound of cell wall of most fungi is

1. peptidoglycan
2. cellulose
3. hemicelluloses
4. chitin
5.

Which of the following statements is wrong for viroids?

1. They are smaller than viruses
2. They causes infections
3. Their RNA is of high molecular weight
4. They lack a protein coat
5. The imperfect fungi which are decomposers of litter and help in mineral cycling belong to
6. Deuteromycetes
7. Basidiomycetes
8. Phycomycetes
9. Ascomycetes
10. Select wrong statement.
11. The viroids were discovered by D.J lvanowski
12. W.M Stanley showed that viruses could be crystallized.
13. The term 'contagium vivum fluidum' was coined by MW Beijerinck
14. Mosaic disease in tobacco and AIDS in human beings are caused by viruses.
15. Cell wall is absent in :
(1) Nostoc
(2) Aspergillus
(3) Funaria
(4) Mycoplasma
16. Choose the wrong statement.
17. Penicillium is multicellular and produces antibiotics.
18. Neurospora is used in the study of biochemicalgenetics.
19. Morels and truffles are poisonous mushrooms.
20. Yeast is unicellular and useful in fermentation.
21. In which group of organisms the Cell walls form two thin overlapping shells which fit together?
22. Chrysophytes
23. Euglenoids
24. Dinoflagellates
25. Slime moulds
26. Pick up the wrong statement.
27. Cell wall is absent in Animalia.
28. Protista have photosynthetic and heterotropic modes of nutrition
29. Some fungi are edible
30. Nuclear membrane is present in Monera.
31. Which of the following are most suitable indicators of SO_{2} pollution in the environment?
32. Lichens
33. Conifers
34. Algae
35. Fungi
36.

Which one of the following matches is correct?

(a)Phytophthora	Aseptate Mycelium	Basidiomycetes
(b) Alternaria	Sexual reproduction Absent	Deuteromycetes
(c) Mucor	Reproduction by conjugation	Ascomycetes
(d) Agaricus	Parasitic fungus	Basidiomycetes

1. a
2. b
3. c
4. d
5.

The guts of cow and buffalo possess

1. Fucus sp
2. Chlorella sp
3. methanogens
4. cyanobacteria
5. Which of the following shows coiled RNA strand and capsomeres?
6. Polio virus
7. Tobacco mosaic virus
8. Measles virus
9. Retro virus
10. Viruses have :
11. DNA enclosed in a protein coat
12. Prokaryotic nucleus
13. Single chromosome
14. Both DNA and RNA
15. A location with luxuriant growth of lichens on the trees indicates that the :
16. Trees are very healthy
17. Trees are heavily infested
18. Location is highly polluted
19. Location is not polluted
20. The motile bacteria are able to move by
21. fimbriae
22. flagella
23. cilia
24. pili
25. Which of the following are likely to be present in deep sea water?
26. Eubacteria
27. Blue-green algae
28. Saprophytic fungi
29. Archaebacteria
30. The most abundant prokaryotes helpful to human in making curd from milk and in production of antibiotics are the ones categorized as
31. Cyanobacteria
32. archaebacteria
33. Chemosynthetic autotrophs
34. Heterotrophic bacteria
35. The cyanobacteria are also referred to as
36. Protists
37. golden algae
38. Slime moulds
39. Blue-green algae
40. Which statement is wrong for viruses?
41. All are parasites
42. All of them have helical symmetry
43. They have the ability to synthesize nucleic acids and proteins
44. Antibiotics have no effect on them
45. Which one single organism or the pair of organisms is correctly assigned to its or their named taxonomic group'?
46. Paramecium and Plasmodium belong to the same kingdom as that of Penicillium
47. Lichen is a composite organism formed from the symbiotic association of an algae and a protozoan
48. Yeast is used in making bread and brew is a fungus
49. Nostoc and Anabaena are examples of Protista
50. Maximum nutritional diversity is found in the group
51. Fungi
52. Animalia
53. Monera
54. Plantae
55.

Organisms called Methanogens are most abundant in a

1. cattle yard
2. polluted stream
3. hot spring
4. sulphur rock
5.

Which one of the following organisms is not an example of eukaryotic cells?

1. Escherichia coli
2. Euglena viridis
3. Amoeba proteus
4. Paramecium caudatum
5.

Which one of the following is wrongly matched?

1. Puccinia - Smut
2. Root Exarch- protoxylem
3. Cassia- Imbricate aestivation
4. Root pressure - Guttation
5. Virus envelope is known as
6. caspid
7. virion
8. nucleoprotein
9. core
10. Infectious proteins are present in
11. geminiviruses
12. prions
13. viroids
14. satellite viruses
15. T.O. Diener discovered a
16. free infectious RNA
17. free infectious DNA
18. infectious protein
19. bacteriophage
20. The thalloid body of a slime mould (Myxomycetes) is known as :
21. protonema
22. Plasmodium
23. fruiting body
24. mycelium
25. What is common about Trypanosoma, Noctiluca, Monocystis and Giardia?
26. These are all unicellular protists
27. They have flagella
28. They produce spores
29. These are all parasites
30. Evolutionary history of an organism is known as:
31. Phylogeny
32. Ancestry
33. Palaeontology
34. Ontogeny
35. The causative agent of mad-cow disease is a:
36. bacterium
37. prion
38. worm
39. virus
40. Which of the following statements is incorrect?
41. Yeasts have filamentous bodies with long thread-like hyphae
42. Morels and truffles are edible delicacies
43. Claviceps is a source of many alkaloids and LSD
44. Conidia are produced exogenously and ascopores endogenously
45. Match the Column-I with Column-II

Column-I

(a) Saprophyte
(b) Parasite
(c) Lichens
(d) Mycorrhiza

Column-II

Symbiotic association
(i) of fungi with plant roots

Decomposition of
(ii) dead organic materials
(iii)

Living on living plants or animals

Symbiotic association algae and fungi

Choose the correct answer from the options given below:
(a) (b) (c) (d)

1. (ii) (iii) (iv) (i)
2. (i) (ii) (iii) (iv)
3. (iii) (ii) (i) (iv)
4. (ii) (i) (iii) (iv)
5. Mad cow disease in cattle is caused by an organism which has :
6. Inert crystalline
7. Abnormally folded protein
8. Free RNA without protein coat
9. Free DNA without protein coat
10. Which of the following statements is correct?
11. Lichens do not grow in polluted areas.
12. Algal component of lichens is called mycobiont
13. Fungal component of lichens is called phycobiont
14. Lichens are not good pollution indicators.
15. Match the organisms in column I with habitats in column II.

Column I

(a) Halophiles
(b) Thermoacidophiles
(c) Methanogens
(d) Cyanobacteria

Column II

(i) Hot springs
(ii) Aquatic environment
(iii) Guts of ruminants
(iv) Salty areas

Select the correct answer from the options given below:

1. (a)-(iv), (b)-(i), (c)-(iii), (d)-(ii)
2. (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
3. (a)-(iii), (b)-(iv), (c)-(i), (d)-(i)
4. (a)-(ii). (b)-(iv), (c)-(iii), (d)-(i)
5. Which of the following is correct about viroids?
(1) They have free RNA without protein coat
(2) They have DNA with protein coat
(3) They have free DNA without protein coat
(4) They have RNA with protein coat
6. Which of the following is incorrect about Cyanobacteria?
7. They are photoautotrophs
8. They lack heterocysts
9. They often form blooms in polluted water bodies
10. They have chlorophyll A similar to green plants
11. How many organisms in the list given below are autotrophs?
Lactobacillus, Nostoc, Chara, Nitrosomonas, Nitrobacter, Streptomyces, Sacharomyces, Trypanosoma, Porphyra, Wolfia
12. Five
13. Six
14. Three
15. Four
16. Which of the following statements is incorrect?
17. Prions consist of abnormally folded proteins
18. Viroids lack a protein cost
19. Viruses are obligate parasites
20. Infective consituent in viruses is the protein coat
21. Which one of the following sets of items in the option $1-4$ are correctly categorized with one exception in it?

ITEMS
CATEGORY
EXCEPTION

1
$\begin{array}{ll}\text { Kangaroo, } & \text { Australian } \\ \text { Koala, wombat } & \text { marsupials }\end{array}$

Plasmodium,
2 Cuscuta, Trypanosoma

Typhoid,
3 Pneumonia, Diphtheria

4

UAA, UAG, UGA

Protozoan parasites

Cuscuta

Bacterial diseases

Diphtheria
55. In the five-kingdom classification, Chlamydomonas and Chlorella have been included in

1. Algae
2. Plantae
3. Monera
4. Protista
5. Given below is the diagram of a bacteriophage. In which one of the options all the four parts $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are correct -

Options

	A	B	C	D
1.	Sheath	Collar	Head	Tail fibres
2.	Head	Sheath	Collar	Tail fibres
3. Collar	Tail fibres	Head	Sheath	
4. Tail fibres	Head	Sheath	Collar	

57. Black (stem) rust of wheat is caused by -
58. Ustilago nuda
59. Puccinia graminis
60. Xanthomonas oryzae
61. Alternaria solani
62. Select the correct combination of the statements (a-d) regarding the characteristics of certain organisms -
(a) Methanogens are Archaebacteria which produce methane in marshy areas
(b) Nostoc is a filamentous blue-green alga which fixes atmospheric nitrogen
(c) Chemosynthetic autotrophic bacteria synthesize cellulose from glucose
(d) Mycoplasma lack a cell wall and can survive without oxygen
The correct statements are -
63. (a), (b) (c)
64. (b), (c), (d)
65. (a), (b) (d)
66. (b), (c)
67. Auxospores and hormocysts are formed respectively, by -
(1) Some cyanobacteria and many diatoms
(2) Several diatoms and a few cyanobacteria
(3) Several cyanobacteria and several diatoms
(4) Some diatoms and several cyanobacteria
68. There exists a close association between the alga and the fungus within a lichen. The fungus -
69. Provides food for the alga
70. Provides protection, anchorage and absorption for the alga
71. Fixes the atomospheric nitrogen for the alga
72. releases oxygen for the alga
73. Barophilic prokaryotes -
(1) Grow slowly in highly alkaline frozen lakes at high altitudes
(2) Grow and multiply in very deep marine sediments
(3) Readily grow and divide in sea water enriched in any soluble salt of barium
(4) Occur in water containing high concentrations of barium hydroxide
74. What is correct for stages of Puccinia :
75. Telia and aecia on wheat
76. Telia and uredo stage on wheat
77. Telia and aecia on barberry
78. None
79. According to five kingdom system blue green algae belongs to :
80. Metaphyta
81. Monera
82. Protista
83. Algae
84. Which of the following survives a temperature of 104 to $106^{\circ} \mathrm{C}$:
85. Marine Archaebacteria
86. Hot water spring thermophiles
87. Seeds of angiosperms
88. Eubacteria
89. Lichens are well known combination of an alga and a fungus where fungus has :-
(1) An epiphytic relationship with the alga
(2) A parasitic relationship with the alga
(3) A symbiotic relationship with the alga
(4) A saprophytic relationship with the alga
90. Koch's postulates not applicable to :
91. Mycobacterium leprae
92. Tuberculosis
93. Pneumonia
94. Cholera
95. Diatomaceous earth is used as heat insulator in boilers and steam pipes because the cell wall of diatom :
96. Composed of iron
97. Composed of silicon dioxide
98. Is conductor of heat
99. Is bad conductor of electricity
100. Enzymes not found in:
101. Fungi
102. Algae
103. Virus
104. Cyanobacteria
105. Virus are living, because :
106. They multiply in host cells
107. Carry anaerobic respiration
108. Carry metabolic activity
109. Cause infection
110. Organisms which obtain energy by the oxidation of reduced inorganic compounds are called :-
111. Photo autotrophs
112. Chemo autotrophs
113. Saprozoic
114. Coproheterotrophs
115. In five kingdom system, the main basis of classification :-
(1) Structure of nucleus
(2) Nutrition
(3) Structure of cell wall
(4) Asexual reproduction
116. Black rust of wheat is caused by :
117. Puccinia
118. Ustilago
119. Albugo
120. Phytophthora
121. Stored food in fungi :
122. Starch
123. Proteins
124. Glycogen
125. Chitin
126. Viruses are no more "alive" than isolated chromosomes because : -
(1) They require both RNA and DNA
(2) They both need food molecules
(3) They both require oxygen for respiration
(4) Both require the environment of a cell to replicate
127. In which kingdom would you classify the archaea and nitrogen-fixing organism, if the five-kingdom system of classification is used :
(1) Plantae
(2) Fungi
(3) Protista
(4) Monera
128. Tobacco mosaic virus is a tubular filament of size : -
(1) $300 \times 10 \mathrm{~nm}$
(2) $300 \times 5 \mathrm{~nm}$
(3) $300 \times 20 \mathrm{~nm}$
(4) $700 \times 30 \mathrm{~nm}$
129. Which disease of man is similar with cattle's, bovine spongiform encephalopathy:
130. Encephalitis
131. Jacob-Creutzfeldt disease
132. Spongiocitis of cerebrum
133. Spondylitis
134. Which one of the following statements about viruses is correct : -
(1) Viruses possess their own metabolic system
(2) All viruses contain both RNA and DNA
(3) Viruses are obligate parasites
(4) Nucleic acid of viruses is known as capsid
135. Cauliflower mosaic virus contains : -
136. ss RNA
137. ds RNA
138. ds DNA
139. ss DNA
140. What is true for Archaebacteria :-
141. All Halophiles
142. All photosynthetic
143. All fossils
144. Oldest living beings
145. What is true for cyano bacteria :
146. Oxygenic with nitrogenase
147. Oxygenic without nitrogenase
148. Non oxygenic with nitrogenase
149. Non oxygenic without nitrogenase
150. Adhesive pad of fungi penetrate the host with the help of : -
151. Mechanical pressure and enzymes
152. Hooke and suckers
153. Softening by enzymes
154. Only by mechanical pressure
155. Which of the following statements is correct?
156. Organisms that depend on living plants are called saprophytes.
157. Some of the organisms can fix atmospheric nitrogen in specialized cells called sheath cells.
158. The fusion of two cells is called Karyogamy.
159. Fusion of protoplasms between two motile or nonmotile gametes is called plasmogamy.

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

Plant Kingdom

(Expected Questions in NEET 2022: 2)

Subtopic Name	Number of
	Questions
Bryophytes	12
Gymnosperms	12
Algae: Introduction	8
Pteridophytes	8
Pheophyceae: Brown Algae	5
Rhodophyceae: Red Algae	5
Chlorophyceae: Green Algae	2
Angiosperms	2
Life Cycle Patterns in Plants	2
Classification System	2

1. Conifers are adapted to tolerate extreme environmental conditions because of
2. broad hardy leaves
3. superficial stomata
4. thick cuticle
5. the presence of vessels
6. Which one of the following statements is wrong?
7. Algae increase the level of dissolved oxygen in the immediate environment
8. Algin is obtained from red algae and carrageenan from brown algae
9. Agar-agar is obtained from Gelidium and Gracilaria
10. Laminaria and Sargassum are used as food
11.

Which of the following statement is correct?

1. Ovules are not enclosed by ovary wall in gymnosperms
2. Selaginella is heterosporous, while Salvinia is homosporous
3. Horsetails are gymnosperms
4. Stems are usually unbranched in both Cycas and Cedrus
5.

Which one is wrongly matched?

1. Uniflagellate gametes - Polysiphonia
2. Biflagellate zoospores - Brown algae
3. Gemma cups - Marchantia
4. Unicellular organism - Chlorella
5. An example of colonial alga is:
6. Volvox
7. Ulothrix
8. Spirogyra
9. Chlorella
10. Zygotic meiosis is characteristic of
11. Fucus
12. Funaria
13. Chlamydomonas
14. Marchantia
15. Life cycle of Ectocarpus and Fucus respectively are:
16. Diplontic, Haplodiplontic
17. Haplodiplontic, Diplontic
18. Haplodiplontic, Haplontic
19. Haplontic, Diplontic
20. Select the mismatch
21. Cycas - Dioecious
22. Salvinia - Heterosporous
23. Equisetum - Homosporous
24. Pinus - Dioecious
25.

In bryophytes and pteridophytes, transport of male gametes requires

1. insects
2. birds
3. water
4. wind
5.

Select the correct statement.

1. Salvinia, Ginkgo and Pinus all are gymnosperms
2. Sequoia is one of the tallest trees
3. The leave of gymnosperms are not well adapted to extremes of climate
4. Gymnosperms are both homosporous and heterosporous
5.

Read the following five statements (I to V) and select the option with all correct statements.
I. Mosses and lichens are the first organisms to colonise a bare rock.
II. Selaginella is a homosporous pteridophyte.
III. Coralloid roots in Cycas have VAM.
IV. Main plant body in bryophytes is gametophytic, whereas in pteridophytes it is sporophytic.
V. In gymnosperms, male and female gametophytes are present within sporangia located on sporophyte.

1. I, III and IV
2. II, III and IV
3. I, IV and V
4. II, III and V
5.

In which of the following gametophyte is not independent free-living?

1. Funaria
2. Marchantia
3. Pteris
4. Pinus

13.

Which one of the following statements is wrong?

1. Algin and carrageenan are products of algae
2. Agar-agar is obtained from Gelidium and Gracilaria
3. Chlorella and Spirulina are used as space food
4. Mannitol is stored food in Rhodophyceae
5.

Male gametes are flagellated in

1. Polysiphonia
2. Anabaena
3. Ectocarpus
4. Spirogyra
5. Read the following statements (A-E) and answer the question which follows them.
(A) In liverworts, mosses, and ferns gametophytes are free-living
(B) Gymnosperms and some ferns are heterosperms
(C) Sexual reproduction in Fucus, Volvox and Albugo is oogamous
(D) The sporophyte in liverworts is more elaborate than that in mosses
(E) Both, Pinus and Marchantia are dioecious

How many of the above statements are correct?

1. Two
2. Three
3. Four
4. One
5.

The gametophyte is not an independent, free living generation in

1. Adiantum
2. Marchantia
3. Pinus
4. Polytrichum
5. An alga which can be employed as food for human beings :
6. Ulothrix
7. Chlorella
8. Spirogyra
9. Polysiphonia
10.

Mannitol is a sugar alcohol. It is as stored food in

1. Fucus
2. Gracillaria
3. Chara
4. Porphyra
5.

Besides paddy fields, cyanobacteria are also found inside vegetative part of:
20.

Archegoniophore is present in

1. Chara
2. Adiantum
3. Funaria
4. Marchantia
5. Psilotum
6. Pinus
7.

A prokaryotic autotrophic nitrogen-fixing symbiont is found in

1. Cycas
2. Cicer
3. Pisum
4. Alnus
5. Male and female gametophytes are independent and free-living in
6. Mustard
7. Castor
8. Pinus
9. Sphagnum
neet
10. Mannitol is the stored food in
11. Chara
12. Porphyra
13. Fucus
14. Gracillaria
15. Phylogenetic system of classification is based on
16. evolutionary relationships
17. morphological features
18. chemical constituents
19. floral characters
20. Which one of the following is considered important in the development of seed habit?
21. Dependent sporophyte
22. Heterospory
23. Halplontic life cycle
24. Free-living gametophyte
25.

Which one of the following is heterosporous?

1. Dryopteris
2. Salvinia
3. Adiantum
4. Equisetum
5. From evolutionary point of view, retention of the female gametophyte with developing young embryo on the parent sporophyte for some time, is first observed in :
6. Gymnosperms
7. Liverworts
8. Mosses
9. Pteridophytes
10. Which of the following pairs is of unicellular algae?
11. Gelidium and Gracilaria
12. Anabaena and Volvox
13. Chlorella and Spirulina
14. Laminaria and Sargassum
15. Phycoerythrin is the major pigment in :
16. Red algae
17. Blue-green algae
18. Green algae
19. Brown algae
20. Which of the following statements is incorrect about gymnosperms?
21. They are heterosporous
22. Male and female gametophytes are free-living
23. Most of them have narrow leaves with thick cuticle
24. Their seeds are not covered
25. Male and female gametophytes do not have an independent free-living existence in:-
26. Pteridophytes
27. Algae
28. Angiosperms
29. Bryophytes
30. Read the following five statements (I-V) and answer as asked next to them.
(I) In Equisetum the female gametophyte is retained on the parent sporophyte
(II) In Ginkgo male gametophyte is not independent
(III) The sporophyte in Riccia is more developed than that in Polytrichum
(IV) Sexual reproduction in Volvox is isogamous
(V) The spores of slime molds lack cell walls

How many of the above statements are correct?

1. Three
2. Four
3. One
4. Two
5. Which one of the following pairs is wrongly matched ?
6. Salvinia - Prothallus
7. Viroids - RNA
8. Mustard-Synergids
9. Ginkgo-Archegonia

Plant Kingdom - NCERT based PYQs
Contact Number: 9667591930 / 8527521718
38. Examine the figures $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D . In which one of the four options all the items, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are correct ?

Options :

A	B	C	D
1. Equisetum	Ginkgo	Selaginella	Lycopodium
2. Selaginella	Equisetum	Salvinia	Ginkgo
3. Funaria	Adiantum	Salvinia	Riccia
4. Chara	Marchantia	Fucus	Pinus

39. Examine the figure given below and select the right option giving all the four parts (a, b, c and d) correctly identified :

(a)
(b)
(c)
(d)
40. Antheri- Male thallus Globule Roots
41. Archego- Female thallus Gemmacup Rhizoids
42. | Archego- |
| :--- |
| niophore | Female thallus Bud Foot
43. Seta Sporophyte Protonema Rhizoids
44. Selaginella and Salvinia are considered to represent a significant step toward evolution of seed habit because :
45. Embryo develops in female gametophyte which is retained on parent sporophyte.
46. Female gametophyte is free and gets dispersed like seeds.
47. Female gametophyte lacks archegonia.
48. Megaspore possess endosperm and embryo surrounded by seed coat.
49. Consider the following four statements whether they are correct or wrong
(A) The sporophyte in liverworts is more
elaborate than that in mosses
(B) Salvinia is heterosporous
(C) The life-cycle in all seed-bearing plants is diplontic
(D) In Pinus male and female cones are borne on different trees
The two wrong statements together are :
50. Statements (A) and (B)
51. Statements (A) and (C)
52. Statements (A) and (D)
53. Statements (B) and (C)
54. Match items in Column I with those in Column II -

Column I

Column II
(A) Peritrichous
flagellation
(B) Living fossil
(K) Macrocystes
(C) Rhizophore
(L) Escherichia coli
(D) Smallest flowering plant (M) Selaginella
(E) Largest Perennial alga
(N) Wolffia Perennial alga
46. Which of the following statement is true for bryophyta

1. Along with water absorption roots also provide anchorment to plants
2. Sporophyte is dominant
3. Gametophyte is dominant and sporophyte is mostly parasitic
4. Gametophyte is parasitic
5. Phenetic classification of organisms is based on:-
(1) The ancestral lineage of existing organisms
(2) Dendogram based on DNA characteristics
(3) Sexual characteristics
(4) Observable characteristics of existing organisms
6. In ferns, Meiosis takes place at the time of :
7. Spore formation
8. Spore germination
9. Gamete formation
10. Antheridia and archegonia formation
11. Which of the following plants produces seeds but not flowers : -
(1) Maize
(2) Mint
(3) Peepal
(4) Pinus
12. Which of the following is without exception in Angiosperms :-
(1) Presence of vessels
(2) Double fertilisation
(3) Secondary growth
(4) Autotrophic nutrition
13. A student observed an algae with chl. 'a' 'd' and phycoerythrin it should belong to :
14. Phaeophyta
15. Rhodophyta
16. Chlorophyta
17. Bacillariophyta
18. Sexual reproduction in Spirogyra is an advanced feature because it shows : -
(1) Different size of motile sex organs
(2) Same size of motile sex organs
(3) Morphologically different sex organs
(4) Physiologically differentiated sex organs
19. Which one of the following pairs of plants are not seed producers:-
(1) Fern and Funaria
(2) Funaria and Ficus
(3) Ficus and Chlamydomonas
(4) Punica and Pinus
20. Cycas have two cotyledons but not included in angiosperms becuase of : -
21. Naked ovules
22. Seems like monocot
23. Circinate ptyxis
24. Compound leaves
25. Which of the following algae contains mannitol as reserve food material?
(1) Volvox
(2) Ulothrix
(3) Ectocarpus
(4) Gracilaria
26. Which of the following algae produce Carrageen?
(1) Red algae
(2) Blue-green algae
(3) Green algae
(4) Brown algae
27. Gemmae are present in:
(1) Some Gymnosperms
(2) Some Liverworts
(3) Mosses
(4) Pteridophytes
28. Genera like Selaginella and Salvinia produce two kinds of spores. Such plants are known as
29. Homosporous
30. Heterosporous
31. Homosorus
32. Heterosorus

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

U•neetprep Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Animal Kingdom

(Expected Questions in NEET 2022: 3)

Subtopic Name
 Number of Questions

Phylum Coelenterata	8
 Platyhelminthes	8
Study of Aves \& Mammals	8
Comparative study of Cartilagenous \& Bony Fishes	7
Phylum Chordata	6
Phylum Annelida	5
Phylum Arthropoda	5
 Agnatha	$\mathbf{4}$
Phylum Porifera	4
Phylum Aschelminthes	2
Phylum Mollusca	2
Phylum Echinodermata	1
Study of Amphibians	1
Study of Reptilia	1
Super Class Pisces \& its General Characteristics	1

Animal Kingdom - NCERT based PYQs

1. Which among these is the correct combination of aquatic mammals?
2. Dolphin, Seals, Trygon
3. Whales, Dolphin, Seals
4. Trygon, Whales, Seals
5. Seals, Dolphine, Sharks
6. Choose the correct statement.
7. All mammals are viviparous
8. All cyclostomes do not possess jaws and paired fins
9. All reptiles have a three-chambered heart
10. All Pisces have gills covered by an operculum
11.

Identify the vertebrate group of animals characterized by crop and gizzard in its digestive system.

1. Amphibia
2. Reptilia
3. Aves
4. Osteichthyes
5.

Which one of these animals is not a homeotherm?

1. Macropus
2. Chelone
3. Camelus
4. Psittacula
5. In case of Poriferans, the spongocoel is lined with flagellated cells called:
6. oscula
7. Choanocytes
8. Mesenchymal cells
9. Ostia
10. Which of the following characteristic features always holds true for the corresponding group of animals?

(a) Viviparous	(1) Mammalia
(b) Possess a mouth with an upper and a lower jaw	(2) Chordata
(c) 3-chambered heart with one incompletely Divided ventricle	(3) Reptilia
(d) Cartilaginous-Endoskeleton	(4) Chondrichthyes

1. a
2. b
3. c
4. d
5.

Which of the following characteristics is not shared by birds and mammals?

1. Breathing using lungs
2. Viviparity
3. Warm blooded nature
4. Ossified endoskeleton
5.

Which of the following features is not present in the phylum-Arthorpoda?

1. Metameric segmentation
2. Parapodia
3. Jointed appendages
4. Chitinous exoskeleton
5. A jawless fish, which lays eggs in freshwater and whose ammocoetes larvae after metamorphosis return to the ocean is
6. Eptratretus
7. Myxine
8. Neomyxine
9. Petromyzon
10. Metagenesis refers to
11. The presence of different morphic forms
12. Alternaton of generation between asexual and sexual phrases of an organism
13. Occurance of a drastic change in form during postembryonic development
14. the presence of segmented body and parthenogenic mode of reproduction

Animal Kingdom - NCERT based PYQs

11.

Which of the following represent the correct combination without any exception?

Characteristic	Class
(a) Mammary gland; hair on body; pinnae; two pairs of limbs	Mammalia
(b) Mouth ventral; gills without operculum; skin with placoid scales; persistent notochord	Chondrichthyes
(c) Sucking and circular mouth; jaws absent integument without scales; paired appendages	Cyclostomata
(d) Body covered with feathers; skin moist and glandular; lungs with air sacs fore limbs from wings;	Aves

1. a
2. b
3. c
4. d
5.

Which of the following animals is not viviparous?

1. Flying fox (bat)
2. Elephant
3. Platypus
4. Whale
5.

Which group of animals belong to the same phylum?

1. Earthworm, Pinworm, Tapeworm
2. Prawn, Scorpion, Locusta
3. Sponge, Sea anemone, Starfish
4. Malarial parasite, Amoeba, Mosquito
5. Match the name of the animal (column I), with one characteristics (column II), and the phylum/class
(column III) to which it belongs :

	Column I	Column II	Column III
(1)	Ichthyophis	terrestrial	Reptilia
(2)	Limulus	body covered by chitinous exoskeleton	Pisces
(3)	Adamsia	radially symmetrical	Porifera
(4)	Petromyzon	ectoparasite	Cyclostomata

1. (1)
2. (2)
3. (3)
4. (4)
5. Select the Taxon mentioned that represents both marine and fresh water species :
6. Echionoderms
7. Ctenophroa
8. Cephalocarodata
9. Cnidaria
10. Planaria possess high capacity of
11. metamorphosis
12. regeneration
13. alternation of generation
14. bioluminescene
15. A marine cartilaginous fish that can produce electric current is:
16. Pristis
17. Torpedo
18. Trygon
19. Scoliodon
20. In which one of the following, the genus name, its two characters and its phylum are not correctly matched, whereas the remaining three are correct?

	Genus Name		Two Characters	Phylum		
(a)	Pila	(i)	Body segmented Mouth with Radula	Mollusca		
(b)	Asterias	(i)	Spiny skinned Water vascular system	Echinodermata		
(c)	Sycon	(i)	Pore bearing Canal system	Porifera		
(ii)	(d)	Periplaneta	(i)	Jointed appendages Chitinous exoskeleton	Arthropoda 1 (ii)	(b)
:---						

1. (a)
2. (b)
3. (c)
4. (d)
5. One example of animals having a single opening to the outside that serves both as mouth as well as anus is
6. Octopus
7. Asterias
8. Ascidia
9. Fasciola

Animal Kingdom - NCERT based PYQs

20.

What will you look for to identity the sex of the following? Select the correct match.

1. Male frog - a copulatory pad on the first digit of the hind limb.
2. Female cockroach - anal cerci
3. Male shark - claspers borne on pelvic fins
4. Female Ascaris - sharply curved posterior end
5.

In which one of the following the genus name, its two characters and its class/phylum are correctly matched?

Genus	Two Characters	Class/phylum
(a) Salman dra	(i) A tympanum represents ear (ii) Fertilisation is extermal	Amphibia
(b) Pteropus	(i) Skin possesses hair (ii) Oviparous	Mammalia
(c) Aurelia	(i) Cnidobles (ii) organ leval of Organization	Coelenterata
(d) Ascaris	(i) Body segmented (ii) Males and Female distinct	Annelida

1. (a)
2. (b)
3. (c)
4. (d)
5.

Which one of the following groups of animals is correctly matched with its one characteristic feature without even a single exception?

1. Chordata - possess a mouth provided with an upper and a lower jaw
2. Chondrichthyes - possess cartilaginous endoskeleton
3. Mammalia - give birth to young ones
4. Reptilia - posses 3-incompletely heart with one incompletely divided ventricle.
5. Which one of the following statements about all the four of Spongilla, leech, dolphin and penguin is correct?
6. Penguin is homoiothermic while remaining three are poikilothermic
7. Leech is a fresh water form while others are marine
8. Songilla has special collared cells called choanocytes, not found in the remaining three
9. All are bilaterally symmetrical
10. Which one of the following kinds of animals are triploblastic?
11. Flat worms
12. Sponges
13. Ctenophores
14. Corals
15. Which one of the following statements about certain given animals is correct?
16. Roundworms(Aschelminthes) are pseudocoelomates
17. Molluscs are acoelomates
18. Insects are pseudocoelomates
19. Flat worms (Platyhelminthes) are coelomates
20. Which one of the following groups of animals is bilaterally symmetrical and triploblastic?
21. Coelenterates (cnidarians)
22. Ascheminthes (roundworms)
23. Ctenophores
24. Sponges
25. Which one of the following pairs of animal comprises 'jawless fishes'?
26. Lampreys and eels
27. Mackerals and rohu
28. Lampreys and hag fishes
29. Guppies and hag fishes
30.

Which one of the following is not characteristic of phylum-Annelida?

1. Closed circulatory system
2. Segmentation
3. Pseudocoelom
4. Ventral nerve cord
5.

Which one of the following phyla is correctly matched with its two general characteristics?

1. Arthropoda - Body divided into head, thorax and abdomen and respiration by mouth
2. Chordata - Notochord at some stage and separate anal and urinary openings to the outside
3. Echinodermata - Pentamerous radial symmetry and mostly internal fertilization
4. Mollusca - Normally oviparous and development through a trochophore or veliger larva
5. Which one of the following pairs is mismatched?
6. Pila globosa- pearl oyester
7. Apis indica- honey bee
8. Laccifer lacca- lac insect
9. Bombyx mori- silk worm

Animal Kingdom - NCERT based PYQs

Contact Number: 9667591930 / 8527521718
31. What is common between parrot, platypus and kangaroo?

1. Homeothermy
2. Toothess jaws
3. Functional post-anal tail
4. Oviparity
5. Which of the following pairs are correctly matched?

Animals Morphological features
A. Crocodile - 4- chambered heart
B. Sea urchin - Parapodia
C. Obelia - Metagenesis
D. Lemur - Thecodont

1. A, C and D

2, B, C and D
3. Only A and D
4. Only A and B
37. Match the following organism with their respective characteristics:
(a) Pila
(i) Flame cells
(b) Bombyx
(ii) Comb plates
(c) Pleurobrachia
(iii) Radula
(d) Taenia
(iv) Malpighian tubules
Select the correct option from the following:

	(a)	(b)	(c)	(d)
1.	(iii)	(ii)	(iv)	(i)
2.	(iii)	(ii)	(i)	(iv)
3.	(iii)	(iv)	(ii)	(i)
4.	(ii)	(iv)	(iii)	(i)

38. Match the following genera with their respective phylum :
(a) Ophiura
(i) Mollusca
(b) Physalia
(ii) Platyhelminthes
(c) Pinctada
(iii) Echinodermata
(d) Planaria
(iv) Coelenterata
39. What is true about Nereis, Scorpion, Cockroach and Silver fish?
40. They all have jointed paired appendages
41. They all possess dorsal heart
42. None of them is aquatic
43. They all belong to the same phylum
44. Which one of the following is a matching set of a phylum and its three examples?
45. Cnidaria- Bonellia, Physalia, Aurelia
46. Platyhekminthes- Planaria, Schistosoma, Enterobius
47. Mollusca- Loligo, Teredo, Octopus
48. Prifera- Spingilla, Euplectella, pennatula
49. Which one of the following has an open circulatory system?
50. Pheretima
51. Periplaneta
52. Hirudinaria
53. Octopus
54. Consider following features:
(a) Organ system level of organisation
(b) Bilateral symmetry
(c) True coelomates with segmentation of body

Select the correct option of animal groups which possess all the above characteristics.

1. Annelida, Mollusca and Chordata
2. Annelida, Arthropoda and Chordata
3. Annelida, Arthropoda and Mollusca
4. Arthropoda, Mollusca and Chordata

Select the correct option :

1. (a)-(iv), (b)-(i), (c)-(iii), (d)-(ii)
2. (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
3. (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)
4. (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
5. Which of the following animals are true coelomates with bilateral symmetry?
6. Adult Echinoderms
7. Aschelminthes
8. Platyhelminthes
9. Annelids
10. Which of the following statements are true for the phylum-Chordata?
(a) In Urochordata notochord extends from head to tail and it is present throughout their life
(b) In Vertebrata notochord is present during the embryonic period only
(c) Central nervous system is dorsal and hollow
(d) Chordata is divided into 3 subphyla : Hemichordata, Tunicata and Cephalochordata
11. (c) and (a)
12. (a) and (b)
13. (b) and (c)
14. (d) and (c)
15. Bilaterally symmetrical and acoelomate animals are exemplified by :
16. Platyhelminthes
17. Aschelminthes
18. Annelida
19. Ctenophora

Animal Kingdom - NCERT based PYQs

42. Match the following columns and select the correct option.

Column - I

a. 6-15 pairs of gill slits
b. Heterocercal caudal fin
c. Air Bladder
d. Poison sting

> (a) (b) (c) (d)

1. (iii) (iv) (i) (ii)
2. (iv) (ii) (iii) (i)
3. (i) (iv) (iii) (ii)
4. (ii) (iii) (iv) (i)
5. Which of the following options does correctly represent the characteristic features of phylum Annelida?
6. Triploblastic, unsegmented body, and bilaterally symmetrical.
7. Triploblastic, a segmented body, and bilaterally symmetrical.
8. Triploblastic, flattened body, and acoelomate condition.
9. Diploblastic, mostly marine and radially symmetrical.
10. Match the following group of organisms with their respective distinctive characteristics and select the correct option

Organisms

(a) Platyhelminthes
(b) Echinoderms
(c) Hemichordates
(d) Aves

Characteristics

Cylindrical body with no segmentation

Warm blooded animals with direct development

Bilateral symmetry with incomplete digestive system

Radial symmetry with indirect development
45. Match the following columns and select the correct option :

Column - I Column - II
(a) Aptenodytes (i) Flying fox
(b) Pteropus
(ii) Angel fish
(c) Pterophyllum (iii)Lamprey
(d) Petromyzon (iv)Penguin

1. (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
2. (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
3. (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
4. (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
5. All vertebrates are chordates but all chordates are not vertebrates, why?
6. Notochord is replaced by a vertebral column in adult of some chordates.
7. Ventral hollow nerve cord remains throughout life in some chordates.
8. All chordates possess a vertebral column.
9. All chordates possess notochord throughout their life.
10. Which one of the following categories of animals, is correctly described with no single exception in it?
1 All bony fishes have four pairs of gills and an operculum on each side
11. All sponges are marine and have collared cells
12. All mammals are viviparous and possess diaphragm for breathing
13. All reptiles possess scales, have a three chambered heart and are cold blood (poikilothermal)
14. Which one of the following pairs of animals are similar to each other pertaining to the feature stated against them ?
15. Garden lizard and Crocodile - Three chambered heart
16. Ascaris and Ancylostoma - Metameric segmentation
17. Sea horse and Flying fish - Cold blooded (poikilothermal)
18. Pteropus and Ornithorhyncus - Viviparity
19. (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
20. (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
21. (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
22. (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv

Animal Kingdom - NCERT based PYQs

49. The figure shows four animals (a), (b), (c) and (d). Select the correct answer with respect to a common characetrsitcs of two of these animals.
(a)

(a)
(c)

50. (c) and (d) have a true coelom
51. (a) and (d) respire mainly through body wall
52. (b) and (c) show radial symmetry
53. (a) and (b) have cnidoblasts for selfdefence
54. Which one of the following statements is totally wrong about the occurrence of notochord, while the other three are correct?
55. It is present throughout life in Amphioxus
56. It is present only in larval tail in Ascidians
57. It is replaced by vertebral column in adult frog
58. It is absent throughout life in humans from the very beginning
59. In contrast to Annelids the Platyhelminths show
(1) Absence of body cavity
(2) Presence of pseudocoel
(3) Radial symmetry
(4) Bilateral symmetry
60. From the following statements select the wrong one -
(1) Prawn has two pairs of antennae
(2) Milliepedes have two pairs of appendages in each segment of the body
(3) Animals belonging to Phylum porifera are exclusively marine
(4) Nematocysts are characteristic of the phylum cnidaria.
61. Hollow air filled bones (pneumatic bones) occurs in :
62. Mammals
63. Reptiles
64. Urodela
65. Aves
66. Match List - I with List - II

| List - I
 (a) Metamerism |
| :--- | :--- |
| (b) Canal system |
| (c) Comb Plates | | (d) Cnidoblasts |
| :--- |
| Choose the correct answer fro |
| (a) (b) (c) (d)
 (1) (iii) (iv) (ii) (i)
 (2) (iv) (i) (ii) (iii)
 (3) (iv) (iii) (i) (ii)
 (4) (iii) (iv) (i) (ii) |

Fill OMR Sheet*

Choose the correct answer from the options given below.

CLICK HERE

61. Match the following

List-I	List-II
(a) Physalia	I. Pearl oyster
(b) Limulus	II. Portuguese Man of War
(c) Ancylostoma	III. Living fossil
(d) Pinctada	IV. Hookworm

Choose the correct answer from the options given below.
(a) (b) (c) (d)

1. (ii) (iii) (iv) (i)
2. (i) (iv) (iii) (ii)
3. (ii) (iii) (i) (iv)
4. (iv) (i) (iii) (ii)
5. Read the following statements.
(a) Metagenesis is observed in Helminths.
(b) Echinoderms are triploblastic and coelomate animals.
(c) Round worms have organ-system level of body organization
(d) Comb plates present in ctenophores help in digestion.
(e) Water vascular system is characteristic of Echinoderms.
Choose the correct answer from the options given below.
6. (a), (d) and (e) are correct
7. (b), (c) and (e) are correct
8. (c), (d) and (e) are correct
9. (a), (b) and (c) are correct
10. Which one of the following organisms bears hollow and pneumatic long bones?
11. Macropus
12. Ornithorhynchus
13. Neophron
14. Hemidactylus

U. neetprep
 Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Morphology of Flowering Plants

(Expected Questions in NEET 2022: 3)

Subtopic Name

Number of Questions

Flower	24
Seed	9
Families of Flowering Plants	8
Fruits	5
Morphology of Roots	4
Semi Technical Description	$\mathbf{3}$
Aerial Stem Modification	2
Modification of Roots	2
Morphology of Stems	$\mathbf{2}$
Venation, Types of Leaves \& Phyllotaxy	2
Inflorescence	$\mathbf{1}$

1. The term 'polyadelphous' is related to
2. gynoecium
3. androecium
4. corolla
5. calyx
6. Radial symmetry is found in the flowers of
7. Brassica
8. Trifolium
9. Pisum
10. Cassia
11. Free-central placentation is found in
12. Dianthus
13. Argemone
14. Brassica
15. Citrus
16. Coconut fruit is a:
17. Berry
18. Nut
19. Capsule
20. Drupe
21. In Bougainvillea thorns are the modifications of:
22. Adventitious root
23. Stem
24. Leaf
25. Stipules
26. Root hairs develop from the region of:
27. Elongation
28. Root cap
29. Meristematic activity
30. Maturation
31.

Pneumatophores occur in

1. Halophytes
2. Free-floating hydrophytes
3. Carnivorous plants
4. Submerged hydrophytes
5.

Sweet potato is a modified

1. Stem
2. Adventitious root
3. Tap root
4. Rhizome
5.

Tricarpellary, syncarpous is found in flowers of

1. Solanaceae
2. Fabaceae
3. Poaceae
4. Liliaceae
5.

Cotyledon of maize grain is called

1. coleorhizae
2. coleopite
3. scutellum
4. plumule
5.

Which of the following is not a stem modification?

1. Thorns of citrus
2. Tendrils of cucumber
3. Flattened structure of Opuntia
4. Pitcher of Nepenthes
5. The wheat grain has an embryo with one large, shieldshaped cotyledon known as
6. epiblast
7. coleorrhiza
8. scutellum
9. coleoptile
10. Axile placentation is present in
11. Dianthus
12. Lemon
13. Pea
14. Argemone
15. Among China rose, mustard, brinjal, potato, guava, cucumber, onion and tulip, how many plants have superior ovary?
16. Five
17. Six
18. Three
19. Four

15.

formula of

1. Allium
2. Sesbania
3. Petunia
4. Brassica
5.

Keel is the characteristic feature of flower of

1. tulip
2. Indigofera
3. Aloe
4. tomato
5.

Perigynous flowers are found in

1. guava
2. cucumber
3. China rose
4. rose
5.

The hilum is a scar on the

1. seed, where funicle was attached
2. fruit, where it was attached to pedicel
3. fruit, where style was present
4. seed, where micropyle was present
5. Which one of the following statements is correct?
6. The seed in grasses is not endospermic
7. Mango is a parthenocarpic fruit
8. A proteinaceous aleurone layer is present in maize gain.
9. A sterile pistil is called a staminode.
10. An example of edible underground stem is:
11. Carrot
12. Groundnut
13. Sweet potato
14. Potato
15. Placentation in tomato and lemon is
16. Parietal
17. free central
18. marginal
19. axile
20. Cymose inflorescence is present in
21. Solanum
22. Sesbania
23. Trifolium
24. Brassica
25. Vexillary aestivation is characteristic of the family
26. Fabaceae
27. Asteraceae
28. Solanaceae
29. Brassicaceae
30. In unilocular ovary with a single ovule, the placentation is
31. marginal
32. basal
33. free central
34. axile
35. The correct floral formula of chilli is
36. $\oplus \varrho^{\prime} \mathrm{K}_{5} \mathrm{C}_{5} \mathrm{~A}_{5} \underline{\mathrm{G}}_{(2)}$
37. $\oplus ণ^{\prime} \mathrm{K}_{5} \mathrm{C}_{5} \mathrm{~A}_{5} \mathrm{G}_{(2)}$
38. $\oplus \bigodot^{7} \mathrm{~K}_{(5)} \stackrel{\mathrm{C}_{(5)} \mathrm{A}_{5} \underline{G}_{(2)}}{ }$
39. $\oplus \overbrace{}^{x} \mathrm{~K}_{(5)} \mathrm{C}_{5} \mathrm{~A}_{5} \mathrm{G}_{(2)}$
40.

Flowers are zygomorphic in

1. gulmohur
2. tomato
3. datura
4. mustard
5. When the margins of sepals or petals overlap one another without any particular direction, the condition is termed as:
6. Vexillary
7. Imbricate
8. Twisted
9. Valvate
10.

A drupe develops in

1. wheat
2. pea
3. tomato
4. mango
5.

The ovary is half inferior in flowers of

1. cucumber
2. cotton
3. guava
4. peach
5. The technical term used for the androecium in a flower of China rose (Hibiscus rosa-sinensis) is
6. monadelphous
7. diadelphous
8. polyadrous
9. polyadelphous
10. The scutellum observed in a grain of wheat or maize is comparable to which part of the seed in other monocotyledons?
11. Cotyledon
12. Endosperm
13. Aleurone layer
14. Plumule
15.

The floral formula + is that of 1. tulip
2. soybean
3. sunnhemp
4. tobacco
33. An example of axile placentation is

1. Argemone
2. Dianthus
3. Lemon
4. Marigold
5. What type of placentation is seen in sweet pea?
6. Basal
7. Axile
8. Free-central
9. Marginal
10. Pentamerous, actinomorphic flowers, bicarpillary ovary with oblique septa, and fruit a capsule or berry, are characteristic features of:
11. Asteraceae
12. Brassicaceae
13. Solanaceae
14. Liliaceae
15. Placentation, in which ovules develop on the inner wall of the ovary or in peripheral part, is:
16. Free central
17. basal
18. Axile
19. Parietal
20. Which of the following shows whorled phyllotaxy?
21. Mustard
22. China rose
23. Alstonia
24. Calotropis
25. Bicarpellary ovary with obliquely placed septum is seen in :
26. Brassica
27. Aloe
28. Solanum
29. Sesbania
30. Match the placental types (column-I) with their examples (column-II)
Column I
Column II
(a) Basal
(i) Mustard
(b) Axile
(ii) China rose
(c) Parietal
(iii) Dianthus
(d) Free central
(iv) Sunflower

Choose the correct answer from the following options:

1. (a)-(ii), (b)-(iii),(c)-(iv), (d)-(i)
2. (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
3. (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)
4. (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
5. Ray florets have:
6. Superior ovary
7. Hypogynous ovary
8. Half inferior ovary
9. Inferior ovary
10. The roots that originate from the base of the stem are:
(1) Primary roots
(2) Prop roots
(3) Lateral roots
(4) Fibrous roots
11. The ovary is half inferior in:
(1) Mustard
(2) Sunflower
(3) Plum
(4) Brinjal
12. Correct position of floral parts over thalamus in the mustard plant is :
13. Gynoecium occupies the highest position, while the other parts are situated below it.
14. Margin of the thalamus grows upward, enclosing the ovary completely, and other parts arise below the ovary.
15. Gynoecium is present in the center and other parts cover it partially.
16. Gynoecium is situated in the center, and other parts of the flower are located at the rim of the thalamus, at the same level.
17. Which of the following is the correct floral formula of Liliaceae?
18.

2.

3.
$\operatorname{Br} \oplus \widehat{\boldsymbol{\gamma}} \widehat{P_{(3+3)} A_{3+3}} G_{(3)}$
4.
$\oplus \hat{\chi} K_{(5)} \widehat{C}_{(5)} A_{5} G_{(2)}$
45. Identify the correct features of Mango and Coconut fruits.
(i) In both fruit is a drupe
(ii) Endocarp is edible in both
(iii) Mesocarp in Coconut is fibrous, and in Mango, it is fleshy
(iv) In both, the fruit develops from the monocarpellary ovary
Select the correct option from below :
(1) (i), (iii) and (iv) only
(2) (i), (ii) and (iii) only
(3) (i) and (iv) only
(4) (i) and (ii) only
46. Which one of the following organisms is correctly matched with its three characteristics ?

1. Tomato : Twisted aestivation, Axile placentation, Berry
2. Onion : Bulb, Imbricate aestivation, Axile placentation
3. Maize : C_{3} pathway, Closed vascular bundles, Scutellum
4. Pea : C_{3} pathway, Endospermic seed, Vaxillary aestivation
5. Consider the following four statements $\mathrm{A}, \mathrm{B}, \mathrm{C} \& \mathrm{D}$ and select the right option for two correct statement Statements
(A) In vexillary aestivation, the large posterior petal is called standard, two lateral ones are wings and two small anterior petals are termed keel
(B) The floral formula for Liliaceae is
$\mathrm{Br} \oplus \xlongequal[(3+3)]{ } \mathrm{A}_{3+3} \underline{G}_{(3)}$
(C) In pea flower the stamens are monadelphous
(D) The floral formula for Solanaceae is
$\oplus{ }^{\boldsymbol{Z}} \mathrm{K}_{(3)} \mathrm{C}_{3} \mathrm{~A}_{(4)} \underline{\mathrm{G}}_{(2)}$.
The correct statements are -
6. A and B
7. B and C
8. C and D
9. A and C
10. The correct floral formula of soyabean is -
$1 . \% \mathrm{~K}_{5} \mathrm{C}_{1+(2)+2} \mathrm{~A}_{(9)+1} \underline{\mathrm{G}}_{1}$
11. $\%{ }^{\boldsymbol{\gamma}} \mathrm{K}_{(5)} \mathrm{C}_{1+2+(2)} \mathrm{A}_{(9)+1} \underline{\mathrm{G}}_{1}$
$3 . \%{ }^{\circ} \mathrm{K}_{(5)} \mathrm{C}_{1+2+(2)} \mathrm{A}_{1+(9)} \underline{\mathrm{G}}_{1}$
12. $\%{ }^{\varnothing} \mathrm{K}_{(5)} \mathrm{C}_{1+(2)+2} \mathrm{~A}_{(9)+1} \underline{\mathrm{G}}_{1}$
13. Aestivation of petals in the flower of cotton is correctly shown in -
(1)

(2)

(3)

(4)

14. Which one of the following is a xerophytic plant in which the stem is modified into a flat green and succulent structure -
15. Casurina
16. Hydrilla
17. Acacia
18. Opuntia
19. Which one of the following diagrams represents the placentation in Dianthus?
20.

2.

3.

52. Whorled, simple leaves with reticulate venation are present in :

1. Alstonia
2. Calotropis
3. Neem
4. China Rose
5. The edible part of mango is:-
(1) Receptacle
(2) Epicarp
(3) Mesocarp
(4) Endocarp
6. In a longitudinal section of a root, starting from the tip upward, the four zones occur in the following order :-
(1) Root cap, cell division, cell maturation, cell enlargement
(2) Cell division, cell enlargement, cell maturation, root cap
(3) Celldivision, cell maturation, cell enlargement, root cap
(4) Root cap, cell division, cell enlargement, cell maturation
7. Pneumatophores are found in :
8. The vegetation which is found in marshy and saline lake
9. The vegetation which found in saline soil
10. Xerophytes
11. Epiphytes
12. Edible part in mango is :-
(1) Mesocarp
(2) Epicarp
(3) Endocarp
(4) Epidermis
13. The aleurone layer in maize grain is specially rich in :-
(1) Proteins
(2) Starch
(3) Lipids
(4) Auxins
14. Diadelphous stamens are found in:
(1) Pea
(2) China rose and citrus
(3) China rose
(4) Citrus
15. Match Column-I with Column-II
Column-I
Column-II
a

Brassicaceae
b $\oplus \not \subset K_{(5)} \overparen{\mathrm{C}_{(5)} \mathrm{A}_{5} \underline{\mathrm{G}}_{2}}$
ii Liliaceae

C
 iii Fabaceae
d

iv Solanaceae

Select the correct answer from the options given below.
(a) (b) (c) (d)

1. (ii) (iii) (iv) (i)
2. (iv) (ii) (i) (iii)
3. (iii) (iv) (ii) (i)
4. (i) (ii) (iii) (iv)

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get
 FREE ACCESS for 3
 days of ANY NEETprep

course

U. neetprep
 Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Anatomy of Flowering Plants (Expected Questions in NEET 2022: 2)

Subtopic Name
 Number of

 Questions| Activity of Cork Cambium | 6 |
| :--- | :--- |
| Activity of Vascular Cambium | 5 |
| Types of Wood | 4 |
| Vascular Tissue System | 4 |
| Anatomy of Root | 3 |
| Epidermal Tissue System | 3 |
| Meristematic Tissue: Classification | 3 |
| Monocot Leaf | $\mathbf{3}$ |
| Complex Tissue: Phloem | 2 |
| Complex Tissue: Xylem | 2 |
| Dicot Stem | 2 |
| Monocot Stem | 2 |
| Meristematic Tissue: Root Apex | 1 |
| Tissue: Introduction \& Classification | $\mathbf{1}$ |

Anatomy of Flowering Plants - NCERT based PYQs
 Contact Number: 9667591930 / 8527521718

1. Cortex is the region found between
2. epidermis and stele
3. pericycle and endodermis
4. endodermis and pith
5. endodermis and vascular bundle
6. The vascular cambium normally gives rise to:
7. Primary Phloem
8. Secondary xylem
9. Periderm
10. Phelloderm
11.

Stomata in grass leaf are

1. Dumb-bell shaped
2. Kidney shaped
3. Rectangular
4. Barrel shaped
5. Secondary xylem and phloem in dicot stem are produced by
6. Apical meristems
7. Vascular cambium
8. Phellogen
9. Axillary meristems
10.

Casparian strips occur in

1. Epidermis
2. Pericycle
3. Cortex
4. Endodermis
5.

Specialised epidermal cells surrounding the guard cells are

called

1. subsidiary cells
2. bulliform cells
3. lenticels
4. complementary cells
5. Read the different components from I to IV in the list given below and tell the correct order of the components with reference to their arrangement from outer side to inner side in a woody dicot stem.
I. Secondary Cortex
II. Wood
III. Secondary phloem
IV. Phellem

The correct order is

1. III,IV,II,I
2. I,II,IV,III
3. IV,I,III,II
4. IV,III,I,II
5.

Vascular bundles in monocotyledons are considered closed because

1. a bundle sheath surrounds each bundle
2. cambium is absent
3. there are no vessels with perforations
4. xylem is surrounded all around by phloem
5.

Plants having little or no secondary growth are

1. Grasses
2. Deciduous angiosperms
3. Conifers
4. Cycads
5. Age of a tree can be estimated by:
6. biomass
7. number of annual rings
8. diameter of its heartwood
9. its height and girth
10. Lenticels are involved in:
11. Gaseous exchange
12. Food transfer
13. Photosynthesis
14. Transpiration
15. Interfascicular cambium develops from the cells of 1. Xylem parenchyma
16. Identify the wrong statement in the context of 2. Endodermis heartwood:
17. It is highly durable
18. It conducts water and minerals efficiently
19. It compromises dead elements with highly lignified walls
20. Organic compounds are deposited in it.
21. Pericycle
22. Medullary rays
23. Companion cells are closely associated with
24. Sieve elements
25. Vessel elements
26. Trichomes
27. guard cells
28. Closed vascular bundles lack
29. Ground tissue
30. Conjuctive tissue
31. Cambium
32. Pith
33.

The cork cambium, cork and secondary cortex are collectively called

1. phellogen
2. periderm
3. phellem
4. phelloderm
5. The chief water conducting elements of xylem in gymnosperms are
6. vessels
7. fibres
8. transfusion tissue
9. tracheids
10. Which one of the following is not a lateral meristem?
11. Intrafascicular cambium
12. Interfascicular cambium
13. Phellogen
14. Intercalary meristem
15. Heartwood differs from sapwood in
16. presence of rays and fibres
17. absence of vessels and parenchyma
18. having dead and non-conducting elements
19. being susceptible to pests and pathogens
20. Anatomically fairly old dicotyledonous root is distinguished from the dicotyledonous stem by
21. absence of secondary xylem
22. absence of secondary phloem
23. presence of cortex
24. position of protoxylem
25. Guard cells help in
26. protection against grazing
27. transpiration
28. guttation
29. fighting against infection
30. Grass leaves curl inwards during very dry weather. Select the most appropriate reason from the following :
31. Tyloses in vessels
32. closure of stomata
33. Flaccidity of bulliform cells
34. Shrinkage of air spaces in spongy mesophyll
35. Phloem in gymnosperms lacks:
36. Both sieve tubes and companion cells
37. Albuminous cells and sieve cells
38. Sieve tubes only
39. Companion cells only
40. Which of the statements given below is not true about the formation of Annual Rings in trees?
41. Annual rings are not prominent in trees of temperate regions.
42. Annual rings are a combination of spring wood and autumn wood produced in a year.
43. Differential activity of cambium causes light and dark bands of tissue - early and late wood respectively.
44. Activity of cambium depends upon variation in climate.
45. In the dicot root the vascular cambium originates from :
46. Tissue located below the phloem bundles and a portion of pericycle tissue above protoxylem.
47. Cortical region
48. Parenchyma between endodermis and pericycle
49. Intrafascicular and interfascicular tissue in a ring
50. Regeneration of damaged growing grass following grazing is largely due to :
51. Lateral meristem
52. Apical meristem
53. Intercalary meristem
54. Secondary meristem
55. Identify the incorrect statement.
56. Sapwood is involved in conduction of water and minerals from root to leafs.
57. Sapwood is the innermost secondary xylem and is lighter in colour
58. Due to deposition of tannins, resins, oils etc., heart wood is dark in colour.
59. Heart wood does not conduct water but gives mechanical support.
60. The transverse section of a plant shows following anatomical features :
(a) Large number of scattered vascular bundles surrounded by bundle sheath.
(b) Large conspicuous parenchymatous ground tissue.
(c) Vascular bundles conjoint and closed.
(d) Phloem parenchyma absent.
ldentify the category of plant and its part :
(1) Monocotyledonous root
(2) Dicotyledonous stem
(3) Dicotyledonous root
(4) Monocotyledonous stem
61. Large, empty colorless cells of the adaxial epidermis along the veins of grass leaves are
62. Lenticels
63. Guard cells
64. Bundle sheath cells
65. Bulliform cells
66. Vessels are found in : -
(1) All angiosperms and some gymnosperm
(2) Most of the angiosperm and few gymnosperms
(3) All angiosperms, all gymnosperms and some pteridophyta
(4) All pteridophyta
67. Four radial V.B. are found in : -
(1) Dicot root
(2) Monocot root
(3) Dicot stem
(4) Monocot stem
68. Axillary bud and terminal bud derived from the activity of : -
69. Given below is the diagram of a stomatal apparatus. In which of the following all the four parts labelled as A, B, C and D are correctly identified -

A

B
D
(1) Guard cell

Stomatal aperture
Cell Epidermal Cell
(2) Epidermal Cell Guard Cell aperture Subsidiary cell
(3) Epidermal Cell Subsidiary Cell aperture Guard Cell
(4) Subsidiary Cell Epidermal Cell
Cell Stomatal aperture
32. Some vascular bundles are described as open because these :

1. are not surrounded by pericycle
2. are surrounded by pericycle but no endodermis
3. are capable of producing secondary xylem and phloem
4. possess conjunctive tissue between xylem and phloem
5. The periderm includes :
6. Secondary phloem
7. Cork
8. Cambium
9. All of these
10. Main function of lenticel is:-
(1) Transpiration
(2) Guttation
(3) Gaseous exchange
(4) Bleeding
(1) Lateral meristem
(2) Intercalary meristem
(3) Apical meristem
(4) Parenchyma
11. The apical meristem of the root is present
(1) Only in radicals
(2) Only in tap roots
(3) Only in adventitious roots
(4) In all the roots

Subsidiary
Stomatal
Stomatal
Guard
39. Match List I with List II

List - I	List - II
a) Cells with active cell division capacity	(i) Vascular tissues
(b) Tissue having all cells similar in structure and function	(ii) Meristematic tissue
(c) Tissue having different types of cells	(iii) Sclereids
(d) Dead cells with highly thickened walls and narrow lumen	(iv) Simple tissue

Select the correct answer from the options given below.
(a)
(b)
(c) (d)
(1) (i) (ii) (iii) (iv)
(2) (iii)
(ii) (iv)
(i)
(3) (ii) (iv) (i) (iii)
(4) (iv)
(iii) (ii)
(i)
40. Match List-I with List-II.

List -I	List-I
(a)Lenticels	(i) Phellogen
(b)Cork cambium	(ii) Suberin deposition
(c) Secondary cortex	(iii) Exchange of gases
(d)Cork	(iv) Phelloderm

Choose the correct answer from the options given below.
(a) (b) (c) (d)

1. (ii) (iii) (iv) (i)
2. (iv) (ii) (i) (iii)
3. (iv) (i) (iii) (ii)
4. (iii) (i) (iv) (ii)

41. Select the correct pair.

1. Cells of medullary rays that form part of a cambial ring

- Interfascicular cambium

2. Loose parenchyma cells rupturing the epidermis and forming a lens-shaped opening in the bark - Spongy parenchyma
3. Large colorless empty cells in the epidermis of grass leaves - Subsidiary cells
4. In dicot leaves, vascular bundles are surrounded tissue by large thick-walled cells - Conjunctive tissue

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get

Uneetprep | Selected Questions (Only NCERT based) |
| :---: |
| from AIPMT 1998 to NEET 2021 |

Structural Organisation in Animals

1. Select the correct route for the passage of sperms in male frogs:
2. Testes \rightarrow Vasa efferentia \rightarrow Kidney \rightarrow Seminal Vesicle \rightarrow Urinogenital duct \rightarrow Cloaca
3. Testes \rightarrow Vasa efferentia \rightarrow Bidder's canal \rightarrow Uretar \rightarrow Cloaca
4. Testes \rightarrow Vasa efferentia \rightarrow Kidney \rightarrow Bidder's canal \rightarrow Urinogenital duct \rightarrow Cloaca
5. Testes \rightarrow Bidder's canal \rightarrow Kidney \rightarrow Vasa efferentia \rightarrow Urinogenital duct \rightarrow Cloaca
6. In male cockroaches, sperms are stored in which part of the reproductive system?
7. Seminal vesicles
8. Mushroom glands
9. Testes
10. Vas deferens
11. Smooth muscles are
12. involuntary, fusiform, non-striated
13. voluntary, multinucleate, cylindrical
14. involuntary, cylindrical, striated
15. voluntary, spindle-shaped, uninucleate
16.

Which of the following features is used to identify a male cockroach from a female cockroach?

1. Presence of a boat shaped sternum on the 9th abdominal segment
2. Presence of caudal styles
3. Forewings with darker tegmina
4. Presence of anal cerci
5. Which type of tissue correctly matched with its location?

Tissue	Location
(1) Areolar tissue	Tendons
(2) Transitional epithelium	Tip of nose
(3) Cuboidal epithelium	Lining of stomach
(4) Smooth muscle	Wall of intestine

[^0] defensive weapons used against the enemies
3. it has a long dorsal tubular heart
4. fertilization of eggs occurs inside the body
11. Select the correct statement from the ones given below with respect to Periplaneta americana.

1. Nervous system located dorsally, consists of segmentally arranged ganglia joined by a pair of lingitudinal connectives
2. Males bear a pair of short thread like anal styles
3. There are 16 very long Malpighian tubules present at the junctions of midgut and hindgut
4. Grinding of food is carried out only by the mouth parts
5.

One very special feature in the earthworm Pheretima is that

1. the typhlosole greatly increases the effective absorption area of the digested food in the intestine
2. the S-shaped setae embedded in the integument are the

7.

The terga sterna and pleura of cockroach body are joined by

1. cementing glue
2. muscular tissue
3. arthrodial membrane
4. cartilage
5. Choose the correctly matched pair:
6. Tendon-Specialized connective tissue
7. Adipose tissue-Dense connective tissue
8. Areolar tissue- Loose connective tissue
9. Cartilage- Loose connective tissue
10. Choose the correctly matched pair
11. Inner lining of salivary ducts- Ciliated epithelium
12. Moist surface of buccal cavity- Glandular epithelium
13. Tubular parts of nephrons- Cuboidal epithelium
14. Inner surface of bronchioles- Squamous epithelium
15.

What external changes are visible after the last moult of a cockroach nymph?

1. Anal cerci develop
2. Both fore wings and hind wings develop
3. Labium develops
4. Mandibles become harder
.
5.

The ciliated columnar epithelial cells in humans are known to occur in

1. bronchioles and fallopian tubes
2. bile duct and Oesophagus
3. fallopian tubes and urethra
4. eustachian tube and stomach lining

14.

Which of the following is correctly states as it happens in the common cockroach?

1. Oxygen is transported by hemoglobin in blood
2. Nitrogenous excretory product is urea
3. The food is ground by mandibles and gizzard
4. Malpighian tubules are excretory organs projecting out from the colon
5. The kind of epithelium which forms the inner walls of blood vessels is:
(1) cuboidal epithelium
(2) columnar epithelium
(3) ciliated columnar epithelium
(4) squamous epithelium
6. The epithelial tissue present on the inner surface of bronchioles and fallopian tubes is
7. cuboidal
8. glandular
9. ciliated
10. squamous
11. The cell junctions called tight, adhering and gap junctions are found in
12. muscular tissue
13. connective tissue
14. epithelial tissue
15. neural tissue
16. The kind of tissue that forms the supportive structure in our pinna (external ears) is also found in
17. Vertebrae
18. Nails
19. Ear ossicled
20. tip of the nose
21. In which one of the following preparations are you likely to come across cell junctions most frequently?
22. Ciliated epithelium
23. Thrombocytes
24. Tendon
25. Hyaline cartilage
26.

The ciliated epithelial cells are required to move particles or mucus in a specific direction. In humans, these cells are mainly present in:

1. Bronchioles and Fallopian tubes
2. Bile duct and Bronchioles
3. Fallopian tubes and Pancreatic duct
4. Eustachian tube and salivary duct
5. Select the correct sequence of organs in the ailmentary canal of cockroach starting from mouth:
6. Pharynx \rightarrow Oesophagus \rightarrow Ileum \rightarrow Crop \rightarrow Gizzard \rightarrow Colon \rightarrow Rectum
7. Pharynx \rightarrow Oesophagus \rightarrow Crop \rightarrow Gizzard \rightarrow Ileum \rightarrow Colon \rightarrow Rectum
8. Pharynx \rightarrow Oesophagus \rightarrow Gizzard \rightarrow Crop \rightarrow Ileum \rightarrow Colon \rightarrow Rectum
9. Pharynx \rightarrow Oesophagus \rightarrow Gizzard \rightarrow Ileum \rightarrow Crop \rightarrow Colon \rightarrow Rectum
10. Match the following cell structure with its characteristic feature :
(a) Tight junctions
(i) Cement neighbouring cells together to form sheet
(b) Adhering junctions through chemical to another cells
(c) Gap junctions
(ii) Transmit information
(iii) Establish a barrier to prevent leakage of fluid across epithelial cells
(d) Synaptic junctions
(iv) Cytoplasmic channels to facilitate communication between adjacent cells

Select correct option from the following :

1. (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
2. (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)
3. (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
4. (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
5. Which of the following statements is INCORRECT ?
6. Cockroaches exhibit mosaic vision with less sensitivity and more resolution
7. A mushroom-shaped gland is present in the $6^{\text {th }}-7^{\text {th }}$ abdominal segments of male
8. A pair of spermatheca is present in the $6^{\text {th }}$ segment of female cockroach
9. Female cockroach possesses sixteen ovarioles in the ovaries.
10. Cuboidal epithelium with brush border of microvilli is found in :
11. Ducts of salivary glands
12. Proximal convoluted tubule of nephron
13. Eustachian tube
14. Lining of intestine
15. Goblet cells of alimentary canal are modified from:
16. Columnar epithelial cells
17. Chondrocytes
18. Compound epithelial cells
19. Squamous epithelial cells
20. If the head of cockroach is removed, it may live for few days because:
(1) The cockroach does not have nervous system
(2) The head holds a small proportion of a nervous system while the rest is situated along the ventral part of its body
(3) The head holds a $1 / 3^{\text {rd }}$ of a nervous system while the rest is situated along the dorsal part of its body
(4) The supra-oesophageal ganglia of the cockroach are situated in ventral part of abdomen.
21. In cockroach, identify the parts of the foregut in correct sequence:-
22. Mouth \rightarrow Oesophagus \rightarrow Pharynx \rightarrow Crop \rightarrow Gizzard
23. Mouth \rightarrow Crop \rightarrow Pharynx \rightarrow Oesophagus \rightarrow Gizzard
24. Mouth \rightarrow Gizzard \rightarrow Crop \rightarrow Pharynx \rightarrow Oesophagus
25. Mouth \rightarrow Pharynx \rightarrow Oesophagus \rightarrow Crop \rightarrow Gizzard
26. Match the following columns with reference to cockroach and select the correct option :

Column - I

Column - II
(a) Grinding of
(i) Hepatic caeca the food particles
(b) Secrete gastric
(ii) 10th segment juice
(c) 10 pairs
(iii) Proventriculus
(d) Anal cerci
(iv) Spiracles
(v) Alary muscles

1. (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
2. (a)-(iv), (b)-(iii), (c)-(v), (d)-(ii)
3. (a)-(i), (b)-(iv), (c)-(iii), (d)-(ii)
4. (a)-(ii), (b)-(iii), (c)-(i), (d)-(iv)
5. Select the incorrectly matched pair from the following:
6. Chondrocytes - Smooth muscle cells
7. Neurons - Nerve cells
8. Fibroblast - Areolar tissue
9. Osteocytes - Bone cells
10. The supportive skeletal structures in the human external ears and in the nose tip are examples of :
11. Areolar tissue
12. Bone
13. Cartilage
14. Ligament
15. Given below is the diagrammatic sketch of a certain type of connective tissue. Identify the parts labeled A, B, C and D and select the right option about them

$$
\text { Part-A } \quad \text { Part-B } \quad \text { Part-C }
$$

Part-D

1 Mast cell Marcophage Fibroblast Collagen fibres
2. Macrophage Collegen fibres Fibroblast Mast cell

32. The four sketches ($\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D) given below, represent four different types of animal tissues. Which one of these is correctly identified in the options given, along with its correct location and function?
with its correct location and function?

(B)
(A)

(C)

Tissue

1. (C) Collagen fibres skeletal muscles to bones
2. (D) Smooth muscle tissue Heart Heart contraction
3. (A) Columnar epithelium

Nephron
Secretion and absorption
4. (B) Glandular epithelium Intestine

Secretion
33. Frogs differ from humans in possessing :

1. thyroid as well as parathyroid
2. paired cerebral hemispheres
3. hepatic portal system
4. nucleated red blood cells
5. The cells lining the blood vessels belongs to the category of :
6. Connective tissue
7. Smooth muscle tissue
8. Squamous epithelium
9. Columnar epithelium
10. Which one of the following structure in pheretima is correctly matched with its function?
11. Typhlosole-storage of extra nutrients
12. Clitellum-secretes cocoon
13. Gizzard-absorbs digested food
14. Setae-defence against predators
15. Ureters act as urinogenital ducts in :
16. frog's males
17. human males
18. human females
19. frog's both males and females
20. Consider the following four statements (A-D) related to the common frog Rana tigrina, and select the correct option stating which ones are true (T) and which ones are false (F).

Statements :
(A) On dry land, it would die due to lack of O_{2} if its mouth is forcibly kept closed for a few days
(B) it has four-chambered heart
(C) On dry land, it turns uricotelic from ureotelic
(D) Its life-history is carried out in pond water
(A) (B) (C) (D)

1. $\mathrm{F} T \mathrm{~T} \mathrm{~F}$
2. T F F
3. T T F F
4. F F T T
5. Neuroglial cells associated with :
6. Heart
7. Kidney
8. Brain
9. Eyes
10. Ommatidia serve the purpose of photoreception in :-
(1) Cockroach
(2) Frog
(3) Humans
(4) Sunflower
11. Which one of the following characteristic is incorrect with respect to cockroach?
(1) In females, $7^{\text {th }}-9^{\text {th }}$ sterna together form a genital pouch.
(2) $10^{\text {th }}$ abdominal segment in both sexes, bears a pair of anal cerci.
(3) A ring of gastric caeca is present at the junction of midgut and hind gut.
(4) Hypopharynx lies within the cavity enclosed by the mouth parts.
12. Which of the following statements wrongly represents the nature of smooth muscle?
(1) Communication among the cells is performed by intercalated discs
(2) These muscles are present in the wall of blood vessels
(3) These muscle have no striations
(4) They are involuntary muscles
13. Following are the statements about prostomium of earthworm.
(a) It serves as a covering for mouth.
(b) It helps to open cracks in the soil into which it can crawl.
(c) It is one of the sensory structures.
(d) It is the first body segment.

Choose the correct answer from the options given below.

1. (a), (b), (c) and (d) are correct
2. (b) and (c) are correct
3. (a), (b) and (c) are correct
4. (a), (b) and (d) are correct
5. Identify the types of cell junctions that help to stop the leakage of the substances across a tissue and facilitation of communication with neighbouring cells via rapid transfer of ions and molecules.
6. Adhering junctions and Tight junctions, respectively.
7. Adhering junctions and Gap junctions, respectively.
8. Gap junctions and Adhering junctions, respectively.
9. Tight junctions and Gap junctions, respectively.

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get
 FREE ACCESS for 3
 days of ANY NEETprep

course

U- neet prep Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Cell: The Unit of Life

(Expected Questions in NEET 2022: 5)

Subtopic Name

Number of Questions

Ribosome and Inclusion Bodies	13
Nucleus	8
Cilia \& Flagella	7
Plastids	7
Mitochondria	6
Cell Wall	5
Golgi Apparatus	5
Endoplasmic Reticulum	5
Lysosomes	5
Cell Membrane	$\mathbf{3}$
Details of Prokaryotic Cell Structure	3
Eukaryotic Cell	$\mathbf{3}$
Cell Organisation	$\mathbf{2}$
Cytoskeleton	2
Endomembrane System	2
Prokaryotic Cell Organisation	$\mathbf{2}$
Vacuole	2
Bacterial Staining \& Shape	$\mathbf{1}$
Cell Theory	$\mathbf{1}$
Evidence for Fluidic Nature of Membrane	1

1. Select the mismatch.
2. Gas vacuoles - Green bacteria Cells
3. Large central vacuoles - Animal cells
4. Protists - Eukaryotes
5. Methanogens -Prokaryotes
6. Select the wrong statement.
7. Bacterial cell wall is made up of peptidoglycan
8. Pili and fimbriae are mainly involved in motility of bacterial cells
9. Cyanobacteria lack flagellated cells
10. Mycoplasma is a wall-less microorganism
11. A cell organelle containing hydrolytic enzyme is
12. lysosome
13. microsome
14. ribosome
15. mesosome
16.

Which of the following is true for nucleolus?

1. Larger nucleoli are present in dividing cells.
2. It is a membrane-bound structure.
3. It takes part in spindle formation.
4. It is a site for active ribosomal RNA synthesis.
5.

The Golgi complex participates in

1. Fatty acid breakdown
2. Formation of secretory vesicles
3. Respiration in bacteria
4. Activation of amino acid
5.

Microtubules are the constituents of

1. spindle fibres, centrioles and cilia
2. centrioles, spindle fibres and chromatin
3. centrosome, nucleosome and centrioles
4. cilia, flagella and peroxisomes
5.

Which one of the following cell organelles is enclosed by a single membrane?

1. Chloroplasts
2. Lysosomes
3. Nuclei
4. Mitochondria
5.

A complex of ribosomes attached to a single strand of RNA is known as

1. polymer
2. polypeptide
3. okazaki fragment
4. polysome
5. Which of the following structure is not found in a prokaryotic cell?
6. Nuclear envelope
7. Ribosome
8. Mesosome
9. Plasma membrane

6.

Many ribosomes may associate with a single mRNA to form multiple copies of a polypeptide simultaneously. Such strings of ribosomes are termed as

1. Polysome
2. Polyhedral bodies
3. Plastidome
4. Nucleosome
5. Which of the following cell organelles is responsible for extracting energy from carbohydrates to form ATP?
6. Ribosome
7. Chloroplast
8. Mitochondrion
9. Lysosome
10. Match the columns and identify the correct option.

Column I	Column II
A. Thylakoids	1. Disc-shaped sacs in Golgi apparatus
B. Cristae	2. Condensed structure of DNA
C. Cisternae	3. Flat membranous sacs in stroma
D. Chromatin	4. Infolding in mitochondria

1. A-4 B-3 C-1 D-2
2. A-3 B-4 C-1 D-2
3. A-3 B-1 C-4 D-2
4. A-3 B-4 C-2 D-1
5. Identify the correct order of organization of genetic material from largest to smallest.
6. Chromosome, gene,genome, nucleotide
7. Genome, chromosome, nucleotide, gene
8. Genome,chromosome, gene,nucleotide
9. Chromosome, genome, nucleotide, gene
10. Which of the following is not membrane bound?
11. Vacuoles
12. Ribosomes
13. Lysosome
14. Mesosomes
15. The structures that help some bacteria to attach to rocks and/or host tissues are
16. Rhizoids
17. Fimbriae
18. Mesosomes
19. Holdfast
20. Cellular organelles with membranes are
21. Nucleus, ribosome and mitochondria
22. Chromosomes, ribosome and endoplasmic reticulum
23. Endoplasmic reticulum, ribosome and nuclei
24. Lysosomes, Golgi apparatus and mitochondria.
25.

The chromosomes in which centromere is situated close to one end are

1. metacentric
2. acrocentric
3. telocentric
4. sub-metacentric
5.

Select the correct matching in the following pairs.

1. Smooth ER-Oxidation of phospholipids
2. Smooth ER-Synthesis of lipids
3. Rough ER-Synthesis of glycogen
4. Rough ER-Oxidation of fatty acids
5.

Which one of the following is not an inclusion body found in prokaryotes?

1. Phosphate granule
2. Cyanophycean granule
3. Glycogen granule
4. Polysome

20.

DNA is not present in

1. chloroplast
2. ribosomes
3. nucleus
4. mitochondria
5. Which structures perform the function of mitochondria in bacteria?
6. Nucleoid
7. Ribosomes
8. Cell wall
9. Mesosomes
10. The osmotic expansion of a cell kept in water is chiefly regulated by
11. Mitochondria
12. Vacuoles
13. Plastids
14. Ribosomes

Cell: The Unit of Life - NCERT based PYQs

Contact Number: 9667591930 / 8527521718
23. Match the following and select the correct answer :

List - I
A) Centriole
B) Chlorophyll
C) Cristae
D) Ribozymes

List - II
(i) Infoldings in mitochondria
(ii) Thylakoids
(iii) Nucleic acids
(iv) Basal body cilia or flagella

1. A-iv B-ii C-i D-iii
2. A-i B-ii C-iv D-iii
3. A-i B-iii C-ii D-iv
4. A-iv B-iii C-i D-ii
5.

Which one of the following organelle in the figure correctly matches with its function?

Golgi apparatus

1. Golgi apparatus, protein synthesis
2. Golgi apparatus, formation of glycolipids
3. Rough endoplasmic reticulum, protein synthesis
4. Rough endoplasmic reticulum, formation of glycoproteins
5.

The Golgi complex plays a major role

1. in digesting proteins and carbohydrates
2. as energy transferring organelles
3. in post translational modification of proteins and glycosidation of lipids
4. in trapping the light and transforming it into chemical energy
5. A major site for synthesis of lipids is:
6. SER
7. Symplast
8. Nucleoplasm
9. RER
10. Ribosomal RNA is actively synthesized in
11. Lysosomes
12. Nucleolus
13. Nucleoplasm
14. Ribosomes
15. What is true about ribosomes?
16. The prokaryotic ribosomes are 80 S , where S stands for sedimentation coefficient
17. These are composed of ribonucleic acid and proteins
18. These are found only in eukaryotic cells
19. These are self-splicing introns of some RNAs
20. Select the correct statement from the following regarding cell membrane.
21. Na^{+}and K^{+}ions move across cell membrane by passive transport
22. Proteins make up 60 to 70% of the cell membrane
23. Lipids are arranged in a bilayer with polar heads towards the inner part
24. Fluid mosaic model of cell membrane was proposed by Singer and Nicolson
25. Which one of the following structures between two adjacent cells is an effective transport pathway?
26. Plasmodesmata
27. Plastoquinones
28. Endoplasmic reticulum
29. Plasmalemma
30.

Important site for formation of glycoproteins and glycolipids is.

1. Golgi apparatus
2. plastid
3. lysosome
4. vacuole

32.

Peptide synthesis inside a cell takes place in

1. mitochondria
2. chromoplast
3. ribosomes
4. chloroplast
5. Which one of the following has its own DNA?
(1) Mitochondria
(2) Dictyosome
(3) Lysosome
(4) Peroxisome
6. The main arena of various types of activities of a cell is -
(1) Plasma membrane
(2) Mitochondrian
(3) Cytoplasm
(4) Nucleus
7. Alage have cell wall made up of -
(1) Cellulose, galactans and mannans
(2) Hemicellulose, pectins and proteins
(3) Pectins, cellulose and proteins
(4) Cellulose, hemicellulose and pectins
8. Middle lamella is mainly composed of
9. hemicellulose
10. muramic acid
11. calcium pectate
12. phosphoglycerides
13. Plasmodesmata are
14. lignified cemented layers between cells
15. locomotory structures
16. membranes connecting the nucleus with plasmalemma
17. connections between adjacent cells
18. The cytoskeleton is made up of
19. calcium carbonate granules
20. callose deposits
21. cellulosic microfibrils
22. proteinaceous filaments
23.

Polysome is formed by

1. several ribosomes attached to a single mRNA
2. many ribosomes attached to a strand of endoplasmic reticulum
3. a ribosome with several subunits
4. ribosomes attached to each other in a linear arrangement
5.

Vacuole in a plant cell

1. is membrane-bound and contains storage proteins and lipids
2. is membrane-bound and contains water and excretory substances
3. lacks membrane and contains air
4. lacks membrane and contains water and excretory substances
5. Which one of the following is not a constituent of cell membrane?
6. Cholesterol
7. Glycolipids
8. Proline
9. Phospholipids
10. Select the wrong statement from the following:
11. both chloroplast and mitochondria contain an inner and an outer membrane
12. both chloroplasts and mitochondria have an internal compartment, the thylakoid space bounded by the thylakoid membrane
13. both chloroplasts and mitochondria contain DNA
14. the chloroplasts are generally much larger than mitochondria
15. The concept of "Omnis cellula-e-cellula" regarding cell division was first proposed by:
16. Aristotle
17. Rudolf Virchow
18. Theodore Schwann
19. Schleiden
20. Which of the following pair of organelles does not contain DNA?
21. Nuclear envelope and Mitochondria
22. Mitochondria and Lysosomes
23. Chloroplast and Vacuoles
24. Lysosomes and vacuoles
25. Which of the following statements is not correct?
26. Lysosomes are formed by the process of packaging in the endoplasmic reticulum.
27. Lysosomes have numerous hydrolytic enzymes
28. The hydrolytic enzyme of lysosomes are active under acidic pH
29. Lysosomes are membrane bound structure.
30. Which of the following cell organelles is present in the highest number in secretory cells?
31. Mitochondria
32. Golgi complex
33. Endoplasmic reticulum
34. Lysosomes
35. Non-membranous nucleoplasmic structures in nucleus are the site for active synthesis of
36. protein synthesis
37. mRNA
38. rRNA
39. tRNA
40. Inclusion bodies of blue-green, purple, and green photosynthetic bacteria are :
41. Contractile vacuoles
42. Gas vacuoles
43. Centrioles
44. Microtubules
45. The biosynthesis of ribosomal RNA occurs in :
46. Ribosomes
47. Golgi apparatus
48. Microbodies
49. Nucleolus
50. The size of Pleuropneumonia - like Organism (PPLO) is :
51. $0.02 \mu \mathrm{~m}$
52. 1-2 $\mu \mathrm{m}$
53. $10-20 \mu \mathrm{~m}$
54. $0.1 \mu \mathrm{~m}$
55. Match the following columns and select the correct option :

Column - I

Column -

II
(a) Smooth endoplasmic reticulum
(i) Protein synthesis
(b) Rough endoplasmic reticulum
(ii) Lipid synthesis
(c) Golgi complex
(iii)

Glycosylation
(d) Centriole
(iv) Spindle
formation

1. (a)-(ii), (b)-(i), (c)-(iii). (d)-(iv)
2. (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
3. (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)
4. (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
5. Which one of the following cellular parts is correctly described?
6. Centrioles - sites for active RNA synthesis
7. Ribosomes - those on chloroplasts are larger (80s) while those in the cytoplasm are smaller (70s)
8. Lysosomes - optimally active at a pH of about 8.5
9. Thylakoids - flattened membranous sacs forming the grana of chloroplasts
10. An elaborate network of filamentous proteinaceous structures present in the cytoplasm which helps in the maintenance of cell shape is called -
11. Endosplasmic Reticulum
12. Plasmalemma
13. Cytoskeleton
14. Thylakoid
(1) These are involved in ingestion of food particles.
(2) They lie free in the cytoplasm.
(3) These represent reserve material in cytoplasm.
(4) They are not bound by any memberane.
15. Identify the components labelled $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D in the diagram below from the list (i) to (viii) given along with -

Components :
(i) Cristae of mitochondria
(ii) Inner membrane of mitochondria
(iii) Cytoplasm
(iv) Smooth endoplasmic reticulum
(v) Rough endoplasmic reticulum
(vi) Mitochondrial matrix
(vii) Cell vacuole
(viii) Nucleus

The correct components are :
A $\quad \mathrm{B} \quad \mathrm{C} \quad \mathrm{D}$

1. (i) (iv) (viii) (vi)
2. (vi) (v) (iv) (vii)
3. (v) (i) (iii) (ii)
4. (v) (iv) (viii) (iii)
5. Which one of the following is not considered as a part of the endomembrane system?
6. Lysosome
7. Golgi complex
8. Peroxisome
9. Vacuole
10. The figure below shows the structure of a mitochondrion with its four parts labelled (A), (B), (C). and (D) Select the part correctly matched with its function. -

11. Part (A) : Matrix - major site for respiratory chain enzymes
12. Part (D) : Outer membrane - gives rise to inner membrane by splitting
13. Part (B) : Inner membrane - forms infoldings called cristae
14. Part (C) : Cristae - possess single circular DNA molecule and ribosome
15. According to widely accepted "fluid mosaic model" cell membranes are semi-fluid, where lipids and integral proteins can diffuse randomly. In recent years, this model has been modified in several respects. In this regard, which of the following statements are incorrect -
(1) Proteins can also undergo flip-flop movements in the lipid bilayer
(2) Many proteins remain completely embedded within the lipid bilayer
(3) Proteins in cell membranes can travel within the lipid bilayer
(4) Proteins can remain confined within certain domains of the membranes
16. The main organelle involved in modification and routing of newly synthesized proteins to their destinations is -
(1) Endoplasmic Reticulum
(2) Lysosome
(3) Mitochondria
(4) Chloroplast
17. Chlorophyll in chloroplasts is located in -
(1) Grana
(2) Pyrenoid
(3) Stroma
(4) Both (1) and (3)
18. Role of microtubules :
19. To help in cell division
20. Cell membrane formation
21. Respiration
22. Pinocytosis
23. Difference between eukaryotes and prokaryotes:
24. ss circular DNA in prokaryotes
25. Histone with prokaryotic DNA
26. Operon in eukaryotes
27. Membrane bound organelles in eukaryotes
28. Flagella of prokaryotic and eukaryotic cells differ in :-
(1) Location in cell and mode of functioning
(2) Microtubular organization and type of movement
(3) Microtubular organization and function
(4) Type of movement \& placement in cell
29. In chloroplasts, chlorophyll is present in the :-
(1) Inner membrane
(2) Thylakoids
(3) Stroma
(4) Outer membrane
30. Double unit membrane is absent in :
31. Ribosomes
32. Nucleus
33. Plastids
34. E.R
35. In fluid mosaic model of plasma membrane
(1) Upper layer is non-polar and hydrophilic
(2) Polar layer is hydrophobic
(3) Phospholipids form a bimolecular layer in middle part
(4) Proteins form a middle layer
36. Ribosomes are produced in :
(1) Nucleolus
(2) Cytoplasm
(3) Mitochondria
(4) Golgibody
37. Mitotic spindle is mainly composed of which protein :-
(1) Actin
(2) Tubulin
(3) Actomyosin
(4) Myoglobin
38. Which of the following ribosomes are engaged in protein synthesis in animal cell :
39. Ribosomes which occur on nuclear membrane and E.R.
40. Ribosomes of only cytosol
41. Ribosomes of only nucleolus and cytosol
42. Ribosomes of only mitochondria and cytosol
43. Extranuclear DNA is found in :
44. Lysosome and chloroplast
45. Chloroplast and mitochondria
46. Mitochondria and lysosome
47. Golgi and E.R.
48. Lysosome contains :
49. Oxidative enzymes
50. Hydrolytic enzymes
51. Reductive enzymes
52. Anabolic enzymes
53. Chromosomes in a bacterial cell can be 1-3 in number and :-
(1) Are always circular
(2) Are always linear
(3) Can be either circular or linear, but never both within the same cell
(4) Can be circular as well as linear within the same cell
54. Difference in gram \bigoplus and gram Θ bacteria is due to -
55. Cell wall
56. Cell membrane
57. Ribosome
58. Cytoplasm
59. Extranuclear chromosomes occur in :-
60. Peroxisome, Ribosome
61. Chloroplast and Mitochondria
62. Mitochondria and Ribosome
63. Chloroplast and Lysosome
64. Element necessary for the middle lamella
65. Ca
66. Zn
67. K
68. Cu
69. Microtubules absent in :-
70. Mitochondria
71. Flagella
72. Spindle fibres
73. Centriole
74. When the centromere is situated in the middle of two equal arms of chromosomes, the chromosome is referred as:
(1) Sub-metacentric
(2) Acrocentric
(3) metacentric
(4) Telocentric
75. Match List - I with List - II

List -I	List - II
(a) Cristae	(i) Primary constriction in chromosome
(b)	(ii) Disc- shaped sacs in Golgi apparatus
Thylakoids	
(c)	(iii) Infoldings in mitochondria
(d)	(iv) Flattened membranous sacs in stroma of plastids

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep course

Choose the correct answer from the options given below.
(a) (b)
(c) (d)
(1) (iii) (iv) (i) (ii)
(2) (ii) (iii) (iv) (i)
(3) (iv)
(iii)
(ii) (i)
(4) (i) (iv)
(iii) (ii)
82. Which of the following is an incorrect statement?
(1) The perinuclear space forms a barrier between the materials present inside the nucleus and that of the cytoplasm.
(2) Nuclear pores act as passages for proteins and RNA molecules in both directions between nucleus and cytoplasm.
(3) Mature sieve tube elements possess a conspicuous nucleus and usual cytoplasmic organelles.
(4) Microbodies are present both in plant and animal cells.
83. The organelles that are included in the endomembrane system are:
(1) Golgi complex, Mitochondria, Ribosomes and Lysosomes
(2) Golgi complex, Endoplasmic reticulus, Mitochondria and Lysosomes
(3) Endoplasmic reticulum, Mitochondria, Ribosomes and Lysosomes
(4) Endoplasmic reticulum, Golgi complex, Lysosomes and Vacuoles

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Biomolecules

(Expected Questions in NEET 2022: 4)

Subtopic Name	Number of Questions
Enzymes	15
Amino Acids \& Proteins	8
Lipids	8
Nucleic Acid	5
Element Analysis and Primary \& Secondary Metabolite	4
Carbohydrates	3

neet

1. Which of the following are not polymeric?
2. Protiens
3. Polysaccharides
4. Lipids
5. Nucleic acids
6. A non-proteinaceous enzyme is
7. lysozyme
8. ribozyme
9. ligase
10. deoxyribonuclease
11.

Which of the following describes the given graph correctly?

1. Endothermic reaction with energy A in the presence of enzyme and B in the absence of enzyme
2. Exothermic reaction with energy A in the presence of enzyme and B in the absence of enzyme
3. Endothermic reaction with energy A in the absence of enzyme and B in the presence of enzyme
4. Exothermic reaction with energy A in the absence of enzyme and B in the presence of enzyme
5.

Which one of the following statements is wrong?

1. Cellulose is a polysaccharide
2. Uracil is a pyrimidine
3. Glycine is a sulphur containing amino acid
4. Sucrose is a disaccharide
5.

A typical fat molecule is made up of

1. One glycerol and three fatty acid molecules
2. One glycerol and one fatty acid molecule
3. Three glycerol and three fatty acid molecules
4. Three glycerol molecules and one fatty acid molecule.
5.

Water soluble pigments found in plant cell vacuoles are

1. cholrophylls
2. carotenoids
3. anthocyanins
4. xanthophylls
5. The chitinous exoskeleton of arthropods is formed by the polymerization of
6. Keratine sulphate and chondroitin sulphate
7. D-glucosamine
8. N -acetyl glucosamine
9. Lipoglycans
10. Which of the following biomolecules have a phosphodiester bond?
11. Fatty acids in a diglyceride
12. Monosaccharides in a polysaccharide
13. Amino acids in a plypeptide
14. Nucleic acids in a nucleoide
15.

A phosphoglyceride is always made up of

1. only an unsaturated fatty acid esterified to a glycerol molecule to which a phosphate group is also attached.
2. a saturated or unsaturated fatty acid esterified to a glycerol molecule to which a phosphate group is also attached.
3. a saturated or unsaturated fatty acid esterified to a phosphate group which is also
attached to a glycerol molecule.
4. only a saturated fatty acid esterified to a glycerol molecule to which a phosphate group is also attached.
5. Select the option which is not correct with respect to enzyme action:
6. Substrate binds with enzyme at its active site.
7. Addition of lot of succinate does not reverse the inhibition of succinic dehydrogenase by malonate
8. A non-competitive inhibitor binds the enzyme at a site distinct from that which binds the substrate
9. malonate is a competitive inhibitor of succinic dehydrogenase
10. The essential chemical components of many coenzymes are:
11. Nucleic acid
12. Carbohydrates
13. Vitamins
14. Proteins
15. Transition state structure of the substrate formed during an enzymatic reaction is:
16. Permanent but unstable
17. transeint and unstable
18. permanent and stable
19. transeint but stable
20. Given below is the diagrammatic representation of one of the categories of small molecular weight organic compounds in the living tissues. Identify the category shown and the one blank component X in it

Category Component

1. Cholesterol Guanin
2. Amino acid NH_{2}
3. Nucleotide Adenine
4. Nucleoside Uracil
5. Which one is the most abundant protein in the animal world?
6. Trypsin
7. Haemoglobin
8. Collagen
9. Insulin
10. Which one of the following structural formulae of two organic compounds are correctly identified along with its related function?

(B)
11. A- Triglyceride - sources of energy e-major
12. B- Uracil - a component of DNA
13. A- Lecithin - a component of cell membrane
14. B- Adenine - a nucleotide that makes up nucleic acids
15. The curve given below shows enzymatic activity with relation to three conditions (pH , temperature and substrate concentration) what do the two axises (X and Y) represent?

X-axis
(a) Temperature
(b) Substrate concentration Enzymatic activity
(c) Enzymatic activity Temperature
(d) Enzymatic activity
pH

1. (a)
2. (b)
3. (c)
4. (d)
5. Consider the following statements:
(A) Coenzyme or metal ion that is tightly bound to enzyme protein is called prosthetic group
(B) A complete catalytic enzyme with its bound prosthetic group is called apoenzyme
Select the correct option
6. (A) is false but (B) is true
7. Both (A) and (B) are true
8. (A) is true but (B) is false
9. Both (A) and (B) are false
10. Which of the following organic compounds is the main constituent of Lecithin?
11. Arachidonic acid
12. Phospholipid
13. Cholesterol
14. Phosphoprotein
15. Prosthetic groups differ from co-enzymes in that 1. they require metal ions for their activity
16. they (prosthetic groups) are tightly bound to apoenzymes.
17. their association with apoenzymes is transient.
18. they can serve as co-factors in a number of enzymecatalyzed reactions.
19. "Ramachandran plot" is used to confirm the structure of
20. RNA
21. Proteins
22. Triacylglycerides
23. DNA
24.

A competitive inhibitor of succinic dehydrogenase is

1. malonate
2. Oxaloacetate
3. α-ketoglutarate
4. malate
5. An organic substance bound to an enzyme and essential for its activity is called:
6. coenzyme
7. holoenzyme
8. apoenzyme
9. isoemzyme
10. Match the following:
(a)
Inhibitor of catalytic activity
(i) Ricin
(b) Possess peptide bonds
(c) Cell wall material in fungi
(iii) Chitin
(d) Secondary metabolite
(iv) Collagen

Choose the correct option from the following:
(a)
(b)
(c)
(d)
(1)
(iii)
(i)
(iv)
(ii)
(2)
(iii)
(iv)
(i)
(ii)
(3)
(ii)
(iii)
(i)
(iv)
27. Match the following :
(a) Aquaporin (i) Amide
(b) Asparagine (ii) Polysaccharide
(c) Abscisic acid (iii) Polypeptide
(d) Chitin (iv) Carotenoids

Select the correct option :

1. (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
2. (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
3. (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
4. (a)-(iii), (b)-(i), (c) -(ii), (d)-(iv)
5. Which one of the following biomolecules is correctly characterised?
6. Palmitic acid - an unsaturated fatty acid with 18 carbon atoms
7. Adenylic acid - adenosine with a glucose phosphate molecule
8. Alanine amino acid - Contains an amino group and an acidic group anywhere in the molecule
9. Lecithin - a phosphorylated glyceride found in cell membrane
10. For its activity, carboxypeptidase requires :
11. Iron
12. Niacin
13. Copper
14. Zinc
15. Identify the basic amino acid from the following.
16. Glutamic Acid
17. Lysine
18. Valine
19. Tyrosine
20. Which one of the following is the most abundant protein in the animals?
(1) Collagen
(2) Lectin
(3) Insulin
(4) Hemoglobin
21. Identify the statement which is incorrect.
22. Sulphur is an integral part of cysteine.
23. Glycine is an example of lipids.
24. Lecithin contains a phosphorus atom in its structure.
25. Tyrosine possesses an aromatic ring in its structure.
26. The figure given below shows the conversions of a substrate into product by an enzyme. In which one of the four options (1-4) the components of reaction labelled as $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are identified correctly -

Options

	A	B	C	D
1.	Transition state	Potential energy	Activation energy without enzyme	Activation energy with enzyme
2.	Potential energy	Transition state	Activation energy with enzyme	Activation energy without enzyme
3.	Activation energy with enzyme	Transition state	Activation energy without enzyme	Potential energy
4.	Potential energy	Transition state	Activation energy with enzyme	Activation energy without enzyme

31. Three of the following statements about enzymes are correct and one is wrong. Which
one is wrong
32. Enzymes are denatured at high temperature but in certain exceptional organisms they are effective even at temperatures $80^{\circ}-90^{\circ} \mathrm{C}$
33. Enzymes are highly specific
34. Most enzymes are proteins but some are lipids
35. Enzymes require optimum pH for maximal activity
36. Which of the following is the simplest amino acid -
(1) Alanine
(2) Asparagine
(3) Glycine
(4) Tyrosine
37. Which of the following statements regarding enzyme inhibition is correct -
38. Competitive inhibition is seen when a substrate competes with an enzyme for binding to an inhibitor protein
39. Non-competitive inhibitors often bind to the enzyme irreversibly
40. Competitive inhibition is seen when the substrate and the inhibitor compete for the active site on the enzyme
41. Non-competitive inhibition of an enzyme can be overcome by adding large amounts of substrate
42. Nucleotides are building blocks of nucleic acids. Each nucleotide is a composite molecule formed by -
43. Base-sugar-OH
44. Base-sugar-phosphate
45. Sugar-phosphate
46. (Base-sugar-phosphate $)_{n}$
47. Which protein is found in maximum amount:
48. Catalase
49. Zinc carbonic anhydrase
50. Transferase
51. RUBISCO
52. ATP is :
53. Nucleotide
54. Nucleoside
55. Nucleic acid
56. Vitamin
57. Role of enzyme in reactions is to
58. Decrease activation energy
59. Increase activation energy
60. Act as inorganic catalyst
61. None of the above
62. Phospholipids are esters of glycerol with :-
(1) Three carboxylic acid residues
(2) Two carboxylic acid residues and one phosphate group
(3) One carboxylic acid residue and two phosphate groups
(4) Three phosphate groups
63. The major portion of the dry weight of plants comprises of : -
(1) Nitrogen, phosphorus and potassium
(2) Calcium, magnesium and sulphur
(3) Carbon, nitrogen and hydrogen
(4) Carbon, hydrogen and oxygen
64. Which of the following are not secondary metabolites in plants?
(1) Vinblastin, curcumin
(2) Rubber, gums
(3) Morphine, codeine
(4) Amino acids, glucose
65. Match List -I with List - II.

List-I	List-Ii
(a) Protein	I. C-C double bonds
(b) Unsaturated fatty acid	II. Phosphodiester bonds
(c) Nucleic acid	III. Glycosidic bonds
(d)Polysaccharides	IV. Peptide bonds

Choose the correct answer from the options given below.
(a) (b) (c) (d)

1. (ii) (i) (iv) (iii)
2. (iv) (iii) (i) (ii)
3. (iv) (i) (ii) (iii)
4. (i) (iv) (iii) (ii)
5. Identify the incorrect pair.
(1) Lectins - Concanavalin A
(2) Drugs - Ricin
(3) Alkaloids - Codeine
(4) Toxin - Abrin
6. Following are the statements with reference to 'lipids'.
(a) Lipids having only single bonds are called unsaturated fatty acids.
(b) Lecithin is a phospholipid.
(c) Trihydroxy propane is glycerol.
(d) Palmitic acid has 20 carbon atoms including carboxyl carbon.
(e) Arachidonic acid has 16 carbon atoms.

Choose the correct answer from the options given below.

1. (b) and (c) only
2. (b) and (e) only
3. (a) and (b) only
4. (c) and (d) only

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE FREE ACCESS for

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Cell Cycle \& Cell Division

(Expected Questions in NEET 2022: 4)

Subtopic Name

Number of

 Questions| Cell Cycle: Meiosis I | 17 |
| :--- | ---: |
| Intro to Cell Cycle \& Interphase | 17 |
| Cell Division: Mitosis (Karyokinesis) | 13 |
| Cell Cycle: Meiosis II | 1 |

Cell Cycle \& Cell Division - NCERT based PYQs

1. During cell growth, DNA synthesis takes place in
2. S-phase
3. G_{1}-phase
4. G_{2}-phase
5. M-phase
6.

The stage during which separation of the paired homologous chromosomes begins is

1. Pachytene
2. Diplotene
3. Diakinesis
4. Zygotene
5. Which of the following options gives the correct sequence of events during mitosis?
6. Condensation, nuclear membrane disassembly, arrangement at equator, centromere
division, segregation, telophase
7. Condensation, crossing over, nuclear membrane disassembly, segregation, telophase
8. Condensation, centromere division, segregation, arrangement at equator, telophase
9. condensation, nuclear membrane disassembly, crossing over, segregation, telophase
10.

Match the stages of meiosis in column to their characteristic features in Column II and select the correct option using the codes given below

Column I	Column II
a. pachytene	1. pairing of homologous chrmosomes
b. metaphase -1	2. terminalisation of chiasmata
c. diakinesis	3. crossing-over take place
d. Zygotene	4. chromosomes align at equatorial plate

1. A-3 B-4 C-2 D-1
2. A-1 B-4 C-2 D-3
3. A-2 B-4 C-3 D-1
4. A-4 B-3 C-2 D-1
5.

Which of the following is not a characteristic feature during mitosis cells?
1 Disappearance of nucleolus
2. Chromosome movement
3. Synapsis
4. Spindle fibres
6.

Spindle fibres attach on to

1. kinetochore of the chromosome
2. centromer of the chromosome
3. kinetosome of the chromosome
4. telomere of the chromosome
5.

In meiosis crossing over is initiated at

1. leptotene
2. zygotene
3. diplotene
4. pachytene
5. Arrange the following events of meiosis in correct Sequences
I. Crossing over
II. Synapsis
III. Terminalisation of chiasmata
IV. Disappearance of nucleolus
6. II,I,IV,III
7. II,I,III,IV
8. I,II,III,IV
9. II,III,IV,I
10.

Match the following column I with column II.

Column I	Column II
A. Synapsis aligns homologous chromosomes	1. Anaphase II
B. Synthesis of RNA and protein	2. Zygotene
C. Action of enzyme recombinase	3. G2 - phase
D. Centromeres do not separate, but chromatids move towards opposite poles	4. Anaphase I
	5. Pachytene

1. A-2 B-1 C-3 D-4
2. A-2 B-3 C-5 D-4
3. A-1 B-2 C-5 D-4
4. A-2 B-3 C-4 D-5
5. During which phase(s) of cell cycle, amount of DNA in a cell remains at 4 C level if the initial amount is denoted as 2 C ?
6. G_{0} and G_{1}
7. G_{1} and S
8. Only G_{2}
9. G_{2} and M
10. A stage in cell division is shown in the figure. Select the answer which gives correct identification of the stage with its characteristics.

Chromosomes move away from

1. Late anaphase equatorial plate, Golgi complex not present

Cell plate formed, mitochondria
2. Cytokinesis distributed between two daughter cells
3. Telophase

Endoplasmic reticulum and nucleolus not reformed yet
4. Telophase

Nuclear envelop reforms, Golgi complex reforms

1. (1)
2. (2)
3. (3)
4. (4)
5. The enzyme recombinase is required at which stage of meiosis
6. Pachytene
7. Zygotene
8. Dipotene
9. Diakenesis
10. The complex formed by a pair of synapsed homologous chromosomes is called
11. Kinetochore
12. Bivalent
13. Axoneme
14. Equatorial plate
15. During gamete formation, the enzyme recombinase participates during
16. Metaphase-I
17. Anaphase-II
18. Prophase-I
19. Prophase-II
20.

Select the correct option with respect to mitosis.

1. Chromatids start moving towards opposite poles in telophase.
2. Golgi complex and endoplasmic reticulum are still visible at the end of prophase.
3. Chromosomes move to the spindle equator and get aligned along equatorial plate in metaphase.
4. Chromatids separate but remains in the center of the cell in anaphase.
5. During mitosis ER and nucleolus begin to disappear at 1. late prophase
6. early metaphase
7. late metaphase
8. early prophase
9. Which stages of cell division do the following figures A and B represent respectively?

10. Metaphase- telophase
11. Telophase- Metaphase
12. Late anaphase- Prophase
13. Prophase- Anaphase
14. In 'S' phase of the cell cycle
15. amount of DNA doubles in each cell.
16. amount of DNA remains same in each cell
17. chromosome number is increased
18. amount of DNA is reduced to half in each cell.
19.

Given below is a schematic break-up of the phases/stages of cell cycle

Which one of the following is the correct indication of the stage/phase in the cell cycle?

1. B-Metaphase
2. C-Karyokinesis
3. D-Synthetic phase
4. A-Cytokinesis
5. Synapsis occurs between
6. a male and a female gamete
7. mRNA and ribosomes
8. spindle fibres and centromere
9. two homologous chromosomes
10. Cells in G_{0} phase:
11. terminate the cell cycle
12. exit the cell cycle
13. enter the cell cycle
14. suspend the cell cycle
15. The correct sequence of phases in cell cycle is:
16. $\mathrm{G}_{1} \rightarrow \mathrm{~S} \rightarrow \mathrm{G}_{2} \rightarrow \mathrm{M}$
17. $\mathrm{M} \rightarrow \mathrm{G}_{1} \rightarrow \mathrm{G}_{2} \rightarrow \mathrm{~S}$
18. $\mathrm{G}_{1} \rightarrow \mathrm{G}_{2} \rightarrow \mathrm{~S} \rightarrow \mathrm{M}$
19. $\mathrm{S} \rightarrow \mathrm{G}_{1} \rightarrow \mathrm{G}_{2} \rightarrow \mathrm{M}$
20. After meiosis I, the resultant daughter cells have
21. same amount of DNA as in the parent cell in S
22. twice the amount of DNA in comparison to haploid
23. same amount of DNA in comparison to haploid gamete
24. four times the amount of DNA in comparison to haploid gamete
25. Crossing over takes place between which chromatids and in which stage of the cell cycle?
26. Non-sister chromatids of non-homologous chromosomes at Zygotene stage of prophase I.
27. Non-sister chromatids of homologous chromosomes at Pachytene stage of prophase I.
28. Non-sister chromatids of homologous chromosomes at Zygotene stage of prophase I.
29. Non-sister chromatids of non-homologous chromosomes at Pachytene stage of prophase I.
30. Some dividing cells exit the cell cycle and enter the vegetative inactive stage. This is called the quiescent stage $\left(G_{0}\right)$. This process occurs at the end of:
31. G_{1} phase
32. S phase
33. G_{2} phase
34. M phase
35. Identify the correct statement with regard to G_{1} phase (Gap 1) of interphase.
36. The reorganisation of all cell components takes place.
37. The cell is metabolically active, grow but does not replicate its DNA
38. Nuclear Division takes place
39. DNA synthesis or replication takes place.
40. Dissolution of the synaptonemal complex occurs during :
(1) Zygote
(2) Diplotene
(3) Leptotene
(4) Pachytene
41. Match the following with respect to meiosis:
a. Zygotene i. Terminalization
b. Pachytene
ii. Chiasmata
c. Diplotene
iii. Crossing over
d. Diakinesis iv. Synapsis

Select the correct option from the following:

	(a)	(b)	(c)	(d)
1.	iv	iii	ii	i
2.	i	ii	iv	iii
3.	ii	iv	iii	i
4.	iii	iv	i	ii

29. Attachment of spindle fibers to kinetochores of chromosomes becomes evident in :
30. Anaphase
31. Telophase
32. Prophase
33. Metaphase
34. In a mitotic cycle, the correct sequence of phases is
35. $\mathrm{S}, \mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{M}$
36. G_{1}, S, G_{2}, M
37. M, G_{1}, G_{2}, S
38. $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{~S}, \mathrm{M}$
39. During Meiosis 1 , in which stage synapsis takes place?
40. Pachytene
41. Zygotene
42. Diplotene
43. Leptotene

Cell Cycle \& Cell Division - NCERT based PYQs

32. Match the following events that occur in their respective phases of cell cycle and select the correct option :
(a) G 1 phase
duplication
(b) S phase
chromosome duplication
(c) G 2 phase
(d) Metaphase in M-phase
(iii) Cytoplasmic growth chromosomes
33. (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
34. (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
35. (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
36. (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)
37. Identify the meiotic stage in which the homologous chromosomes separate while the sister chromatids remain associated at their centromeres :
38. Metaphase-II
39. Anaphase-I
40. Anaphase-II
41. Metaphase-I
42. At metaphase, chromosomes are attached to the spindle fibres by their :
43. Centromere
44. Satellites
45. Secondary constrictions
46. Kinetochores
47. Centromere is required for -
(1) Movement of chromosomes towards poles
(2) Cytoplasmic cleavage
(3) Crossing over
(4) Transcription
48. What occurs in crossing over :
49. Recombination
50. Mutation
51. Independent assortment
52. None
53. Crossing over that results in genetic recombination in higher organisms occurs between:-
54. Non-sister chromatids of a bivalent
55. Two daughter nuclei
56. Two different bivalents
57. Sister chromatids of a bivalents
58. In the somatic cell cycle :-
59. DNA replication takes place in S-phase
60. A short interphase is followed by a long mitotic phase
61. G_{2} phase follows mitotic phase
62. In G_{1} phase, DNA content is double the amount of

DNA present in the original cell
39. Amount of cellular DNA increases during :

1. Cytokinesis
2. Fertilisation
3. Mutation
4. Respiration
5. If you are provided with root-tips of onion in your class and are asked to count the chromosomes, which of the following stages can you most conveniently look into
6. Telophase
7. Anaphase
8. Prophase
9. Metaphase
10. Spindle fibre unites with which structure of chromosomes :
11. Chromocenter
12. Chromomere
13. Kinetochore
14. Centriole
15. Best material for the study of mitosis in laboratory : -
(1) Anther
(2) Root tip
(3) Leaf tip
(4) Ovary
16. In which stage of cell cycle, DNA replication occurs :
17. G_{1} - phase
18. S - phase
19. G_{2} - phase
20. M - phase
21. Which of the following stages of meiosis involves division of centromere?
(1) Anaphase II
(2) Telophase II
(3) Metaphase I
(4) Metaphase II
22. Match List-I with List-II

List-I	List-II
(a) S phase	I. Proteins are synthesized
(b) G_{2} phase	II. Inactive phase
(c) Quiescent	III. Interval between mitosis and initiation stage
of DNA replication	
(d) G_{1} phase	IV. DNA replication

Choose the correct answer from the options given below.
(a) (b) (c) (d)

1. (iv) (i) (ii) (iii)
2. (ii) (iv) (iii) (i)
3. (iii) (ii) (i) (iv)
4. (iv) (ii) (iii) (i)
5. The centriole undergoes duplication during:
(1) Metaphase
(2) G_{2} phase
(3) S-phase
(4) Prophase
6. Which stage of meiotic prophase shows terminalisation of chiasmata as its distincitve feature?
(1) Diakinesis
(2) Pachytene
(3) Leptotene
(4) Zygotene
7. The fruit fly has 8 chromosomes (2 n) in each cell. During the interphase of Mitosis if the number of chromosomes at G_{1} phase is 8 , what would be the number of chromosomes after the S phase?
8. 4
9. 32
10. 8
11. 16

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get
 FREE ACCESS for 3
 days of ANY NEETprep

course

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Transport in Plants

(Expected Questions in NEET 2022: 2)

Subtopic Name

Number of Questions

Transpiration	8
Phloem Translocation	$\mathbf{4}$
Means of Transport: Active	$\mathbf{2}$
Osmosis	2
Stomata	2
Water Potential	2
Ascent of Sap	1
Pathways of transport	1
Plasmolysis	1

1. Which of the following facilitates opening of stomatal aperture?
2. Decrease in turgidity of guard cells
3. Radial orientation of cellulose microfibrils in the cell wall of guard cells.
4. Longitudinal orientation of cellulose microfibrils in the cell wall of guard cells
5. Contraction of outer wall of guard cells
6. The water potential of pure water is:
7. Less than zero
8. More than zero but less than one
9. More than one
10. Zero
11. Root pressure develops due to
12. Active absorption
13. Low osmotic potential in Soil
14. Passive absorption
15. Increase in transpiration
16. A column of water within xylem vessels of tall trees does not break under its weight because of
17. Dissolved sugar in water
18. Tensile strength of water
19. Lignification of xylem vessels
20. Positive root pressure
21.

Transpiration and root pressure cause water to rise in plants by

1. pulling it upward
2. pulling and pushing it, respectively
3. pushing it upward
4. pushing and pulling it, respectively
5. Which one of the following is correctly matched?
6. Passive transport of nutrients-ATP
7. Apoplast- Plasmodesmata
8. Potassium- Readily mobilized
9. Bakane of rice seedlings-F Skoog

7.

Which one of the following elements in plants not remobilized?

1. Calcium
2. Potassium
3. Sulphur
4. Phosphorus
5. Xylem translocates:
6. Water, minerals salts, some nitrogen and hormones
7. Water only
8. Water and mineral salts only
9. Water, mineral and some organic nitrogen only
10. What is the direction of movement of sugars in phloem?
11. Bi-directional
12. Non-multidirectional
13. Upward
14. Downward
15. Which of the following is not a feature of active transport of solutes in plants?
16. Occurs against concentration gradient
17. Non-selective
18. Occurs through membranes
19. Requires ATP
20. What will be the direction of flow of water when a plant cell is placed in a Hypotonic solution?
21. Water will flow in both directions.
22. Water will flow out of the cell.
23. Water will flow into the cell.
24. No flow of water in any direction.
25. The process responsible for facilitating loss of water in liquid form from the tip of grass blades at night and early morning is:
26. Root pressure
27. Imbibition
28. Plasmolysis
29. Transpiration
30. Select the incorrect statement.
31. Transport of molecules in phloem can be bidirectional.
32. The movement of minerals in the xylem is unidirectional.
33. Unloading of sucrose at the sink does not involve the utilization of ATP.
34. Elements most easily mobilized in plants from one region to another are phosphorus, sulfur, nitrogen, and potassium.
35. Guttation is the result of :
36. Root pressure
37. Diffusion
38. Transpiration
39. Osmosis
40. Function of companion cells is :
41. Loading of sucrose into sieve elements
42. Providing energy to sieve elements for active transport
43. Providing water to phloem
44. Loading of sucrose into sieve elements by passive transport
45. Osmotic potential and water potential of pure water respectively:
46. 0 and 0
47. 0 and 1
48. 100 and 0
49. 100 and 100
50. What shall be the water potential of a root hair cell absorbing water from the soil
51. Zero
52. Less than zero
53. More than zero
54. Infinite
55. Casparian bands are found in :
56. Endodermis
57. Pericycle
58. Periderm
59. Cortex
60. The movement of ions against the concentration gradient will be :
61. Active transport
62. Osmosis
63. Diffusion
64. All of the above
65. Opening and closing of stomata is due to the :-
66. Hormonal change in guard cells
67. Change in Turgor pressure of guard cells
68. Gaseous exchange
69. Respiration
70. Loading of phloem is related to : -
71. Increase of sugar in phloem
72. Elongation of phloem cell
73. Separation of phloem parenchyma
74. Strengthening of phloem fiber
75. When water moves through a semipermeable membrane then which of the following pressure develops:
76. O.P.
77. S.P.
78. T.P.
79. W.P.
80. Match List - I with List-II.

List-I	List-II
(a) Cohesion	(i) More attraction in liquid phase
(b) Adhesion	(ii)Mutual attraction among water
(c) Surface	molecules
(iii)Water loss in liquid phase	
(d) Guttation	(iv) Attraction towards polar surfaces

Choose the correct answer from the options given below.
(a) (b) (c) (d)

1. (iii) (i) (iv) (ii)
2. (ii) (i) (iv) (iii)
3. (ii) (iv) (i) (iii)
4. (iv) (iii) (ii) (i)

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

 courseSelected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Mineral Nutrition
 (Expected Questions in NEET 2022: 1)

Subtopic Name	Number of Questions
Mineral Function	17
Nitrogen Fixation	13
Classification of Nutrients	5
Nodule formation	5
Ammonia Assimilation \& Nitrogen Export	1
Mineral Deficiency \& Toxicity	1
Nitrogen Metabolism: 1	1

1. Select the mismatch:
2. Rhodospirillum - Mycorrhiza
3. Anabaena - Nitrogen fixer
4. Rhizobium - Alfalfa
5. Frankia - Alnus
6. Deficiency symptoms of nitrogen and potassium are visible first in :
7. Senescent leaves
8. Young leaves
9. Roots
10. Buds
11. The most abundant intracellular cation is :

In which of the following forms is iron absorbed by plants?

1. Ferric
2. Ferrous
3. Free element
4. Both ferric and ferrous
5.

Which of the following elements is responsible for maintaining turgor in cells ?

1. Magnesium
2. Sodium
3. Potassium
4. Calcium
5.

In which of the following, all three are macronutrients?

1. Iron, copper, molybdenum
2. Molybdenum, magnesium, manganese
3. Nitrogen, zinc, manganese
4. Nitrogen, magnesium, phosphorus
5. During biological nitrogen fixation, inactivation of nitrogenase by oxygen poisoning is prevented by
6. Leghaemoglobin
7. Xanthophylls
8. Carotene
9. Cytochrome
10.

Minerals known to be required in large amounts for plant growth include

1. phosphorus, potassium, sulphur, calcium
2. calcium, magnesium, manganese, copper
3. potassium, phosphorus, selenium, boron
4. magnesium, sulphur, iron, zinc
5. Ca^{2+}
6. H^{+}
7. K^{+}
8. Na^{+}
9. Best defined function of manganese in green plants is
10. Photolysis of water
11. Calvin cycle
12. Nitrogen fixation
13. Water absorption
14. An element playing important role in nitrogen fixation is
15. molybdenum
16. copper
17. manganese
18. zinc
19.

The function of leghemoglobin in the root nodules of legumes is

1. oxygen removal
2. nodule differentiation
3. expression of nif gene
4. inhibition of nitrogenase activity
5.

Nitrifying bacteria

1. convert free nitrogen to nitrogen compounds
2. convert proteins into ammonia
3. reduce nitrates to free nitrogen
4. oxidize ammonia to nitrates
5. Which one of the following is not a micronutrient?
6. Molybdenum
7. Magnesium
8. Zinc
9. Boron
10. The free-living, anaerobic nitrogen-fixer is
11. Beijerinckia
12. Rhodospirillum
13. Rhizobium
14. Azotobacter
15. Manganese is required in
16. nucleic acid synthesis
17. plant cell wall formation
18. photolysis of water during photosynthesis
19. chlorophyll synthesis
20. Which of the following is a symbiotic nitrogen fixer?
21. Glomus
22. Azotobacter
23. Frankia
24. Azolla
25.

Nitrogen-fixation in root nodules of Alnus is brought about by

1. Bradyrhizobium
2. Clostridium
3. Frankia
4. Azorhizobium
5. Which one of the following elements is not an essential micronutrient for plant growth?
6. Mn
7. Zn
8. Cu
9. Ca
10. A plant requires magnesium for :
11. holding cells together
12. protein synthesis
13. chlorophyll synthesis
14. cell wall development
15. Farmers in a particular region were concerned that pre-mature yellowing of leaves of a pulse crop might cause decrease in the yield. Which treatment could be most beneficial to obtain maximum seed yield?
16. Frequent irrigation of the crop
17. Treatment of the paints with cytokinins alongwith a small dose of nitrogenous fertilizer
18. Removal of all yellow leaves and spraying the remaining green leaves with 2,4,5-trichlorophenoxy acetic acid
19. Application of iron and magnesium to promote synthesis of chlorophyll
20. Thiobacillus is a group of bacteria helpful in carrying out:
21. Denitrification
22. Nitrogen fixation
23. Chemoautotrophic fixation
24. Nitrification
25. Which of the following bacteria reduce nitrate in soil into nitrogen?
26. Nitrobacter
27. Thiobacillus
28. Nitrococcus
29. Nitrosomonas
30. In Glycine max, the product of biological nitrogen fixation is transported from the root nodules to other parts as:
31. Ammonia
32. Glutamate
33. Nitrates
34. Ureides
35. Which of the following elements helps in maintaining the structure of ribosomes?
36. Magnesium
37. Zinc
38. Copper
39. Molybdenum
40. For its action, nitrogenase requires :
41. Light
42. $M n^{2+}$
43. Super oxygen radicals
44. High input of energy
45. Study the cycle shown below and select the option which gives correct words for all the four blanks $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D

Options :

A
 D

1. Denitrification Animals
2. Nitrification Plants
3. Denitrification \quad Nitrification
Animals
4. Nitrification Plants
5. Leguminous plants are able to fix atmospheric nitrogen through the process of symbiotic nitrogen fixation. Which one of the following statements is not correct during this process of nitrogen fixation -
6. Nodules act as sites for nitrogen fixation
7. The enzyme nitrogenase catalyses the conversion of atmospheric N_{2} to NH_{3}
8. Nitrogenase is insensitive to oxygen
9. Leghaemoglobin scavenges oxygen and is pinkish in colour
10. Which one of the following is essential for photolysis of water?
11. Boron
12. Manganese
13. Zinc
14. Copper
15. Which one of the following is not an essential mineral element for plants while the remaining
three are ?
16. Phosphorus
17. Iron
18. Manganese
19. Cadmium
20. The deficiencies of micronutrients, not only affects growth of plants but also vital functions such as photosynthetic and mitochondrial electron flow. Among the list given below, which group of three elements shall affect most, both photosynthetic and mitochondrial electron transport -
(1) $\mathrm{Ca}, \mathrm{K}, \mathrm{Na}$
(2) $\mathrm{Co}, \mathrm{Ni}, \mathrm{Mo}$
(3) $\mathrm{Mn}, \mathrm{Co}, \mathrm{Ca}$
(4) $\mathrm{Cu}, \mathrm{Mn}, \mathrm{Fe}$
21. All of the following statements concerning the Actinomycetous filamentous soil bacterium Frankia are correct EXCEPT that Frankia -
(1) Forms specialized vesicles in which the nitrogenase is protected from oxygen by a chemical barrier involving triterpene hopanoids
(2) Can induce root nodules on many plant species
(3) Like Rhizobium, it usually infects its host plant through root hair deformation and stimulates cell proliferation in the host's cortex
(4) Cannot fix nitrogen in the free-living state
22. Which of the following is a non-symbiotic nitrogen fixing bacteria?
23. Rhizobium
24. Mycorrhiza
25. Azotobacter
26. Nitrosomonas
27. If by radiation all nitrogenase enzyme are inactivated, then there will be no :-
(1) Fixation of atmospheric nitrogen
(2) Conversion from nitrate to nitrite in legumes
(3) Conversion from ammonium to nitrate in soil
(4) Fixation of nitrogen in legumes
28. Nitrogen fixing bacteria converts :
29. $\mathrm{N}_{2} \rightarrow \mathrm{NH}_{3}$
30. $\mathrm{NH}_{4}^{+} \rightarrow$ Nitrates
31. $\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{3}$
32. $\mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2}$
33. Plants take zinc in form of :
34. ZnSO_{4}
35. Zn^{++}
36. ZnO
37. Zn
38. The major role of minor elements inside living organisms is to act as :-
(1) co-factors of enzymes
(2) Building blocks of important amino acids
(3) Constituent of hormones
(4) Binder of cell structure
39. Which element is located at the centre of the porphyrin ring in chlorophyll?
(1) Calcium
(2) Magnesium
(3) Potassium
(4) Manganese
40. Which one of the following mineral elements plays an important role in biological nitrogen fixation :-
(1) Copper
(2) Manganese
(3) Zinc
(4) Molybdenum
41. Boron in green plants assists in : -
(1) Activation of enzymes
(2) Acting of enzyme cofactor
(3) Photosynthesis
(4) Sugar transport
42. Enzyme first used for nitrogen fixation :-
43. Nitrogenase
44. Nitroreductase
45. Transferase
46. Transaminase
47. Cytochrome is:-
48. Metallo flavo protein
49. Fe containing porphyrin pigment
50. Glycoprotein
51. Lipid
52. Roots of which plant contains a pink pigment which have affinity for oxygen :-
53. Carrot
54. Soyabean
55. Mustard
56. Radish
57. Match Column-I with Column- II.

Column I	Column II
(a)	
Nitrococcus	(i) Denitrification
(b)	(ii) Conversion of ammonia to nitrite Rhizobium (iii) Conversion of nitrite to nitrate
(c)	(iv) Conversion of atmospheric nitrogen to
Thiobacillus	ammonia
(a)	
Nitrobactèr	

Choose the correct answer from the options given below.
(a) (b) (c) (d)

1. (iii) (i) (iv) (ii)
2. (iv) (iii) (ii) (i)
3. (ii) (iv) (i) (iii)
4. (i) (ii) (iii) (iv)

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to FREE ACCESS for 3 days of ANY NEETprep

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Photosynthesis in Higher Plants
 (Expected Questions in NEET 2022: 2)

Subtopic Name

Number of Questions

C4 Cycle (Hatch \& Slack Pathway)	11
Light Reaction	10
Dark Reaction	6
Photorespiration	3
Photorespiration	3
Historical View: Experiments	2
C4 Plants Examples	1
Chemiosmotic hypothesis	1
Factors Affecting Photosynthesis	1

1. The process which makes major difference between 6

C 3 and C4 plants is

1. glycolysis
2. Calvin cycle
3. photorespiration
4. respiration
5.

Which of the following is not a product of light reaction of photosynthesis?

1. ATP
2. NADH
3. NADPH
4. Oxygen
5.

Oxygen is not produced during photosynthesis by

1. Green sulphur bacteria
2. Nostoc
3. Cycas
4. Chara
5. With reference to factors affecting the rate of photosynthesis, which of the following statements is not correct?
6. increasing atmospheric CO_{2} concentration up to 0.05% can enhance CO_{2} fixation rate
7. C_{3} plants respond to higher temperatures with enhanced photosynthesis while C4 plants have much lower temperature optimum
8. Tomato is a greenhouse crop which can be grown in CO_{2} enriched atmosphere for higher yield
9. Light saturation for CO_{2} fixation occurs at 10% of full sunlight
10. Phosphoenol pyruvate (PEP) is the primary CO_{2} acceptor in:
11. C_{4} plants
12. C_{2} plants
13. C_{3} and C_{4} plants
14. C_{3} plants
15.
16. of

A plant in your garden avoids photorespiratory losses, has improved water use efficiency, shows high rates of photosynthesis at high temperatures and has improved efficiency of nitrogen utilization. In which of the following physiological groups would you assign this plant?

1. C_{4}
2. CAM
3. Nitrogen -fixer
4. C_{3}

In chloroplast the highest number of protons are found in

1. lumen of thylakoids
2. inter membrane space
3. antennae complex
4. stroma
5. In photosynthesis, the light-independent reactions take place at
6. Thylakoid lumen
7. photosystem I
8. photosystem II
9. Stromal matrix
10. Cyclic -photophosphorylation results in the formation
11. NADPH
12. ATP and NADPH
13. ATP, NADPH and O_{2}
14. ATP

10.

In leaves of C4-plants malic acid synthesis during CO2fixation occurs in

1. epidermal cells
2. mesophyll cells
3. bundle sheath
4. guard cells
5. In the leaves of C_{4} plants, malic acid formation during CO_{2} fixation occurs in the cells of :
6. mesophyll
7. bundle sheath
8. phloem
9. epidermis
10.

The chemiosmotic coupling hypothesis of oxidative phosphorylation proposes that Adenosine Triphosphate (ATP) is formed because

1. high energy bonds are formed in mitochondrial proteins
2. ADP is pumped out of the matrix into the inter membrane space
3. a proton gradient forms across the inner membrane
4. there is a change in the permeability of the inner mitochondrial membrane toward Adenosine Diphosphate (ADP)
5. In Hatch and Slack pathway, the primary CO_{2} acceptor is -
6. Oxaloacetic acid
7. Phosphoglyceric acid
8. Phosphoenol pyruvate
9. Rubisco
10. One scientist cultured Cladophora in a suspension of Azotobacter and illuminated the culture by splitting light through a prism. He observed that bacteria accumulated mainly in the region of :
11. Violet and green light
12. Indigo and green light
13. Orange and yellow light
14. Blue and red light
15. The oxygenation activity of RuBisCo enzyme in photorespiration leads to the formation of:
16. 1 molecule of the $3-\mathrm{C}$ compound
17. 1 molecule of the $6-\mathrm{C}$ compound
18. 1 molecule of a 4-C compound and 1 molecule of the 2-C compound
19. 2 molecules of the $3-\mathrm{C}$ compound
20. During non-cyclic photophosphorylation, when electrons are lost from the reaction center at PS II, what is the source which replaces these electrons?
21. Oxygen
22. Water
23. Carbon dioxide
24. Light
25. Which of the following statements is incorrect?
26. RuBisCO is a bifunctional enzyme
27. In C4 plants, the site of RuBisCO activity is mesophyll cell
28. The substrate molecule for RuBisCO activity is a 5 carbon compound
29. RuBisCO action requires ATP and NADPH
30. Study the pathway given below-

Atmospheric CO_{2}

In which of the following options correct words for all the three blanks A, B and C are indicated?

A	B	C
1. Fixation	Transamination	Regeneration
2. Fixation	Decarboxylation	Regeneration
3. Carboxylation	Decarboxylation	Reduction
4. Decarboxylation	Reduction	Regeneration

19. Read the following four statements $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D and select the right option having both correct statements STATEMENTS
(A) Z-scheme of light reaction takes place in presence of PSI only
(B) Only PSI functional in cyclic photophosphorylation
(C) Cyclic photophosphorylation result into synthesis of ATP and NADPH2
(D) Stroma lamellae lack PSII as well as NADP

Options

1. A and B
2. B and C
3. C and D
4. B and D
5. In Kranz anatomy, the bundle sheath cells have :
6. thick walls, many intercellular spaces and few chloroplasts
7. thin walls, many intercellular spaces and no chloroplasts
8. thick walls, no intercellular spaces and
large number of chloroplasts
9. thin walls, no intercellular spaces and
several chloroplasts
10. Chemiosmotic theory of ATP synthesis in the chloroplasts and mitochondria is based on
(1) Membrane potential
(2) Accumulation of K ions
(3) Proton gradient
(4) Accumulation of Na ions
11. Photosynthesis in C_{4} plants is relatively less limited by atmospheric CO_{2} levels because
(1) The primary fixation of CO_{2} is mediated via PEP carboxylase
(2) Effective pumping of CO_{2} into bundle sheath cells
(3) Four carbon acids are the primary initial CO 2 fixation products
(4) Rubisco in C_{4} plants has higher affinity for CO_{2}
12. Photosynthetic Active Radiation (PAR) has the following range of wavelengths
(1) $340-450 \mathrm{~nm}$
(2) $450-950 \mathrm{~nm}$
(3) $500-600 \mathrm{~nm}$
(4) $400-700 \mathrm{~nm}$
13. In C_{3} plants, the first stable product of photosynthesis during the dark reaction is :-
(1) Oxaloacetic acid
(2) 3-phosphoglyceric acid
(3) Phosphoglyceraldehyde
(4) Malic acid
14. Photosynthetically active radiation (PAR) represents the following range of wave length
(1) $450-950 \mathrm{~nm}$
(2) $340-450 \mathrm{~nm}$
(3) $400-700 \mathrm{~nm}$
(4) $500-600 \mathrm{~nm}$
15. The first step for initiation of photosynthesis will be :
16. Photolysis of water
17. Excitement of chlorophyll molecule due to absorption of light
18. ATP formation
19. Glucose formation
20. For the synthesis of one glucose molecule the calvin cycle operates for :
21. 2 times
22. 4 times
23. 6 times
24. 8 times
25. For assimilation of one CO_{2} molecule in C_{3} plants; the energy required in form of ATP \& NADPH_{2}
26. 2 ATP \& $2 \mathrm{NADPH}_{2}$
27. 5 ATP \& $3 \mathrm{NADPH}_{2}$
28. 3 ATP \& $2 \mathrm{NADPH}_{2}$
29. 18 ATP \& $12 \mathrm{NADPH}_{2}$
30. Which is the first CO_{2} acceptor enzyme in C_{4} plants :
31. RuDP Carboxylase
32. Phosphoric acid
33. RUBISCO
34. PEP-Carboxylase
35. In photosynthesis, energy from light reaction to dark reaction is transferred in the form of
36. ADP
37. ATP
38. RUDP
39. Chlorophyll
40. Which of the following absorb light energy for photosynthesis :-
(1) Chlorophyll
(2) Water molecule
(3) O_{2}
(4) RUBP
41. What happens in light reaction (Photo chemical reaction) :
42. Formation of ATP and NADPH_{2}
43. Formation of ATP
44. Formation of sugar
45. Breakdown of sugar
46. Which one of the following concerns photophosphorylation:-
47. ADP $+\mathrm{AMP} \xrightarrow{\text { Lightenergy }} \mathrm{ATP}$
48. ADP + Inorganic $\mathrm{PO}_{4} \xrightarrow{\text { Lightenergy }}$

ATP
3. ADP + Inorganic $\mathrm{PO}_{4} \rightarrow$ ATP
4. AMP + Inorganic $\mathrm{PO}_{4} \xrightarrow{\text { Lightenergy }}$ ATP
34. In sugarcane plant ${ }^{14} \mathrm{CO}_{2}$ is fixed in malic acid, in which the enzyme that fixes CO_{2} is :-
(1) Ribulose biphosphate carboxylase
(2) Phosphoenol pyruvic acid carboxylase
(3) Ribulose phosphate kinase
(4) Fructose phosphatase
35. Which one of the following is wrong in relation to photorespiration :-
(1) It occurs in chloroplasts
(2) It occurs in daytime only
(3) It is a characteristic of C_{4} plants
(4) It is a characteristic of C_{3} plants
36. Which pair is wrong :-

1. C_{3} - Maize
2. $C_{4}-$ Kranz anatomy
3. Calvin cycle - PGA
4. Hatch and Slake cycle - O.A.A
5. The first stable product of CO_{2} fixation in sorghum is:
(1) Succinic acid
(2) Phosphoglyceric acid
(3) Pyruvic acid
(4) Oxaloacetic acid
6. Which of the following statements is incorrect?
7. Grana lamellae have both PSI and PS II.
8. Cyclic photophosphorylation involves both PS I and PS
II.
9. Both ATP and $\mathrm{NADPH}+\mathrm{H}^{+}$are non-cyclic synthesized during photophosphorylation.
10. Stroma lamellae have PS I only and lack NADP reductase.

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Respiration in Plants

(Expected Questions in NEET 2022: 2)

Subtopic Name	Number of
	Questions
ETS	5
Aerobic Respiration	3
Glycolysis	3
Kreb's Cycle	3
Oxidative Phosphorylation	3
Amphibolic Nature of Respiration	2
Fermentation	2
Respiratory Quotient	1

1. Which of the following biomolecules is common to respiration-mediated breakdown of fats, carbohydrates and proteins?
2. Glucose-6-phosphate
3. Fructose 1, 6-bisphosphate
4. Pyruvic acid
5. Acetyl Co-A
6.

What is the role of NAD^{+}in cellular respiration?

1. It functions as enzymes
2. It functions as an electron carrier
3. It is a nucleotide source for ATP synthesis
4. It is the final electron acceptor for anaerobic respiration
5.

Which of these statements is incorrect?

1. Enzymes of TCA cycle are present in mitochondrial matrix.
2. Glycolysis occurs in cytosol.
3. Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.
4. Oxidative phosphorylation takes place in outermitochondrial membrane.
5. Oxidative phosphorylation is
6. formation of ATP by transfer of phosphate group from a substrate to ADP
7. oxidation of phosphate group in ATP
8. addition of phosphate group to ATP
9. formation of ATP by energy released from electrons removed during substrate oxidation
10. Which statement is wrong for Krebs' cycle?
11. There is one point in the cycle where FAD+ is reduced to FADH2
12. During conversion ofsuccinyl CoA to succinic acid, a molecule of GTP is synthesized.
13. The cycle starts with condensation of acetyl group (accetyl CoA) with pyruvic acid to yield citric acid.
14. There are three points in the cycle where NAD+ is reduced to $\mathrm{NADH}+\mathrm{H}+$
15. Which of the metabolites is common to respiration mediated breakdown of fats, carbohydrates and proteins?
16. Frutose1, 6-bisphosphate
17. Pyruvic acid
18. Acetyl CoA
19. Glucose- 6 -phopsphate
20. The energy-releasing metabolic process in which substrate is oxidized without an external electron acceptor is called
21. glycolysis
22. fermentation
23. aerobic respiration
24. photorespiration
25.

The energy-releasing process in which the substrate is oxidized without an external electron acceptor is called

1. fermentation
2. photorespiration
3. aerobic respiration
4. glycolysis
5. Conversion of glucose to glucose-6-phosphate, the first irreversible reaction of glycolysis, is catalyzed by:
6. Phosphofructokinase
7. Aldolase
8. Hexokinase
9. Enolase
10.

Respiratory Quotient (RQ) value of tripalmitin is:

1. 0.09
2. 0.9
3. 0.7
4. 0.007
5.

Which of the following statements regarding mitochondria is incorrect?

1. Mitochondrial matrix contains single circular DNA molecule and ribosomes
2. Outer membranes is permeable to monomers of carbohydrates, fats and proteins
3. Enzymes of electron transport are embedded in outer membrane
4. Inner membrane is convoluted with infoldings
5. Where is the respiratory electron transport system (ETS) located in plants?
6. Mitochondrial matrix
7. Outer mitochondrial membrane
8. Inner mitochondrial membrane
9. Intermembrane space
10. The number of substrate level of phosphorylations in one turn of citric acid cycle is
11. One
12. Two
13. Three
14. Four
15. Pyruvate dehydrogenase activity during aerobic respiration requires :-
16. Calcium
17. Iron
18. Cobalt
19. Magnesium
20. In mitochondria, protons accumulate in the:
21. Matrix
22. Outer membrane
23. Inner membrane
24. Intermembrane space
25. Which of the following statements is incorrect?
26. ATP is synthesized through complex V.
27. Oxidation-reduction reactions produce proton gradient in respiration.
28. During aerobic respiration, the role of oxygen is limited to the terminal stage.
29. In ETC (Electron Transport Chain), one molecule of $\mathrm{NADH}+\mathrm{H}^{+}$gives rise to 2ATP molecules, and one FADH_{2} gives rise to 3 ATP molecules.

Fill OMR Sheet*

16. During which stage in the complete oxidation of glucose are the greatest number of ATP molecules formed from ADP -
(1) Glycolysis
(2) Krebs cycle
(3) Electron transport chain
(4) Conversion of pyruvic acid to acetyl CoA
17. In glycolysis, during oxidation electrons are removed by -
(1) Glyceraldehyde-3-phosphate
(2) NAD^{+}
(3) Molecular oxygen
(4) ATP
18. Which of the following yield maximum energy :
19. By glycolysis in a sprinter
20. Aerobic respiration in germinating seeds
21. Fermentation by yeast
22. Anaerobic respiration
23. How many ATP molecules produced by Aerobic oxidation of one molecule of glucose : -
(1) 2
(2) 4
(3) 38
(4) 34
24. Glycolysis is : -
(1) Oxidation of glucose to glutamate
(2) Conversion of pyruvate to citrate
(3) Oxidation of glucose to pyruvate
(4) Conversion of glucose to haem
25. In which one of the following do the two names refer to one and the same thing :-
(1) Kreb's cycle and Calvin cycle
(2) Tricarboxylic acid cycle and citric acid cycle
(3) Citric acid cycle and Calvin cycle
(4) Tricarboxylic acid cycle and urea cycle

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Plant Growth \& Development

(Expected Questions in NEET 2022: 1)

Subtopic Name	Number of
	Questions
Auxin Function	5
Gibberellin	5
Growth Hormones \& Auxin	5
Abscisic Acid	4
Cytokinin	3
Photoperiodism	3
Ethylene	2
Growth Model	2
Seed Dormancy	2
Development	1
Vernalization	1

1. You are given a tissue with its potential for differentiation in an artificial culture. Which of the following pairs of hormones would you add to the medium to secure shoots as well as roots?
2. IAA and gibberellin
3. Auxin and cytokinin
4. Auxin and abscisic acid
5. Gibberellin \& abscisic acid
6. Fruit and leaf drop at early stages can be prevented by the application of:
7. Ethylene
8. Auxins
9. Gibberellic acid
10. Cytokinins
11.

Typical growth curve in plants is

1. sigmoid
2. linear
3. stair-steps shaped
4. parabolic
5. Which one of the following growth regulators is known as stress hormone?
6. Abscissic acid
7. Ethylene
8. GA_{3}
9. Indole acetic acid
10. One of the synthetic auxin is
11. NAA
12. IAA
13. GA
14. IBA
15. Which one of the following acids is a derivative of carotenoids?
16. Indole-butyric acid
17. Indole-3-acetic acid
18. Gibberellic acid
19. Abscisic acid
20. "Foolish seedling" disease of rice led to the discovery of:
21. GA
22. ABA
23. 2, 4-D
24. IAA
25. Which one of the following pairs, is not correctly matched?
26. Abscisic acid - Stomatal closure
27. Gibberellic acid - Leaf fall
28. Cytokinin - Cell division
29. IAA - Cell wall elongation
30. It takes very long time for pineapple plants to produce flowers. Which combination of hormones can be applied to artificially induce flowering in pineapple plants throughout the year to increase yield?
31. Cytokinin and Abscisic acid
32. Auxin and Ethylene
33. Gibberellin and Cytokinin
34. Gibberellin and Abscisic acid
35. What is the site of perception of photoperiod necessary for induction of flowering in plants?
36. Leaves
37. Lateral buds
38. Pulvinus
39. Shoot apex
40. Removal of shoot tips is a very useful technique to boost the production of tea- leaves. This is because
41. Gibberellins prevent bolting and are inactivated.
42. Auxins prevent leaf drop at early stages.
43. Effect of auxins is removed and growth of lateral buds is enhanced.
44. Gibberellins delay senescence of leaves.
45. In order to increase the yield of sugarcane crop, which of the following plant growth regulators should be sprayed ?
46. Ethylene
47. Auxins
48. Gibberellins
49. Cytokinins
50. Which of the following is not an inhibitory substance governing seed dormancy?
51. Abscisic acid
52. Phenolic acid
53. Para-ascorbic acid
54. Gibberellic acid
55. Name the plant growth regulator which upon spraying on sugarcane crop, increases the length of stem, thus increasing the yield of sugarcane crop.
56. Gibberellin
57. Ethylene
58. Abscisic acid
59. Cytokinin
60. Who coined the term 'Kinetin'?
61. Skoog and Miller
62. Darwin
63. Went
64. Kurosawa
65. Inhibitory substances in dormant seeds cannot be removed by subjecting seeds to:
66. Gibberellic acid
67. Nitrate
68. Ascorbic acid
69. Chilling conditions
70. Match the following concerning the activity/function and the phytohormone involved :-
(a) Fruit ripener
(i) Abscisic acid
(b) Herbicide
(ii) GA 3
(c) Bolting agent
(iii) 2, 4-D
(d) Stress hormone (iv) Ethephon

Select the correct option from following :-

1. (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
2. (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
3. (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
4. (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)
5. Vernalisation stimulates flowering in -
(1) Turmeric
(2) Carrot
(3) Ginger
(4) Zamikand
6. Which one of the following generally acts as an antagonist to gibberellins ?
7. Ethylene
8. ABA
9. IAA
10. Zeatin
11. Effect of light and dark rhythm on plants :
12. Photonasty
13. Phototropism
14. Photoperiodism
15. Photomorphogenesis
16. The maximum growth rate occurs in :-
(1) Senescent phase
(2) Lag phase
(3) Exponential phase
(4) Stationary phase
17. Cell elongation in internodal regions of the green plants takes place due to :-
(1) Cytokinins
(2) Gibberellins
(3) Ethylene
(4) Indole acetic acid
18. If the apical bud has been removed then we observe :
19. More lateral branches
20. More axillary buds
21. Plant growth stops
22. Flowering stops
23. Which hormone is responsible for fruit ripening :
24. Ethylene
25. Auxin
26. Ethyl chloride
27. Cytokinin
28. One of the commonly used plant growth hormone in tea plantations is -
29. Coconut milk is used in tissue culture in which present :
30. Abscisic acid
31. Cytokinin
32. Auxin
33. Gibberellin
34. Ethylene
35. Zeatin
36. Indole-3- acetic acid
37. Ethylene
38. Root development is promoted by -
39. Auxin
40. Gibberellin
41. Ethylene
42. Abscisic acid
43. What is necessary for ripening of fruits :
44. 80% of ethylene
45. Abscissic acid
46. $2,4 \mathrm{D}$
47. A.M.O. -16
48. Seed dormancy is due to the : -
(1) Ethylene
(2) Abscissic acid
(3) IAA
(4) Starch
49. Coconut milk factor is : -
(1) An auxin
(2) A gibberellin
(3) Abscissic acid
(4) Cytokinin
50. The plant hormone used to destroy weeds in a field is:
(1) 2, 4-D
(2) IBA
(3) IAA
(4) NAA
51. Plants follow different pathways in response to environment or phases of life to form different kinds of structures. This ability is called:
(1) Plasticity
(2) Maturity
(3) Elasticity
(4) Flexibility
52. The site of perception of light in plants during photoperiodism is:
53. Axillary bud
54. Leaf
55. Shoot apex
56. Stem

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

course

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Digestion \& Absorption (Expected Questions in NEET 2022: 2)

Subtopic Name
 Number of

 Questions| Gastric Secretions | 10 |
| :--- | :---: |
| Histology of Gut | 4 |
| Pancreatic Secretions | 4 |
| Intestinal Secretions | 3 |
| Protein Energy Malnutrition | 3 |
| Absorption | 3 |
|
 Teeth | 2 |
| Disorders of Digestive System | 2 |
| Accessory Digestive Glands | 1 |
| Peristalsis: Gland in Alimentary
 Canal | 1 |

1. Which of the following options best represents the enzyme composition of pancreatic juice?
2. Amylase, pepsin, trypsinogen, maltase
3. Peptidase, amylase, pepsin, rennin
4. Lipase, amylase, trypsinogen, procarboxypaptidase
5. Amylase, peptidase, trypsonigen, rennin
6.

Which of the following terms describe human dentition?

1. Thecodont, Diphyodont, Homodont
2. Thecodont, Diphyodont, Heterodont
3. Pleurodont, Monophyodont, Homodont
4. Pleurodont, Diphyodont, Heterodont
5. A baby boy aged two years is admitted to play school and passes through a dental check-up. The dentist observed that the boy had twenty teeth. Which teeth were absent in the boy?
6. Canines
7. Pre-molars
8. Molars
9. Incisors
10.

Which of the following guards the opening of hepatopancereatic duct into the duodenum ?

1. Ileocaecal valve
2. Pyloric sphincter
3. Sphincter of Oddi
4. Semilunar valve
5.

In the stomach, gastric acid is secreted by the

1. oxyntic cells
2. peptic cells
3. acidic cells
4. gastrin secreting cells
5. The enzyme that is not present in succus entericulus is
6. maltase.
7. nucleases.
8. nucleosidases.
9. lipases.
10.

Which of the following statement is not correct?

1. Brunner's glands are present in the submucosa of stomach and secrete pepsinogen
2. Goblet cells are present in the mucosa of intestine and secrete mucus
3. Oxyntic cells are present in the mucosa of stomach and secrete HCI.
4. Acini are present in the pancreas and secrete carboxypeptidase

8.

Gastric juice of infants contains

1. maltase, pepsinogen, rennin
2. nuclease, pepsinogen, lipase
3. pepsinogen, lipase, rennin
4. amylase, rennin, pepsinogen
5. Select the correct match of the digested products in humans given in column-I with their' absorption site and mechanism in column-II

Column I
(1) Fructose, $\mathrm{Na}+$
(2) Glycerol, fatty acids
(3) Cholesterol, maltose
(4) Glycine, glucose

Column II
Small intestine, passive absorption
Duodenum, move as chilomicrons
Large intestine, active absorption
Small intestine, active absorption

1. (1)
2. (2)
3. (3)
4. (4)
5. The initial step in the digestion of milk in infant is carried out by?
6. Lipase
7. Trypsin
8. Rennin
9. Pepsin
10. Anxiety and eating spicy food together in an otherwise normal human, may lead to
11. Indigestion
12. Jaundice
13. Diarrhoea
14. vomiting
15. Carrier ions like $\mathrm{Na}+$ facilitate the absorption of substance like
16. amino acids and glucose
17. glocose and fatty acids
18. fatty acids and glycerol
19. fructose and some amino acids
20. If for some reason our goblet cells are non-functional, this will adversely affect
21. production of somatostatin
22. secretion of sebum from the sebaceous glands
23. maturation of sperms
24. smooth movement of food down the intestine
25. When breast feeding is replaced by less nutritive food low in proteins and calories; the infants below the age of one year are likely to suffer from
26. marasmus
27. rickets
28. kwashiorkor
29. pellagra
30. Which one of the following statement is true regarding digestion and absorption of food in humans?
31. Oxyntic cells in our stomach secrete the proenzyme pepsinogen
32. Fructose and amino acids are absorbed through intestinal mucosa with the help of carrier ions like Na^{+}.
33. Chylomicrons are small lipoprotein particles that are transported from intestine into blood capillaries.
34. About 60% of starch is hydrolysed by salivary amylase in our mouth.

16.

What will happen if HCl secretion of parietal cells of gastric glands is blocked with an inhibitor?

1. Gastric juice will be deficient in chymosin
2. Gastric juice will be deficient in pepsinogen
3. in the absence of HCl secretion, inactive pepsinogen is not converted into the active enzyme pepsin
4. Enterokinase will not be released from the duodenal mucosa and so trypsinogen is not converted to trypsin
5.

Which one of the following is the correct matching of the site of action on the given substrate, the enzyme acting upon it and the end product?

1. Duodenum : Triglycerides $\xrightarrow{\text { Trypsin }}$ Monoglycerides
2. Small intestine : starch
 (maltose)
3. Small intestine : Proteins $\xrightarrow{\text { Pepsin }}$ Amino acids
4. Stomach : Fats $\xrightarrow{\text { Lipase }}$ Micelles
5. Match the following structures with their respective location in organs:
(a) Crypts of Lieberkuhn (i) Pancreas
(b) Glisson's Capsule
(ii) Duodenum
(c) Islets of Langerhans (iii) Small intestine
(d) Bruunner's Glands
(iv) Liver

Select the correct option from the following:
(a) (b) (c) (d)

1. (iii) (ii) (i) (iv)
2. (iii) (i) (ii) (iv)
3. (ii) (iv) (i) (iii)
4. (iii) (iv) (i) (ii)
5. Match the items given in Column - I with those in Column - II and choose the correct option.

Column-I
 Column-II

(a) Rennin
(i) Vitamin B_{12}
(b) Enterokinase
(ii) Facilitated transport
(c) Oxyntic cells
(iii) Milk proteins
(d) Fructose
(iv) Trypsinogen

1. (a) - (iii), (b)- (iv), (c)- (ii), (d)-(i)
2. (a) - (iv), (b)- (iii), (c)- (i), (d)-(ii)
3. (a) - (iv), (b)- (iii), (c)- (ii), (d)-(i)
4. (a) - (iii), (b)- (iv), (c)- (i), (d)-(ii)
5. Kwashiorkor disease is due to
6. simultaneous deficiency of proteins and fats
7. simultaneous deficiency of proteins and calories
8. deficiency of carbohydrates
9. protein deficiency not accompanied by calorie deficiency
10. The enzyme enterokinase helps in the conversion of
11. trypsinogen into trypsin
12. caseinogen into casein
13. pepsinogen into pepsin
14. protein into polypeptides
15. Lactose composed of :
16. Glucose + galactose
17. Glucose + fructose
18. Glucose + glucose
19. Glucose + mannose
20. The intrinsic factor that helps in the absorption of vitamin B_{12} is secreted by-
21. Goblet cells
22. Hepatic cells
23. Oxyntic cells
24. Chief cells
25. The proteolytic enzyme rennin is found in :
26. Intestinal juice
27. Bile juice
28. Gastric juice
29. Pancreatic juice
30. If for some reason the parietal cells of the gut epithelium become partially non-functional, what is likely to happen -
(1) The pH of stomach will fall abruptly
(2) Steapsin will be more effective
(3) Proteins will not be adequately hydrolysed by pepsin into proteoses and peptones
(4) The pancreatic enzymes and specially the trypsin and lipase will not work efficiently
31. Jaundice is a disorder of -
32. In stomach after physical and chemical digestion, food is called :
33. Chyme
34. Chyle
35. Amino acid
36. Bolus
37. In mammals milk is digested by action of :
38. Rennin
39. Amylase
40. Intestinal bacteria
41. Invertase
42. Succus entericus is referred to as:
43. Gastric juice
44. Chyme
45. Pancreatic juice
46. Intestinal juice
47. Sphincter of oddi is present at :
48. Gastro-oesophageal junction
49. Junction of jejunum and duodenum
50. Ileo-caecal junction
51. Junction of hepato-pancreatic duct and duodenum
52. Skin and eyes
53. Digestive system
54. Circulatory system
55. Excretory system
56. One of the constituents of the pancreatic juice
while poured into the duodenum in humans is :
57. Enterokinase
58. Trypsinogen
59. Chymotrypsin
60. Trypsin
61. Epithelial cells of the intestine involved in food absorption have on their surface -
(1) Zymogen granules
(2) Pinocytic vesicles
(3) Phagocytic vesicles
(4) Microvilli
62. Deficiency of protein leads to:
63. Rickets
64. Scurvy
65. Kwashiorkor
66. Carotenemia

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

 courseSelected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Breathing \& Exchange of Gases (Expected Questions in NEET 2022: 2)

Subtopic Name Number of Questions

Respiratory System: Transport of Gases 7

Respiratory System: Pulmonary
Volumes \& Capacities
6
Respiratory System: Exchange of Gases 5
Respiratory Disorders5

Respiratory System: Trachea \& Basic Anatomy of Lung

4
Respiratory System: Pulmonary Ventilation2

1. Lungs are made up of air-filled sacs, the alveoli. They
do not collapse even after forceful expiration, because of:
2. Inspiratory Reserve Volume
3. Tidal Volume
4. Expiratory Reserve Volume
5. Residual Volume
6.

Which of the following options correctly represents the
lung conditions in asthma and emphysema, respectively?

1. Inflammation of bronchioles; Decreased respiratory
surface
2. Increased number of bronchioles; Increased respiratory
surface
3. Increased respiratory surface; Inflammation of
bronchioles
4. Decreased respiratory surface; Inflammation of
bronchioles
5. The partial pressure of oxygen in the alveoli of the lungs is
6. equal to that in the blood
7. more than that in the blood
8. less than that in the blood
9. less than that of carbon dioxide
10.

Match the items given Column I with those in Column II and select the correct option given below:
Column I
a. Tidal volume
b. Inspiratory Reserve

Column II
i. $2500-3000 \mathrm{~mL}$
ii. $1100-1200 \mathrm{~mL}$ volume
c. Expiratory Reserve
d. Residual volume

1. a-iii b-ii c-i d-iv
2. a-iii b-i c-iv d-ii
3. a-i b-iv c-ii d-iii
4. a-iv b-iii c-ii d-i
5.

Reduction in pH of blood will

1. reduce the blood supply to the brain
2. decrease the affinity of hemoglobin with oxygen
3. release bicarbonate ions by the liver
4. reduce the rate of heart beat
5.

Asthma may be attributed to

1. allergic reaction of the mast cells in the lungs
2. inflammation of the trachea
3. accumulation of fluid in the lungs
4. bacterial infection of the lungs
5.

Name the chronic respiratory disorder caused mainly by cigarette smoking

1. asthma
2. respiratory acidosis
3. respiratory alkalosis
4. emphysema
5. Name the pulmonary disease in which alveolar surface area involved in gas exchange is drastically reduced due to damage in the alveolar walls.
6. Pleurisky
7. Emphysema
8. Pneumonia
9. Asthma
10. Approximately seventy percent of carbon-dioxide absorbed by the blood will be transported to the lungs
11. as bicarbonate ions
12. in the form of dissolved gas molecules
13. by binding to R.B.C
14. as carbamino-haemoglobin
15. The figure shows a diagrammatic view of human respiratory system with labels A, B, C and D. Select the option which gives correct identification and main function and/or characteristics.

16. B-pleural membrane-surround ribs on both sides to provide cushion against rubbing.
17. C-Alveoli-thin walled vascular bag like structures for exchange of gases.
18. D-Lower end of lungs-diaphragm pulls it down during inspiration
19. A-trachea-ling tube supported by complete cartilagnous rings for conducting inspired air.
20. Which one of the following is the correct statement for respiration in humans?
21. Cigarette smoking may lead to inflammation of bronchi
22. Neural signals from pneumotaxic centre in pons region of brain can increase the duration of inspiration
23. Workers in grinding and stone breaking industries may suffer, from lung fibrosis
24. About 90% of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is carried by haemoglobin as carbamino haemoglobin

13.

Two friends are eating together on a dining table. One of them suddenly starts coughing while swallowing some food. This coughing would have been due to improper movement of

1. diaphragm
2. neck
3. tongue
4. epiglottis
5. The figure given below shows a small part of human lung where exchange of gas takes place. In which one of the options given below, the one part $\mathrm{A}, \mathrm{B} \mathrm{C}$ or D is correctly identified along with its function.

6. A - Alveolar cavity - main site of exchange of respiratory gases
7. D - Capillary wall - exchange of O_{2} and CO_{2} take place here
8. $\mathrm{B}-\operatorname{Red}$ blood cell - transport of CO_{2} mainly.
9. - Arterial capillary - passes oxygen to tissues
10. Listed below are four respiratory capacities (1-4)and four jumbled respiratory volumes of a normal human adult
Respiratory capacities Respiratory volume
(1) Residual volume
(2) Vital capacity 2500 mL 3500 mL
(3)Inspiratory reserve volume 1200 mL
(4) Inspiratory capacity 4500 mL
Which one of the following is the correct matching of two capacities and volumes?
11. (1) 2500 mL , (4) 4500 mL
12. (3) 1200 mL , (1) 2500 mL
13. (2) 4500 mL , (3) 2500 mL
14. (4) 4500 mL , (2) 3500 mL
15. What is true about RBCs in humans?
16. they carry about $20-25$ per cent of CO_{2}
17. They transport 99.5 per cent of O_{2}
18. They transport about 80 per cent oxygen only and the rest 20 per cent of it is transported in dissolved state in blood plasma
19. They do not carry CO_{2} at all

17.

What is vital capacity of our lungs?

1. Inspiratory reserve volume plus tidal volume
2. Total lung capacity minus expiratory reserve volume
3. Inspiratory reserve volume plus expiratory reserve volume
4. Total lung capacity minus residual volume
5. The majority of carbon dioxide produced by our body cells is transported to the lungs :
6. dissolved in the blood
7. as bicarbonates
8. as carbonates
9. attached to haemoglobin
10. Tidal Volume and Expiratory Reserve Volume of an athlete is 500 mL and 1000 mL respectively. What will be his Expiratory Capacity if the Residual Volume is 1200 mL ?
11. 2700 mL
12. 1500 mL
13. 1700 mL
14. 2200 mL
15. Select the correct statement.
16. Expiration occurs due to external intercostal muscles.
17. Intrapulmonary pressure is lower than the atmospheric pressure during inspiration.
18. Inspiration occurs when atmospheric pressure is less than intrapulmonary pressure.
19. Expiration is initiated due to contraction of diaphragm.
20. The maximum volume of air a person can breathe in after a forced expiration is known as :
21. Expiratory Capacity
22. Vital Capacity
23. Inspiratory Capacity
24. Total Lung Capacity
25. Select the correct events that occur during inspiration.
(a) Contraction of diaphragm
(b) Contraction of external inter-costal muscles
(c) Pulmonary volume decreases
(d) Intra pulmonary pressure increases
(1) (c) and (d)
(2) (a), (b) and (d)
(3) only (d)
(4) (a) and (b)
26. Identify the wrong statement with reference to transport of oxygen.
27. Partial pressure of CO_{2} can interfere with O_{2} binding with haemoglobin.
28. Higher H^{+}conc. in alveoli favours with formation of oxyhaemoglobin.
29. Low pCO_{2} in alveoli favours the formation of oxyhaemoglobin.
30. Binding of oxygen with haemoglobin is mainly related to partial pressure of O_{2}.
31. The Total Lung Capacity (TLC) is the total volume of air accommodated in the lungs at the end of forced inspiration. This includes :
32. RV; IC (Inspiratory Capacity); EC (Expiratory Capacity); and ERV
33. RV; ERV; IC and EC
34. RV; ERV; VC (Vital Capacity) and FRC (Functional Residual Capacity)
35. RV (Residual Volume); ERV (Expiratory Reserve Volume); TV (Tidal Volume); and IRV (Inspiratory Reserve Volume
36. Match the following columns and select the correct option :

Column - I

(a) Pneumotaxic Centre
(b) O_{2} Dissociation curve brain
$\begin{array}{ll}\text { (c) Carbonic Anhydrase } & \text { (iii) Haemoglobin } \\ \text { (d) Primary site of exchange } & \text { (iv) R.B.C. }\end{array}$ of gases

Column - II

(i) Alveoli
(ii) Pons region of the

1. (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv)
2. (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
3. (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)
4. (a)-(iv), (b)-(i), (c)-(iii), (d)-(ii)
5. Bulk of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ released from body tissues into the blood is present as :
6. carbamino-haemoglobin in RBCs
7. bicarbonate in blood plasma and RBCs
8. Free CO_{2} in blood plasma
9. 70% carbamino-haemoglobin and 30% as bicarbonate
10. Transport of gases in alveoli takes place by :
11. Active transport
12. Passive transport
13. Simple diffusion
14. None
15. The partial pressures (in mm Hg) of oxygen $\left(\mathrm{O}_{2}\right)$ and carbon dioxide $(\mathrm{CO} 2)$ at alveoli (the site of diffusion) are :
16. $\mathrm{pO}_{2}=95$ and $\mathrm{pCO}_{2}=40$
17. $\mathrm{pO}_{2}=159$ and $\mathrm{pCO}_{2}=0.3$
18. $\mathrm{pO}_{2}=104$ and $\mathrm{pCO}_{2}=40$
19. $\mathrm{pO}_{2}=40$ and $\mathrm{pCO}_{2}=45$
20. Select the favorable conditions required for the formation of oxyhemoglobin at the alveoli.
21. High pO_{2}, high pCO_{2}, less H^{+}, higher temperature
22. Low pO_{2}, low pCO_{2}, more H^{+}, higher temperature
23. High pO_{2}, low pCO_{2}, less H^{+}, lower temperature
24. Low pO_{2} high pCO_{2} more H^{+}, higher temperature

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

Uneetorep | Selected Questions (Only NCERT based) |
| :---: |
| from AIPMT 1998 to NEET 2021 |

Body Fluids \& Circulation

Body Fluids \& Circulation - NCERT based PYQs

1. Adult human RBCs are enucleated. Which of the following statement(s) is/ are the most appropriate explanation for this feature?
(a) They do not need to reproduce
(b) They are somatic cells
(c) They do not metabolize
(d) All their internal space is available for oxygen transport
2. Only (a)
3. (a), (c) and (d)
4. (b) and (c)
5. Only (d)
6. The hepatic portal vein drains blood to liver from:
7. Stomach
8. Kidneys
9. Intestine
10. Heart
11. Match the items given in Column I with those inColumn II and select the correct option givenbelow:

Column I
a. Tricuspid valve ventricle
b. Bicuspid valve pulmonary artery
c. Semilunar valve right ventricle

1. a-iii b-i c-ii
2. a-i b-iii c-ii
3. a-i b-ii c-iii
4. a-ii b-i c-iii
5. Name the blood cells, whose reduction in number can cause clotting disorder, leading to excessive loss of blood from the body.
6. Erythrocytes
7. Leucocytes
8. Neutrophils
9. Thrombocytes
10. Serum differs from blood in
11. lacking globulins
12. lacking albumins
13. lacking clotting factors
14. lacking antibodies

Column II
i. Between left atrium and left
ii. Between right ventricle and
iii. Between right atrium and
6.

Match the items given in Column I with those in column II and select the correct option given below:-

Column I
a. Fibrinogen
b. Globulin
c. Albumin

1. a-iii b-ii c-i
2. a-i b-ii c-iii
3. $\mathrm{a}-\mathrm{i} \mathrm{b}-\mathrm{iii} \mathrm{c}-\mathrm{ii}$
4. a-ii b-iii c-i
5. Which one of the following animals has two separate circulatory pathways?
6. Frog
7. Lizard
8. Whale
9. Shark
10. Doctors use stethoscope to hear the sounds produced during each cardiac cycle. The second sound is heard when
11. AV valves open up
12. Ventricullar Walls vibrate due to gushing in of blood from atria
13. Semi lunar valces close down after the blood flows into vessels from ventricles
14. AV node receives signal from SA node
15.

Blood pressure in the mammalian aorta is maximum during

1. systole of the left atrium
2. diastole of the right ventricle
3. systole of the left ventricle
4. diastole of the right atrium
5.

Which one of the following is correct?
(1) Serum $=$ Blood + Fibrinogen
(2) Lymph $=$ Plasma + RBC + WBC
(3) Blood $=$ Plasma + RBC + WBC
(4) Plasma $=$ Blood - Lymphocytes
11. The diagram given here is the standard ECG of a normal person, The P - wave represents the

1. Initiation of the ventricular contraction
2. Beginning of the systole
3. End of systole
4. Contraction of both the atria
5. Person with blood group AB is considered as universal recipient because he has:
6. both A and B antigens on RBC but no antibodies in the plasma
7. both A and B antibodies in the plasma
8. no antigen on RBC and no antigens in the plasma
9. both A and B antigens in the plasma but no antibodies
10. Figure shows schematic plan of blood circulation in humans with labels A to D. Identify the label and give its function/s.

11. B-pulmonary artery- takes blood from heart to lungs, $\mathrm{PO}_{2}=90 \mathrm{~mm} \mathrm{Hg}$
12. C-Vena Cava- takes blood from body parts to rigjht auricle, $\mathrm{PCO}_{2}=45 \mathrm{~mm} \mathrm{Hg}$
13. D-Dorsal aorta- takes blood from heart to body parts, $\mathrm{PO}_{2}=95 \mathrm{~mm} \mathrm{Hg}$
14. A- pulmonary vein - takes impure blood from body parts, $\mathrm{PO}_{2}=60 \mathrm{~mm} \mathrm{Hg}$
15. A certain road accident patient with unknown blood group needs immediate blood transfusion. His one doctor friend at once offers his blood. What was the blood group of the donor?
16. Blood group B
17. Blood group AB
18. Blood group O
19.

Arteries are best defined as the vessels which

1. carry blood away from the heart to different organs
2. break up into capillaries which reunite to form a vein
3. carry blood from one visceral organ to another visceral organs
4. supply oxygenated blood to the different organs
5.

Which one of the following statements is correct regarding blood pressure?

1. $100 / 55 \mathrm{mmHg}$ is considered an ideal blood pressure
2. $105 / 50 \mathrm{mmHg}$ makes one very active
3. $190 / 110 \mathrm{mmHg}$ may harm vital organs like brain and kidney
4. $130 / 90 \mathrm{mmHg}$ is considered high and requires treatment
5.

A person with unknown blood group under system, has suffered much blood loss in accident and needs immediate blood transfusion. His one friend who has a v certificate of his own blood type, offers for blood donation without delay. What would have the type of blood group of the donor friend?

1. Type AB
2. Type O
3. Type A
4. Type B
5.

'Bundle of His' is a part of which one of the following organs in humans?

1. Heart
2. Kidney
3. Pancreas
4. Brain
5.

Which one of the following plasma proteins is involved in the coagulation of blood?

1. Serum amylase
2. A globulin
3. Fibrinogen
4. An albumin
5. In a standard ECG, which one of the following alphabets is the correct representation of the respective activity of the human heart?
6. R-repolarisation of ventricles
7. S-start of systole
8. T-end of diastole
9. P-depolarisation of the atria

Body Fluids \& Circulation - NCERT based PYQs

21. The most popularly known blood grouping is the ABO grouping. It is named ABO and not ABC , because ' O ' in it refers to having
22. other antigens besides A and B on RBCs
23. over dominance of this type on the genes for A and B types
24. one antibody only- either anti A or anti-B on the RBCs
25. no antigens A and B on RBCs
26. Globulins contained in human blood plasma are primarily involved in
27. defence mechanisms of body
28. osmotic balance of body fluids
29. oxygen transport in the blood
30. clotting of blood

23.

Which type of white blood cells are concerned with the release of histamine and the natural anticoagulant heparin?

1. Neutrophils
2. Basophils
3. Eosinophils
4. Monocytes

24.

The most active phagocytic white blood cells are

1. neutrophils and eosinophils
2. lymphocytes and macrophages
3. eosinophils and lymphocytes
4. neutrophils and monocytes

25. Match the Column I and Column II

Column-I
(a) P-waves
(b) QRS complex
(c) T-wave
(d) Reduction in the size of $\begin{aligned} & \text { T-wave }\end{aligned}$
(a) (b) (c) (d)

1. (ii) (iii) (v) (iv)
2. (iv) (i) (ii) (iii)
3. (iv) (i) (ii) (v)
4. (ii) (i) (v) (iii)
5. What would be the heart rate of a person if the cardiac output is 5 L , blood volume in the ventricles at the end of diastole is 100 mL and at the end of ventricular systole is 50 mL ?
6. 125 beats per minute
7. 50 beats per minute
8. 75 beats per minute
9. 100 beats per minute
10. The QRS complex in a standard ECG represents:
11. Depolarisation of auricles
12. Depolarisation of ventricles
13. Reploarisation of ventricles
14. Repolarisation of auricles
15. Match the following columns and select the correct option.

Column-I
 Column-II

(1) Eosinophils
(i) lmmune response
(2) Basophils
(ii) Phagocytosis
(3) Neutrophils
(iii)

Release histaminase, destructive enzymes
(4) Lymphocytes
(iv) Release granules containing histamine
(1) (iv)
(i) (ii)
(iii)
(2) (i)
(ii) (iv) (iii)
(3) (ii) (i) (iii) (iv)
(4) (iii) (iv) (ii) (i)
29. Which of the following is associated with a decrease in cardiac output?

1. Sympathetic nerves
2. Parasympathetic neural signals
3. Pneumotaxic center
4. Adrenal medullary hormones
5. Which of the following conditions causes erythroblastosis fetalis?
6. Mother $R h^{+ \text {ve }}$ and fetus $R h^{-v e}$
7. Mother $R h^{-v e}$ and fetus $R h^{+v e}$
8. Both mother and fetus $\mathrm{Rh}^{-\mathrm{ve}}$
9. Both mother and fetus $\mathrm{Rh}^{+\mathrm{ve}}$
10. Which one of the following human organs is often called the "graveyard" of RBCs?
11. Kidney
12. Spleen
13. Liver
14. Gall bladder
15. Given below are four statements (a-d) regarding human blood circulatory system-
(a) Arteries are thick-walled and have narrow lumen as compared to veins
(b) Angina is acute chest pain when the blood circulation to the brain is reduced
(c) Persons with blood group AB can donate blood to any person with any blood group under ABO system
(d) Calcium ions play a very important role in blood clotting
Which two of the above statements are correct?
16. (a) and (b)
17. (b) and (c)
18. (c) and (d)
19. (a) and (d)
20. The haemoglobin content per 100 ml of blood of a normal healthy human adult is -
21. $25-30 \mathrm{~g}$
22. $17-20 \mathrm{~g}$
23. $12-16 \mathrm{~g}$
24. $5-11$
25. Given below is the ECG of a normal human.

Which one of its components is correctly
interpreted below?

1. Peak P-Initiation of left atrial contraction only
2. Complex QRS-One complete pulse
3. Peak T-Initiation of total cardiac contraction
4. Peak P and Peak R together-systolic and diastolic blood pressures
5. Arterial blood pressure in human beings :
6. 120 and 80 mm Hg
7. 150 and 100 mm Hg
8. 50 and 100 mm Hg
9. None
10. In the ABO system of blood groups if both antigens are present but no antibody, the blood group of the individual would be :-
(1) O
(2) AB
(3) A
(4) B
11. Ventricular contraction is in command of :
12. S.A. Node
13. A.V. Node
14. Purkinje fibers
15. Papillary muscles
16. In which point, pulmonary artery is different from pulmonary vein :
17. Its lumen is broad
18. Its wall is thick
19. It have valves
20. It does not possess endothelium
21. Impulse of heart beat originates from: -
(1) S.A. Node
(2) A. V. Node
(3) Vagus Nerve
(4) Cardiac Nerve
22. Which of the following statement is true for Lymph : -
(1) WBC and serum
(2) All components of blood except RBCs and some proteins
(3) RBCs, WBCs and Plasma
(4) RBCs, Proteins and Platelets
23. Bundle of His is a network of : -
(1) Muscle fibres distributed throughout the heart walls
(2) Muscle fibres found only in the ventricle wall
(3) Nerve fibres distributed in ventricles
(4) Nerve fibres found throughout the heart
24.

- What is correct for Blood group ' O ': -

1. No antigens but both a and b antibodies are present
2. A antigen and b antibody
3. Antigen and Antibody both absent
4. A and B antigens and a, b, antibodies
5. Persons with 'AB' blood group are called as "Universal recipients". This is due to:
(1) Presence of antibodies, anti-A and anti-B, on RBCs
(2) Absence of antibodies, anti-A and anti-B, in plasma
(3) Absence of antigens A and B on the surface of RBCs
(4) Absence of antigens A and B in plasma
6. Which enzyme is responsible for the conversion of inactive fibrinogens to fibrins?
7. Epinephrine
8. Thrombokinase
9. Thrombin
10. Renin

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Excretory Products \& their Elimination

 (Expected Questions in NEET 2022: 3)
Subtopic Name

Number of Questions

Nitrogenous Excretory Products	$\mathbf{8}$
Autoregulation of GFR	$\mathbf{7}$
Concentration of Urine	$\mathbf{4}$
Formation of Urine	$\mathbf{4}$
Nephron	$\mathbf{3}$
Micturition Reflex	$\mathbf{2}$
Disorders of Excretory System	$\mathbf{1}$
Formation of Urine: Ultrafiltration	$\mathbf{1}$
Human Kidney: Functions	$\mathbf{1}$
Human Kidney: Location \& Cut Section	$\mathbf{1}$
Role of other Organs in Excretion	$\mathbf{1}$

1. A decrease in blood pressure/volume will not cause the release of
2. Atrial natriuretic factor
3. Aldosterone
4. ADH
5. Renin
6. Match the items given in Column I with those in Column II and select the correct option given below: Column I

Column II
a. Glycosuria
in joints
b. Gout within the kidney
i. Accumulation of uric acid
ii. Mass of crystallized salts
c. Renal calculi
iii. Inflammation in glomeruli
d. Glomerulonephritis
nephritis urine

1. a-iii b-ii c-iv d-i
2. a-i b-ii c-iii d-iv
3. a-ii b-iii c-i d-iv
4. a-iv b-i c-ii d-iii
iv. Presence of glucose in
5. The part of nephron involved in active reabsorption of sodium is
6. distal convoluted tubule
7. proximal convoluted tubule
8. Bowman 's capsule
9. descending limb of Henle's loop

6.

Removal of proximal convoluted tubule from the nephron will result in

1. more diluted urine
2. more concentrated urine
3. no change in quality and quantity of urine
4. no urine formation
5.

Which of the following does not favour the formation of large quantities of dilute urine?

1. Alcohol
2. Caffeine
3. Renin
4. Atrial-natriuretic factor
5. Which of the following causes an increase in sodium reabsorption in distal convoluted tubule?
6. Increase in aldosterone levels
7. Increase in antidiuretic hormone levels
8. Decrease in aldosterone levels
9. Decrease in antidiuretic hormone levels
10. Which of the following statements is correct?
11. The descending limb of loop of Henle is impermeable to water.
12. The ascending limb of loop of Henle is permeable to water.
13. The descending limb of loop of Henle is permeable to electrolytes.
14. The ascending limb of loop of Henle is impermeable to water.

Column II
(Part of Excretory System)
i. Henle's loop
ii. Ureter
iii. Urinary bladder
iv. Malpighi an corpuscle
v. Proximal convoluted
tubule

1. a-iv b-v c-ii d-iii
2. a-iv b-i c-ii d-iii
3. a-v b-iv c-i d-ii
4. a-v b-iv c-i d-iii
5. Figure shows human urinary system with structures labelled A to D. Select option which correctly identifies them and gives their characteristics and / or functions.

6. B-pelvis - broad funnel shaped space inner to hilum, directly connected to loops of Henle.
7. C- Medulla- inner zone of kidney and contains complex nephrons.
8. D- Cortex- outer part of kidney and do not contain any part of nephrons
9. A- Adernal gland- located at the anterior part of kidney. Secrete catecholamines which stimulate glycogen breakdown
10. The maximum amount of electrolytes and water (70$80 \%$) from the glomerular filtrate is reabsorbed in which part of the nephron?
11. Ascending limb of loop of Henle
12. Distal convoluted tubule
13. Proximal convoluted tubule
14. Descending limb of loop of Henle

11.

Which one of the following correctly explains the function of a specific part of a human nephron?

1. Henle's loop - most re-absorption of the major substances from the glomerular filtrate
2. Distal convoluted tubule - reabsorption of ions into the surrounding blood capillaries
3. Afferent arteriole - carries the blood away from the glomerulus towards renal vein
4. Podocytes - create minute spaces (slit pores) for the filtration of blood into the Bowman's capsule
5.

Which one of the following is not a part of a renal pyramid?

1. Convoluted tubules
2. Collecting ducts
3. Loops Henle
4. Peritubular capillaries
5.

Uricotelic mode of passing out nitrogenous wastes is found in

1. birds and annelids
2. amphibians and reptiles
3. insects and amphibians
4. reptiles and birds

14.

Which one of the following statements is correct with respect to kidney function regulation?

1. Exposure to cold temperature stimulates ADH release
2. An increase in glomerular blood flow stimulates formation of angiotensin II
3. During summer when body loses lot of water by evaporation, the release of ADH is suppressed
4. When someone drinks a lot of water, ADH release is suppressed.
5. Which one of the following statements regards to the excretion by the human kidneys is
correct -
(1) Descending limb of Loop of Henly is impermeable to water
(2) Distal convoluted tubule is incapable in reabsorbing HCO_{3}
(3) nearly 99 percent of the glomerular filtrate is reabsorbed by the renal tube
(4) Ascending limb of Loop of Henly is impermeable to electrolytes
6. The principal nitrogenous excretory compound in humans is synthesised
7. in kidneys but eliminated mostly through liver
8. in kidneys as well as eliminated by kidneys
9. in liver and also eliminated by the same through bile
10. in the liver, but eliminated mostly through kidneys
11. Uric acid is the chief nitrogenous component of the excretory products of
12. man
13. earthworm
14. cockroach
15. frog

Excretory Products \& their Elimination - NCERT based PYQs

18. What will happen if the stretch receptors of the urinary bladder wall are totally removed?
19. Urine will not collect in the bladder
20. Micturition will continue
21. Urine will continue to collect normally in the bladder
22. There will be no micturition
23.

Consider the following four statements (A-D) about certain desert animals such as kangaroo rat
(A) they have dark colour and high rate of reproduction and excrete solid urine.
(B) they do not drink water, breathe at a slow rate to conserve water and have their body covered with thick hairs.
(C) they feed on dry seeds and do not require drinking water.
(D) they excrete very concentrated urine and do not use water to regulate body temperature.
Which two of the above statements for such animals are true?

1. C and D
2. B and C
3. C and A
4. A and B
5. Which of the following factors is responsible for the formation of concentrated urine?
6. Hydrostatic pressure during glomerular filtration.
7. Low levels of antidiuretic hormone.
8. Maintaining hyperosmolarity towards inner medullary interstitium in the kidneys.
9. Secretion of erythropoietin by Juxtaglomerular complex.
10. Match the following parts of a nephron with their function:

(a) Descending limb of Henle's loop	(i)	Reabsorption of salts only
(b) Proximal convoluted tubule		Reabsorption of water only
Ascending limb of (c) Henle's loop		Conditional reabsorption of sodium ions
Distal convoluted tubule		Reabsorption of ions, water and organic nutrients

Select the correct option from the following:

1. (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv)
2. (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
3. (a)-(i), (b)-(iv), (c)-(ii), (d)-(iii)
4. (a)-(iv), (b)-(i),(c)-(iii), (d)-(ii)
5. Match the items in Column - I with those in Column II :

Column - I Column - II
(a) Podocytes (i) Crystallised oxalate
(b) Protonephridia
(ii) Annelids
(c) Nephridia
(iii) Amphioxus
(d) Renal calculi
(iv) Filtration slits

Select the correct option from the following:

1. (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
2. (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)
3. (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
4. (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i)
5. Presence of which of the following conditions in urine is indicative of Diabetes Mellitus:
6. Uremia and Renal Calculi
7. Ketonuria and Glycosuria
8. Renal Calculi and Hyperglycaemia
9. Uremia and Ketonuria
10. Which of the following would help in prevention of diuresis?
11. Reabsorption of Na^{+}and water from renal tubules to aldosterone
12. Atrial natriuretic factor causes vasoconstriction
13. Decrease in secretion of renin by JG cells
14. More water reabsorption due to under secretion of ADH
15. The increase in osmolarity from outer to inner medullary interstitium is maintained due to :
(i) Close proximity between Henle's loop and vasa recta
(ii) Counter current mechanism
(iii) Selective secretion of $\mathrm{HCO} 3^{-}$and hydrogen ions in PCT
(iv) Higher blood pressure in glomerular capillaries
16. Only (ii)
17. (iii) and (iv)
18. (i), (ii), and (iii)
19. (i) and (ii)
20. Select the correct statement :
21. Atrial Natriuretic Factor increases the blood pressure.
22. Angiotensin II is a powerful vasodilator.
23. Counter current pattern of blood flow is not observed in vasa recta.
24. Reduction in Glomerular Filtration Rate activates JG cells to release renin.
25. A fall in glomerular filtration rate (GFR) activates -
26. Adrenal cortex to release aldosterone
27. Adrenal medulla to release adrenaline
28. Posterior pituitary to release vasopressin
29. Juxta glomerular cells to release renin
neet

Excretory Products \& their Elimination - NCERT based
 PYQs

28. Which one of the following option gives the correct categorization of six animals according to the type of nitrogenous wastes $(\mathrm{A}, \mathrm{B}, \mathrm{C})$ they give out?
$\left.\begin{array}{|l|l|l|l|}\hline & \begin{array}{l}\text { A } \\ \text { AMMONOTELIC }\end{array} & \begin{array}{l}\text { B } \\ \text { UREOTELIC }\end{array} & \begin{array}{l}\text { URICOTELIC } \\ \text { 1. }\end{array} \\ \hline \text { Frog, } \\ \text { Lizards }\end{array} \quad \begin{array}{l}\text { Aquatic Amphibia, } \\ \text { Humans }\end{array}\right)$
*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep course

29. Which one of the following characteristics is common both in humans and adult
frogs?
30. Internal fertilization
31. Nucleated RBCs
32. Ureotelic mode of excretion
33. Four - chambered heart
34. Uricotelism is found in -
35. Fishes and Fresh water protozoans
36. Birds, reptiles and insects
37. Frogs and toads
38. Mammals and birds
39. Concentration of urine depends upon which organ:
40. Bowman's capsule
41. Length of Henle's loop
42. P.C.T.
43. Network of capillaries arising from glomerulus
44. Which pair is correct :
45. Sweat $=$ temperature regulation
46. Saliva $=$ sense of food taste
47. Sebum $=$ sexual attraction
48. Humerus = Hind leg
49. If Henle's loop was absent from mammalian nephron, which of the following is to be expected
50. There will be no urine formation
51. There will be hardly any change in the quality and quantity of urine formed
52. The urine will be more concentrated

Q neet prep Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Locomotion \& Movement (Expected Questions in NEET 2022: 2)

Subtopic Name
 Number of

 QuestionsDisorders of Muscular and Skeletal
System 10

Sternum \& Ribs	5
Appendicular Skeleton: Girdle	4
Skeletal Muscle: Myofilaments	4
Sy	

Synovial Joint	4

Fibrous \& Catilaginous Joints	$\mathbf{3}$
Skeletal Muscle: Sarcomere	$\mathbf{3}$
Slid	$\mathbf{2}$

Sliding Filament Theory	2

Appendicular Skeleton: Upper Limb	1

Axial Skeleton	1
Excitation Contraction Coupling	$\mathbf{1}$

Human Skeleton: Introduction, Function,	1
Parts	
Muscle Contraction: Other	1
Considerations	1
Skeletal Muscle: Basic Anatomy	

1. The pivot joint between atlas and axis is a type of:
2. Cartilaginous joint
3. Synovial joint
4. Saddle joint
5. Fibrous joint
6.

Which of the following hormones can play a significant role in osteoporosis?

1. Aldosterone and Prolactin
2. Progesterone and Aldosterone
3. Estrogen and Parathyroid hormone
4. Parathyroid hormone and Prolactin
5. Name the ion responsible for unmasking of active sites for myosin for cross-bridge activity during muscle contraction.
6. Calcium
7. Magnesium
8. Sodium
9. Potassium
10.

Osteoporosis, an age-related disease of skeletal system, may occur due to

1. junction leading to fatigue
2. high concentration of ca^{++}and Na^{+}
3. decreased level of oestrogen
4. accumulation of uric acid leading to inflammation of joints

5.

Calcium is important in skeletal muscle contraction because it:-

1. binds to troponin to remove the masking of active sites on actin for myosin.
2. activates the myosin ATPase by binding to it.
3. detaches the myosin head from the actinfilament.
4. prevents the formation of bonds between the myosin cross bridges and the actin filament.
5. Out of ' X ' pairs of ribs in humans only ' Y ' pairs are true ribs. Select the option that correctly represents values of X and Y and provides their explanation:
6. $\mathrm{X}=12, \mathrm{Y}=5$ True ribs are attached to vertebral column and sternum on the two ends.
7. $X=24, Y=7$ True ribs are dorsally attached to vertebral column but are free on ventral side.
8. $\mathrm{X}=24, \mathrm{Y}=12$ True ribs are dorsdally attached to vertebral column but are free on ventral side.
9. $\mathrm{X}=12, \mathrm{Y}=7$ True ribs are attached dorsally to vertebral column and ventrally to the sternum.
10.

Lack of relaxation between successive stimuli in sustained muscle contraction is known as

1. fatigue
2. tetanus
3. tonus
4. spasm
5. Which of the following joints would allow no movement?
6. Fibrous joint
7. Cartilaginous joint
8. Synovial joint
9. Ball and socket joint
10. Which of the following is not a function of the skeletal system?
11. Production of erythrocytes
12. Storage of minerals
13. Production of body heat
14. Locomotion
15.

Sliding filament theory can be best explained as

1. when myofilaments slide pass each other actin filaments shorten while myosin filament do not shorten
2. actin and myosin filaments shorten and slide pass each other
3. actin and myosin filaments do not shorten but rather slide pass each other
4. when myofilament slide pass each other myosin filament shorten while actin filaments do not shorten
5.

Glenoid cavity articulates

1. clavicle with acromion
2. scapula with acromion
3. clavicle with scapula
4. humerus with scapula
5. The characteristics and an example of a synovial joint in humans is

	Characteristics	Examples
(1)	Fluid filled between two joints, provide cushion	Skull Bones
(2)	Lymph filled between two bones, limited motion	Gliding joint between carpals.
(3)	Fluid filled synovial cavity between two bones	Joint between atlas and axis.
(4)	Fluid cartilage between two bones, limited motion	Knee joint

1. (1)
2. (2)
3. (3)
4. (4)
5. Select the correct matching of the types of the joint with the example in human skeletal system:

Types of joint
(1) Cartilaginous joint
(2) Pivot joint
(3) Hinge joint
(4) Gliding joint

1. 1
2. 2
3. 3
4. 4
5. Stimulation of a muscle fiber by a motor neuron occurs at:
6. the neuromuscular junction
7. the transverse tubules
8. the myofibril
9. the sacroplasmic reticulum
10. Select the correct statement with respect to locomotion in humans:
11. Accumulation of uric crystals in joints causes their inflammation
12. The vertebral column has 10 thoracic vertebae.
13. The joint between adjacent vertebrae is a fibrous joint
14. The decreased level of progesterone causes osteoporosis in old people
15. The H -zone in the skeletal muscle fibre is due to:
16. The central gap between myosin filaments in the Aband.
17. The central gap between actin filaments extending through myosin filaments in the A-band.
18. Extension of myosin filaments in the central portion of the A-band
19. The absence of myofibrils in the central portion of Aband.
20. Select the correct statement regarding the specific disorder of muscular or skeletal system.
21. Mascular dystrophy age related shortening of muscles 2. Osteoporosis- decrease in bone mass and higher chances of fructures with advancing age
22. Myasthenia gravis- auto immune disorder which inhibits sliding of myosin filaments
23. Gout- inflammation of joints due to extra deposition of calcium
24. Low Ca^{2+} in the body fluid may be the cause of
25. tetany
26. anaemia
27. angina pectoris
28. gout
29. Which one of the following is the correct matching of three items and their grouping category?

Items	Group
(a) Malleus, incus cochlea	Ear ossicles
(b) Ilium, ischium, pubis	Coxal bones of pelvic girdle
(c) Actin, myosin rhodopsin	Muscle proteins
(d) Cytosine, uracil thiamine	pyrimidines

1. (a)
2. (b)
3. (c)
4. (d)
5. In human body, which one of the following is anatomically correct?
6. Floating ribs-2 pairs
7. Collar bones-3 pairs
8. Salivary glands-1 pair
9. Cranial nerves-10 pairs
10.

Which one of the following item gives its correct total number?

1. Floating ribs in humans -4
2. Amino acids found in proteins -16
3. Types of diabetes - 3
4. Cervical vertebrae in humans -8
5. The contractile protein of skeletal muscle involving ATPase activity is :
6. tropomyosin
7. myosin
8. a-actinin
9. toponin
10. Which of the following muscular disorders is inherited?
11. Botulism
12. Tetany
13. Muscular dystrophy
14. Myasthenia gravis
15. Select the correct option.
16. There are seven pairs of vertebrosternal, three pairs of vertebrochondral and two pairs of vertebral ribs.
17. $8^{\text {th }}, 9^{\text {th }}$ and $10^{\text {th }}$ pairs of ribs articulate directly with the sternum.
18. $11^{\text {th }}$ and $12^{\text {th }}$ pairs of ribs are connected to the sternum with the help of hyaline cartilage.
19. Each rid is a flat thin bone and all the ribs are connected dorsally to the thoracic vertebrae and ventrally to the sternum.
20. Match the following joints with the bones involved:

Column-I

(a) Gliding joint
(b) Hinge joint
(c) Pivot joint
(d) Saddle joint iv Between Humerus and Ulna

Select the correct option from the following:

1. (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
2. (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
3. (a)-(iv), (b(-(ii), (c)-(iii), (d)-(i)
4. (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv)
5. Which of the following diseases is an auto-immune disorder?
6. Myasthenia gravis
7. Arthritis
8. Osteoporosis
9. Gout
10. Match the following columns and select the correct option.

Column-I
(a) Floating Ribs
second and seventh ribs
(b) Acromion

Humerus
(c) Scapula
(d) Glenoid cavity

Column-II

(i) Located between
(ii) Head of the
(iii) Clavicle
(iv) Do not connect
with the sternum

	(a)	(b)	(c)	(d)
(1)	(i)	(iii)	(ii)	(iv)
(2)	(iii)	(ii)	(iv)	(i)
(3)	(iv)	(iii)	(i)	(ii)
(4)	(ii)	(iv)	(i)	(iii)

28. Match the following columns and select the correct option

Column - I

(a) Gout
(b) Osteoporosis
(c) Tetany
crystals
(d) Muscular dystrophy

Column - II

(i) Decreased levels of estrogen
(ii) Low Ca^{++}ions in the blood
(iii) Accumulation of uric acid
(iv) Autoimmune disorder (v) Genetic disorder

1. (a)-(ii), (b)-(i), (c)-(iii), (d)-(iv)
2. (a)-(iii), (b)-(i), (c)-(ii), (d)-(v)
3. (a)-(iv), (b)-(v), (c)-(i), (d)-(ii)
4. (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
5. Which one of the following pairs of chemical substances, is correctly categorised ?
6. Pepsin and prolactin - Two digestive enzymes secreted in stomach
7. Troponin and myosin - Complex proteins in striated muscles
8. Secretin and rhodopsin - Polypeptide hormones
9. Calcitonin and thymosin - Thyroid hormones
10. Which one of the following is the correct description of a certain part of a normal human skeleton-
11. First vertebra is axis which articulates with the occipital condyles
12. The 9th and 10th pairs of ribs are called the floating ribs
13. Glenoid cavity is a depression to which the thigh bone articulates
14. Parietal bone and the temporal bone of the skull are joined by fibrous joint
15. The type of muscles present in our :
16. upper arm are smooth muscle fibres
fusiform in shape
17. heart are involuntary and unstriated smooth muscles
18. intestine are striated and involuntary
19. thigh are striated and voluntary
20. Three of the following pairs of the human skeletal parts are correctly matched with their respective inclusive skeletal category and one pair is not matched. Identify the non-matching pair.

Pairs of skeletal parts

Category

1. Malleus and stapes Ear ossicles
2. Sternum and Ribs Axial skeleton
3. Clavicle and $\begin{aligned} & \text { Glenoid cavity }\end{aligned} \quad$ Pelvic girdle
4. Humerus and ulna

Appendicular skeleton
33. An acromian process is characteristically found in the
(1) Skull of frog
(2) Sperm of mammals
(3) Pelvic girdle of mammals
(4) Pectoral girdle of mammals
34. Number of bones in hind limb of man :

1. 14
2. 24
3. 26
4. 30
5. Unit of contraction in a muscle fiber is
6. Sarcomere
7. Muscle fiber
8. Actin
9. None
10. ATPase enzyme needed for muscle contraction is located in -
(1) Troponin
(2) Myosin
(3) Actin
(4) Actinin
11. Name of the joint between ribs and sternum is
12. Cartilaginous joint
13. Angular joint
14. Gliding joint
15. Fibrous joint
16. What is sarcomere : -
17. Part between two H -line
18. Part between two A-line
19. Part between two I-band
20. Part between two Z-line
21. Chronic auto immune disorder affecting neuro muscular junction leading to fatigue, weakening and paralysis of skeletal muscle is called as:
(1) Myasthenia gravis
(2) Gout
(3) Arthritis
(4) Muscular dystrophy
22. Match List-I with List-II

List-I	List-II
(a) Scapula	(i) Cartilaginous joints
(b) Cranium	(ii) Flat bone
(c) Sternum	(iii) Fibrous joints
(d) Vertebral column	(iv) Triangular flat bone

Choose the correct answer from the options given below.

	(a)	(b)	(c)	(d)
1.	(iv)	(ii)	(iii)	(i)
2.	(iv)	(iii)	(ii)	(i)
3.	(i)	(iii)	(ii)	(iv)
4.	(ii)	(iii)	(iv)	(i)

41. During muscular contraction which of the following events occur?
(a) 'H' zone disappears
(b) 'A' band widens
(c) 'I' band reduces in width
(d) Myosin hydrolyzes ATP, releasing the ADP and Pi
(e) Z-lines attached to actins are pulled inwards

Choose the correct answer from the options given below.

1. (b), (c), (d), (e) only
2. (b), (d), (e), (a) only
3. (a), (c), (d), (e) only
4. (a), (b), (c), (d) only

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get
 FREE ACCESS for 3
 days of ANY NEETprep

course

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Neural Control \& Coordination
 (Expected Questions in NEET 2022: 3)

Subtopic Name

Number of

 Questions| Basic Anatomy of Human Eye | 6 |
| :--- | :--- |
| Diencephalon | 6 |
| Human Eye: Adaptation | 6 |
| Origin of Resting Membrane Potential | 4 |
| Inner Ear: Vestibular Apparatus | 3 |
| Hind \& Mid Brain | 2 |
| Synapse | $\mathbf{2}$ |
| Action Potential | 1 |
| Inner Ear: Cochlea | 1 |
| Nervous System | 1 |
| Outer \& Middle Ear | 1 |

1. Myelin sheath is produced by:
2. Astrocytes and Schwann cells
3. Oligodendrocytes and Osteoclasts
4. Osteoclasts and Astrocytes
5. Schwann cells and Oligodendrocytes
6. Receptor sites for neurotransmitters are present on:
7. Pre-synaptic membrane
8. Tips of axons
9. Post-synaptic membrane
10. Membrane of synaptic vesicles
11. Good vision depends on adequate intake of carotene rich food.
Select the best option from the following statements:
(i) Vitamin A derivatives are formed from carotene
(ii) The photopigments are embedded in the membrane discs of the inner segment
(iii) Retinal is a derivative of Vitamin A
(iv) Retinal is a light absorbing part of all the visual photopigments
12. (i),(iii) and (iv)
13. (i) and (iii)
14. (ii), (iii) and (iv)
15. (i) and (iv)
16.

Which of the following structures or regions is incorrectly paired with its function?

1. Medulla oblongata: controls respiration and cardiovascular reflexes.
2. Limbic system: consists of fibre tracts that interconnect different regions of brain; controls movement.
3. Hypothalamus: production of releasing hormones and regulation of temperature, hunger and Thirst.
4. Corpus callosum: band of fibers connecting left and right cerebral hemispheres.
5.

The transparent lens in the human eye is held in its place by

1. ligaments attached to the ciliary body
2. ligaments attached to the iris
3. smooth muscles attached to the iris
4. smooth muscles attached to the ciliary body
5. Choose the correct statement.
6. Nociceptors respond to changes in pressure
7. Meissner' s corpuscles are thermoreceptors
8. Photoreceptors in the human eye are depolarised during darkness and become hyperpolarised in response to the light stimulus
9. Receptors do not produce graded potentials
10.

Photosensitive compound in human eye is made up of

1. opsin and Retinal
2. opsin and Retinol
3. transducin and Retinene
4. guanosine and Retinol
5. In mammalian eye, the 'fovea' is the center of the visual field, where
6. Highly density of cones occurs, but has no rods
7. The optic nerve leaves the eye
8. Only rods are present
9. More rods than cones are found

9.

Which of the following regions of the brain is incorrectly paired with its function

1. Medulla oblongata-Homeostatic control
2. Cerebellum-Language comprehension
3. Corpus callosum-Communication between the left and right cerebral cortices
4. Cerebrum-Calculation and contemplation
5.

A gymnast is able to balance his body upside down even in the total darkness because of

1. cochlea
2. vestibular apparatus
3. tectorial membrane
4. organ of Corti
5. Injury localized to the hypothalamus would most likely disrupt
6. short-term memory
7. co-ordination during locomotion
8. executive functions, such as decision making
9. regulation of body temperature
10. Which one of the following statements is not correct?
11. Retinal is the light absorbing portion of visual photo pigments
12. In retina the rods have the photopigments rhodospin while cones have three different photopigments.
13. Retinal is a derivative of Vitamin C
14. Rhodospin is the purplish protein present in rods only.
15. Parts A, B, C and D of the human eye are shown in the diagram. Select the option which gives correct identification along with its functions/characteristics:

16. B-blind spot-has only a few rods and cones
17. C-Aqueous chamber-reflects the light which does not pass through the lens
18. D-choroid- is anterior part forms ciliary body
19. A-retina - contains photo receptors - rods and cones
20. A diagram showing axon terminal and synapse is given. Identify correctly at least two of A-D.

21. B- Synaptic connection D- K^{+}
22. A- Neurotransmitter B- Synaptic cleft
23. C- Neurotransmitter D- Ca^{++}
24. A- Receptor C-Synaptic vesicles
25. The human hind brain comprises three parts, one of which is
26. Cerebellum
27. Hypothalamus
28. Spinal
29. Corpus callosum
30. Which part of the human ear plays no role in hearing as such but is otherwise very much required?
31. Eustachian tube
32. Organ of Corti
33. Vestibular apparatus
34. Ear ossicles

17.

The purplish-red pigment rhodopsin contained in the rods type of photoreceptor cells of the human eyes is a derivative of

1. vitamin-C
2. vitamin-D
3. vitamin-A
4. vitamin-B
5.

When a neuron is in resting state, i.e., not conducting any impulse, the axonal membrane is

1. equally permeable to both $\mathrm{Na}+$ and $\mathrm{K}+$ ions
2. impermeable to both $\mathrm{Na}+$ and $\mathrm{K}+$ ions
3. comparatively more permeable to $\mathrm{K}+$ ions and nearly impermeable to $\mathrm{Na}+$ ions
4. comparatively more permeable to $\mathrm{Na}+$ ions and nearly impermeable to $\mathrm{K}+$ ions
5. The nerve centres which control the body temperature and the urge for eating are contained in
6. hypothalamus
7. pons
8. cerebellum
9. thalamus
10. Which part of human brain is concerned with the regulation of body temperature?
11. Medulla oblongata
12. Cerebellum
13. Cerebrum
14. Hyprothalamus
15. Given below is a diagrammatic cross section of a single loop of human cochlea.

Which one of the following options correctly represents the names of three different parts?

B: Tectorial membrane

1. C: Perilymph

D: Secretory cells
C: Endolymph
2. D: Sensory hair cells

A: Serum
D: Sensory hair cells
3. A: Endolymph

B: Tectorial membrane
A: Perilymph
4. B: Tectorial membrane

C: Endolymph
22.

Which one of the following is the correct difference between rod cells and cone cells of our retina?

Features	Rod cells	Cone cells
(a) visual acuity	High	Low
(b) Visual pigment contained	Iodopsin	Rhodopsin
(c) Overall function	Vision in poor light	Colour vision and detailed vision in bright light
(d) Distribution	More concentrated in centre of retina	Evenly distributed all over retina

1. a
2. b
3. c
4. d
5.

During the propagation of a nerve impulse, the action potential results from the movement of

1. K+ ions from extracellular fluid to intracellular fluid
2. $\mathrm{Na}+$ ions from intracellular fluid to extracellular fluid
3. $\mathrm{K}+$ ions from intracellular fluid to extracellular fluid
4. $\mathrm{Na}+$ ions from extracellular fluid to intracellular fluid
5. During the transmission of nerve impulse through a nerve fibre, the potential on the inner side of the plasma membrane has which type of electric charge ?
6. First negative, then positive and again back to negative
7. First positive, then negative and continue to be negative
8. First negative, then positive and continue to be positive
9. First positive, them negative and again back to positive
10. Which part of the brain is responsible for thermoregulation?
11. Medulla oblongata
12. Cerebrum
13. Hypothalamus
14. Corpus callosum
15. Which of the following statements is not correct?
16. An action potential in an axon does not move backward because the segment behind is in a refractory phase.
17. Depolarization of hair cells of cochlea results in the opening of the mechanically gated Potassium- ion channels.
18. Rods are very sensitive and contribute to daylight vision.
19. In the knee-jerk reflex, stimulus is the stretching of muscle and response is its contraction.
20. Which of the following receptors are specifically responsible for maintenance of balance of body and posture?
21. Basilar membrane and otoliths
22. Hair cells and organ of corti
23. Tectorial membrane and macula
24. Crista ampullaris and macula
25. Match the following columns and select the correct option

Column - I

(a) The organ of Corti pharynx
(b) Cochlea
(ii) Coiled part of the labyrinth
(c) Eustachian tube
(d) Stapes
(iii) Attached to the oval window (iv)Located on the basilar membrane
(a) (b) (c) (d)

1. (iii) (i) (iv) (ii)
2. (iv) (ii) (i) (iii)
3. (i) (ii) (iv) (iii)
4. (ii) (iii) (i) (iv)
5. Match the following columns and select the correct option :

Column - I

(a) Rods and cones photoreceptor cells
(b) Blind Spot
(c) Fovea
(ii) Cones are densely packed
(d) Iris
(iii) Photoreceptor cells
(iv) Visible coloured portion of the eye

1. (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
2. (a)-(ii), (b)-(iii), (c)-(i), (d)-(iv)
3. (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
4. (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)
5. Select the answer with correct matching of the structure, its location and function -

	A	B	C
1.	Cerebellum	Mid brain	Controls respiration and gastric secretions
2.	Hypothalamus	Fore brain	Controls body temperature, urge for eating and drinking
3.	Blinds spot	Near the place where optic nerve leaves the eye	Rods and cones are present but inactive here
4.	Eustachian tube	Anterior part of internal ear	Equalizes air pressure on either sides of tympanic membrane

31. In the resting state of the neural membrane, diffusion due to concentration gradients, if allowed, would drive :-
32. K^{+}and Na^{+}out of the cell
33. Na^{+}into the cell
34. Na^{+}out of the cell
35. K^{+}into the cell
36. Suspensory ligaments are found in :
37. Brain
38. Eyes
39. Liver
40. Pancrease
41. Depolarization of axolema during nerve conduction takes place because of :
42. Equal amount of $\mathrm{Na}^{+} \& \mathrm{~K}^{+}$move out across axolema
43. Na^{+}ions move inside
44. More Na^{+}ions are outside
45. None of the above
46. Which of the following statement is correct for node of Ranvier of nerve : -
(1) Neurilemma is discontinuous
(2) Myelin sheath is discontinuous
(3) Both neurilemma \& Myelin sheath are discontinuous
(4) Covered by myelin sheath

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

U. neetprep

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Chemical Coordination \& Integration (Expected Questions in NEET 2022: 3)

Subtopic Name

Number of

 Questions| Adrenal Medulla | 7 |
| :--- | :--- |
| Mechanism of Hormone Action | 7 |
| Pituitary \& Hypothalamus | 6 |
| Adenohypophysis \& Hypothalamus | 5 |
| Parathyroid | 5 |
| Thyroid | 5 |
| Adrenal Cortex: Cortisol | 3 |
| Gonadotropin \& Gonadal Hormones | 3 |
| Misc. Hormones | 3 |
| Pineal Gland | 3 |
| Prolactin \& Posterior Pituitary | 3 |
| Gastrointestinal Hormones | 2 |
| Hormones of Heart, Kidney and
 Gastrointestinal Tract | 2 |
| Pancreas | 2 |
| Human Growth Hormone | 1 |
| Intro to Hormones \& Endocrine
 Glands | 1 |
| Thymus | 1 |

1. A temporary endocrine gland in the human body is:
2. Corpus cardiacum
3. Corpus luteum
4. Corpus allatum
5. Pineal gland
6.

Which of the following is an amino acid derived hormone?

1. Epinephrine
2. Ecdysone
3. Estradiol
4. Estriol
5. Which hormone stimulate the production of pancreatic juice and bicarbonate?
6. Angiotensin and epinephrine
7. Gastrin and insulin
8. Cholecystokinin and secretin
9. Insulin and glucagon
10. Graves' disease is caused due to
11. hyposecretion of thyroid gland
12. hypersecretion of thyroid gland
13. hyposecretion of adrenal gland
14. hypersecretion of adrenal gland
15. Name a peptide hormone which acts mainly on hepatocytes, adipocytes and enhances cellular glucose uptake and utilisation.
16. Insulin
17. Glucagon
18. Secretin
19. Gastrin
20. The posterior pituitary gland is not a 'true' endocrine gland because
21. it is provided with a duct
22. it only stores and releases hormones
23. it is under the regulation of hypothalamus
24. it secretes enzymes
25. GnRH, a hypothalamic hormone, needed in reproduction, acts on:
26. Anterior pituitary gland and stimulates secretion of LH and FSH.
27. Posterior pituitary gland and stimulates secretion of oxytocin and FSH.
28. Posterior pituitary gland and stimulates secretion of LH and relaxin.
29. Anterior pituitary gland and stimulates secretion of LH and oxytocin.
30. Which one of the following hormones is not involved in sugar metabolism?
31. Cartisone
32. Aldosterone
33. Insulin
34. Glucagon
35. Which one of the following hormones though synthesised elsewhere, is stored and released by the master gland ?
(1) Melanocyte stimulating hormone
(2) Antidiuretic hormone
(3) Luteinizing hormone
(4) Prolactin
36.

A chemical signal that has both endocrine and neural roles is

1. melatonin
2. calcitonin
3. epinephrine
4. cortisol
5.

Which of the following statements is correct in relation to the endocrine system?

1. Organs in the body like gastrointestinal tract, heart, kidney and liver do not produce any hormones.
2. Non - nutrient chemicals produced by the body in trace amount that act as intercellular messenger are known as hormones.
3. Releasing and inhibitory hormones are produced by the pituitary gland.
4. Adenohypophysis is under direct neural regulation of the hypothalamus.
5.

A pregnant female delivers a baby who suffers from stunted growth, mental retardation/low intelligence quotient and abnormal skin. This is the result of :

1. Low secretion of growth hormone
2. Cancer of the thyroid gland
3. Over secretion of pars distalis
4. Deficiency of iodine in diet
5. Select the answer which correctly matches the endocrine gland with the hormone it secrets and its function/deficiency symptom:

	Endocrine	Hormone	Function/deficiency symptom
(1)	Posterior Pituitary	Growth Hormone (GH)	Oversec retion stimulates abnormal growth
(2)	Thyroid gland	Thyroxine	Lack of iodine in diet results in goitre
(3)	Corpus luteum	Testosterone	Stimulates spermatogenesis
(4)	Anterior pituatary	oxytocin	Stimulates uterus contraction during child birth

1. (1)
2. (2)
3. (3)
4. (4)
5. Identify the hormone with its correct matching of source and function:
6. Oxytocin- posterior pituitary, growth and maintenance of mammary glands.
7. Melatonin- pineal gland, regulates the normal rhythm of sleepwake cycle.
8. Progesterone- corpus-luteum, stimulation of growth and activities of female secondary sex organs.
9. atrial natriuretic factor- ventricular wall increases the blood pressure.
10. Fight - or - flight reaction cause activation of
11. the parathyroid glands, leading to increased metabolic rate.
12. the kidney, leading to suppression of rennin angiotensin-aldosterone pathway.
13. the adrenal medulla, leading to increased secretion of epinephrine and norepinephrene
14. the pancreas leading to a reduction in the blood sugar levels.
15. Which one of the following pairs of hormones are the examples of those that can easily pass through the cell membrane of the target cell and bind to a receptor inside it (mostly in the nucleus)?
16. Insulin and gucagon
17. Thyroxin and insulin
18. Somatosatin and oxytocin
19. Cortisol and testosterone
20. Match the source gland with its respective hormone as well as the function.

	Source gland	Hormone	Function
(a)	Posterior pituitary	Vasopressin	Stimulates reabsorption of water in the distal tubules in the nephron
(b)	Corpus luteum	Prolactin	Supports pregnancy
(c)	Thyroid	Thyroxine	Regulates blood calcium level
(d)	Anterior pituitary	Oxytocin	Contraction of uterus muscles during childbirth

1. (a)
2. (b)
3. (c)
4. (d)
5.

Given ahead is an incomplete table about certain hormone, their source glands and one major effect of each on the body in humans. Identify the correct option for the three blanks A, B and C

Gland	Secretion	Effect on Body
A	Oestrogen	Maintenance of secondary sexual characters
(
Alpha cells of islets of Langerhans	B	
Raises blood		
sugar level		

19. Injury to adrenal cortex is not likely to affect the secretion of which one of the following?
20. Aldosterone
21. Both androstenedione and dehydroepiandrosterone
22. Adrenalin
23. Cortisol
24. Which one of the following pairs is incorrectly matched?
25. Glucagon- Beta cells(source)
26. Somatostatin- Delta cells(source)
27. Corpus luteum- Relaxin(secretion)
28. Insulin- Diabetes mellitus(disease)
29.

In human adult females, oxytocin

1. is secreted by anterior pituitary
2. stimulates growth of mammary glands
3. stimulates pituitary to secrete vasopressin
4. causes strong uterine contractions during parturition
5.

The blood calcium level is lowered by the deficiency of

1. parathormone
2. thyroxine
3. calcitonin
4. Both 1 and 3
5.

Which one of the following pairs of organs includes only the endocrine glands?

1. Parathyroid and adrenal
2. Pancreas and parathyroid
3. Thymus and testes
4. Adrenal and ovary
5. Feeling the tremors of an earthquake a scared resident of seventh floor of a multistoryed building starts climbing down the stairs rapidly. Which hormone initiated this act?
6. Thyroxine
7. Adernaline
8. Glucagon
9. Gastrin
10. A steroid hormone which regulates glucose metabolism is :
11. cortisol
12. corticosterone
13. 11-deoxycorticosterone
14. cortisone
15. Which of the following is an accumulation and release centre of neurohormones?
16. Posterior pituitary lobe
17. Intermediate lobe of the pituitary
18. Hypothalamus
19. Anterior pituitary lobe
20. Which hormone causes dilation of blood vessels, increased oxygen consumption and gluco- genesis?
21. ACTH
22. Insulin
23. Adrenalin
24. Glucagon
25. Match the following hormones with the respective disease:
(a) Insulin
(i) Addison's disease
(b) Thyroxin
(ii) Diabetes insipidus
(c) Corticoids
(iii) Acromegaly
(d) Growth Hormone (iv) Goitre
(v) Diabetes mellitus

Select the correct option.

	(a)	(b)	(c)	(d)
1.	(ii)	(iv)	(i)	(iii)
2.	(v)	(i)	(ii)	(iii)
3.	(ii)	(iv)	(iii)	(i)
4.	(v)	(iv)	(i)	(iii)

29. Which of the following hormones is responsible for both the milk ejection reflex and the foetal ejection reflex?
30. Estrogen
31. Prolactin
32. Oxytocin
33. Relaxin
34. Identify A, B and C in the diagrammatic representation of the mechanism of hormone action.

Select the correct option from the following:

1. $\mathrm{A}=$ Steroid Hormone; $\mathrm{B}=$ Hormone receptor Complex; $\mathrm{C}=$ Protein
2. $\mathrm{A}=$ Protein Hormone; $\mathrm{B}=$ Receptor; $\mathrm{C}=$ Cyclic AMP
3. $\mathrm{A}=$ Steroid Hormone; $\mathrm{B}=$ Receptor; $\mathrm{C}=$ Second Messenger
4. $\mathrm{A}=$ Protein Hormone; $\mathrm{B}=$ Cyclic AMP; $\mathrm{C}=$ Hormonereceptor Complex
5. Artificial light, extended work-time and reduced sleeptime disrupt the activity of
6. Thymus gland
7. Pineal gland
8. Adrenal gland
9. Posterior pituitary gland
10. Which of the following conditions will stimulate parathyroid gland to release parathyroid hormone?
11. Fall in active Vitamin D levels
12. Fall in blood Ca^{+2} levels
13. Fall in bone Ca^{+2} levels
14. Rise in blood Ca^{+2} levels
15. Select the correct statement.
16. Glucagon is associated with hypoglycemia.
17. Insulin acts on pancreatic cells and adipocytes.
18. Insulin is associated with hyperglycemia.
19. Glucocorticoids stimulate gluconeogenesis.
20. Match the follwing columns and select the correct option.
(a) Pituitary gland
(i) Grave's disease
(b) Thyroid gland
(ii) Diabetes mellitus
(c) Adrenal gland
(iii) Diabetes insipidus
(d) Pancreas
(iv) Addison's diseae
a b cod

(1) (iii)	(ii)	(i)	(iv)
(2) (iii)	(i)	(iv)	(ii)
(3) (ii)	(i)	(iv)	(iii)
(4) (iv)	(iii)	(i)	(ii)

35. Match the following columns and select the correct option:-

Column-I

(a) Pituitary hormone
(b) Epinephrine
(c) Endorphins
(d) Cortisol

Column-II

(i) Steroid
(ii) Neuropeptides
(iii) Peptides, proteins
(iv) Biogenic amines

1. (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
2. (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
3. (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
4. (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
5. Hormones stored and released from neurohypophysis are:-
6. Thyroid-stimulating hormone and Oxytocin
7. Oxytocin and Vasopressin
8. Follicle-stimulating hormone and leutinizing hormone
9. Prolactin and Vasopressin
10. Select the correct matching of a hormone, its source and its function -

	Hormone	Source	Function
1.	Norepineph rine	Adrenal medulla	Increases heartbeat, rate of respiration and alert ness
2.	Glucagon	Beta-cells of Islets of Langerhans	Stimulates glycogenolysis
3.	Prolactin	Posterior pituitary	Regulates growth of mammary glands and milk formation in females
4.	Vasopressin	Posterior pituitary	Increases loss of water through urine

38. The 24 hours (diurnal) rhythm of our body such as the sleep-wake cycle is regulated by the hormone :
39. melatonin
40. calcitonin
41. prolactin
42. adrenaline
43. Secretin and cholecystokinin are digestive hormones.

They are secreted in -
(1) Oesophagus
(2) Ileum
(3) Duodenum
(4) Pyloric stomach
40. Contraction in gall bladder stimulated by :

1. CCK
2. PZ
3. Secretin
4. Enterogastrin
5. Which of the following stimulates the secretion of gastric juice :
6. Gastrin
7. Enterogasterone
8. Secretin
9. Hepatocrinin
10. Function of thyrocalcitonin :
11. To reduce the calcium level in blood
12. To increase the calcium level in blood
13. Oppose the action of thyroxine
14. Maturation of gonads
15. Which of the following is a steroid hormone?
16. Progesterone
17. Cholesterol
18. ACTH
19. Which one of the following hormones is a modified amino acid?
20. Progesterone
21. Prostaglandin
22. Estrogen
23. Epinephrine
24. Duodenum has characteristic Brunner's glands which secrete two hormones called -
(1) Secretin, Cholecystokinin
(2) Prolactin, parathormone
(3) Extradiol, progesterone
(4) Kinase, estrogen
25. Which one of the following pair correctly matches a hormone with a disease resulting from its deficiency:-
26. Insulin - Diabetes insipidus
27. Thyroxine - Tetany
28. Parathyroid hormone - Diabetes mellitus
29. Luteinizing hormone - Failure of ovulation
30. CCK and secretin secreted by :
31. Stomach
32. Ileum
33. Duodenum
34. Colon
35. Parathormone deficiency leads to :
36. Decrease of $C a^{+2}$ level in blood
37. Increase of $C a^{+2}$ level in blood
38. Osteoporosis
39. Hypercalcemia
40. Chemically hormones are:-
(1) Proteins, steroids \& biogenic amines
(2) Proteins only
(3) Steroids only
(4) Biogenic amines only
41. Oxytocin mainly helps in :
42. Milk production
43. Childbirth
44. Diuresis
45. Gametogenesis
46. Which hormone is concerned with the concentration of urine :
47. Oxytocin
48. Vasopressin
49. Prolactin
50. Cortisol
51. Which gland decreases in size with increasing age :
52. Thyroid
53. Adrenal
54. Thymus
55. Pituitary
56. Melatonin is secreted by:
57. Pineal gland
58. Skin
59. Pituitary Gland
60. Thyroid
61. MSH is secreted by :
62. Anteria lobe of pituitary
63. Middle lobe of pituitary
64. Posteria lobe of pituitary
65. Endostyle
66. When both ovaries of rat are removed then which hormone is decreased in blood: -
67. Oxytocin
68. Prolactin
69. Estrogen
70. Gonadotrophic releasing factor
71. Which of the following is used in the treatment of Thyroid cancer: -
(1) I_{131}
(2) U_{238}
(3) Ra_{224}
(4) C_{14}
72. Adrenalin direct affect on: -
(1) S.A. Node
(2) β-cells of Langerhans
(3) Dorsal root of spinal cord
(4) Epithelial cells of stomach
73. Which one of the following pairs correctly matches a hormone with a disease resulting from its deficiency: -
74. Relaxin - Gigantism
75. Prolactin - Cretinism
76. Parathyroid hormone - Tetany
77. Insulin - Diabetes insipidus
78. Erythropoietin hormone which stimulates R.B.C. formation is produced by:
79. The cells of bone marrow
80. Juxtaglomerular cells of the kidney
81. Alpha cells of the pancreas
82. The cells of the rostral adenohypophysis
83. Insulin differs from Growth hormone in :
84. Increases activity of m-RNA and Ribosomes
85. Increase the permeability of cell membrane
86. Affects metabolism of fats by inducing lipogenesis

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get
 FREE ACCESS for 3
 days of ANY NEETprep

course

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Reproduction in Organisms

(Expected Questions in NEET 2022: 1)

Subtopic Name	Number of Questions
Asexual Reproduction	9
Sexual Reproduction	5
Events during Sexual reproduction	2

1. Which one of the following statements is not correct?
2. Offspring produced by the asexual reproduction are
called clone
3. Microscopic motile asexual reproductive structures are
called zoospores
4. In potato, banana and ginger, the plantlets arise from
the internodes present in the modified stem
5. Water hyacinth growing in the standing water, drains
oxygen from water that leads to the death of fishes
6.

Offsets are produced by

1. Meiotic divisions
2. Mitotic divisions
3. Parthenocarpy
4. Parthenogenesis
5.

Which of the following flowers only once in its life-time?

1. Bamboo species
2. Jackfruit
3. Mango
4. Papaya
5. Flowers are unisexual in
6. Pea
7. Cucumber
8. china rose
9. onion
10. Which of the following pairs is not correctly match?

Mode of reproduction
(a) Offset
(b) Rhizome
(c) Binary fission
(d) Conidia

1. a
2. b
3. c
4. d
5.

In ginger vegetative propagation occurs through

1. rhizome
2. offsets
3. bulbils
4. runners
5. Which one of the following generates new genetic combinations leading to variation?
6. Vegetative reproduction
7. Parthenogenesis
8. Sexual reproduction
9. Nucellar polyembryony
10. Match column I with column II and select the correct option using the codes given below

Column I

A. Pistils fused together
B. Formation of gametes
C. Hyphae of higher ascomycetes
D. Unisexual female flower

Column II

1. Gametogenesis
2. Pistillate
3. Syncarpous
4. Dikaryotic
5. Product of sexual reproduction generally generates :
6. Prolonged dormancy
7. New genetic combination leading to variation
8. Large biomass
9. Longer viability of seeds
10. Select the correct sequence of events.
11. Gametogenesis \rightarrow Gamete transfer \rightarrow Syngamy \rightarrow Zygote \rightarrow Cell division (Cleavage) \rightarrow Cell differentiation \rightarrow Organogenesis
12. Gametogenesis \rightarrow Gamete transfer \rightarrow Syngamy \rightarrow Zygote \rightarrow Cell division (Cleavage) \rightarrow Organogenesis \rightarrow Cell differentiation
13. Gametogenesis \rightarrow Syngamy \rightarrow Gamete transfer \rightarrow Zygote \rightarrow Cell division (Cleavage) \rightarrow Cell differentiation \rightarrow Organogenesis
14. Gametogenesis \rightarrow Gamete transfer \rightarrow Syngamy \rightarrow Zygote \rightarrow Cell differentiation \rightarrow Cell division (Cleavage) \rightarrow Organogenesis
15. Vegetative propagule in Agave is as:
16. Rhizome
17. Bulbil
18. Offset
19. Eye
20. A-4 B-3 C-2 D-1
21. A-2 B-1 C-4 D-3
22. A-1 B-2 C-4 D-3
23. A-3 B-1 C-4 D-2
24. Examine the figure (A-D) given below and select the right option out of 1-4, in which all the four structures A,

A
D

1. Runner Archegoniophore Antheridium
2. Offset Antheridiophore Oogonium

C
Synergid
Antipodals
Megaspore mother
3. Sucker Seta
cell Gamma cup
4. Rhizome \quad Sporangiophore Polar cell
13. Which one of the following pairs is wrongly matched while the remaining three are correct ?

1. Agave - Bulbils
2. Penicillium - Conidia
3. Water hyacinth - Runner
4. Bryophyllum - Leaf buds
5. In which one pair both the plants can be vegetatively propagated by leaf pieces -
(1) Bryophyllum and Kalanchoe
(2) Agave and Kalanchoe
(3) Asparaguns and Bryophyllum
(4) Chrysanthemum and Agave
6. The chief advantage of encystment to an Amoeba is :(1) The ability to survive during adverse physical conditions
(2) The ability to live for some time without ingesting food
(3) Protection from parasites and predators
(4) The chance to get rid of accumulated waste products

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Sexual Reproduction in Flowering Plants (Expected Questions in NEET 2022: 4)

Subtopic Name

Number of Questions

Pollination \& Outbreeding Devices	22
Pistil	15
Stamen	13
Apomixis \& Polyembryony	4
Double Fertilization	3
Endosperm	3
Pollen - Pistil Interaction	3
Post Pollination Events	3
Fruit	2
Embryo	1

Sexual Reproduction in Flowering Plants - NCERT based PYQs

1. Functional megaspore in an angiosperm develops into?
2. Endosperm
3. Embryo sac
4. Embryo
5. Ovule
6. Which of the following has proved helpful in preserving pollens as fossils?
7. Pollenkit
8. Cellulosic intine
9. Oil content
10. Sporopollenin
11. Pollen grains can be stored for several years in liquid nitrogen having a temperature of
12. $-120^{\circ} \mathrm{C}$
13. $-80^{\circ} \mathrm{C}$
14. $-196^{\circ} \mathrm{C}$
15. $-160^{\circ} \mathrm{C}$
16.

Double fertilization is

1. Fusion of two male gametes of a pollen tube with two different eggs
2. Fusion of one male gamete with two polar nuclei
3. Fusion of two male gametes with one egg
4. Syngamy and triple fusion
5. In majority of angiosperms
6. egg has a filiform apparatus
7. there are numerous antipodal cells
8. reduction division occurs in the megaspore mother cells
9. a small central cell is present in the embryo sac
10. Pollination in water hyacinth and water lily is brought about by the agency of
11. water
12. insects or wind
13. birds
14. bats
15. The ovule of an angiosperm is technically equivalent to
16. megasporangium
17. megasporophyll
18. megaspore mother cell
19. megaspore
20. Flowers which have single ovule in the ovary and are packed into inflorescence are usually pollinated by:
21. Bee
22. Wind
23. Bat
24. Water
25. A dioecious flowering plant prevents both:
26. Autogamy and geitonogamy
27. Geitonogamy and xenogamy
28. Cleistogamy and xenogamy
29. Autogamy and xenogamy
30. Double fertilization is exhibited by:
31. Algae
32. Fungi
33. Angiosperms
34. Gymnosperms
35.

Which one of the following statements is not true?

1. Exine of pollen grains is made up of sporopollenin
2. Pollen grains of many species cause severe allergies
3. Stored pollen in liquid nitrogen can used in the crop breeding programs
4. Tapetum helps in the dehiscence of anther
5.

Proximal end of the filament of stamen is attached to the

1. connective
2. placenta
3. thalamus or petal
4. anther
5.

Which one of the following plants shows a very close relationship with a species of moth, where none of the two can complete its life cycle without the other?

1. Hydrilla
2. Yucca
3. Banana
4. Viola
5.

The coconut water from tender coconut represents

1. fleshy mesocarp
2. free - nuclear proembryo
3. free- nuclear endosperm
4. endocarp

Sexual Reproduction in Flowering Plants - NCERT based PYQs

15.

Which of the following statements is not correct?

1. Insects that consume pollen or nectar without bringing about pollination are called pollen nectar robbers
2. Pollen germination and pollen tube growth are regulated by chemical compound of pollen interacting with those of the pistil
3. Some reptiles have also been reported as pollinators in some plant species
4. Pollen grains of many species can germinate on the stigma of a flower, but only one pollen tube of the same species grows into the style.

16.

Seed formation without fertilization in flowering plants involves the process of

1. budding
2. somatic hybridization
3. apomixis
4. sporulation
5.

Which one of the following may require pollinators, but is genetically similar to autogamy?

1. Geitonogamy
2. Xenogamy
3. Apogamy
4. Cleistogamy

23.

Which one of the following statements is not true?

1. Pollen grains are rich in nutrients and they are used in the form of tablets and syrups
2. Pollen grains of some plants cause severe allergies and bronchial afflictions in some people
3. The flowers pollinated by flies and bats secrete foul odour to attract them
4. Honey is made by bees by digesting pollen collected from flowers
5. Filiform apparatus is a characteristic feature of
6. Generative cell
7. nucellar embryo
8. aleurone cell
9. synergids
10. In angiosperms, microsporogenesis and megasporogenesis
11. Occur in anther
12. Form gametes without further divisions
13. Involve meiosis
14. Occur in ovule
15. Coconut water from a tender coconut is
16. Immature embryo
17. Free nuclear endosperm
18. Innermost layers of the seed coat
19. Degenerated nucellus
20. Which one of the following fruits is parthenocarpic?
21. Brinjal
22. Apple
23. Jackfruit
24. Banana
25. Male gametophyte in angiosperms produces
26. Two sperms and a vegetative cell
27. Single sperm and a vegetative cell
28. Single sperm and two vegetative cell
29. Three sperms
30.

Which of the following are the important floral rewards to the animal pollinators?

1. Colour and large size of flower
2. Nectar and pollen grains
3. Floral fragrance and calcium crystals
4. Protein pellicle and stigmatic exudates
5. Geitonogamy involves
6. Pollination of a flower by the pollen from another flower of the same plant
7. Pollination of a flower by the pollen from another same flower.
8. Pollination of a flower by the pollen from a flower of another plant in the same population
4.Pollination of a flower by the pollen from a flower of another plant belonging to a distant population
9. Function of filiform apparutus is to :
10. Recognize the suitable pollen at stigma
11. Stimulate division of genrative cell
12. Producer nectar
13. Guide the entry of pollen tube

Sexual Reproduction in Flowering Plants - NCERT

based PYQs
27. Non- albuminous seed is produced in:

1. Maize
2. Castor
3. Wheat
4. Pea
5.

Megasporangium is equivalent to :

1. Fruit
2. Nucellus
3. Ovule
4. Embryo sac
5. Advantage of cleistogamy is :
6. More vigorous offspring
7. No dependence of pollinator
8. Vivipary
9. Higher genetic variability
10. Which one of the following statements is correct?
11. Sporogenous tissue is haploid
12. Endothecium produces the microspores
13. Tapetum nourishes the developing pollen
14. Hard outer layer of pollen is called intine
15. Both, autogamy and geitonogamy are prevented in
16. Papaya
17. Cucumber
18. Castor
19. Maize
20. An organic substance that can withstand environmental extremes and cannot be degraded by any enzyme is :
21. Cuticle
22. Sporopollenin
23. Lignin
24. Cellulose
25. The gynoecium consists of many free pistils in flowers of
26. Aloe
27. Tomato
28. Papaver
29. Michelia
30. The coconut water and the edible part of coconut are equivalent to
31. Endosperm
32. Endocarp
33. Mesocarp
34. Apomictic embryos in Citrus arise from
35. synergids
36. maternal sporophytic tissue in ovule
37. antipodal cells
38. diploid egg
39.

Wind pollination is common

1. lilies
2. grasses
3. orchids
4. legumes
5.

Nucellar polyembryony is reported in species of

1. Gossypium
2. Triticum
3. Brassia
4. Citrus
5.

In which one of the following pollination is autogamous?

1. Xenogamy
2. Chasmogamy
3. Cleistogamy
4. Geitonogamy
5. Transfer of pollen grains from the anther to the stigma of another flower of the same plant is called
6. xenogamy
7. geitonogamy
8. karyogamy
9. autogamy
10. Wind pollinated flowers are -
(1) small, brightly coloured, producing large number of pollen grains
(2) small, proudcing large number of dry pollen grains
(3) large producing abundant nectar and pollen
(4) small, producing nectar and dry pollen
11.

Unisexuality of flowers prevents

1. autogamy, but not geitonogamy
2. Both geitonogamy and xenogamy
3. geitonogamy, but not xenogamy
4. autogamy and geitonogamy
5.

What does the filiform apparatus do at the entrance into ovule?

1. it helps in the entry of pollen tube into a synergid
2. it prevents entry of more than one pollen tube into the embryo sac
3. it brings about opening of the pollen tube
4. it guides pollen tube from a synergid to egg
5.

Which one of the following is resistant to enzyme action?

1. Cork
2. Wood fibre
3. Pollen exine
4. Leaf cuticle
5. In a cereal grain the single cotyledon of embryo is represented by :
6. coleorhiza
7. scutellum
8. prophyll
9. coleoptiles
10. Persistent nucellus in the seed is known as :
11. Tegmen
12. Chalaza
13. Perisperm
14. Hilum
15. In some plants, the female gamete develops into embryo without fertilization. This phenomenon is known as:
16. Parthenogenesis
17. Autogamy
18. Parthenocarpy
19. Syngamy
20. What is the fate of the male gametes discharged in the synergid?
21. One fuses with the egg and other fuses with central cell nuclei
22. One fuses with the egg other(s) degenerate (s) in the synergid
23. All fuse with the egg
24. One fuses with the egg other (s) fuse(s) with synergid nucleus
25. Which one of the following statements regarding postfertilization development in flowering plants is incorrect?
26. Ovules develop into embryo sac
27. Ovary develops into fruit
28. Zygote develops into embryo
29. Central cell develops into endosperm
30. Which is the most common type of embryo sac in angiosperms?
31. Tetrasporic with one mitotic stage of divisions
32. Monosporic with three sequential mitotic divisions
33. Monosporic with two sequential mitotic divisions
34. Bisporic with two sequential mitotic divisions
35. What type of pollination takes place in Vallisneria?
36. Pollination occurs in submerged condition by water.
37. Flowers emerge above surface of Water and pollination occurs by insects.
38. Flowers emerge above water surface and pollen is carried by wind.
39. Male flowers are carried by water currents to female flowers at surface of water.
40. In which one of the following, both autogamy and geitonogamy are prevented?
41. Wheat
42. Papaya
43. Castor
44. Maize
45. The body of the ovule is fused within the funicle at :
46. Micropyle
47. Nucellus
48. Chalaza
49. Hilum
50. In water hyacinth and water lily, pollination takes place by:
51. Water currents only
52. Wind and water
53. Insects and water
54. Insects or wind
55. In some plants, the thalamus contributes to fruit formation. Such fruits are termed as
56. False fruits
57. Aggregate fruits
58. True fruits
59. Parthenocarpic fruit
60. Which of the following is incorrect for windpollinated plants?
61. Well exposed stamens and stigma
62. Many ovules in each ovary
63. Flowers are small and not brightly colored
64. Pollen grains are light and non-sticky
65. Plants with ovaries having only one or a few ovules, are generally pollinated by :
66. Butterflies
67. Birds
68. Wind
69. Bees
70. What is the function of germ pore?
71. Absorption of water for seed germination
72. Initiation of pollen tube
73. Release of male gametes
74. Emergence of radicle
75. Which one of the following statements is wrong?
76. Vegetative cell is larger than generative cell
77. Pollen grains in some plants remain viable for months
78. Intine is made up of cellulose and pectin
79. When pollen is shed at two-celled stage, double fertilization does not take place
80. What is common between vegetative reproduction and Apomixis?
81. Both produce progeny identical to the parent
82. Both are applicable to only dicot plants
83. Both bypass the flowering phase
84. Both occur round the year
85. In angiosperms, functional megaspore develops into :
86. Pollen sac
87. Embryo sac
88. Ovule
89. Endosperm
90. Anthesis is a phenomenon which refers to -
(1) formation of pollen
(2) Development of anther
(3) Opening of flower bud
(4) Reception of pollen by stigma
91. Eight nucleated embryosac is a :
92. Only monosporic
93. Only bisporic
94. Only tetra sporic
95. Any of the above
96. Endosperm is formed during double fertilization by
97. Two polar nuclei $\&$ one male gamete
98. One polar nuclei $\&$ one male gamete
99. Ovum and male gamete
100. Two polar nuclei \& two male gametes
101. Hair are found in the inflorescences of Zea mays are the modification of :
102. Style
103. Stigma
104. Spathe
105. Filaments
106. In Angiosperms, pollen tubes liberate their male gametes into the
107. Central cell
108. Antipodal cells
109. Egg cell
110. Synergids
111. What is the direction of micropyle in anatropous ovule :-
(1) Upward
(2) Downward
(3) Right
(4) Left
112. In a flowering plant, archesporium gives rise to : -
(1) Only the wall of the sporangium
(2) Both wall and the sporogenous cells
(3) Wall and the tapetum
(4) Only tapetum and sporogenous cells
113. Anemophilly type of pollination is found in
114. Salvia
115. Bottle brush
116. Vallisneria
117. Coconut
118. In grasses what happens in micro spore mother cell for the formation of mature pollen grains :-
119. One meiotic and two mitotic divisions
120. One meiotic \& one mitotic divisions
121. One meiotic division
122. One mitotic division
123. The term used for transfer of pollen grains from anthers of one plant to stigma of a different plant which during pollination, brings genetically different types of pollen grains to stigma, is:
(1) Chasmogamy
(2) Cleistogamy
(3) Xenogamy
(4) Geitonogamy
124. A typical angiosperm embryo sac at maturity is:
(1) 7-nucleate and 7-celled
(2) 8-nucleate and 8-celled
(3) 8-nucleate and 7 -celled
(4) 7-nucleate and 8-celled
125. In some members of which of the following pairs of families, pollen grains retain their viability for months after release?
126. Poaceae; Solanaceae
127. Rosaceae; Leguminosae
128. Poaceae; Rosaceae
129. Poaceae; Leguminosae

Sexual Reproduction in Flowering Plants - NCERT based PYQs

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get
 FREE ACCESS for 3
 days of ANY NEETprep

course

U. neet.prep
 Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Human Reproduction (Expected Questions in NEET 2022: 3)

Subtopic Name	Number of Questions
Menstrual Cycle	18
Fetal Development \& Parturition	11
Seminiferous Tubules \& Spermatogenesis	7
Male Reproductive Duct System	5
Embryonic Development till Gastrulation	4
Fertilization	4
Male Reproductive System	4
Ovary	3
Spermiogenesis/ Sperm Structure/Hormonal Regulation	3
Fertilization	2
Female Reproductive System	1
Implantation	1
Semen and Male Fertility	1
Basic Anatomy of Testis	1

1.

Hormones secreted by the placenta to maintain pregnancy are

1. hCG, hPL, progesterone, prolactin
2. hCG, hPL, estrogens, relaxin, oxytocin
3. hCG, hPL, progesterone, estrogens
4. hCG, progesterone, estrogens, glucocorticoids
5.

The difference between spermiogenesis and spermiation is 1. In spermiogenesis spermatids are formed, while in spermiation spermatozoa are formed.
2. In spermiogenesis spermatozoa are formed, while in spermiation spermatids are formed.
3. In spermiogenesis spermatozoa from Sertoli cells are released into the cavity of seminiferous tubules, while in spermiation spermatozoa are formed.
4. In spermiogenesis, spermatozoa are formed, while in spermiation spermatozoa are released from Sertoli cells into the cavity of seminiferous tubules.
3.

Question 174
Match the items given in Column I with those in Column II and select the correct option given below:-

Column I
a. Proliferative Phase lining
b. Secretory Phase
c. Menstruation

1. a-iii b-ii c-i
2. a-i b-iii c-ii
3. a-ii b-iii c-i
4. a-iii b-i c-ii

Column II
i. Breakdown of endometrial
ii. Follicular Phase
iii. Luteal Phase
5.

Match column I with column II and select the correct option using the codes given below

Column I	Column II
A. Mons pubis	1. Embryo formation
B. Antrum	2. Sperm
C. Trophectoderm	3. Female external genitalia
D. Nebenker	4. Graafian follicle

1. A-3 B-4 C-2 D-1
2. A-3 B-4 C-1 D-2
3. A-3 B-1 C-4 D-2
4. A-1 B-4 C-3 D-2
5. Several hormones like hCG, hPL, oestrogen, progesterone are produced by
6. ovary
7. placenta
8. fallopian tube
9. pituitary
10.

Changes in GnRH pulse frequency in females is controlled by circulating levels of

1. estrogen and inhibin
2. progesterone only
3. progesterone and inhibin
4. estrogen and progesterone

8.

Select the incorrect statement

1. LH and FSH triggers ovulation in ovary
2. LH and FSH decrease gradually during the follicular phase
3. LH triggers secretion of androgens from the Leydig cells.
4. FSH stimulates the sertoli cells which help in spermiogenesis
5.

Fertilisation in humans is practically feasible only if

1. the ovum and sperms are transported simultaneously to ampullary - isthmic junction of the fallopian tube
2. the ovum and sperms are transported simultaneously to ampullary-isthmic junction of the cervix
3. the sperms are transported into cervix within 48 hrs of release of ovum in uterus
4. the sperms are transported into vagin a just after the release of ovum in fallopian tube

Human Reproduction - NCERT based PYQs
10. Which of the following events in not associated with ovulation in human female?

1. Decrease in Oestradiol
2. Full development of Graafian follicle
3. Release of secondary oocyte
4. LH Surge
5. In human females, meiosis-II is not completed until?
6. Puberty
7. Fertilization
8. Uterine implantation
9. Birth

12.

Which of these is not an important component of initiation of parturition in humans?

1. Increase in oestrogen and progesterone ratio
2. Synthesis of prostaglandins
3. Release of oxytocin
4. Release of prolactin

13.

Which of the following cells during gametogenesis is normally diploid?

1. Primary polar body
2. Spermatid
3. Spermatogonia
4. Secondary polar body
5.

Menstrual flow occurs due to lack of:

1. FSH
2. Oxytocin
3. Vasopressin
4. Progesterone
5.

What is the correct sequence of sperm formation?

1. spermatogonia, spermatocyte, spermatozoa, spermatid
2. Spermatogonia, spermatozoa, spermatocyte, spermatid
3. Spermatogonia, spermatocyte, spermatid, spermatozoa
4. Spermatid, spermatocyte, spermatogonia, spermatozoa
5. The shared terminal duct of the reproductive and urinary system in the human male is:
6. Urethra
7. Ureter
8. Vas deferens
9. Vasa efferentia
10. The main function of mammalian corpus luteum is to produce:
11. estrogen only
12. progesterone
13. human chorionic gonadotropin
14. relaxin only
15. Which one of the following is not the function of placenta?
16. Secretes estogen
17. Facilitates removal of carbon dioxide and waste material from embryo
18. Secretes oxytocin during parturition
19. Facilitates supply of oxygen and nutrients to embryo
20. Signals for parturition originate from
21. Both placenta as wel as fully developed foetus
22. Oxytocin released from maternal pituitary
23. Placenta only
24. Fully developed foetus only
25. The Leydig cells as found in the human body are the secretory source of
26. Progesterone
27. Intestinal mucus
28. Glocagon
29. Androgens
30. Sertoli cells are found in
(1) ovaries and secrete progesterone
(2) adrenal cortex and secrete adrenaline
(3) seminiferous tubules and provide nutrition to germ cells
(4) pancreas and secrete cholecystokinin
31. If for some reason, the vasa efferentia in the human reproductive system get blocked, the gametes will not be transported from
32. epididymis to vas deferens
33. ovary to uterus
34. vagina to uterus
35. testes to epididymis
36.

The figure given below depicts a diagrammatic sectional view of the female reproductive system of humans. Which one set of three parts out of A-F have been correctly identified?

1. C-Infundibulum, D-Fimbriae, E-Cervix
2. D-Oviducal funnel, E-Uterus, F-Cervix
3. A-perimetrium, B-Myometrium, C-Fallopian tube
4. B-Endometrium, C-Infundibulum, D-Fimbriae

24.

The testes in humans are situated outside the abdominal cavity inside a pouch called scrotum. The purpose served is for

1. escaping any possible compression by the visceral organs
2. providing more space for the growth epididymis
3. providing a secondary sexual feature for exhibiting the male sex
4. maintaining the scrotal temperature low than the internal body temperature
5. Vasa efferentia are the ductules leading from:
(1) Testicular lobules to rete testis
(2) Rete testis to vas deferens
(3) Vas deferens to epididymis
(4) Epididymis to urethra
6. Seminal plasma in human males is rich in
7. fructose and calcium
8. glucose and calcium
9. DNA and testosterone
10. ribose and potassium
11. The signals for parturition originate from
12. placenta only
13. placenta as well as developed foetus
14. oxytocin released from maternal pituitary
15. fully developed foetus only
16. The first movements of the foetus and appearance of hair on its head are usually observed during which month of pregnancy?
17. Fourth month
18. Fifth month
19. Sixth month
20. Third month
21. The second maturation division of the mammalian ovum occurs
22. Shortly after ovulation before the ovum makes entry into the Fallopian tube
23. until after the ovum has been penetrated by a sperm
24. until the nucleus of the sperm has fused with that of the ovum
25. in the Graafian follicle following the first maturation division
26. Which one of the following statements about human sperm is correct?
27. Acrosome has a conial pointed structure used for piercing and penetrating the egg, resulting in fertilization
28. The sperm lysins in the acrosome dissolve the egg envelop facilitating fertilization
29. Acrosome serves as a sensory structure leading the sperm towards the ovum
30. Acrosome serves no particular function
31. Foetal ejection reflex in human female is induced by
32. pressure exerted by aminotic fluid
33. release of oxytocin from pituitary
34. fully developed foetus and placenta
35. differentiation of mammary glands
36. Which one of the following is the most likely root cause why menstruation is not taking place in regularly cycling human female ?
37. Fertilization of the ovum
38. Maintenance of the hypertropical endometrial lining
39. Maintenance of high concentration of sex-hormones in the blood stream
40. Retention of well-developes corpus luteum
41. Seminal plasma in human is rich in
42. fructose, calcium and certain enzymes
43. fructose and calcium but has no enzymes
44. glucose and certain enzymes but has no calcium
45. fructose and certain enzymes but poor in calcium
46. Given below is a diagrammatic sketch of a portion of human male reproductive system. Select the correct set of the names of the parts labelled $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$

(a) Ureter	Prostate	Seminal vesicle	Bulbourethral gland
(b)Vas deferens	Seminal vesicle	Prostate	Bulbourethral gland
(c)Vas deferens	Seminal vesicle trial gland	Bulboure	Prostate
(d) Ureter	Seminal vesicle	Prostate	Bulbourethral gland

37.

In humans, at the end of the first meiotic division, the male germs cells differentiate into the

1. primary spermatocytes
2. secondary spermatocytes
3. spermatids
4. spermatogonia
5. Which part of ovary in mammals acts as an endocrine gland after ovulation?
6. Graaffian follicle
7. Stroma
8. Germinal epithelium
9. Vitelline membrane
10. Withdrawal of which of the following hormones is the immediate cause of menstruation?
11. Estrogen
12. FSH
13. FSH-RH
14. Progesterone
15. The part of Fallopian tube closest to the ovary is
(1) Isthmus
(2) Infundibulum
(3) Cervix
(4) Ampulla
16. Extrusion of second polar body from egg nucleus occurs:
17. simultaneously with first cleavage
18. after entry of sperm but before fertilization
19. after fertilization
20. before entry of sprm into ovum
21. Select the correct sequence for transport of sperm cells in male reproductive system.
22. Testis \rightarrow Epididymis \rightarrow Vasa efferentia \rightarrow Vas deferens \rightarrow Ejaculatory duct \rightarrow Inguinal canal
\rightarrow Urethra \rightarrow Urethral meatus
23. Testis \rightarrow Epididymis \rightarrow Vasa efferentia \rightarrow Rete testis
\rightarrow Inguinal canal \rightarrow Urethra
24. Seminiferous tubules \rightarrow Rete testis \rightarrow Vesa efferentia
\rightarrow Epididymus \rightarrow Vas deferens \rightarrow
Ejaculatory duct \rightarrow Urethra \rightarrow Urethral meatus
25. Seminiferous tubules \rightarrow Vasa efferentia \rightarrow Epididymis
\rightarrow Inguinal canal \rightarrow Urethra
26. No new follicles develop in the luteal phase of the menstrual cycle because :
27. Follicles do not remain in the ovary after
28. FSH levels are high in the luteal phase
29. LH levels are high in the luteal phase
30. Both FSH and LH levels are low in the luteal phase
31. Meiotic division of the secondary oocyte is completed:
(1) At the time of copulation
(2) After zygote formation
(3) At the time of fusion of a sperm with an ovum
(4) Prior to ovulation
32. Match the follwing columns and select the correct option.

Column-1
(a) Placenta
(b) Zona pellucida chroinic Gonadotropin
(c) Bulbo-urethral glands
(d) Leydig cells

	a	b	c
(1) (i)	d		
(iv)	(ii)	(iii)	
(2) (iii)	(ii)	(iv)	(i)
(3) (ii)	(iii)	(iv)	(i)
(4) (iv)	(iii)	(i)	(ii)

46. In human beings, at the end of 12 weeks (first trimester) of pregnancy, the following is observed:
47. Eyelids and eyelashes are formed
48. Most of the major organ systems are formed
49. The head is covered with fine hair
50. Movement of the fetus
51. Select the correct option of haploid cells from the following groups :
52. Primary oocyte, Secondary oocyte, Spermatid
53. Secondary spermatocyte, First polar body, Ovum
54. Spermatogonia, Primary spermatocyte, Spermatid
55. Primary spermatocyte, Secondary spermatocyte, Second polar body
56. Match the following columns and select the correct option :

Column - I
 Column - II

(a) Ovary
(b) Placenta
(c) Corpus luteum
(i) Human chorionic Gonadotropin
(d) Leydig cells
esterone
(ii) Androgens

1. (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
2. (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
3. (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv)
4. (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
5. The secretory phase in the human menstrual cycle is also called :
6. Follicular phase lasting for about 6 days
7. Luteal phase and lasts for about 13 days
8. Follicular phase and lasts for about 13 days
9. Luteal phase and lasts for about 6 days
10. Identify the human development stage shown below as well as the related right place of its occurrence in a normal pregnant women and select the right option for the two together -

	Developmental stage	Site of occurrence
1.	Blastula	End part of Fallopian tube
2.	Blastocyst	Uterine wall
3.	8-celled morula	Starting point of Fallopian tube
4.	Late morula	Middle part of Fallopian tube

51. In human female, the blastocyst
52. gets implanted into uterus three days after ovulation
53. gets nutrition from uterine endometrial secretion only after implanation
54. gets implanted in endometrium by the trophoblast cells
55. forms placenta even before implantation
56. Secretions from which one of the following are rich in fructose, calcium and some enzymes -
57. Liver
58. Pancreas
59. Salivary glands
60. Male accessory glands
61. Signals from fully developed foetus and placenta ultimately lead to parturition which requires the release of -
62. Oxytocin from maternal pituitary
63. Oxytocin from foetal pituitary
64. Relaxin from placenta
65. Estrogen from placenta
66. What happens during fertilisation in humans after many sperms reach close to the ovum?
67. Only two sperms nearest the ovum
penetrate zona pellucida
68. Secretions of acrosome helps one sperm enter cytoplasm of ovum through zona pellucida
69. All sperms except the one nearest to the ovum lose their tails
70. Cells of corona radiata trap all the sperms
except one

Human Reproduction - NCERT based PYQs
55. About which day in a normal human menstrual cycle does rapid secretion of LH (popularly called LH-surge) normally occurs ?

1. $11^{\text {th }}$ day
2. $14^{\text {th }}$ day
3. $20^{\text {th }}$ day
4. $5^{\text {th }}$ day
5. If mammalian ovum fails to get fertilized, which one of the following is unlikely -
(1) Estrogen secretion further decreases
(2) Progesterone secretion rapidly declines
(3) Corpus luteum will disintegrate
(4) Primary follicle starts developing
6. Ovulation in the human female normally takes place during the menstrual cycle -
7. Just before the end of the secretory cycle
8. At the beginning of the proliferative phase
9. At the end of the proliferative phase
10. At the mid secretory phase
11. Which of the following hormones is not a secretion product of human placenta -
12. Prolactin
13. Estrogen
14. Progesterone
15. Human chorionic gonadotropin
16. Which induces the development of corpus Luteum :
17. LH
18. Oestrogen
19. FSH
20. LTH
21. After ovulation, follicles convert into :
22. Corpus luteum
23. Corpus albicans
24. Corpus cavernosa
25. Corpus callosum
26. Receptors for sperm binding in mammals are present on:
27. Perivitelline space
28. Zona pellucida
29. Corona radiata
30. Vitelline membrane
31. Which of the following secretes the hormone, relaxin, during the later phase of pregnancy?
32. Foetus
33. Uterus
34. Graafian follicle
35. Corpus luteum
36. Which of these is not an important component of initiation of parturition in humans?
37. Release of Oxytocin
38. Release of Prolactin
39. Increase in estrogen and progesterone ratio
40. Synthesis of prostaglandins

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep course

61. Mainly which hormones control menstrual cycle in human beings :
(1) FSH
(2) LH
(3) FSH, LH, Estrogen
(4) Progesteron
62. Which set is similar: -
63. Corpus luteum - Graafian follicles
64. Sebum-sweat
65. Bundle of his - Pace maker
66. Vita $B_{7}-$ Niacin

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Reproductive Health

(Expected Questions in NEET 2022: 2)

Subtopic Name

Number of

 Questions| Infertility | 10 |
| :--- | :---: |
| Hormonal Contraceptives,

 Terminal Methods | |
|
 IUDs | $\mathbf{9}$ |
| Sexually Transmitted Infections | $\mathbf{8}$ |
| Introduction | 5 |
| Contraception: Natural Methods | $\mathbf{3}$ |
| Medical Termination of Pregnancy | $\mathbf{2}$ |

Reproductive Health - NCERT based PYQs

1. The function of copper ions in copper releasing IUD's is:
2. They inhibit gametogenesis
3. They make uretus unsuitable for implantation
4. The inhibit ovulation
5. The suppress sperm motility and fertilizing capacity of sperms
6. In case of a couple where the male is having a very low sperm count, which technique will be suitable for fertilization?
7. Gamete intracytoplasmic fallopian transfer
8. Aritificial insemination
9. Intracytoplasmic sperm injection
10. Intrauterine transfer
11. Which of the following is hormone-releasing IUD?
12. LNG-20
13. Multiload- 375
14. Lippes loop
15. Cu-7
16. Which of the following is incorrect regarding vasectomy?
17. No sperm occurs in seminal fluid
18. No sperm occurs in epididymis
19. Vasa deferentia is cut and tied
20. Irreversible sterility
21. Embryo with more than 16 blastomeres formed due to in vitro fertilisation is transferred into
22. uterus
23. fallopian tube
24. fimbriae
25. cervix
26.

Which of the following approaches does not give the defined action of contraceptive?

(a)	Intra uterine devices	Increase phagocytosis of sperms, suppress sperm motility and fertilizing capacity of sperms
(b)	Hormonal	Prevent/retard entry of sperms, prevent ovulation and fertilization
(c)	Vasectomy	Prevents spermatogenesis
(d)	Barrier methods	Prevent fertilisation

1. a
2. b
3. c
4. d
5.

In context of amniocentesis which of the following statements is incorrect?

1. it is used for prenatal sex determination
2. it can be used for detection of down syndrome
3. it can be used for detection of cleft palate
4. it is usually done when a women is between $14-16$ weeks pregnant.
5. A childless couple can be assisted to have a child through a technique called GIFT. The full form of this technique is
6. Gamete Inseminated Fallopian Transfer
7. Gamete Intra Fallopian Transfer
8. Gamete Internal Fertilisation and Transfer
9. Germ Cell Internal Transfer
10.

Which of the following is not a sexually transmitted disease?

1. Syphilis
2. Acquired lmmuno Deficiency Syndrome (AIDS)
3. Trichomoniasis
4. Encephalitis
5.

Which of the following cannot be detected in a developing foetus by amniocentesis?

1. Sex of the foetus
2. Down syndrome
3. Jaundice
4. Klinefelter syndrome
5. Tubectomy is method of sterilization in which
6. small part of fallopian tube is removed or tied up.
7. ovaries are removed surgically
8. small part of vas deferens is removed or tied up
9. uretuis is removed surgically
10. Which of the following is a hormone releasing intra Uterine Device (IUD) ?
11. Multiload 375
12. LNG - 20
13. Cervical cap
14. Vault

Reproductive Health - NCERT based PYQs

13. Assisted reproductive technology, IVF involves transfer of
14. Ovum into the fallopian tube.
15. Zygote into the fallopian tube.
16. Zygote into the uterus
17. Embryo with 16 blastomeres into the fallopian tube.

14. Artificial insemination mean

1. Transfer of sperms of husband to a test tube containing ova
2. Artificial introduction of sperms of a healthy donor into the vagina
3. Introduction of sperms of a healthy donor directly into the ovary
4. Transfer of sperms of healthy donor to a test tube containing ova
5. What is the figure given below showing in particular?

6. Ovarian cancer
7. Uterine cancer
8. Tubectomy
9. Vasectomy
10. The test-tube baby programme employs which one of the following techniques?
11. Intra Cytoplasmic Sperm Injection (ICSI)
12. Intra Uterine Insemination (IUI)
13. Gamete Intra Fallopian Transfer (GIFT)
14. Zygote Intra Fallopian Transfer(ZIFT)
15.

Medical Termination of Pregnancy (MTP) is considered safe up to have many weeks of pregnancy?

1. Twelve weeks
2. Eighteen weeks
3. Six weeks
4. Eight weeks
5. In vitro fertilization is a technique that involves transfer of which one of the following into the Fallopian tube?
6. Embryo only, up mto 8 cell stage
7. Either zygote or early embryo up to 8 cell stage
8. Embryo of 32 cell stage
9. Zygote only
10.

Which one of the following is the most widely accepted method of contraception in India, as present?

1. Tubectomy
2. Diaphragms
3. IUDs (Intra Uterine Devices)
4. Cervical caps
5. The permissible use of the technique amniocentesis is for
6. detecting sex of the unborn foetus
7. artificial insemination
8. transfer of enbryo into the uterus of a surrogate mother
9. detecting any genetic abnormality
10. Copper ions released from copper-releasing Intra Uterine Devices (IUDs)
11. make uterus unsuitable for implantation
12. increase phagocytosis of sperms
13. suppress sperm motility
14. prevent ovulation
15.

Given below are four methods(A-D) and their modes of action(1-4) in achieving contraception. Select their correct matching from the four options that follow

Method
A. The pill
1.
Prevents sperms reaching cervix
B. Condom
2.
Prevents
implantation
C. Vasectomy
3. Prevents ovulation
D. Copper-T
4.
Semen contain no sperms

Reproductive Health - NCERT based PYQs

23.

Consider the statements given below regarding contraception and answer as directed thereafter
(A) Medical Termination of Pregnancy(MTP) during first trimester is generally safe
(B) Generally chances of conception are nil until the mother breast-feeds the infant up to two year
(C) Intrauterine devices like copper-T are effective contraceptives
(D) Contraception pills may be taken up to one week after coitus to prevent conception
Which two of the above statements are correct?

1. B, C
2. C, D
3. A, C
4. A, B
5. Which of the following contraceptive methods do involve a role of hormone?
6. Pills, Emergency contraceptives, barrier methods
7. Lactational amenorrhea, Pills, Emergency contraceptives
8. Barrier method, Lactational amenorrhea, pills
9. CuT, Pills, barrier methods
10. Select the hormone-releasing Intra-Uterine Devices.
11. Lippes Loop, Multitoad 375
12. Vaults, LNG-20
13. Multiload 375, Progestasert
14. Progestasert, LNG-20
15. Which of the following sexually transmitted diseases is not completely curable?
16. Chlamydiosis
17. Gonorrhoea
18. Genital warts
19. Genital herpes
20. Which of the following is a correct statement?
21. IUDs once inserted need not be replaced.
22. IUDs are generally inserted by the user herself.
23. IUDs increase phagocytosis of sperms in the uterus.
24. IUDs suppress gametogenesis.
25. Select the option including all sexually transmitted diseases.
26. Gonorrhoea, Malaria, Genital herpes
27. AIDS, Malaria, Filaria
28. Cancer, AIDS, Syphilis
29. Gonorrhoea, Syphilis, Genital herpes
30. In Which of the following techniques, the embryos are transferred to assist those females who cannot conceive?
31. GIFT and ZIFT
32. ICSI and ZIFT
33. GIFT and ICSI
34. ZIFT and IUT
35. Progestogens alone or in combination with estrogens can be used as a contraceptive in the form of -
36. Implants only
37. Injections only
38. Pills, injections and implants
39. Pills only
40. Which of the following STDs are not curable?
41. Genital herpes, Hepatitis B, HIV infection
42. Chlamydiasis, Syphilis, Genital warts
43. HIV, Gonorrhoea, Trichomoniasis
44. Gonorrhoea, Trichomoniasis, Hepatitis B
45. The technique called gamete intrafallopian
transfer (GIFT) is recommended for those females :
46. who cannot provide suitable environment
for fertilisation
47. who cannot produce an ovum
48. who cannot retain the foetus inside uterus
49. whose cervical canal is too narrow to allow passage for the sperms
50. Oral contraceptives contain :
51. Progesterone
52. LH
53. Oxytocin
54. Steroles
55. What is the work of progesteron which is present in oral contraceptive pills :
56. To inhibit ovulation
57. To check oogenesis
58. To check entry of sperms in to cervix \& to make them inactive
59. To check sexual behaviour
60. Test tube baby means a baby born when
(1) It is developed in a test tube
(2) It is developed through tissue culture method
(3) The ovum is fertilised externally and thereafter implanted in the uterus
(4) It develops from a non-fertilized egg
61. Which one of the following is an example of Hormone releasing IUD?
(1) Cu 7
(2) Multiload 375
(3) CuT
(4) LNG 20
62. Veneral diseases can spread through:
(a) Using sterile needles
(b) Transfusion of blood from infected person
(c) Infected mother to foetus
(d) Kissing
(e) Inheritance

Choose the correct answer from the options given below.
(1) (b) and (c) only
(2) (a) and (c) only
(3) (a), (b) and (c)
(4) (b), (c) and (d)
38. Match List-I with List-II

List-I	List-II
(a) Vaults	I. Entry of sperm through the Cervix is blocked
(b) IUDs	II. Removal of Vas deferens
(c) Vasectomy	III. Phagocytosis of sperms within the Uterus
(d) Tubectomy	IV. Removal of the fallopian tube

Choose the correct answer from the options given below.
(a) (b) (c) (d)

1. (ii) (iv) (iii) (i)
2. (iii) (i) (iv) (ii)
3. (iv) (ii) (i) (iii)
4. (i) (iii) (ii) (iv)

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get

U. neetprep	
Principles of Inheritance \& Variations	
(Expected Questions in NEET 2022: 4)	
Subtopic Name	Number of Questions
Dominance Deviation from Mendel	15
Monohybrid Cross	14
Mendelian Disorders	12
Chromosomal Disorders	11
Introduction to Genetics	10
Linkage	6
Dihybrid Cross	5
Sex Determination	5
Sex Linked Inheritance	5
Mutation	4
Poolygenic Inheritance \& Pleiotropy	4
Recombination \& Gene Mapping	3
Pedigree Analysis	2
Chromosomal Basis of Inheritance	2

1. Thalassemia and sickle cell anaemia are caused due to a problem in globin molecule synthesis. Select the correct statement
2. both are due to a quantitative defect in globin chain synthesis
3. Thalassemia is due to less synthesis of globin molecules
4. Sickle cell anemia is due to a quantitative problem of globin molecules
5. Both are due to a qualitative defect in globin chain synthesis
6. The genotypes of a husband and Wife are $I^{A} I^{B}$ and I^{A}.

Among the blood types of their children, how many different genotypes and phenotypes are possible?

1. 3 genotypes; 4 phenotypes
2. 4 genotypes; 3 phenotypes
3. 4 genotypes; 4 phenotypes
4. 3 genotypes; 3 phenotypes
5.

Select the correct statement:

1. Franklin Stahl coined the term "linkage".
2. Punnett square was developed by a British scientist.
3. Spliceosomes take part in translation.
4. Transduction was discovered by S. Altman.
5.

Which of the following pairs is wrongly matched?

1. Starch synthesis in pea: Multiple alleles
2. ABO blood grouping: Co-dominance
3. XO type sex determination: Grasshopper
4. T.H Morgan: Linkage
5. A true breeding plant is
6. one that is able to breed on its own
7. produced due to cross-pollination among unrelated plants
8. near homozygous and produces offspring of its own kind
9. always homozygous recessive in its genetic constitution
10. Among the following characters, which one was not considered by Mendel in his experiments on pea?
11. Trichomes-Gladular or non-gladular
12. Seed-green or yellow
13. Pod-inflated or constricted
14. Stem-Tall or Dwarf
15. Which of the following characteristics represent 'Inheritance of blood groups' in humans?
a. Dominance
b. Co-dominance
c. Multiple allelism
d. Incomplete dominance
e. Polygenic inheritance
16. b, c and e
17. a, b and c
18. b, d and e
19. a, c and e
20.

A woman has an X-linked condition on one of her X chromosomes. This chromosome can be inherited by:-

1. Only daughters
2. Only sons
3. Only grandchildren
4. Both sons and daughters
5. Which one from those given below is the period for Mendel's hybridization experiments?
6. 1840-1850
7. 1857-1869
8. 1870-1877
9. 1856-1863
10.

A tall true breeding garden pea plant is crossed with a dwarf true breeding garden pea plant. When the F1 plants were selfed the resulting genotypes were in the ratio of

1. 1:2:1 :: Tall heterozygous : Tall homozygous : Drawf
2. 3:1 :: Tall : Dwarf
3. 3:1:: Dwarf: Tall
4. 1:2:1:: Tall homozygous : Tall heterozygous : Dwarf
5.

Pick out the correct statements.
I. Haemophilia is a sex-linked recessive disease.
II. Down's syndrome is due to aneuploidy.
III. Phenylketonuria is an autosomal recessive gene disorder.
IV. Sickle cell anaemia is an X -linked recessive gene disorder

1. II and IV are correct
2. I, III and IV are correct
3. I, II and III are correct
4. I and IV are correct
5.

In a test cross involving F1 dihybrid flies, more parentaltype offspring were produced than the recombinant type offspring. This indicates

1. chromosomes failed to separate during meiosis
2. the two genes are linked and present on the same chromosome
3. both of the characters are controlled by more than one gene
4. the two genes are located on two different chromosomes
5.

Match the terms in Column I with their description in Column II and choose the correct option.

Column I	Column II
A. Dominance	1. Many govern a single character
B. Codominance	2. In a heterozygous organism only one allele expresses itself
C. Pleiotropy	3. In a heterozygous organism both alleles themselves fully
D. Polygenic inheritance	4. A single gene influences many characters

1. A-2 B-3 C-4 D-1
2. A-4 B-1 C-2 D-3
3. A-4 B-3 C-1 D-2
4. A-2 B-1 C-4 D-3
5. A cell at telophase stage is observed by a student in a brought from the field. He tells his teacher that this cell is not like other cells at telophase stage. There is no formation of cell plate and thus the cell is containing more number of chromosomes as compared to other dividing cells. This would result in
6. polyploidy
7. somaclonal variation
8. polyteny
9. aneuploidy

15.

Which of the following most appropriately describes haemophilia?

1. X-linked recessive gene disorder
2. Chromosomal disorder
3. Dominant gene disorder
4. Recessive gene disorder
5. The term "linkage" was coined by
6. T.H. Morgan
7. T.Boveri
8. G.Mendel
9. W.Sutton
10. In the following human pedigree, the filled symbols represent the affected individuals. Identify the type of given pedigree

11. Autosomal dominant
12. X-linked recessive
13. Autosomal recessive
14. X-linked dominant
15. In his classic experiments on pea plants Mendel did not use
16. Seed color
17. Pod length
18. Seed shape
19. Flower position
20. A pleiotropic gene
21. Is expressed only in primitive plants
22. Is a gene evolved during Pliocene
23. Controls a trait only in combination with another gene
24. Controls multiple traits in an individual
25. How many pairs of contrasting characters in pea plants were studied by Mendel in his experiments?
26. Five
27. Six
28. Eight
29. Seven

Principles of Inheritance \& Variations - NCERT based PYQs

21.

Alleles are

1. different phenotype
2. true breeding homozygotes
3. different molecular forms of a gene
4. heterozygotes
5.

If two persons with' AB' blood group marry and have the sufficiently large number of children, these children could be classified as 'A' blood group: 'AB' blood group: 'B' blood group in 1:2: 1 ratio. The modern technique of protein electrophoresis reveals the presence of both' A^{\prime} and ' B ' type proteins in 'AB' blood group individuals. This is an example of:

1. Incomplete dominance
2. Partial dominance
3. Complete dominance
4. Codominance
5.

Which Mendelian idea is depicted by a cross in which the F_{1} generation resembles both the parents?

1. law of dominance
2. inheritance of one gene
3. co-dominance
4. incomplete dominance
5. A human female with Turner's syndrome:
6. has 45 chromosomes with XO
7. has one additional chromosome.
8. exhibit male character
9. is able to produce children with normal husband.
10. Which of the following statements is not true of two genes that show 50% recombination frequency?
11. The genes are tightly linked
12. The genes shows independent assortment.
13. If the genes are present on the same chromosome, they undergo more than one crossing over in every meiosis.
14. The genes may be on different chromosomes.
15. The incorrect statement with regard to Haemophilia is
16. It is a recessive disease
17. It is a dominant disease
18. A single protein involved in the clotting of blood is affected
19. it is a sex-linked disease.
20. F_{2} generation in a Mendelian cross showed that both genotypic and phenotypic ratios are same as 1:2:1. It represents a case of
21. Co - dominance
22. Dihybrid crosses
23. Monohybrid crosses with complete dominane
24. Monohybrid cross with incomplete dominance
25. Which one of the following cannot be explained on the basis of Mendel's Law of Dominance?
(1) The discrete unit controlling a particular character is called a factor
(2) Out of one pair of factors one is dominant, and the other recessive
(3) Alleles do not show any blending and both the characters recover as such in F_{2} generation
(4) Factors occur in pairs
26.

Which one of the following conditions correctly describes the manner of determining the sex in the given example?

1. XO type of sex chromosomes determine male sex in grasshopper
2. XO condition in humans as found in Turner syndrome, determines female sex
3. Homozygous sex chromosomes (XX) produce male in Drosophila
4. Homozygous sex chromosomes (ZZ) determine female sex in birds.
5. The genotype of a plant showing the dominant phenotype can be determined by
6. test cross
7. dihybrid cross
8. pedigree analysis
9. back cross
10. ABO blood groups in humans are controlled by the gene I. It has three alleles $-I^{A} I^{B}$ and i. Since there are three different alleles, six different genotypes are possible. How many phenotypes can occur?
11. Three
12. One
13. Four
14. Two
15. Select the correct statement from the ones given below with respect to dihybrid cross -
(1) Tightly linked genes on the same chromosome show higher recombinations
(2) Genes far apart on the same chromosome show very few recombinations
(3) Genes loosely linked on the same chromosome show similar recombinations as the tightly linked ones
(4) Tightly linked genes on the same chromosome show very few recombination
16. Sickle cell anaemia is:
17. an autosomal linked dominant trait
18. caused by substitution of valine by glutamic acid in the globin chain of haemoglobin
19. caused by a change in base pair of DNA
20. characterized by elongated sickle like RBCs with a nucleus
21. Point mutation involves
22. insertion
23. change in single base pair
24. duplication
25. deletion
26. Study the pedigree chart given below

What does it show?

1. Inheritance of a sex-linked inborn error of metabolism
2. Inheritance of a condition like phenylketonuria as an autosomal recessive trait
3. The pedigree chart is wrong as this is not possible
4. Inheritance of a recessive sex-linked disease like haemophilia
5.

Which one of the following condition in humans is correctly matched with its chromosomal abnormality/linkage?

1. Klinefelter's syndrome-44 autosomes + XXY
2. Colourblindness - Y-linked
3. Erythroblastosis foetalis-- X-linked
4. Down syndrome--44 autosomes +XO
5. Two genes R and Y are located very close on the chromosomal linkage map of maize plant. When RRYY and rryy genotypes are hybridized, then F_{2} segregation will show:
6. higher number of the recombinant types
7. segregation in the expected 9:3:3:1 ratio
8. segregation in 3:1 ratio
9. higher number of the parental types
10. A common test to find the genotype of a hybrid is by:
11. crossing of one F_{2} progency with male parent
12. crossing of one F_{2} progency with female parent
13. studying the sexual behaviour of F_{1} progenies
14. crossing of one F_{1} progeny with male parent
15. In pea plants, yellow seeds are dominant to green. If a heterozygous yellow seeded plant is crossed with a green seeded plant, what ratio of yellow and green seeded plants would you expect in F_{1} generation?
16. $50: 50$
17. $9: 1$
18. 1:3
19. $3: 1$
20. Which one of the following is an example of polygenic inheritance?
21. Flower colour in Mirabilis jalapa
22. Production of male honey bee
23. Pod shape in garden pea
24. Skin colour in humans
25. In Mendel's experiments with garden pea, round seed shape (RR) was dominant over wrinkled seeds (rr), yellow cotyledon (YY) was dominant over green cotyledon (yy). What are the expected phenotypes in the F_{2} generation of the cross RRYY x rryy?
26. Only round seeds with green cotyledons
27. Only wrinkled seeds with yellow cotyledons
28. Only wrinkled seeds with green cotyledons
29. Round seeds with yellow cotyledons and wrinkled seeds with yellow cotyledons
30. Test cross involves:
31. crossing between two genotypes with recessive trait
32. crossing between two F1 hybrids
33. crossing the F1 hybrid with a double recessive genotype
34. crossing between two genotypes with the trait
35. In Antirrhinum (Snapdragon), a red flower was crossed with a white flower and in F_{1} generation, pink flowers were obtained. When pink flowers were selfed, the F_{2} generation showed white, red and pink flowers. Choose the incorrect statement from the following:
36. Law of Segregation does not apply in this experiment
37. This experiment does not follow the Principle of Dominance
38. Pink colour in F_{1} is due to incomplete dominance
39. Ratio of F_{2} is $1 / 4$ (red):2/4(pink):1/4(white)
40. Select the incorrect statement.
41. Human males have one of their sex-chromosome much shorter than the other.
42. Male fruit fly is heterogametic.
43. In male grasshoppers, 50% of sperms have no sexchromosome.
44. In domesticated fowls, sex of progeny depends on the type of sperm rather than egg.
45. The frequency of recombination between gene pairs on the same chromosome as a measure of the distance between genes was explained by:
46. Sutton Boveri
47. T.H. Morgan
48. Gregor J. Mendel
49. Alfred Sturtevant
50. What is the genetic disorder in which an individual has an overall masculine development gynaecomastia, and is sterile?
51. Down's syndrome
52. Turner's syndrome
53. Klinefelter's syndrome
54. Edward syndrome
55. Match the items of Column - I with Column - II :

Column-I
Column-II
(a) XX-XO method sex determination
(b) XX-XY method sex Determination
of (i) Turner's
syndrome
(c) Karyotype-45
(iii) Grasshopper
(d) $\begin{aligned} & \text { ZW-ZZ method of (iv) } \begin{array}{l}\text { Female } \\ \text { homogametic }\end{array}\end{aligned}$

Select the correct option from the following:

1. (a) - (ii), (b)- (iv), (c)- (i), (d)-(iii)
2. (a) - (i), (b)- (iv), (c)- (ii), (d)-(iii)
3. (a) - (iii), (b)- (iv), (c)- (i), (d)-(ii)
4. (a) - (iv), (b)- (ii), (c)- (i), (d)-(iii)
5. In a marriage between male with blood group A and female with blood group B, the progeny had either blood group AB or B . What could be the possible genotype of parents?
6. $I^{\mathrm{A}} \mathrm{i}$ (Male) ; $\mathrm{I}^{\mathrm{B}} \mathrm{I}^{\mathrm{B}}$ (Female)
7. $\mathrm{I}^{\mathrm{A}} \mathrm{I}^{\mathrm{A}}$ (Male) ; $\mathrm{I}^{\mathrm{B}} \mathrm{I}^{\mathrm{B}}$ (Female)
8. $\mathrm{I}^{\mathrm{A}} \mathrm{I}^{\mathrm{A}}$ (Male) ; $\mathrm{I}^{\mathrm{B}} \mathrm{i}$ (Female)
9. I^{A} (Male) ; I^{B} (Female)
10. In which genetic condition, each cell in the affected person, has three sex chromosomes XXY?
11. Thalassemia
12. Klinefelter's Syndrome
13. Phenylketonuria
14. Turner's Syndrome
15. The production of gametes by the parents the formation of zygotes, the F_{1} and F_{2} plants can be understood using
16. Pie diagram
17. A pyramid diagram
18. Punnett square
19. Wenn diagram
20. Experimental verification of the chromosomal theory of inheritance was done by:
(1) Sutton
(2) Boveri
(3) Morgan
(4) Mendel
21. Select the correct match
22. Phenylketonuria - Autosomal dominant trait
23. Sickle cell anemia - Autosomal recessive trait chromosome - 11
24. Thalassemia - X linked
25. Haemophilia - Y linked
26. Identify the wrong statement with reference to the gene 'I' that controls ABO blood groups.
27. A person will have only two of the 3 alleles.
28. When I^{A} and I^{B} are present together, they express same type of sugar.
29. Allele ' i ' does not produce any sugar.
30. The gene (I) has three alleles.
31. How many true-breeding pea plant varieties did Mendel select as pairs, which were similar except in one character with contrasting traits?
32. 2
33. 14
34. 6
35. 4
36. Chromosomal theory of inheritance was proposed by :
37. Sutton and Boveri
38. Bateson and Punnet
39. T. H. Morgan
40. Watson and Crick
41. The number of contrasting characters studied by Mendel for his experiments was :
42. 14
43. 4
44. 2
45. 7
46. The best example for pleiotropy is:-
47. Skin color
48. Phenylketonuria
49. Colour Blindness
50. ABO Blood group
51. A test cross is carried out to:
52. Predict whether two traits are linked
53. Assess the number of alleles of a gene
54. Determine whether two species or varieties will breed successfully
4 Determine the genotype of a plant at F_{2}
55. In antirrhinum two plants with pink flowers were hybridized. The F_{1} plants produced red, pink and white flowers in the proportion of 1 red, 2 pink and 1 white. What could be the genotype of the two plants used for hybridization ? Red flower colour is determined by RR, and White by rr genes -
56. RR
57. Rr
58. rr
59. rrrr
60. A cross in which an organism showing a dominant phenotype in crossed with the
recessive parent in order to know its genotype is called -
61. Back cross
62. Test cross
63. Dihybrid cross
64. Monohybrid cross
65. ABO blood grouping is controlled by gene I which has three alleles and show co-dominance. There are six genotypes. How many phenotypes in all are possible -
66. three
67. four
68. five
69. six
70. The fruit fly Drosophila melanogaster was found to be very suitable for experimental
verification of chromosomal theory of inheritance by Morgan and his collegues because -
71. a single mating produces two young flies
72. smaller female is easily reconisable from large male
73. it completes life cycle in about two weeks
74. it reproduces parthenogenetically
75. Which one of the following conditions of the zygotic cell would lead to the birth of a normal
human female child?
76. one X and one Y chromosome
77. two X chromosomes
78. only one Y chromosome
79. only one X chromosome
80. Test cross in plants or in Drosophila involves crossing :
81. between two genotypes with dominant trait
82. between two genotypes with recessive trait
83. between two F_{1} hybrids
84. the F_{1} hybrid with a double recessive genotype
85. In order to find out the different types of gametes produced by a pea plants having the genotype AaBb , it should be crossed to a plant with the genotype -
(1) AaBb
(2) $a a b b$
(3) AABB
(4) aaBB
86. Which of the following is not a hereditary disease -
(1) Haemophilia
(2) Cretinism
(3) Cystic fibrosis
(4) Thalasasemia
87. Haemophilia is more commonly seen in human males than in human females because -
(1) This disease is due to a Y-linked recessive mutation
(2) This disease is due to an X-linked recessive mutation
(3) This disease is due to an X-linked dominant mutation
(4) A greater proportion of girls die in infancy
88. A women with 47 chromosomes due to three copies of chromosome 21 is characterized by -
(1) Turner syndrome
(2) Down syndrome
(3) Superfemaleness
(4) Triploidy
89. A man and a women, who do not show any apparent signs of a certain inherited disease, have seven children (2 daughter and 5 sons). Three of the sons suffer from the given disease but none of the daughters are affected. Which of the following mode of inheritance do you suggest for this disease
(1) Sex-limited recessive
(2) Autosomal dominant
(3) Sex-linked recessive
(4) Sex-linked dominant
90. If a female having gene for haemophilia and colourblindness on its one X-chromosome marries a normal male then what are the chances in their offsprings :
91. 50% son diseased and 50% normal
92. All normal offsprings
93. 100% daughters are carrier
94. 100% son diseased
95. Reason for trisomy in Down's syndrome is
96. Non-disjunction during sperm formation
97. Non-disjunction during egg formation
98. Non-disjunction at the time of egg or sperm formation
99. Addition of one extra chromosome during mitosis
100. Mental retardness in man occur due to :
101. Loss of one X chromosome
102. Addition of one X chromosome
103. Slight growth in Y
104. Overgrowth in Y
105. ABO blood group have :
106. Two codominant and one recessive allele
107. Two codominant and two recessive allele
108. Two incompletely dominant genes
109. Two pseudo alleles
110. A normal woman, whose father was colour-blind is married to a normal man. The sons would be :-
(1) 50% colour-blind
(2) All normal
(3) All colour-blind
(4) 75% colour-blind
111. Lack of independent assortment of two genes A and B in fruit fly Drosophila is due to :-
(1) Recombination
(2) Linkage
(3) Crossing over
(4) Repulsion
112. In a plant red fruit (R) is dominant over yellow fruit (r) and tallness (T) is dominant over shortness (t). If a plant with RRTt genotype is crossed with a plant that is rrtt
(1) 50% will be tall with red fruit
(2) 75% will be tall with red fruit
(3) All the offspring will be tall with red fruit
(4) 25% will be tall with red fruit
113. What change occurs by changing one base in DNA :
114. Always a change of one amino acid in protein
115. Change in complex sequence of amino acid
116. Always a change in property of protein
117. Does not necessarily change the phenotype
118. The allele for tallness is dominant over that of dwarfness. This is called :
119. Law of independent assortment
120. Law of segregation
121. Law of unit character
122. Law of dominance
123. What ratio is expected in offsprings if father is colour blind and mother's father was colour blind:
124. 50% daughter - colour blind
125. All the sons are colour blind
126. All the daughters colour blind
127. All the sons are normal
128. Fraternal twin one baby is haemophilic while baby's brother is normal then which statement is true :
129. Baby is male
130. Baby is female
131. Mother is heterozygous
132. Mother is homozygous
133. Minor change in gene's structure is called :
134. Reversible mutation
135. Point mutation
136. Forward mutation
137. Back ward mutation
138. According to mendelism which character is showing dominance :
139. Terminal position of flower
140. Green colour in seed coat
141. Wrinkled seed
142. Green pod colour
143. Which of the following is correct match -
(1) Down Syndrome $=21$ st Chromosome
(2) Sickel cell anaemia $=X-$ Chromosome
(3) Haemophilia $=Y$ - Chromosome
(4) Parkinson Disease $=$ X \& Y Chromosome
144. Change in sequence of nucleotide in DNA is called as
(1) Mutagen
(2) Mutation
(3) Recombination
(4) Translation
145. In Drosophila the XXY condition leads to femaleness whereas in human beings the same condition leads to Klienfelter's syndrome in male. It proves :
146. In human beings Y chromosome is active in sex determination
147. Y chromosome is active in sex determination in both human beings and Drosophila
148. In Drosophila Y-chromosome decides femaleness
149. Y chromosome of man have genes for syndrome
150. The linkage map of X-chromosome of fruitfly has 66 units, with yellow body gene (y) at one end and bobbed hair (b) gene at the other end. The recombination frequency between these two genes (y and b) should be :-
(1) 60%
(2) $>50 \%$
(3) $\leq 50 \%$
(4) 100%
151. Which one of the following traits of garden pea studied by Mendel was a recessive feature : -
(1) Axial flower position
(2) Green seed colour
(3) Green pod colour
(4) Round seed shape
152. When a cluster of genes show linkage behaviour they :
(1) Do not show a chromosome map
(2) Show recombination during meiosis
(3) Do not show independent assortment
(4) Induce cell division
153. Genetic Map is one that : -
(1) Establishes sites of the genes on a chromosome
(2) Establishes the various stages in gene evolution
(3) Shows the stages during the cell division
(4) Shows the distribution of various species in a region
154. Independent assortment of genes does not takes place when : -
155. Genes are located on homologous chromosomes
156. Genes are linked and located on same chromosome
157. Genes are located on non-homologous chromosome
158. All the above
159. When dominant and recessive alleles express itself together it is called :-
160. Co-dominance
161. Dominance
162. Amphidominance
163. Pseudo dominance
164. Probability of four son to a couple is : -
165. $\frac{1}{4}$
166. $\frac{1}{8}$
167. $\frac{1}{16}$
168. $\frac{1}{32}$
169. Sickle cell anaemia is due to :-
170. Change of Amino Acid in α-chain of Haemoglobin
171. Change of Amino Acid in β-chain of Haemoglobin
172. Change of Amino acid in both α and β chain of Haemoglobin
173. Change of Amino acid either α or β chain of Haemoglobin
174. The production of gametes by the parents, formation of zygotes, the F_{1} and F_{2} plants, can be understood from a diagram called:
(1) Punnett square
(2) Net square
(3) Bullet square
(4) Punch square
175. In a cross between a male and female, both heterozygous for sickle cell anaemia gene, what percentage of the progeny will be diseased?
176. 25%
177. 100%
178. 50%
179. 75%

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

neet prep Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Molecular Basis of Inheritance
 (Expected Questions in NEET 2022: 6)

Subtopic Name	Number of Questions
Transcription	25
DNA Double Helix	17
Gene Regulation	16
Genetic Code	14
The DNA	8
Translation	8
DNA Fingerprinting	7
DNA Replication	7
Search for Genetic Material	6
Human Genome Project	4
DNA Packaging	$\mathbf{3}$
DNA vs RNA as Genetic Material	2

1. The experimental proof for semiconservative 9
replication of DNA was first shown in a
2. Fungus
3. Bacterium
4. Plant
5. Virus
6. Select the correct match:
7. Alec Jeffreys - Streptococcus pneumoniae
8. Alfred Hershey and Martha Chase - TMV
9. Matthew Meselson and F. Stahl - Pisum sativum
10. Francois Jacob and Jacques Monod - Lac operon
11. Select the correct Match:
12. Ribozyme - Nucleic acid
13. F2 \times Recessive parent - Dihybrid cross
14. T.H. Morgan - Transduction
15. G. Mendel - Transformation
16. Taylor conducted the experiments to prove semiconservative mode of chromosome replication on
17. Vinca rosea
18. Vicia faba
19. Drosophila melanogaster
20. E. Coli
21. The equivalent of a structural gene is
22. muton
23. cistron
24. operon
25. recon
26. Which of the following rRNA acts as structural RNA as well as ribozyme in bacteria?
27. 5 S rRNA
28. 18 S rRNA
29. 23 S rRNA
30. 5.8 S rRNA
31. The final proof for DNA as the genetic material came from the experiments of:
32. Hershey and chase
33. Avery, McLeod and McCarty
34. Har Gobind Khorana
35. Griffith
36. If there are 999 bases in an RNA that codes for a protein with 333 amino acids, and the base at position 901 is deleted such that the length of the RNA becomes 998 bases, how many codons will be altered?
37. 11
38. 33
39. 333
40. 1

AGGTATCGCAT is a sequence from the coding strand of a gene. What will be the corresponding sequence of the transcribed mRNA?

1. AGGUAUCGCAU
2. UGGTUTCGCAT
3. ACCUAUGCGAU
4. UCCAUAGCGUA
5.

All of the following are part of an operon except:-

1. an operator
2. structural genes
3. an enhancer
4. a promoter
5. A molecule that can act as a genetic material must fulfil the traits given below, except
6. it should be able to express itself in the form of 'Mendelian characters'
7. it should be able to generate its replica
8. it should be unstable structurally and chemically
9. it should provide the scope for slow changes that are required for evolution
10. DNA-dependent RNA polymerase catalyses transcription on one strand of the DNA which is called the
11. template strand
12. coding strand
13. alpha strand
14. anti strand
15. The association of histone H 1 with a nucleosome indicates:
16. DNA replication is occurring
17. The DNA is condensed into a chromatin fibre
18. The DNA double helix is exposed
19. Transcription is occurring
20.

Which of the following s required as inducer (s) for the expression of lac operon?

1. galactose
2. lactose
3. lactose and galactose
4. glucose
5.

Which one of the following is the starter codon?

1. UGA
2. UAA
3. UAG
4. AUG
5. Which one of the following is not applicable to RNA?
6. Complementary base pairing
7. 5' phosphoryl and 3' hydroxyl ends
8. Heterocyclic nitrogenous bases
9. Chargaff's rule
10. Satellite DNA is important because it
11. Codes for proteins needed in cell cycle
12. Shows high degree of polymorphism in population and also the same degree of polymorphism in an idividual which is inheritable from parents to children
13. Does not code for proteins and is same in all members of the population
14. Codes for enzymes needed for DNA replication.
15. Which one of the following is wrongly matched?
16. Transcription- Writing information from DNA to t RNA
17. Translation- Using information in m-RNA to make protein
18. Repressor protein- Binds to a operator to stop enzyme synthesis
19. Operon- Structural genes, operator and promoter
20. Transformation was discovered by:
21. Meseson and Stahl
22. Hershey and chase
23. Griffith
24. Waston and crick
25.

The diagram shows an important concept in the genetic implication of DNA. Fill in the blanks A to C

1. A - translation B - transcription C - Erevin Chargaff
2. A -transcription B - translation C - Francis Crick
3. A - translation B - extension C - Rosalind Franklin
4. A - transcription B-replication C - James Watson
5.

Select the correct option:

	Directionof RNA synthesis	Direction of reading of the template DNA strand
(1)	$5^{\prime}-3^{\prime}$	$3^{\prime}-5^{\prime}$
(2)	$3^{\prime}-5^{\prime}$	$5^{\prime}-3^{\prime}$
(3)	$5^{\prime}-3^{\prime}$	$5^{\prime}-3^{\prime}$
(4)	$3^{\prime}-5^{\prime}$	$3^{\prime}-5^{\prime}$

1. 1
2. 2
3. 3
4. 4
5. Commonly used vectors for human genome sequencing are:
6. T-DNA
7. BAC and YAC
8. Expression Vectors
9. T/A cloning Vectors
10. Which enzyme/s will be produced in a cell in which there is a nonsense mutation in the lac Y gene?
11. Lactose permease
12. Transacetylase
13. Lactose permease and transacetylase
14. β-galactosidase
15. Removal of RNA polymerase III from nucleoplasm will affect the synthesis of
16. tRNA
17. hnRNA
18. mRNA
19. rRNA
20. PCR and Restriction Fragment Length Polymorphism are the methods for
21. Study of enzymes
22. Genetic transformation
23. DNA sequencing
24. Genetic fingerprinting
25. Which one of the following is not a part of a transcription unit in DNA?
26. The inducer
27. A terminator
28. A promoter
29. The structural gene
30. If one strand of DNA has the nitrogenous base sequence as ATCTG, what would be the complementary RNA strand sequence?
31. TTAGU
32. UAGAC
33. AACTG
34. ATCGU
35. Removal of introns and joining of exons in a defined order during transcription is called
36. Looping
37. Inducing
38. Slicing
39. Splicing
40.

What are those structures that appear as 'beads-on-string' in the chromosomes when viewed under electron microscope?

1. Nucleotides
2. Nucleosomes
3. Base pairs
4. Uracil
5.

Which one of the following also acts as a catalyst in a bacterial cell?

1. sn RNA
2. hn RNA
3. 23 S rRNA
4. 5 S rRNA
5. Select the two correct statements out of the four (a-d) given below about lac operon.
(a) Glucose or galactose may bind with the repressor and inactivate it
(b) In the absence of lactose the repressor binds with the operator region
(c) The z-gene codes for permease
(d) This was elucidated by Francois Jacob and Jacque Monod
The correct statements are :
(1) (b) and (c)
(2) (a) and (c)
(3) (b) and (d)
(4) (a) and (b)
6. The one aspect which is not a salient feature of genetic code, is its being
7. degenerate
8. ambigous
9. universal
10. specific
11. DNA or RNA segment tagged with a radioactive molecule is called
12. vector
13. probe
14. clone
15. plasmid
16. Satellite DNA is useful tool in -
(1) Organ transplantation
(2) Sex determination
(3) Forensic science
(4) Genetic engineering
17. Removal of introns and joining the exons in a defined order in a transcription unit is called
18. splicing
19. tailing
20. transformation
21. capping
22. Semiconservative replication of DNA was first demonstrated in
23. Drosophila melanogaster
24. Escherichia coli
25. Streptococcus pneumoniae
26. Salmonella typhimurium
27. What is not true for genetic code?
28. A codon in mRNA is read in non-contiguous fashion
29. It is nearly universal
30. It is degenerate
31. It is unambiguous
32.

In the DNA molecule

1. the total amount of purine nucleotides and pyrimidine nucleotides is not always equal
2. there are two strands, which run parallel in the $5-+3$ direction
3. the proportion of adenine in relation to thymine. varies with the organism
4. there are two strands, which run antiparallel - one in $5^{\prime} \rightarrow 3^{\prime}$ direction and other in $3^{\prime} \rightarrow 5$ '
5.

Which one of the following pairs of codons is correctly matched with their function or the signal for the particular amino acid?

1. GUU, GCU - Alanine
2. UAG, UGA - Stop
3. AUG, ACG - Start/methionine
4. UUA, UCA -Leucine
5.

Which one of the following pairs of nitrogenous bases of nucleic acids is wrongly matched with the category mentioned against it?

1. Thymine, Uracil - Pyrimidines
2. Uracil, Cytosine - Pyrimidines
3. Guanine, Adenine - Purines
4. Adenine, Thymine - Purines
5. The length of DNA molecule greatly exceeds the dimensions of the nucleus in eukaryotic cells. How is this DNA accommodated?
6. Deletion of non-essential genes
7. Super-coiling in nucleosomes
8. DNAse digestion
9. Through elimination of repetitive DNA
10. Differentiation of organs and tissues in a developing organism is associated with:
11. developmental mutations
12. differential expression of genes
13. lethal mutations
14. deletion of gene
15. The two polynucleotide chains in DNA are:
16. parallel
17. discontinuous
18. antiparallel
19. semiconservative
20. Amino acid sequence, in protein synthesis is decided by the sequence of:
21. t-RNA
22. m-RNA
23. c-DNA
24. r-RNA
25. One turn of the helix in a B-form DNA is approximately:
26. 20 nm
27. 0.34 nm
3.3 .4 nm
28. 2 nm
29. Antiparallel strands of a DNA molecule means that:
30. one strand turns anti-clockwise
31. the phosphate groups of two DNA strands, at their ends, share the same position
32. the phosphate groups at the start of two DNA strands are in opposite position(pole)
33. one strand turns clockwise
34. Match the following genes of Lac operon with their respective products :
(a) i gene (i) β-galactosidase
(b) Z gene
(ii) Permease
(c) A gene (iii) Repressor
(d) Y gene (iv) transacetylase

Select the correct option

	(a)	(b)	(c)	(d)
1.	(iii)	(iv)	(i)	(ii)
2.	(i)	(iii)	(ii)	(iv)
3.	(iii)	(i)	(ii)	(iv)
4.	(iii)	(i)	(iv)	(ii)

48.

Purines found both in DNA and RNA are:

1. Cytosine and thymine
2. Adenine and thymine
3. Adenine and guanine
4. Guanine and cytosine
5. Under which of the following conditions will there be no change in the reading frame of the following mRNA?

5'AACAGCGGUGCUAUU 3'

1. Deletion of GGU from 7th, 8th and 9th positions
2. Insertion of G at 5 th position
3. Deletion of G from 5 th position
4. Insertion of A and G at 4 th and 5 th positions respectively
5. Expressed Sequence Tags (ESTs) refers to:
6. Novel DNA sequence
7. Genes expressed as RNA
8. Polypeptide expression
9. DNA polymorphsim
10. What will be the sequence of mRNA produced by the following stretch of DNA?
3' ATGCATGCATGCATG 5' TEMPLATE STRAND
5' TACGTACGTACGTAC 3' CODING STRAND
11. 3^{\prime} AUGCAUGCAUGCAUG 5^{\prime}
12. 5^{\prime} UACGUACGUACGUAC 3^{\prime}
13. 3^{\prime} UACGUACGUACGUAC 5'
14. 5^{\prime} AUGCAUGCAUGCAUG 3^{\prime}
15. Match the following RNA polymerases with their transcribed products:

Column-I

(a) RNA polymerase I
(b) RNA polymerase II
(c) RNA polymerase III

Column-II

(i) tRNA
(ii) rRNA
(iii) hnRNA

Select the correct option from the following:

1. (a)-(i), (b)-(iii), (c)-(ii)
2. (a)-(i), (b)-(ii), (c)-(iii)
3. (a)-(ii), (b)-(iii), (c)-(i)
4. (a)-(iii), (b)-(ii), (c)-(i)
5. From the following, identify the correct combination of salient features of Genetic Code
6. Universal, Non-ambiguous,Overlapping
7. Degenerate, Overlapping, Commaless
8. Universal, Ambiguous, Degenerate
9. Degenerate, Non-overlapping, Non ambiguous
10. Which scientist experimentally proved that DNA is the sole genetic material in bacteriophage ?
11. Beadle and Tatum
12. Messelson and Stahl
13. Hershey and Chase
14. Jacob and Monod
15. In the process of transcription in Eukaryotes, the RNA polymerase I transcribes -
16. mRNA with additional processing, capping and tailing
17. tRNA, 5 S rRNA and snRNAs
18. rRNAs - $28 \mathrm{~S}, 18 \mathrm{~S}$ and 5.8 S
19. Precursor of mRNA, hnRNA
20. What initiation and termination factors are involved in transcription in prokaryotes?
21. σ and ρ, respectively
22. α and β, respectively
23. β and γ, respectively
24. α and σ, respectively
25. Name the enzyme that facilitates opening of DNA helix during transcription.
26. DNA helicase
27. DNA polymerase
28. RNA polymerase
29. DNA ligase
30. If the distance between two consecutive base pairs is 0.34 nm and the total number of base pairs of a DNA double helix in a typical mammalian cell is $6.6 \times 10^{9} \mathrm{bp}$, then the length of the DNA is approximate:
31. 2.5 meters
32. 2.2 meters
33. 2.7 meters
34. 2.0 meters
35. Which of the following statements is correct?
36. Adenine pairs with thymine through one H -bond
37. Adenine pairs with thymine through three H -bonds
38. Adenine does not pair with thymine
39. Adenine pairs with thymine through two H-bonds
40. Choose the correct pair from the following :
41. Polymerases - $\begin{aligned} & \text { Break the DNA } \\ & \text { into fragments }\end{aligned}$
42. Nucleases - Separate the two
strands of DNA
Make cuts at
specific
positions within
DNA
43. Ligases - Join the two

DNA molecules
61. The first phase of translation is:

1. Recognition of DNA molecule
2. Aminoacylation of tRNA
3. Recognition of an anti-codon
4. Binding of mRNA to ribosome
5. The term 'Nuclein' for the genetic material was used by :
6. Franklin
7. Meischer
8. Chargaff
9. Mendel
10. In the polynucleotide chain of DNA, a nitrogenous base is linked to the -OH of:
11. $2^{\prime} \mathrm{C}$ pentose sugar
12. 3'C pentose sugar
13. $5^{\prime} \mathrm{C}$ pentose sugar
14. 1'C pentose sugar
15. E.coli has only 4.6×10^{6} base pairs and completes the process of replication within 18 minutes; then the average rate of polymerization is approximate-
16. 2000 base pairs/second
17. 3000 base pairs/second
18. 4000 base pairs/second
19. 1000 base pairs/second
20. Which is the basis of genetic mapping of the human genome as well as DNA fingerprinting ?
21. Polymorphism in the DNA sequence
22. Single nucleotide polymorphism
23. Polymorphism in hnRNA sequence
24. Polymorphism in the RNA sequence
25. What is it that forms the basis of DNA Fingerprinting?
26. The relative difference in the DNA occurrence in blood, skin and saliva
27. The relative amount of DNA in the ridges and grooves of the fingerprints
28. Satellite DNA occurring as highly repeated short DNA segments
29. The relative proportions of purines and pyrimidines in DNA
30. Which one of the following is a wrong statement regarding mutations ?
31. Cancer cells commonly show chromosomal aberrations
32. UV and Gamma rays are mutagens
33. Change in a single base pair of DNA does not cause mutation
34. Deletion and insertion of base pairs cause frame-shift mutations
35. In eukaryotic cell transcription, RNA splicing and RNA capping take place inside the -
36. Nucleus
37. Dictyosomes
38. ER
39. Ribosomes
40. The lac Operon consists of -
41. One regulatory gene and three structural genes
42. Two regulatory genes and two structural genes
43. Three regulatory genes and three structure genes
44. Four regulatory genes only
45. The 3'-5' phosphodiester linkages inside a polynucleotide chain serve to join -
46. One nucleoside with another nucleoside
47. One nucleotide with another nucleotide
48. One nitrogenous base with pentose sugar
49. One DNA strand with the other DNA strand
50. In history of biology, human genome project led to the development of :
51. Biosystematics
52. Biotechnology
53. Biomonitoring
54. Bioinformatics
55. The unequivocal proof of DNA as the genetic material came from the studies on a :
56. Bacterial virus
57. Bacterium
58. Fungus
59. Viroid
60. E. coli cells with a mutated z gene of the lac operon cannot grow in medium containing only lactose as the source of energy because -
(1) They cannot synthesize functional beta galactosidase
(2) They cannot transport lactose from the medium into the cell
(3) The lac operon is constitutively active in these cells
(4) In the presence of glucose, E. coli cells do not utilize lactose
61. Production of a human protein in bacteria by genetic engineering is possible because
(1) Bacterial cell can carry out the RNA splicing reactions
(2) The mechanism of gene regulation is identical in humans and bacteria
(3) The human chromosome can replicate in bacterial cell
(4) The genetic code is universal
62. Which of the following exercises control over transcription:
63. Operator
64. Regulator
65. Promoter
66. Recon
67. Variations in proteins are due to :
68. Sequence of amino acids
69. Number of amino acids
70. R-group
71. None
72. DNA fingerprinting refers to :-
(1) Anlysis of DNA samples using imprinting devices
(2) Techniques used for molecular analysis of different specimens of DNA
(3) Techniques used for identification of fingerprints of individuals
(4) Molecular analysis of profiles of DNA samples
73. During transcription, if the nucleotide sequence of the DNA strand that is being coded is ATACG, then the nucleotide sequence in the mRNA would be-
(1) TCTGG
(2) UAUGC
(3) UATGC
(4) TATGC
74. Number of base pairs in human chromosomes are:
75. 3×10^{9}
76. 3×10^{7}
3.6×10^{8}
77. 6×10^{7}
78. The following ratio is generally constant for a given species :-
(1) $T+C / G+A$
(2) $\mathrm{G}+\mathrm{C} / \mathrm{A}+\mathrm{T}$
(3) $A+C / T+G$
(4) $A+G / C+T$
79. Initiation codon in eukaryotes is
80. UGA
81. CCA
82. AGA
83. AUG
84. During replication of a bacterial chromosomes DNA synthesis starts from a replication origin site and :-
(1) Is facilitated by telomerase
(2) Moves in one direction of the size
(3) Moves in bi-directional way
(4) RNA primers are involved
85. After a mutation at a genetic locus the character of an organism changes due to the change in :-
(1) DNA replication
(2) Protein synthesis pattern
(3) RNA transcription pattern
(4) Protein structure
86. Gene composed of :
87. Amino acids
88. Polynucleotide
89. Fatty acid
90. Nitrogen bases
91. Which form of RNA has a structure resembling clover leaf?
(1) hn-RNA
(2) m-RNA
(3) t-RNA
(4) r-RNA
92. In inducible operon, regulatory gene synthesizes:
93. Promoter
94. Operator
95. Repressor
96. Aporepressor
97. Simillarity in DNA and RNA is that both
98. are polymers of nucleotides
99. have similar pyrimidine
100. have similar sugars
101. genetic material
102. Length of one loop of B- DNA :
103. 3.4 nm .
104. 0.34 nm .
105. 20 nm .
106. 10 nm
107. Anticodon occurs in :
108. t-RNA
109. m-RNA
110. r-RNA
111. DNA
112. In three dimensional view, the molecule of t-RNA is :
113. L-shaped
114. S-shaped
115. Y-shaped
116. E-shaped
117. Transformation experiment was first performed on which bacteria : -
(1) E. coli
(2) Diplococcus pneumoniae
(3) Salmonella
(4) Pasteurella pestis
118. In E. Coli, during lactose metabolism, repressor binds to
119. Regulator gene
120. Operator gene
121. Structural gene
122. Promoter gene
123. In a DNA percentage of thymine is 20% then what is the percentage of guanine :-
(1) 20%
(2) 40%
(3) 30%
(4) 60%
124. Out of 64 codons, 61 codons code for 20 types of amino acids. This is often called as
125. Degeneracy of genetic code
126. Overlapping of gene
127. Wobbling of codon
128. Universility of codons
129. Jacob and Monad studied lactose metabolism in E.Coli and proposed operon concept. Operon concept applicable for : -
(1) All prokaryotes
(2) All prokaryotes and some eukaryotes
(3) All prokaryotes and all eukaryotes
(4) All prokaryotes and some protozoanes
130. Exon part of m-RNAs have code for : -
(1) Protein
(2) Lipid
(3) Carbohydrate
(4) Phospholipid
131. Which of the following is initiation codon :
132. UAG
133. AUC
134. AUG
135. CCU
136. Chargaff's rule states that in an organism: -
(1) Amount of adenine (A) is equal to that of thymine (T) and the amount of guanine (G) is equal to that of cytosine (C)
(2) Amount of adenine (A) is equal to that of guanine (G) and the amount of thymine (T) is equal to that of cytosine (C)
(3) Amount of adenine (A) is equal to that of cytosine (C) and the amount of thymine (T) is equal to that of guanine (G)
(4) Amounts of all bases are equal
137. In the genetic code dictionary, how many codons are used to code for all the 20 essential amino acids : -
(1) 20
(2) 64
(3) 61
(4) 60
138. What does "lac" refer to in what we call the lac operon : -
(1) Lactose
(2) Lactase
(3) Lac insect
(4) The number $1,00,000$
139. During transcription, the DNA site at which RNA polymerase binds is called :-
(1) Promoter
(2) Regulator
(3) Receptor
(4) Enhancer
140. Which one of the following triplet codes, is correctly matched with its specificity for an amino acid in protein synthesis or as 'start' or 'stop' codon: -
(1) UCG - Start
(2) UUU - Stop
(3) UGU - Leucine
(4) UAC - Tyrosine
141. Method of DNA replication in which two strands of DNA separate and synthesize new strands is called
142. Dispersive
143. Conservative
144. Semiconservative
145. Non conservative
146. In Negative operon :-
147. Inducer binds with repressor
148. Co-repressor does not binds with repressor
149. Corepressor binds with inducer
150. CAMP have negative effect on lac operon
151. Due to discovery of which of the following in 1980, the evolution was termed as RNA world :
152. m-RNA, t-RNA- r-RNA synthesise proteins
153. In some virus RNA is genetic material
154. RNA have enzymatic property
155. RNA is not found in all cells
156. E. Coli about to replicate was placed in a medium containing radioactive thymidine for five minutes. Then it was made to replicate in a normal medium. Which of the following observation shall be correct: -
157. Both the strands of DNA will be radioactive
158. One strand radioactive
159. Each strand half radioactive
160. None is radioactive
161. Types of RNA polymerase required in nucleus for RNA synthesis :-
162. 1
163. 2
164. 3
165. 4
166. mRNA is synthesised on DNA template in which direction: -
167. $5^{\prime} \rightarrow 3^{\prime}$
168. $3^{\prime} \rightarrow 5^{\prime}$
169. Both
170. Any
171. Complete the flow chart on central dogma
(a)

$\xrightarrow{(b)} m R N A \xrightarrow{(c)}(d)$
(1) (a) - Replication; (b) - Transcription;
(c) - Translation; (d) - Protein
(2) (a) - Transduction; (b) - Translation;
(c) - Replication; (d) - Protein
(3) (a) - Replication; (b) - Transcription;
(c) - Transduction; (d) - Protein
(4) (a) - Transcription; (b) - Replication;
(c) - Transcription; (d) - Transduction
172. What is the role of RNA polymerase III in the process of transcription in eukaryotes?
173. Transcribes precursor of mRNA
174. Transcribes only snRNAs
175. Transcribes rRNAs (28S, 18S and 5.8S)
176. Transcribes tRNA, 5 s rRNA and snRNA
177. DNA fingerprinting involves identifying differences in some specific regions in DNA sequence, called as
178. Single nucleotides
179. Polymorphic DNA
180. Satellite DNA
181. Repetitive DNA
182. Identify the correct statement.
183. The coding strand in a transcription unit is copied to an mRNA.
184. Split gene arrangement is characteristic of prokaryotes.
185. In capping, methylguanosine triphosphate is added to the 3^{\prime} end of hnRNA.
186. RNA polymerase binds with the Rho factor to terminate the process of transcription in bacteria.
187. If Adenine makes 30% of the DNA molecule, what will be the percentage of Thymine, Guanine and Cytosine in it?
(1) T:30; G:20 ; C:20
(2) T:20; G:25 ; C:25
(3) T:20 ; G:30 ; C:20
(4) T:20; G:20; C:30
188. Which of the following RNAs is not required for the synthesis of protein?
(1) rRNA
(2) siRNA
(3) mRNA
(4) tRNA
189. Which is the "Only enzyme" that has "Capability to catalyze Initiation, Elongation, and Termination in the process of transcription in prokaryotes?
190. DNA Ligase
191. DNase
192. DNA dependent DNA polymerase
193. DNA dependent RNA polymerase
194. Which one of the following statements about Histones is wrong?
195. Histones are rich in amino acids - Lysine and Arginine.
196. Histones carry a positive charge in the side chain.
197. Histones are organized to form a unit of 8 molecules.
198. The pH of histones is slightly acidic.
199. Statement I: The codon 'AUG codes for methionine and phenylalanine.
Statement II: AAA' and 'AAG are both codons that code for the amino acid lysine.
In the light of the above statements, choose the correct answer from the options given below.
200. Statement I is correct but Statement II is false
201. Statement I is incorrect but Statement II is true
202. Both Statement I and Statement II are true
203. Both Statement I and Statement II are false

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get
 FREE ACCESS for 3
 days of ANY NEETprep

course

1. Artificial selection to obtain cows yielding higher milk output represents:	7. Analogous structure are results of
1. Directional as it pushes the mean of the charcter in one	1. convergent evolution
direction	2. shared ancestry
2. Disruptive as it splits the population into two, one	3. stabilizing selection
yeilding output and the other lower output	4. divergent evolution
3. Stabilizing followed by disruptive as it stablizes the population to produce higher yielding cows	
4. Stabilizing selection as it stabilizes this character in the population	8.
2.	Which of the following structure is homologous to the wing of a bird?
The similarity of bone structure in the forelimbs of many	1. Wing of a moth
vertebrates is an example of	2. Hind limb of rabbit
1. evolution	3. Flipper of whale
2. Analogy	4. Dorsal fin of a shark
3. Convergent evolution	
4. Adaptive radiation	
	9. The wings of a bird and the wings of an insect are 1. Homologous structures and represent divergent evolution
3.	2. Analogous structures and represent convergent
Among the following sets of examples for divergent evolution, select the incorrect option:	evolution 3. Phylogenetic structures and represents divergent
1. Forelimbs of man, bat and cheetah	evolution
2. Heart of bat, man and cheetah	4. Homologous structures and represent convergent
3. Brain of bat, man and cheetah	evolution
4. Eye of octopus, bat and man	
	10. Industrial melanism is an example of
	1. Neo Darwinism
4.	2. Natural Selection
According to Hugo de Vries, the mechanism of evolution	3. Mutation
is:-	4. Neo Lamarckism
1. Multiple step mutations	
2. Saltation	11.
3. Phenotypic variations	
4. Minor mutations	Which of the following had the smallest brain capacity? 1. Homo erectus
	2. Homo sapiens
5. In Hardy-Weinberg equation, the frequency of	3. Homo neanderthalensis
heterozygous individual is represented by	4. Homo habilis
1. p^{2}	
2. 2 pq	
3. pq	
4. q^{2}	

6. The chronological order of human evolution from early to the recent is
7. Australopithecus \rightarrow Ramapithecus \rightarrow Homo habilis \rightarrow Homo erectus
8. Ramapithecus \rightarrow Australopithecus \rightarrow Homo habilis \rightarrow Homo erectus
$3 . \quad$ Ramapithecus \rightarrow Homo
habilis \rightarrow Australopithecus \rightarrow Homo erectus
4 . Australopithecus \rightarrow Homo
habilis \rightarrow Ramapithecus \rightarrow Homo erectus
9.

The eye of octopus and eye of cat show different patterns of structure, yet they perform similar function. This is an example of :

1. Homologous organs that have evolved due to divergent evolution.
2. Analogous organs that have evolved due to convergent evolution.
3. Analogous organs that have evolved due to divergent evolution.
4. Homologous organs that have evolved due to convergent evolution.
5.

The process by which organisms with different evolutionary history evolve similar phenotypic adaptations in response to a common environmental challenge, is called:

1. Convergent evolution
2. Non-random evolution
3. Adaptive radiation
4. Natural selection
5. In a population of 1000 individuals 360 belong to genotype $\mathrm{AA}, 480$ to Aa and the remaining 160 to aa, Based on this data, the frequency of allele A in the population is :
6. 0.4
7. 0.5
8. 0.6
9. 0.7
10. Forelimbs of cat, lizard used in walking; forelimbs of whale used in swimming and forelimbs of bats used in flying are an example of :
11. Analogous organs
12. Adaptive radiation
13. Homologous organs
14. Convergent evolution
15. Variation in gene frequencies within populations can occur by chance rather than by natural selection.
This is referred to as:
16. Genetic drift
17. Random mating
18. Genetic load
19. Genetic flow
20. Evolution of different species in a given area starting from a point and spreading to other geographical areas is known as
21. Adaptive radiation
22. natural selection
23. Migration
24. divergent evolution
25. Which one of the following options give one correct example each of convergent evolution and divergent evolution?

	Convergent Evolution	Divergent Evolution
(a)	Eyes of octopus and mammals	Bones of forelimbs of vertebrates
(b)	Thorns of Bougain-villia and tendrils Cucurbita	Wings of butterflies and birds
(c)	Bones of forelimbs of vertebrates	Wings of butterfly and birds
(d)	Thorns of Bougain-villia and tendrils of Cucurbita	Eyes of Octopus and mammals

1. (a)
2. (b)
3. (c)
4. (d)
5. What was the most significant trend in the evolution of modem man (Homo sapiens) from his ancestors?
6. Shortening of jaws
7. Binocular vision
8. Increasing cranial capacity
9. upright posture
10. The extinct human who lived 100000 to 40000 years ago, in Europe, Asia and parts of Africa, with short stature, heavy eye brows, retreating for heads, large jaws with heavy teeth, stocky bodies, a lumbering gait and stooped posture was
11. Homo habilis
12. Neanderthal human
13. Cro-Magnon humans
14. Ramapithecus
15.

What was the most significant trend in the evolution of modem man (Homo sapiens) from his ancestors?

1. Shortening of jaws
2. Binocular vision
3. Increasing brain capacity
4. Upright posture
5. Darwin's finches are a good example of
6. industrial melanism
7. connecting link
8. adaptive radiation
9. convergent evolution
10. In the case of peppered moth (Biston betularia) the black-coloured form became dominant over the lightcoloured form in England during the industrial revolution. This is an example of
11. natural selection whereby the darker forms were selected
12. appearance of the darker coloures individuals due to very poor sunlight
13. protective mimicry
14. inheritance of darker colour character acquired due to the darker environment
15.

Darwin's finches are an excellent example of

1. adaptive radiation
2. seasonal migration
3. brood parasitism
4. connecting links
5.

Thorn of Bougainvillea and tendril of Cucurbita are examples of

1. analogous organs
2. homologous organs
3. vestigial organs
4. retrogressive evolution
5. Among the human ancestors the brain size was more than 1000 CC in :
6. Homo neaderthalensis
7. Homo erectus
8. Ramapithecus
9. Homo habilis
10. The concept of chemical evolution is based on:
11. crystallization of chemicals
12. interaction of water, air and clay under intense heat
13. effect of solar radiation on chemicals
14. possible origin of life by combination of chemicals under suitable environment conditions
15. Industrial melanism as observed in peppered moth proves that:
16. The true blackmelanic forms arise by a recurring Natural selection
17. The melanic form of the moth has no selective advantage over lighter form in industrial area
18. The lighter-form moth has no selective advantage either in polluted industrialarea or non-polluted area
19. Melanism is a pollution-generated feature
20.

Which one of the following pair of items correctly belongs to the category of organs mentioned against it?

1. Thorn of Bougainvillea and tendrils of Cucurbita Analogous organs
2. Nictitating membrane and blind spot in human eye vestigial organs
3. Nephridia of earthworm and Malpighian tubules of cockroach - Excretory organs
4. Wings of honey bee and wings of crow - Homologous organs
5. Select the correct statement from the following:
6. Darwin variations are small and directionless
7. fitness is the end result of the ability to adapt and gets selected by nature
8. all mammals except whales and have seven cervical vertebrae
9. Mutations are random and directional
10. The finches of Galapagos islands provide an evidence in favour of:
11. special creation
12. evolution due to mutation
13. retrogressive evolution
14. biogeographical evolution
15. Adaptive radiation refers to :
16. adaptations due to geographical isolation
17. evolution of different species from a common ancestor
18. migration of members of a species to different geographical areas
19. power of adaptation in an individual to a variety of environments
20. When two species of different genealogy come to resemble each other as a result of adaptation, the phenomenon is termed :
21. divergent evolution
22. microevolution
23. co-evolution
24. convergent evolution
25. An important evidence in favour of organic evolution is the occurrence of:
26. homologous and vestigial organs
27. analogous and vestigial organs
28. homologous organ only
29. analogous organ only
30. Variations caused by mutation, as proposed by Hugo de Vries, are:
31. small and directionless
32. random and directional
33. random and directionless
34. small and directional
35. A gene locus has two alleles A, a. If the frequency of dominant allele A is 0.4 , then what will be the frequency of homozygous dominant, heterozygous and homozygous recessive individuals in the population?
36. 0.16 (AA); 0.36 (Aa); 0.48 (aa)
37. 0.36 (AA); 0.48 (Aa); 0.16 (aa)
38. 0.16 (AA); 0.24 (Aa); 0.36 (aa)
39. 0.16 (AA); 0.48 (Aa); 0.36 (aa)
40. In a species, the weight of newborn ranges from 2 to 5 $\mathrm{kg} .97 \%$ of the newborn with an average weight between 3 to 3.3 kg survive whereas 99% of the infants born with weights from 2 to 2.5 kg or 4.5 kg to 5 kg die. Which type of selection process is taking place?
41. Cyclical selection
42. Directional selection
43. Stabilizing selection
44. Disruptive selection
45. Match the hominids with their correct brain size:
(a) Homo habilis
(i) 900 cc
(b) Homo neanderthalensis
(ii) 1250 cc
(c) Homo erectus
(iii) $650-800 \mathrm{cc}$
(d) Homo sapiens
(iv) 1400 cc

Select the correct option.

	(a)	(b)	(c)	(d)
1.	(iv)	(iii)	(i)	(ii)
2.	(iv)	(i)	(iv)	(ii)
3.	(iii)	(ii)	(i)	(iv)
4.	(iii)	(iv)	(i)	(ii)

39. In Australia, marsupials and placental mammals have evolved to share many similar characteristics. This type of evolution may be referred to as -
40. Adaptive Radiation
41. Divergent Evolution
42. Cyclical Evolution
43. Convergent Evolution
44. A population of a species invades a new area. Which of the following condition will lead to Adaptive Radiation?
45. Area with large number of habitats having very low food supply.
46. Area with a single type of vacant habitat
47. Area with many types of vacant habitats.
48. Area with many habitats occupied by a large number of species.
49. Which of the following statements is correct about the origin and evolution of men?
50. Agriculture came around 50,000 years back.
51. The Dryopithecus and Ramapithecus primates existing 15 million years ago, walked like men.
52. Homo habilis probably ate meat.
53. Neanderthal men lived in Asia between 100000 and 40000 years back
54. From his experiments, S.L. Miller produced amino acids by mixing the following in a closed flask:
55. $\mathrm{CH}_{3}, \mathrm{H}_{2}, \mathrm{NH}_{4}$ and water vapour at $800^{\circ} \mathrm{C}$
56. $\mathrm{CH}_{4}, \mathrm{H}_{2}, \mathrm{NH}_{3}$ and water vapour at $600^{\circ} \mathrm{C}$
57. $\mathrm{CH}_{3}, \mathrm{H}_{2}, \mathrm{NH}_{3}$ and water vapour at $600^{\circ} \mathrm{C}$
58. $\mathrm{CH}_{4}, \mathrm{H}_{2}, \mathrm{NH}_{3}$ and water vapour at $800^{\circ} \mathrm{C}$
59. Flippers of Penguins and Dolphins are examples of:
60. Convergent evolution
61. Industrial melanism
62. Natural selection
63. Adaptive radiation
64. Embryological support for evolution was disapproved by:
65. Alfred Wallace
66. Charles Darwin
67. Oparin
68. Karl Ernst von Baer
69. Embryological support for evolution was proposed by
70. Ernst Heckel
71. Karl Ernst von Baer
72. Charles Darwin
73. Alfred Wallace
74. After about how many years of the formation of the earth, life appeared on this planet?
75. 500 billion years
76. 50 million years
77. 500 million years
78. 50 billion years
79. The phenomenon of the evolution of different species in a given geographical area starting from a point and spreading to other habitats is called:-
80. Saltation
81. Co-evolution
82. Natural selection
83. Adaptive radiation
84. A Hominid fossil discovered in Java in 1891, now extinct, having a cranial capacity of about 900 ccs was:
85. Homo erectus
86. Neanderthal man
87. Homo sapiens
88. Australopithecus
89. The idea of mutations was brought forth by:
90. Gregor Mendol, who worked on Pisum sativum
91. Hardy Weinberg, who worked on allele frequencies in a population
92. Charles Darwin, who observed a wide variety of organisms during sea voyage
93. Hugo do Vries, who worked on evening primrose
94. The most apparent changes during the evolutionary history of Homo sapiens is traced in
95. Walking upright
96. Shortening of the jaws
97. Remarkable increase in the brain size
98. Loss of body hair
99. Given below are four statements (A-D) each with one or two blanks. Select the option which correctly fills up the blanks in two statements - Statements :
(A) Wings of butterfly and birds look alike and are the results of ${ }_{-}^{(i)}$, evolution
(B) Miller showed that $\mathrm{CH}_{4}, \mathrm{H}_{2}, \mathrm{NH}_{3}$ and $-_{-}^{(i)} \underline{-}_{-}$, when exposed to electric discharge in a flask resulted in the formation of \qquad
(ii).
(C) Vermiform appendix is a $__{-}^{(i)}$ organ and an $__{-}(i i)$ evidence pf evolution.
(D) According to Darwin evolution took place due to (i)__and $_$(ii) of the fittest.

Options :

1. (A) - (i) convergent,
(B) - (ii) oxygen, (ii) nucleosides
2. (B) - (i) water vapour, (ii) amino acids,
(C) - (i) rudimentary (ii) anatomical
3. (C) - (i) vestigial, (ii) anatomical,
(D) - (i) mutations, (ii) multiplication
4. (D) - (i) small variations, (ii) survival,
(A) - (i) convergent
5. Which one of the following phenomena supports Darwin's concept of natural selection in organic evolution
(1) production of 'Dolly', the sheep by cloning
(2) Development of organs from 'stem' cells for organ transplantation
(3) Development of transgenic animals
(4) Prevalence of pesticide resistant insects
6. Which of the following is not true for a species -
7. Members of a species can interbreed
8. Variations occur among members of a species
9. Gene flow does not occur between the populations of a species
10. Each species is reproductively isolated from every other species.
11. Which of the following statement is true :
12. Homo erectus is direct ancestor of Homo sapiens
13. Neanderthal man is direct ancestor of modern man
14. Australopithecous is direct ancestor of modern man
15. Fossils of cromagnon man first found in Ethiopia
16. In present times the origin of life is not possible from inorganic compounds due to :
17. Raw material not available
18. High conc. Of O_{2} in atmosphere
19. Decrease in temperature
20. Excess of pollution
21. On Galapagos island Darwin observed variation in beaks of birds (Darwin's finches) and he concluded :
22. Inter species variation
23. Intraspecies variation
24. Natural selection according to food
25. Inheritance of acquired characters
26. Diversification in plant life appeared :-
27. Due to abrupt mutations
28. Suddenly on earth
29. By seed dispersal
30. Due to long periods of evolutionary changes
31. According to Oparin, which one of the following was not present in the primitive atmosphere of the earth?
32. Oxygen
33. Hydrogen
34. Water vapour
35. Methane
36. Reptiles like mammals originated in :
37. Jurassic
38. Triassic
39. Cretaseus
40. Permian
41. Industrial melanism is example of :
42. Natural selection
43. Mutation
44. Racial difference
45. Predation
46. Which one is obtained by S . Miller in his experiments on origin of life before 1953 :
47. Simple sugars
48. Amino acids
49. Nucleotide
50. Peptides
51. Which evidence of evolution related to Darwin's finches :
52. Evidences from biogeographical distribution
53. Evidences from comparative anatomy
54. Evidences from embryology
55. Evidences from palaeontological
56. According to fossils which have been discovered till now, origin and evolution of man started from which country?
57. France
58. Java
59. Africa
60. China
61. Which one of the following sequences was proposed by Darwin and Wallace for organic evolution: -
62. Overproduction, variations, constancy of population size, natural selection
63. Variations, constancy of population size, overproduction, natural selection
64. Overproduction, constancy of population size, variations, natural selection
65. Variations, natural selection, overproduction, constancy of population size
66. Industrial melanism is an example of :-
67. Drug resistance
68. Darkening of skin due to smoke from industries
69. Protective resemblance with the surroundings
70. Defensive adaptation of skin against ultraviolet radiations
71. In a random mating population in equilibrium, which of the following brings about a change in gene frequency in a non-directional manner :-
72. Mutations
73. Random drift
74. Selection
75. Migration
76. Which one of the following describes correctly the homologous structures :-
77. Organs with anatomical similarities, but performing different functions
78. Organs with anatomical dissimilarities but performing same function
79. Organs that have no function now, but had an important function in ancestors
80. Organs appearing only in embryonic stage and disappearing later in the adult
81. Similarities in organism with different genotype indicates:-
82. Microevolution
83. Macroevolution
84. Convergent evolution
85. Divergent evolution
86. Occurence of endemic species in south america and Australia due to :-
87. These species has been extinct from other regions
88. Continental separation
89. These is no terrestrial route to these places
90. Retrogressive evolution
91. The factor that leads to Founder effect in a population is:
92. Mutation
93. Genetic drift
94. Natural selection
95. Genetic recombination
96. Match List-I with List-II

List-I	List-II
(a) Adaptive radiation	(i) Selection of resistant varieties due to excessive use of herbicides and pesticides
(b) Convergent evolution	(ii) Bones of forelimbs in Man and Whale
(c) Divergent evolution	(iii) Wings of Butterfly and Bird
(d) Evolution by anthropogenic action	(iv) Darwin Finches

Choose the correct answer from the options given below.

	(a)	(b)	(c)	(d)
1.	(ii)	(i)	(iv)	(iii)
2.	(i)	(iv)	(iii)	(ii)
3.	(iv)	(iii)	(ii)	(i)
4.	(iii)	(ii)	(i)	(iv)

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get
 FREE ACCESS for 3
 days of ANY NEETprep

course

U. neetprep
 Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Human Health \& Disease
 (Expected Questions in NEET 2022: 2)

Subtopic Name
 Number of

 Questions| AIDS | 9 |
| :--- | :--- |
| Active \& Passive Immunity | $\mathbf{8}$ |
| Drugs \& Alcohol Abuse | $\mathbf{8}$ |
| Details of Immunity | $\mathbf{7}$ |
| Human Immune System | $\mathbf{7}$ |
| Typhoid Fever | $\mathbf{7}$ |
| Allergies \& Autoimmunity | $\mathbf{4}$ |
| Treatment \& Life Cycle of Malaria | $\mathbf{4}$ |
| Common Cold \& Malaria Introduction | $\mathbf{3}$ |
| Pneumonia \& Related Questions | $\mathbf{3}$ |
| Ascariasis \& Filariasis | $\mathbf{2}$ |
| Cancer | $\mathbf{2}$ |
| Fungal Infection \& Concept of Immunity | $\mathbf{1}$ |

1.

Which part of poppy plant is used to obtain the drug Smack?

1. Flowers
2. Latex
3. Roots
4. Leaves
5.

In which disease does mosquito transmitted pathogen cause chronic inflammation of lymphatic vessels?

1. Elephantiasis
2. Ascariasis
3. Ringworm disease
4. Amoebiasis
5. Transplantation of tissues/organs fails often due to nonacceptance by the patient's body. Which type of immuneresponse is responsible for such rejections?
6. Cell-mediated immune response
7. Hormonal immune response
8. Physiological immune response
9. Autoimmune response
10. Which of the following is correct regarding AIDS causative agent HIV?
11. HIV is enveloped virus containing one molecule of single-stranded RNA and one molecule of reverse transcriptase
12. HIV is enveloped virus that contains two identical molecules of single-stranded RNA and two molecules of reverse transcriptase
13. HIV is unenveloped retrovirus
14. HIV does not escape but attacks the acquired immune response
15. MALT constitutes about \qquad percent of the lymphoid tissue in human body.
16. 20%
17. 70%
18. 10%
19. 50%
20.

In higher vertebrates, the immune system can distinguish self-cells and non-self. If this property is lost due to genetic abnormality and it attacks self -cells, then it leads to

1. graft rejection
2. auto - immunity disease
3. active immunity
4. allergic response
5.

Antivenom injection contains performed antibodies while polio drops that are administered into the body contain

1. harvested antibodies
2. gamma globulin
3. attenuated pathogens
4. activated pathogens
5. Which of the following immunoglobulins does constitute the largest percentage in human milk?
6. IgD
7. IgM
8. IgA
9. IgG
10. Grafted kidney may be rejected in a patient due to
11. Humonal immune response
12. Cell-mediated immune response
13. Passive immune response
14. Innate immune response
15.

HIV that causes AIDS, first starts destroying

1. B-lymphocytes
2. leucocytes
3. helper T-lymphocytes
4. thrombocytes
5.

Infection of Ascaris usually occurs by :

1. Eating imperfectly cooked pork.
2. Tse - tse fly.
3. mosquito bite.
4. drinking water containing eggs of Ascaris.
5.

The cell-mediated immunity inside the human body is carried out by :

1. B-lymphocytes
2. Thrombocytes
3. Erythorcytes
4. T-lymphocytes
5. Which is the particular type of drug that is obtained from the plants whose one flowering branch is shown below?

6. Hallucinogen
7. Depressant
8. Stimulant
9. Pain - Killer
10. At which stage of HIV infection does one usually show symptoms of AIDS?
11. Within 15 days of sexual contact with an infected person
12. When the infected retro virus enters host cells
13. When HIV damage large number of helper T Plymphocytes.
14. When the viral DNA is produced by reverse transcriptase.
15. Motile zygote of Plasmodium occurs in
16. Gut of female Anopheles
17. Salivary glands of Anopheles
18. Human RBCs
19. Human liver
20. Widal test is carried out to test
21. Malaria
22. Diabetes mellitus
23. HIV/AIDS
24. typhoid fever
25. Common cold differs from pneumonia in, that
26. Pneumonia is a communicable disease, whereas the common cold is a nutritional deficiency disease
27. Pneumonia can be prevented by a live attenuated bacterial vaccine, whereas the comon cold has no effective vaccine
28. Common cold is caused by a virus, while the Pneumonia is caused by the bacterium.
29. Pneumonia pathogen infects alveoli whereas the common cold affects nose and respiratory passage but not the lungs
30. Which one of the following is not a property of cancerous cells, whereas the remaining three are?
31. They compete with normal cells for vital nutrients
32. They do not remain confined in the area of formation
33. They divine in an uncontrolled manner
34. They show contact inhibition
35. In which one of the following options the two examples are correctly matched with their particular type of immunity?

Examples
(a) Polymorphonuclear leukocytes and monocytes
(b) Anti-tetanus and anti-snake bite Active immunity injection
(c) Saliva in mouth and tears in eyes Physical barriers
(d) Mucus coating of epithelium lining Physiological barriers
the urinogenital tract and the HCl
in stomach

1. (a)
2. (d)
3. Cirrhosis of liver is caused by the chronic intake of
4. Opium
5. Alcohol
6. Tobacco (chewing)
7. Cocaine
8.

A certain X patient is suspected to be suffering from acquired immune deficiency syndrome. Which diagnostic technique will you recommend for its detection?

1. MRI
2. Ultra Sound
3. WIDAL
4. ELISA
5.

At which stage of HIV infection does one usually shows symptoms of AIDS?

1. When viral DNA is produced by reverse transcriptase
2. When HIV replicates rapidly in helper T-lymphocytes and damages large number of these
3. With 15 days of sexual contact with an infected person
4. When the infecting retrovirus enters host cells
5. Which one of the following statements is correct with respect to AIDS?
6. The HIV can be transmitted through eating food together with an infected person
7. Drug addicts are least susceptible to HIV infection
8. AIDS patients are being fully cured cent percent with proper care and nutrition
9. The causative HIV retrovirus enters helper Tlymphocytes thus reducing their numbers
10.

Which one of the following acts as a physiological barrier to the entry of microorganisms in human body?

1. Tears
2. Monocytes
3. Skin
4. Epithelium of urogenital tract
5.

Where will you look for the sporozoites of the malarial parasite?

1. Red blood corpuscles of humans suffering from malaria
2. Spleen of infected humans
3. Salivary glands of freshly moulted female anopheles mosquito
4. Saliva of infected female anopheles mosquito
5. Select the correct statement from the ones given below 1. Barbiturates when given to criminals make them tell the truth
6. Morphine is often given to persons who have under gone surgery as a pain killer
7. Chweing tobacco lowers blood pressure and heart rate
8. Cocaine is given to patients after surgery as it stimulates recovery
9. Ringworm in humans is caused by
10. bacteria
11. fungi
12. nematodes
13. viruses
14. Widal test is used for the diagnosis of
15. malaria
16. pneumonia
17. tuberculosis
18. typhoid
19. Which of the following is a pair of viral diseases?
20. Ringworm, AIDS
21. Common cold, AIDS
22. Dysentery, common cold
23. Thyphoid, tuberculosis
24. Use of anti - histamine and steroids give a quick relief from
25. allergy
26. nausea
27. cough
28. headache
29. A person likely to develop tetanus is immunised by administering
30. dead germs
31. preformed antibodies
32. wide spectrum antibiotics
33. weakened germs
34. Which one of the following statements is correct ?
35. Patients, who had undergone surgery are given cannabinoids to relieve pain
36. Benign tumours show the property of metastasis
37. heroin accelerates body fuctions
38. Malignant tumours may exhibit metastasis
39. The letter T, in T- lymphocyte refers to
40. thyroid
41. thalamus
42. tonsil
43. thymus
44.

Which one of the following is the correct statement regarding the particular psychotropic drug specified?

1. Hashish causes alter thought perceptions and hallucinations
2. Opium stimulates nervous system and causes hallucinations
3. Morphine leads to delusions and disturbed emotions
4. Barbiturates cause relaxation and temporary euphoria
5.

To which type of barriers under innate immunity, do the saliva in the mouth and the tears from the eyes, belong?

1. Cytokine barriers
2. Cellular barriers
3. Physiological barriers
4. Physical barriers
5. HIV that causes AIDS, first starts destroying:
6. B-lymphocytes
7. leucocytes
8. thrmobocytes
9. helper T-lymphocytes
10. Which of the following immune responses is responsible for rejection of kidney graft?
11. Cell mediated immune response
12. Auto-immune response
13. Humoral immune response
14. Inflammatory immune response
15. Colostrum, the yellowish fluid, secreted by mother during the initial days of lactation is very essential to impart immunity to the newborn infants because it contains:
16. Immunoglobulin A
17. Natural killer cells
18. Monocytes
19. Macrophages
20. Identify the correct pair representing the causative agent of typhoid fever and the confirmatory test for typhoid.
21. Salmonella typhi/Widal test
22. Plasmodium vivax/UTI test
23. Streptococcus pneumoniae/Widal test
24. Salmonella typhi/Anthrone test
25. Drug called 'Heroin' is synthesized by:
26. nitration of morphine
27. methylation of morphine
28. acetylation of morphine
29. glycosylation of morphine
30. Coca alkaloid or cocaine is obtained from
31. Papaver somniferum
32. Atropha belladona
33. Erythroxylum coca
34. Datura
35. The infectious stage of plasmodium that enters the human body is:
36. Sporozoites
37. female gametocytes
38. Male gametocytes
39. Trophozoites
40. Match the following diseases with the causative organism and select the correct option.

Column -I	Column- II
(a) Typhoid	(i) Wuchereria
(b) Pneumonia	(ii) Plasmodium
(c) Filariasis	(iii) Salmonella
(d) Malaria	(iv) Haemophilus

	(a)	(b)	(c)	(d)

| (1) | (iii) | (iv) | (i) |
| :--- | :--- | :--- | :--- | (ii) $\begin{aligned} & \text { (ii) }\end{aligned}$

(2) (ii) (i) (iii) (iv)

(3)	(iv)	(i)
(ii)	(iii)	

(4)	(i)	(iii)	(ii)

44. Match the following columns and select the correct option :

Column - I Column - II

(i) Typhoid
(a) Haemophilus influenzae
(ii) Malaria
(b) Wuchereria bancrofti
(iii) Pneumonia
(c) Plasmodium vivax
(iv) Filariasis
(d) Salmonella typhi

1. (i)-(d), (ii)-(c), (iii)-(a), (iv)-(b)
2. (i)-(c), (ii)-(d), (iii)-(b), (iv)-(a)
3. (i)-(a), (ii)-(c), (iii)-(b), (iv)-(d)
4. (i)-(a), (ii)-(b), (iii)-(d), (iv)-(c)
5. The yellowish fluid "colostrum" secreted by mammary glands of the mother during the initial days of lactation has abundant antibodies (IgA) to protect the infant. This type of immunity is called as :
6. Passive immunity
7. Active immunity
8. Acquired immunity
9. Autoimmunity
10. Identify the molecules (a) and (b) shown below and select the right option giving their source and use.

(I)

(II)

Molecule

1 (II) Heroin

2

3
(II) Cannabinoid Atropa belladona
(I) Morphine

4
(I) Cocaine

Cannabis sativa

Produces hallucination

Papaver somniferum
Source

Depressent and slows down body functions
anoll

Sedative and pain killer

Accelerates the transport of dopamine
48. Read the following four statements (I-IV) :
(I) Colostrum is recommended for the new born because it is rich in antigen
(II) Chikungunya is caused by a Gram negative bacterium
(III) Tissue culture has proved useful in obtaining virusfree plants
(IV) Beer is manufactured by distillation of fermented grape juice
How many of the above statements are wrong ?

1. Three
2. Four
3. One
4. Two
5. Which one of the following statements is correct with respect to immunity?
6. The antibodies against small pox pathogen are produced by T-lymphocytes
7. Antibodies are protein molecules each of which has four light chains
8. Rejection of a kidney graft is the function of Blymphocytes
9. Preformed antibodies need to be injected to treat the bite by a viper snake
10. A person suffering from a disease caused by Plasmodium, experiences recurring chill and fever at the time when -
11. the trophozoites reach maximum growth and give out certain toxins
12. the parasite after its rapid multiplication inside RBCs ruptures them, releasing the
stage to enter fresh RBCs.
13. the microgametocytes and megagametocytes are being destroyed by the WBCs.
14. the sporozoites released from RBCs are being rapidily killed and broken down inside spleen

15. Match List-I with List-II

List-I	List-II
(a) Filariasis	(i) Haemophilus influenzae
(b) Amoebiasis	(ii) Trichophyton
(c) Pneumonia	(iii) Wuchereria bancrofti
(d) Ringworm	(iv) Entamoeba histolytica

Choose the correct answer from the options given below.

	(a)	(b)	(c)	(d)
1.	(i)	(ii)	(iv)	(iii)
2.	(ii)	(iii)	(i)	(iv)
3.	(iv)	(i)	(iii)	(ii)
4.	(iii)	(iv)	(i)	(ii)

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get
 FREE ACCESS for 3 days of ANY NEETprep

course

Uneetprep | Selected Questions (Only NCERT based) |
| :---: |
| from AIPMT 1998 to NEET 2021 |

Biotechnology: Principles \& Processes

Biotechnology: Principles \& Processes - NCERT based

PYQs

1. The DNA molecule to which the gene of interest is integrated for cloning is called
2. Transformer
3. Vector
4. Template
5. Carrier
6. The DNA fragments separated on an agarose gel can be visualized after staining with:
7. Acetocarmine
8. Aniline blue
9. Ethidium bromide
10. Bromophenol blue
11.

The correct order of steps in Polymerase Chain Reaction (PCR) is

1. Extension, Denaturation, Annealing
2. Annealing, Extension, Denaturation
3. Denaturation, Extension, Annealing
4. Denaturation, Annealing, Extension
5. The process of separation and purification of expressed protein before marketing is called:
6. Downstream processing
7. Bioprocessing
8. Postproduct processing
9. Upstream processing
10. Stirred-tank bioreactors have been designed for
11. purification of product
12. addition of preservatives to the product
13. availability of oxygen throughout the process
14. ensuring anaerobic conditions in the culture vessel
15. A foreign DNA and plasmid cut by the same restriction endonuclease can be joined to form a recombinant plasmid using
16. Eco Rl
17. taq polymerase
18. polymerase 111
19. ligase
20. Which of the following is not a component of downstream processing?
21. Separation
22. Purification
23. Preservation
24. Expression
25. DNA fragments are:
26. Negatively charged
27. Neutral
28. Either positively charged depending on their size
29. Positively charged
30. A gene whose expression helps to identify transformed cell is known as:
31. Vector
32. Plasmid
33. Structural gene
34. Selectable marker
35. What is the criterion for DNA fragments movement on agarose gel during gel electrophoresis?
36. The smaller the fragment size, the farther it moves
37. Positively charged fragment move to farther end
38. Negatively charged fragment do not move
39. The larger the fragment size, the farther it moves
40.

Which of the following is a restriction endonuclease?

1. Protease
2. DNase I
3. RNase
4. Hind II
5.

Which of the following is not a feature of the plasmids ?

1. Circular structure
2. Transferable
3. Single-stranded
4. Independent replication

13.

The Taq polymerase enzyme is obtained from

1. Thiobacillus ferroxidans
2. Bacillius subtilis
3. Pseudomonas putida
4. Thermus aquaticus
5. The cutting of DNA at specific locations became possible with the discovery of
6. Restriction enzymes
7. probes
8. Selectable markets
9. ligases
10. The introduction of t-DNA into plants involves
11. Infection of the plant by Argobacterium tumefaciens
12. Altering the pH of soil, heat-shocking the plants
13. Exposing the plants to Cold for a brief period
14. Allowing the plant roots to stand in water
15. Which vector can clone only a small fragment of DNA?
16. Bacterial artificial chromosome
17. Yeast artificial chromosome
18. plasmid

Biotechnology: Principles \& Processes - NCERT based

PYQs
17. Which of the following is not correctly matched for the organism and its cell wall degrading enzyme?

1. Plant cells- cellulose
2. Algae - Methylase
3. Fungi - Chitinase
4. Bacteria - Lysozyme
5. DNA fragments generated by the restriction endonucleases in a chemical reaction can be separated by :
6. Polymerase chain reaction
7. Electrophoresis
8. Restriction mapping
9. Centrifugation
10. The colonies of recombinant bacteria appear because of :
11. Insertional inactivation of alpha-galactosidase in nonrecombinant bacteria
12. Insertional inactivation of beta-galactosidase in recombinant bacteria
13. Inactivation of glycosidase enzyme in recombinant bacteria
14. Non-recombinant bacteria containing beta-galactosidase

20.

The figure below is the diagrammatic representation of the E. coli vector pBR 322. Which one of the given options correctly identifies its certain components (s)?

1. Ori-original restriction enzyme
2. rap-reduced osmotic pressure
3. Hind III, Eco RI-selectable markers
4. $\mathrm{amp}^{\mathrm{R}}$, teti ${ }^{\mathrm{R}}$-antibiotic resistance genes
5. Which one of the following is a case of wrong matching?
6. Somatic hybridization- Fusion of two diverse cells
7. Vector DNA- Site for tRNS synthesis
8. Micropropagation- In vitro production of plants in large numbers
9. Callus - Unorganized mass of cells produced in tissue culture
10. Which one is a true statement regarding DNA polymerase used in PCR?
11. It is used to ligate introduces DNA in recipient cells
12. It serves as a selectable marker
13. It is isolated from a virus
14. It remains active at high temperature
15. For transformation, microparticles coated with DNA to be bombarded with gene gun are made up of
16. Silver or platinum
17. Platinum or zinc
18. Silicon or platinum
19. Gold or tungsten
20.

Given below is a sample of portion of DNA strand giving the base sequence on the opposite strands. What is so, special shown in it?
5, __GAATTC__3'
3'__CTTAAG__5'

1. Deletion mutation
2. Start codon at the 5^{\prime} end
3. Palindromic sequence of base pairs
4. Replication completed 26
5.

There is a restriction endonuclease called Eco RI.
What does 'co' part in it stand for?

1. Coelom
2. Coenzyme
3. Coli
4. Colon
5.

Agarose extracted from seaweeds finds use in

1. tissue culture
2. PCR
3. gel electrophoresis
4. spectrophotometry
5. Which one of the following palindromic base sequences in DNA can be easily cut at about the middle by some particular restriction enzyme?
6. 5'-CGTTCG-3'

3'-ATGGTA-5'
2. 5'-GATATG-3' 3'-CTACTA-5'
3. 5'-GAATTC-3' 3'-CTTAAG-5'
4. 5'-CACGTA-3' 3'-CTCAGT-5'
28. Restriction endonucleases are enzymes which

1. make cuts at specific positions within the DNA molecule
2. recognize a specific nucleotide sequence for binding of DNA ligase
3. restrict the action of the enzyme DNA polymerase
4. remove nucleotides from the ends of the DNA molecule
5. Stirred-tank bioreactors have been designed for -
(1) Addition of preservatives to the product
(2) Purification of the product
(3) Ensuring anaerobic conditions in the culture vessel
(4) Availability of oxygen throughout the process
6.

Gel electrophoresis is used for

1. cutting of DNA into fragments
2. separation of DNA fragments according to their size
3. construction of recombinant DNA by joining with cloning vectors
4. isolation of DNA molecule
5.

The linking of the antibiotic resistance gene with the plasmid vector became possible with

1. DNA ligase
2. endonucleases
3. DNA polymerase
4. exonucleases
5. Restriction endonuclease:
6. cuts the DNA molecule randomly
7. cuts the DNA molecule at specific sites
8. restricts the synthesis of DNA inside the nucleus
9. synthesis DNA
10. Following statements describe the characteristics of the enzyme Restriction Endonuclease. Identify the incorrect statement
11. The enzyme recognizes a specific palindromic nucleotide sequence in the DNA
12. The enzyme cuts DNA molecules at identified position within the DNA
13. The enzyme binds DNA at specific sites and cuts only one of the two strands
14. The enzyme cuts the sugar-phosphate backbone at specific sites on each strand
15. DNA precipitation out of a mixture of biomolecules can be achieved by treatment with:
16. Chilled chloroform
17. isopropanal
18. Chilled ethanol
19. Which of the following equipments is essentially required for growing microbes on a large scale for industrial production of enzymes?
20. Bioreactor
21. BOD incubator
22. Sludge digester
23. Industrial oven
24. Match the following enzymes with their functions:

Column-I

(a) $\begin{aligned} & \text { Restriction } \\ & \text { endonuclease }\end{aligned}$ (i) joins the DNA fragments
(b) Exonuclease
(ii)
extends primers on genomic DNA template
(c) DNA ligase
(iii) cuts DNA at specific position
(d) Tag polymerase (iv) removes nucleotides from the ends of DNA

Select the correct option from the following:

1. (a) - (iii), (b)- (i), (c)- (iv), (d)-(ii)
2. (a) - (iii), (b)- (iv), (c)- (i), (d)-(ii)
3. (a) - (iv), (b)- (iii), (c)- (i), (d)-(ii)
4. (a) - (ii), (b)- (iv), (c)- (i), (d)-(iii)
5. The two antibiotic resistance genes on vector pBR 322 are for
6. Ampicillin and Tetracycline
7. Ampicillin and Chloramphenicol
8. Chloramphenicol and Tetracycline
9. Tetracycline and Kanamycin
10. A selectable marker is used to :
11. help in eliminating the non transformants so that the transformants can be regenerated
12. identify the gene for a desired trait in an alien organism
13. select a suitable vector for transformation in a specific crop
14. mark a gene on a chromosome for isolation using restriction enzyme

Biotechnology: Principles \& Processes - NCERT based

 PYQs39. Given below are four statements pertaining to separation of DNA fragments using Gel electrophoresis. Identify the incorrect statements.
(a) DNA is negatively charged molecule and so it is loaded on gel towards the Anode terminal.
(b) DNA fragments travel along the surface of the gel whose concentration does not affect movement of DNA.
(c) Smaller the size of DNA fragment, larger is the distance it travels through it.
(d) Pure DNA can be visualized directly by exposing to UV radiation.
Choose correct answer from the options given below:
40. (a), (c) and (d)
41. (a), (b) and (c)
42. (b), (c) and (d)
43. (a), (b) and (d)
44. An enzyme catalysing the removal of nucleotides from ends of DNA is :
45. DNA ligase
46. Endonuclease
47. Exonuclease
48. Protease
49. The sequence that controls the copy number of the linked DNA in the vector, is termed :
50. Ori site
51. Palindromic sequence
52. Recognition site
53. Selectable marker
54. In-gel electrophoresis, separated DNA fragments can be visualized with the help of:
55. Ethidium bromide in UV radiation
56. Acetocarmine in UV radiation
57. Ethidium bromide in infrared radiation
58. Acetocarmine in bright blue light
59. Identify the wrong statement with regards to restriction enzyme
60. They cut the strength at palindromic sites.
61. They are useful in genetic engineering.
62. Sticky ends can be joined by using DNA ligases.
63. Each restriction enzyme functions by inspecting the length of a DNA sequence.
64. The specific palindromic sequence which is recognized by EcoRI is :
65. 5' -GGAACC-3'

3'-CCTTGG-5'
2. 5^{\prime}-CTTAAG-3'

3'-GAATTC-5'
3. 5'-GGATCC-3'

3'-CCTAGG-5'
4. 5'-GAATTC-3'

3'-CTTAAG-5'
45. First discovered restriction endonuclease that always cuts DNA molecule at a particular point by recognizing a specific sequence of six base pairs is:

1. EcoR1
2. Adenosine deaminase
3. Thermostable DNA polymerase
4. Hind II
5. In recombinant DNA technology antibiotics are used :
6. to keep medium bacteria-free
7. to detect alien DNA
8. to impart disease-resistance to the host plant
9. as selectable markers
10. Match the following techniques or instruments with their usage :
(a) Bioreactor
(i) Separation of DNA fragments
(b) Electrophoresis
(c) PCR
(d) ELISA
(ii) Production of large quantities of products
(iii) Detection of pathogen, based on antigen - antibody reaction
(iv) Amplification of nucleic acids

Select the correct option from following:

1. (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)
2. (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
3. (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
4. (a)-(ii), (b)-(i), (c)-(iii), (d)-(iv)
5. In a mixture, DNA fragments are separated by-
6. Bioprocess engineering
7. Restriction digestion
8. Electrophoresis
9. Polymerase chain reaction
10. Spooling is :-
11. Amplification of DNA
12. Cutting of separated DNA bands from the agarose gel
13. Transfer of separated DNA fragments to synthetic membranes
14. Collection of isolated DNA
15. Select the correct statement from the following :
16. Gel electrophoresis is used for the amplification of a DNA segment.
17. The polymerase enzyme joins the gene of interest and the vector DNA.
18. Restriction enzyme digestions are performed by incubating purified DNA molecules with the restriction enzymes of optimum conditions.
19. PCR is used for isolation and separation of genes of interest.
20. In genetic engineering, the antibiotic resistance gene are used :
21. To select healthy vectors
22. As sequences from where replication starts
23. To keep the cultures free of infection
24. As selectable markers
25. The figure below shows three steps ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) of Polymerase Chain Reaction (PCR). Select the option giving correct identification together with what it represents?

26. A - Denaturation at a temperature of about $50^{\circ} \mathrm{C}$
27. C - Extension in the presence of heat stable DNA polymerase
28. A - Annealing with two sets of primers
29. B - Denaturation at a temperature of about $98^{\circ} \mathrm{C}$ separating the two DNA strands
30. Which one of the following represents a palindromic sequence in DNA ?
31. 5'-CCAATG-3'

3'-GAATCC-5'
2. 5'-CATTAG-3' 3'-GATAAC-5'
3. 5^{\prime}-GATACC- 3^{\prime}

3'-CCTAAG-5'
4. 5'-GAATTC-3'

3'-CTTAAG-5'
54. Biolistics (gene-gun) is suitable for -

1. Transformation of plant cells
2. Constructing recombinant DNA by joining with vectors
3. DNA finger printing
4. Disarming pathogen vectors
5. Which of the following are used in gene cloning-
6. Lomasomes
7. Mesosomes
8. Plasmids
9. In genetic engineering, a DNA segment (gene) of interest, is transferred to the host cell through a vector. Consider the following four agents (A-D) in this regard and select the correct option about which one or more of these can be used as a vecotr / vectors -
A. a bacterium
B. plasmid
C. plasmodium
D. bacteriophage

Options :

1. (A) only
2. (A) and (C) only
3. (B) and (D) only
4. (A), (B) and (D) only
5. Which one of the following techniques made it possible to genetically engineer living organisms?
6. Hybridization
7. Recombinant DNA techniques
8. X-ray diffraction
9. Heavier isotope labeling
10. Which one of the following hydrolyses internal phosphodiester bonds in a polynucleotide chain-
(1) Lipase
(2) protease
(3) Exonuclease
(4) Endonuclease
11. Knife of DNA :
12. DNA-ligase
13. Restriction endonuclease
14. Exonuclease
15. Peptidase
16. Genetic engineering involves :
17. Use of restriction endonuclease on bacterial DNA and formation of new traits
18. Use of Ligase for cutting DNA
19. Developing instruments
20. Use of statistic in genetics
21. Which of the following is most used in genetic engineering :
22. E. coil and Agrobacterium
23. Mycobacteria and Salmonella
24. Aspergillus
25. Penicillium
26. Restriction endonucleases :-
(1) Are used in genetic engineering for ligating two DNA molecules
(2) Are used for in vitro DNA synthesis
(3) Are synthesized by bacteria as part of their defense mechanism
(4) Are present in mammalian cells for degradation of

Biotechnology: Principles \& Processes - NCERT based

 PYQs63. The Ti plasmid is often used for making transgenic plants. This plasmid is found in
(1) Rhizobium of the roots of leguminous plants
(2) Agrobacterium
(3) Yeast as a $2 \mu \mathrm{~m}$ plasmid
(4) Azotobacter
64. Function of Nucleases :
65. Break the polynucleotide chain by breaking the each terminal nucleotide
66. Breaks phosphodiester bond
67. Breaks peptide bonds
68. Breaks ester bonds
69. The bacteria generally used for genetic engineering is :
70. Agrobacterium
71. Bacillus
72. Pseudomonas
73. Clostridium
74. In bacteria, plasmid is :-
(1) Extra chromosomal material
(2) Main DNA
(3) Non functional DNA
(4) Repetative gene
75. Which of the following enzymes are used to join bits of DNA : -
(1) Ligase
(2) Primase
(3) DNA polymerase
(4) Endonuclease
76. Manipulation of DNA in genetic engineering became possible due to the discovery of : -
(1) Restriction endonuclease
(2) DNA ligase
(3) Transcriptase
(4) Primase
77. Which one of the following bacteria has found extensive use in genetic engineering work in plants : -
(1) Clostridium septicum
(2) Xanthomonas citri
(3) Bacillus coagulens
(4) Agrobacterium tumefaciens
78. What is true for plasmid :-
79. Plasmids are widely used in gene transfer
80. These are found in virus
81. Plasmid contain gene for vital activities
82. These are main part of chromosome
83. Which of the following cut the DNA from specific places :-
84. Restriction endonuclease (EcoRI)
85. Ligase
86. Exonuclease
87. Alkaline phosphate
88. In lederberg's replica plating experiment what shall be used to obtain streptomycin resistant strain : -
89. Minimal medium and streptomycine
90. Complete medium and streptomycine
91. Only minimal medium
92. Only complete medium
93. DNA strands on a gel stained with ethidium bromide when viewed under UV radiation, appear as:
(1) Dark red bands
(2) Bright blue bands
(3) Yellow bands
(4) Bright orange bands
94. Which of the following is a correct sequence of steps in a PCR (Polymerase Chain Reaction)?
(1) Extension, Denaturation, Annealing
(2) Annealing, Denaturation, Extension
(3) Denaturation, Annealing, Extension
(4) Denaturation, Extension, Annealing
95. During the purification process for recombinant DNA technology, addition of chilled ethanol precipitates out:
(1) Histones
(2) Polysaccharides
(3) RNA
(4) DNA
96. Plasmid pBR322 has a PstI restriction enzyme site within gene amp ${ }^{R}$ that confers ampicillin resistance. If this enzyme is used for inserting a gene for β-galactoside production and the recombinant plasmid is inserted in an E.coli strain,
97. it will lead to the lysis of host cells.
98. it will be able to produce a novel protein with dual abilities.
99. it will not be able to confer ampicillin resistance to the host cell.
100. the transformed cells will have the ability to resist ampicillin as well as produce β-galactoside.
101. A specific recognition sequence identified by endonucleases to make cuts at specific positions within the DNA is:
102. Palindromic Nucleotide sequences
103. Poly(A) tail sequences
104. Degenerate primer sequence
105. Okazaki sequences

Biotechnology: Principles \& Processes - NCERT based
PYQs
78. During the process of gene amplification using PCR, very high temperature is not maintained in the beginning, then which of the following PCR will be affected first?

1. Denaturation
2. Ligation
3. Annealing
4. Extension

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

 courseBiotechnology \& its Applications
(Expected Questions in NEET 2022: 2)

Subtopic Name	Number of Questions
Bt Crops	10
Interference RNA Tech	9
Gene Therapy	6
Ethical Issues	5
Med Applications \& Humulin	5
Other GM Crops	5
Molecular Diagnosis	4
Intro to Agri Applications	3
Transgenic Microbes \& Animals	3

Biotechnology \& its Application - NCERT based PYQs

1.

Which of the following is commonly used as a vector for introducing a DNA fragment in human Lymphocytes?

1. Retrovirus
2. Ti plasmid
3. λ phage
4. pBR 322
5.

Which part of the tobacco plant is infected by Meloidegyne incognitia?

1. Leaf
2. Stem
3. Root
4. Flower
5.

In India, the organization responsible for assessing the safety of introducing genetically modified Organisms for public use is

1. Indian Council of Medical Research (ICMR)
2. Council for Scientific and Industrial Research (CSIR)
3. Research Committee on Genetic Manipulation (RCGM)
4. Genetic Engineering Appraisal Committee (GEAC)
5. A 'new variety of rice was patented by a foreign company though such varieties have been present in India for a long time. This is related to
6. Co-667
7. Sharbati Sonora
8. Lerma Rojo
9. Basmati
10. Golden rice is a genetically modified Crop plant where the incorporated gene is meant for biosynthesis of
11. Vitamin-B
12. Vitamin-C
13. Omega 3
14. Vitamin-A
15.

In Bt cotton, the Bt toxin present in plant tissue as protoxin is converted into active toxin due to

1. alkaline pH of the insect gut
2. acidic pH of the insect gut
3. action of gut microorganisms
4. presence of conversion factors in insect gut
5.

Use of bioresources by multinational companies and organizations without authorization from the Concerned country and its people is called

1. Bio-infringement
2. Biopiracy
3. Biodegradation
4. Bioexploitation
5. Which kind of therapy was given in 1990 to a four-year-old girl with Adenosine Deaminase (ADA) deficiency?
6. Gene therapy
7. Chemotherapy
8. Immunotherapy
9. Radiation therapy
10.

The two polypeptides of human insulin are linked together by

1. phosphodiester bonds
2. covalent bonds
3. disulphide bridges
4. hydrogen bonds
5. Which of the following Bt crops is being grown in India by the farmers?
6. Cotton
7. Brinjal
8. Soybean
9. Maize
10. Consumption of which one of the following foods can prevent the kind of blindness associated with vitamin-A deficiency?
11. Flaver savr tomato
12. Canolla
13. Golden rice
14. Bt-brinjal
15. A single strand of nucleic acid tagged with a radioactive molecule is called
16. vector
17. selectable marker
18. Plasmid
19. Probe
20.

The process of RNA interference has been used in the development of plants resistant to

1. fungi
2. viruses
3. insects
4. nematodes

14.

Maximum number of existing transgenic animals is of

1. mice
2. cow
3. pig
4. fish
5. Genetic engineering has been successfully used for producing -
(1) transgenic mice for testing safety of polio vaccine before use in humans
(2) transgenic models for studying new treatments for certain cardiac disease
(3) transgenic Cow-Rosie which produces high fat milk for making ghee
(4) Animals like bulls for farm work as they have super power
6. Some of the characteristics of Bt cotton are
7. long fibre and resistance to aphids
8. medium yield, log fibre and resistance to beetle pests
9. high yield and production of toxic protein crystals which kill dipteran pests
10. high yield and resistance to bollworms

17. An improved variety of transgenic basmati rice

1. does not require chemical fertilizers and growth hormones
2. gives high yield and is rich in vitamin-A
3. is completely resistant to all insect pests and diseases of paddy
4. gives high yield but has no characteristic aroma
5. The bacterium Bacillus thuringiensis is widely used in contemporary biology as a/an
6. indicator of water pollution
7. insecticide
8. agent for production of dairy products
9. source of industrial enzyme
10. The genetic defect-Adenosine Deaminase (ADA) deficiency may be cured permanently by
11. periodic infusion of genetically engineered lymphocytes having functional ADA cDNA
12. administering adenosine deaminase activators
13. introducing bone marrow cells producing ADA into cells at early embryonic stages
14. Invitro Cell culture therapy.
15. Which one of the following is commonly used in transfer of foreign DNA into crop plants?
16. Trichoderma harzianum
17. Meloidogyne incognita
18. Agro bacterium tumefaciens
19. Penicillium expansum
20. What is true about Bt toxin?
21. the inactive protoxin gets converted into active form in the insect gut
22. Bt protein exists as active toxin in the Bacillus
23. The activated toxin enters the ovaries of the pest to sterilize it and thus prevent its multiplication
24. the concerned Bacillus has antitoxins

22. Transgenic plants are

1. produced by a somatic embryo in artificial medium
2. generated by introducing foreign DNA into a cell and regenerating a plant from that cell
3. Produced after protoplast fusion in artificial medium
4. grown in artificial medium after hybridization in the field
5.

Human insulin is being commercially produced from a transgenic species of

1. Escherichia
2. Mycobacterium
3. Rhizobium
4. Saccharomyces

24.

Cry-I endotoxins obtained from Bacillus thuringiensis are elective against

1. mosquitoes
2. flies
3. nematodes
4. bollworms
5.

What is antisense technology?

1. A cell displaying a foreign antigen used for synthesis of antigens.
2. Production of somaclonal variants in tissue cultures.
3. When a piece of RNA that is complementary in sequence is used to stop expression of a specific gene
4. RNA polymerase producing DNA
5. Golden rice is a promising transgenic crop. When released for cultivation, it will help in:
6. alleviation of vitamin-A deficiency
7. pest resistance
8. herbicide tolerance
9. producing a petrol-like fuel from rice
10. Microbes found to be very useful in genetic engineering are:
11. Escherichia coli and Agrobacterium tumefaciens
12. Vibrio cholerae and a tailed bacteriophage
13. Diplococcus sp. and Pseudomonas sp.
14. Crown gall bacterium and caenorhabditis elegans
15. What triggers activation of protoxin to active Bt toxin of Bacillus thuringiensis in boll worm?
16. Acidic pH of stomach
17. Body temperature
18. Moist surface of midgut
19. Alkaline pH of gut
20. Which of the following is true for Golden rice?
21. It has yellow grains, because of gene introduced from a primitive variety of rice
22. It is Vitamin A enriched, with a gene from daffodil
23. It is pest resistant, with a gene from Bacillus thuringiensis
24. It is drought tolerant, developed using Agrobacterium vector
25. Exploitation of bioresources of a nation by multinational companies without authorization from the concerned country is referred to as
26. Bioweapon
27. Biopiracy
28. Bioethics
29. Biowar
30. In RNAi, the genes are silenced using :
31. dsRNA
32. ssDNA
33. ssRNA
34. dsDNA
35. Which of the following statements is not correct?
36. The proinsulin has an extra peptide called C-peptide
37. The functional insulin has A and B chains linked together by hydrogen bonds.
38. Genetically engineered insulin is produced in E-Coli.
39. In man, insulin is synthesized as proinsulin.
40. Bt cotton variety that was developed by the introduction of toxin gene of Bacillus thuringiensis (BT) is resistant to
41. Fungal diseases
42. Plant nematodes
43. Insect predators
44. Insect pests
45. Match the organism with its use in biotechnology.
(a) Bacillus thuringiensis
(i) Cloning vector
(b) Thermus aquaticus
(ii) Construction of first
rDNA molecule
(c) Agrobacterium tumefaciens
(iii) DNA polymerase
(d) Salmonella typhimurium
(iv) Cry proteins

Select the correct option from the following:
(a) (b) (c) (d)

1. (iv) (iii) (i) (ii)
2. (iii) (ii) (iv) (i)
3. (iii) (iv) (i) (ii)
4. (ii) (iv) (iii) (i)
5. Match the following columns and select the correct option.
Column - I
Column - II
a. Bt cotton
b. Adenosine
(i) Gene therapy
(ii) Cellular defence deaminase deficiency
c. RNAi
(iii) Detection of HIV infection
d. PCR
(iv) Bacillus thuringiensis
(a) (b) (c) (d)
6. (iii) (ii) (i) (iv)
7. (ii) (iii) (iv) (i)
8. (i) (ii) (iii) (iv)
9. (iv) (i) (ii) (iii)
10. RNA interference is used for which of the following purposes in the field of biotechnology?
11. to develop a plant tolerant to abiotic stresses
12. to develop a pest-resistant plant against infestation by nematode
13. to enhance the mineral usage by the plant
14. to reduce post-harvest losses
15. The laws and rules to prevent unauthorized exploitation of bio-resources are termed as -
16. Biopatenting
17. Bioethics
18. Bioengineering
19. Biopiracy
20. Tobacco plants resistant to a nematode have been developed by the introduction of DNA that produced (in the host cells) :
21. A particular hormone
22. An antifeedant
23. A toxic protein
24. Both sense and anti-sense RNA
25. The first clinical gene therapy was given for treating -
26. Chicken pox
27. Rheumatoid arthritis
28. Adenosine deaminase deficiency
29. Diabetes mellitus
30. Which one of the following is now being commercially produced by biotechnological procedures -
31. Morphine
32. Quinine
33. Insulin
34. Nicotine
35. Read the following four statements (A-D) about certain mistakes in two of them :
(A) The first transgenic buffalo, Rosie produced milk which was human alpha-lactalbumin enriched.
(B) Restriction enzymes are used in isolation of

DNA from other macro-molecules
(C) Downstream processing is one of the steps of R-DNA technology
(D) Disarmed pathogen vectors are also used in transfer of R-DNA into the host
Which are the two statements having mistakes?

1. Statements (A) and (B)
2. Statements (B) and (C)
3. Statements (C) and (D)
4. Statements (A) and (C)
5. Silencing of mRNA has been used in producing transgenic plants resistant to :
6. Bacterial blights
7. Bollworms
8. Nematodes
9. White rusts
10. Bacillus thuringiensis forms protein crystals which contain insecticidal protein.
This protein :
11. does not kill the carrier bacterium which is itself resistant to this toxin
12. binds with epithelial cells of midgut of the insect pest ultimately killing it
3 . is coded by several genes including the gene cry
13. is activated by acid pH of the foregut of the insect pest.
14. Golden rice is a transgenic crop of the future with the following improved trait -
(1) High protein content
(2) High vitamin - A content
(3) High lysine (essential amino acid) content
(4) Insect resistance
15. Which of the following is not an application of PCR (Polymerase Chain Reaction)?
(1) Purification of isolated protein
(2) Detection of gene mutation
(3) Molecular diagnosis
(4) Gene amplification
16. When gene targetting involving gene amplification is attempted in an individual's tissue to treat disease, it is known as:
17. Molecular diagnosis
18. Safety testing
19. Biopiracy
20. Gene therapy
21. Now a days it is possible to detect the mutated gene causing cancer by allowing the radioactive probe to hybridise its complementary DNA in clone of cells, followed by its detection using autoradiography because:
22. mutated gene does not appear on a photographic film as the probe has no complementarity with it.
23. mutated gene does not appear on photographic film as the probe has complementarity with it.
24. mutated gene partially appears on a photographic film.
25. mutated gene completely and clearly appears on a photographic film.
26. With regard to insulin choose correct options.
(a) C-peptide is not present in mature insulin.
(b) The insulin produced by rDNA technology has Cpeptide.
(c) The pro-insulin has C-peptide.
(d) A-peptide and B-peptide of insulin are interconnected by disulphide bridges.
Choose the correct answer from the options given below.
(1) (a), (c) and (d) only
(2) (a) and (d) Only
(3) (b) and (d) only
(4) (b) and (c) only
27. For effective treatment of the disease, early diagnosis and understanding its pathophysiology is very important. Which of the following molecular diagnostic techniques is very useful for early detection?
28. ELISA Technique
29. Hybridization Technique
30. Western Blotting Technique
31. Southern Blotting Technique
32. The Adenosine deaminase deficiency results into:
33. Digestive disorder
34. Addison's disease
35. Dysfunction of Immune system
36. Parkinson's disease

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get

FREE ACCESS for 3
days of ANY NEETprep
course

U. neet.prep
 Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Organisms \& Populations

(Expected Questions in NEET 2022: 3)

Subtopic Name Number of

Questions

Population Interactions	17
Population Characters	7
Adaptations	3
Population: Logistic Growth Model	3
Introduction to Ecology	2
Population: Exponential Growth Model	2
Response of Organisms to Abiotic Factors	2
Introduction to the Chapter	1

1. Asymptote in a logistic growth curve is obtained when:
2. $\mathrm{K}=\mathrm{N}$
3. $\mathrm{K}>\mathrm{N}$
4. $\mathrm{K}<\mathrm{N}$
5. The value of 'r' approaches zero
6.

Niche is

1. All the biological factors in the organism environment
2. The physical space where an organism live
3. The range of temperature that the organism needs to live
4. The functional role played by the organism where it lives
5.

Natality refers to

1. Death rate
2. Birth rate
3. Number of individuals leaving the habitat
4. Number of individuals entering the habitat
5.

In a growing population of a country

1. pre-reproductive individuals are more than reproductive individuals.
2. reproductive individuals are less than post-reproductive individuals.
3. reproductive and pre-reproductive individuals are equal in number.
4. pre-reproductive individuals are less than reproductive individuals.
5. If ' + ' sign is assigned to beneficial interaction, '-' sign to detrimental and ' 0 ' sign to neutral interaction, then the population interaction represented by'+"-' refers to
6. mutualism
7. amensalism
8. commensalism
9. parasitism
10. The principle of competitive exclusion was stated by
11. C. Darwin
12. G. F. Gause
13. MacArthur
14. Verhulst and Pearl
15. Mycorrhizae are the example of:
16. Amensalism
17. Antibiosis
18. Mutualism
19. Fungistasis
20.

When does the growth rate of a population following the logistic model equal zero? The logistic model is given as $\mathrm{dN} / \mathrm{dt}=\mathrm{rN}(1-\mathrm{N} / \mathrm{K})$

1. when N nears the carrying capacity of the habitat
2. when N / K equals zero
3. when death rate is greater than birth rate
4. when N / K is exactly one
5. An association of individuals of different species living in the same habitat and having functional interactions is
6. Ecological niche
7. Biotic community
8. Ecosystem
9. Population
10. In which of the following interactions both partners are adversely affected?
11. Competition
12. Predation
13. Parasitism
14. Mutualism
15. Just as a person moving from Delhi to Shimla to escape the heat for the duration of hot summer, thousands of migratory birds from Siberia and other extremely cold northern regions move to:
16. Western Ghat
17. Meghalaya
18. Corbett National Park
19. Keoladeo National Park
20. A biologist studied the population of rats in a barn. He found that the average natality was 250 , average mortality 240 , immigration 20 and emigration 30 . The net increase in population is :
21. 15
22. 05
23. zero
24. 10
25. According to Darwin, organic evolution is due to:
26. Interspecific competition
27. Competition within closely related species.
28. Reduced feeding efficiency in one species due to the presence of interfering species.
29. Intraspecific competition

Organisms \& Populations - NCERT based PYQs

14.

Consider the following four conditions (I-IV) and select the correct pair of them as adaption to environment in desert lizards.
The conditions:
I. Burrowing in soil to escape high temperature
II. Losing heat rapidly from the body during high temperature
III. Bask in sun when temperature is low
IV. Insulating body due to thick fatty dermis

1. (I) and (III)
2. (II) and (IV)
3. (I) and (II)
4. (III) and (IV)
5. What type of human population is represented by the following age pyramid?

6. Stable population
7. Declining population
8. Expanding population
9. Vanishing population
10.

Which one of the following is categorized as a parasite in true senses?

1. Human foetus developing inside the uterus draws nourishment from the mother
2. Head louse living on the human scalp as laying eggs on human hair
3. The cuckoo (koel) lays its eggs in crow's nest
4. The female Anopheles bites and sucks blood from humans
5. Study the four statements (a-d) given below and select the two correct ones out of them -
(a) A lion eating a deer and a sparrow feeding on grain are ecologically similar in being consumers
(b) Predator star fish Pisaster helps in maintaining species diversity of some invertebrates
(c) Predators ultimately lead to the extinction of prey species
(d) Production of chemicals such as nicotine, strychnine by the plants are metaboilic disorders
The two correct stament are-
(1) a and d (2) a and b
(3) b and c (4) c and d
6. The figure given below is a diagrammatic representation of response of organisms toabiotic factors. What do A, B and C represent respectively?

(a)
7. Regulator

Conformer
2. Conformer

Regulator
Partial regulator
3. Regulator $\begin{aligned} & \text { Partial } \\ & \text { regulator }\end{aligned}$ Conformer
4. $\begin{aligned} & \text { Partial } \\ & \text { regulator }\end{aligned}$ Regulator Conformer

1. (1)
2. (2)
3. (3)
4. (4)
5. A country with a high rate of population growth took measures to reduce it. The figure below shows age sex pyramids of populations. A and B twenty years apart. Select the correct interpretation about them

Interpretations

1. ' A ' is more recent and shows slight reduction in the growth rate
2. 'B' is more earlier pyramid and shows stabilised growth rate
3. ' B ' is more recent showing that population is very young
4. ' A ' is the earlier pyramid and no change has occured in the growth rate
5. Geometric representation of age structure is a characteristic of:
6. Biotic community
7. Population
8. Lanscape
9. Ecosystem
10. The formula for exponential population growth is:
11. $\mathrm{dt} / \mathrm{dN}=\mathrm{rN}$
12. $\mathrm{dN} / \mathrm{rN}=\mathrm{dt}$
13. $\mathrm{rN} / \mathrm{dN}=\mathrm{dt}$
14. $\mathrm{dN} / \mathrm{dt}=\mathrm{rN}$
15. Carnivorous animals - lions and leopards, occupy the same niche but lions predate mostly larger animals and leopards take smaller ones. This mechanism of competition is referred to as -
16. Character displacement
17. Altruism
18. Resource partitioning
19. Competitive exclusion
20. Between which among the following, the relationship is not an example of commensalism?
21. Orchid and the tree on which it grows
22. Cattle Egret and grazing cattle
23. Sea Anemone and Clown fish
24. Female wasp and fig species
25. Match the items in Column-I with those in Column-II :

Column I

$\begin{array}{ll}\text { (a) Herbivores-Plants } & \text { (i) Commensalism } \\ \text { (b) Mycorrhiza-Plants } & \text { (ii) Mutualism } \\ \text { (c) Sheep-Cattle } & \text { (iii) Predation } \\ \text { (d) Orchid-Tree } & \text { (iv) Competition }\end{array}$
Select the correct option from following :

1. (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)
2. (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)
3. (a)-(ii), (b)-(i), (c)-(iii), (d)-(iv)
4. (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)
5. The impact of immigration on population density is:-
6. Negative
7. Both positive and negative
8. Neutralized by natality
9. Positive
10. Which one of the following is most appropriately defined -
11. Amensalism is a relationship in which one species is benefited where as the other is unaffected
12. Predator is an organism that catches and kills other organism for food.
13. Parasite is an organism which always lives inside the body of other organism and may kill it.
14. Host is an organism which provides food to another organism.
15. The logistic population growth is expressed by the equation :
16. $\frac{d N}{d t}=r N\left(\frac{N-K}{N}\right)$
17. $\frac{d t}{d N}=N r\left(\frac{K-N}{K}\right)$
18. $\frac{d N}{d t}=r N\left(\frac{K-N}{K}\right)$
19. $\frac{d N}{d t}=r N$
20. Consider the following statements (A)-(D) each with one or two blanks :
(A) Bears go into \qquad (1). _ during winter to
(2). _ cold weather.
(B) A conical age pyramid with a broad base represents \qquad _(3) human population.
(C) A wasp pollinating a fig flower is an example of \qquad (4) _ .
(D) An area with high levels of species richness is known as \qquad (5).

Which of the following options, gives the correct
fill ups for the respective blank numbers from(1) to (5) in the statements?

1. (1) - hibernation, (2) - escape,
(3) - expanding, (5) - hot spot
2. (3) - stable, (4) - commensalism,
(5) - marsh
3. (1) - aestivation, (2) - escape,
(3) - stable, (4) - mutualism
4. (3) - expanding, (4) - commensalism,
(5) - biodiversity park
5. A male insect mistakes an orchid flower to be female due to its shape and performs the act of copulation and induces pollination. This is an example of
6. Mimicry
7. Pseudocopulation
8. Pseudo pollination
9. None
10. Two different species cannot live for long duration in the same niche or habitat. This is
11. Allen's law
12. Gloger's rule
13. Competitive exclusion principle
14. Weismann's theory
15. Which of the following is a correct pair : -
16. Cuscuta - parasite
17. Dischidia - insectivorous
18. Opuntia - predator
19. Capsella - hydrophyte
20. Mycorrhiza is an example of
21. Symbiotic relationship
22. Ectoparasitism
23. Endoparasitism
24. Decomposers
25. Inspite of interspecific competition in nature, which mechanism the competing species might have evolved for their survival?
(1) Mutualism
(2) Predation
(3) Resource partitioning
(4) Competitive release
26. Amensalism can be represented as:
(1) Species A (-) : Species B (-)
(2) Species A (+): Species B (0)
(3) Species A (-) : Species B (0)
(4) Species A $(+)$: Species B $(+)$
27. In the exponential growth equation $N_{t}=N_{0} e^{r t}$, e represents:
28. The base of natural logarithms
29. The base of geometric logarithms
30. The base of number logarithms
31. The base of exponential logarithms

36. Match List-I with List-II

List-I	List-II
(a) Allen's Rule	(i) Kangaroo rat
(b) Physiological adaptation	(ii) Desert lizard
(c) Behavioural adaptation	(iii) Marine fish at depth
(d) Biochemical adaptation	(iv) Polar seal

Choose the correct answer from the options given below.

	(a)	(b)	(c)	(d)
1.	(iv)	(i)	(ii)	(iii)
2.	(iv)	(iii)	(ii)	(i)
3.	(iv)	(ii)	(iii)	(i)
4.	(iv)	(i)	(iii)	(ii)

37. Assertion (A) :

A person goes to high altitude and experiences 'altitude sickness' with symptoms like breathing difficulty and heart palpitations.

Reason (R) :

Due to low atmospheric pressure at high altitude, the body does not get sufficient oxygen.
In the light of the above statements, choose the correct answer from the options given below.

1. (A) is true but (R) is false
2. (A) is false but (R) is true
3. Both (A) and (R) are true and (R) is the correct explanation of (A)
4. Both (A) and (R) are true but (R) is not the correct explanation of (A)

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get
 FREE ACCESS for 3
 days of ANY NEETprep

course

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Ecosystem
 (Expected Questions in NEET 2022: 2)

Subtopic Name

 Number of Questions| Mineral Cycling \& Ecosystem Services | 9 |
| :--- | :--- |
| Ecosystem Productivity | 8 |
| Ecological Pyramids | 7 |
| Decomposition | 5 |
| Ecological Succession | 5 |
| Energy Flow | 3 |
| Introduction | 3 |
| Ecological Flow | 2 |

1. What type of ecological pyramid would be obtained with the following data?
Secondary consumer: 120 g
Primary consumer: 60 g
Primary producer: 10 g
2. Inverted pyramid of biomass
3. Pyramid of energy
4. Upright pyramid of numbers
5. Upright pyramid of biomass
6.

Which of the following would appear as the pioneer organisms on bare rocks?

1. Liverworts
2. Mosses
3. Green algae
4. Lichens
5.

Vertical distribution of different species occupying different levels in a biotic community is known as

1. divergence
2. stratification
3. zonation
4. pyramid
5.

Secondary succession takes place on/in

1. bare rock
2. degraded forest
3. newly created pond
4. newly cooled lava
5.

In which of the following both pairs have correct combination?
(a) Gaseous nutrient cycle

Sedimentary nutrient cycle
(b) Gaseous nutrient cycle

Sedimentary nutrient cycle
(c) Gaseous nutrient cycle

Sedimentary nutrient cycle
(d) Gaseous nutrient cycle Sedimentary nutrient cycle

1. a
2. b
3. c
4. d
5. During ecological succession
6. The gradual and predictable change in species Composition occurs in a given area
7. The establishment of a new biotic community very fast in its primary phase
8. The number and types of animals re constant
9. The changes lead to a community that is in equilibrium with the environment and is called pioneer community.

Carbon and nitrogen
 7.

Sulphur and phosphorous
Carbon and sulphur
Nitrogen and phosphorus
Nitrogen and sulphur
Carbon and Phosphorous
Sulphur and phosphorous
Carbon and nitrogen
8.
c

The mass of living material at a tropic level at a particular time is called

1. gross primary productivity
2. standing state
3. net primary productivity
4. standing crop

In an ecosystem the rate of production of organic matter during photosynthesis is termed as

1. net primary productivity
2. gross primary productivity
3. secondary productivity
4. net productivity
5. Match the following and select the correct option :

List - I
(a) Earthworm
(b) Succession
(c) Ecosystem service
(d) Population growth

List - II
(i) Pioneer species
(ii) Detrivore
(iii) Natality
(iv) Pollination

1. A-(i) B-(ii) C-(iii) D-(iv)
2. A-(i) B-(ii) C-(iii) D-(iv)
3. A-(iii) B-(ii) C-(iv) D-(i)
4. A-(ii) B-(i) C-(iv) D-(iii)
5.

Natural reservoir of phosphorus is:

1. Animal bones
2. Rock
3. Fossils
4. Sea water
5. Given below is a simplified model of phosphorus cycling in a terrestrial ecosystem with four blanks (A-D). Identify the blanks.

A
B
C
D

1. Rock

Detritus
Litter fall
Producers
2. Litter
3. Detritus

4 Producers
Litter fall
Rock minerals

1. 1
2. 2
3. 3
4. 4
5. If 20 J of energy is trapped at producer level, then how much energy will be available to peacock as food in the following chain?
Plant \rightarrow mice \rightarrow snake \rightarrow peacock \backslash
6. 0.02 J
7. 0.002 J
8. 0.2 J
9. 0.0002 J
10. Which one of the following processes during decomposition is correctly described?
11. Humanification-Leads to the accumulation of a dark coloured substance humans which undergoes microbial acton at every fast rate
12. Catabolism-Last step decomposition under fully anaerobic condition
13. Leaching-Water soluble inorganic nutrients rise to the top layers of soil
14. Fragmentation-Carried out by organisms such as earthworm
15. Secondary productivity is rate of formation of new organic matter by:
16. Parasite
17. Consumer
18. Decomposer
19. Producer
20. Pheretima and its close relatives derive nourishment from
21. Sugarcane roots
22. Decaying fallen leaves and soil organic matter
23. Soil insects
24. Small pieces of fresh fallen leaves of maize
25. Which one of the following is not a gaseous biogeochemical cycle in ecosystem?
26. Sulphur cycle
27. Phosphorus cycle
28. Nitrogen cycle
29. Carbon cycle
30. Which one of the following is not a functional unit of an ecosystem?
31. Energy flow
32. Decomposition
33. Productivity
34. Stratification
35.

Which one of the following statements is correct for secondary succession?

1. It occurs on a deforested site
2. It follows primary succession
3. It is similar to primary succession except that it has a relatively slow pace
4. All of the above
5.

Which one of the following statements for pyramid of energy is incorrect, whereas the remaining three are correct?

1. It shows energy content of different trophic level organisms
2. It is inverted in shape
3. It is upright in shape
4. Its base is broad
5.

Mass of living matter at a tropic level in an area at any times is called

1. Detritus
2. Humus
3. Standing state
4. Standing crop
5.

Of the total incident solar radiation proportion of PAR is

1. about 60%
2. about 50%
3. more than 80%
4. about 70%
5. The biomass available for consumption by the herbivores and the decomposers is called
6. net primary productivity
7. secodnary productivity
8. standing crop
9. gross primary productivity
10. Which one of the following is one of the characteristics of a biological community?
11. Stratification
12. Natality
13. Mortality
14. Sex-ratio
15.

About 70\% of total global carbon is found in

1. grasslands
2. agro-ecosystems
3. oceans
4. forests
5. Which one of the following is not used for construction of ecological pyramids ?
6. Dry weight
7. Number of individuals
8. Rate of energy
9. Fresh weight
10. Which of the following ecological pyramids is generally inverted?
11. Pyramid of biomass in a sea
12. Pyramid of numbers in grassland
13. Pyramid of energy
14. Pyramid of biomass in a forest
15. Which of the following statements is incorrect?
16. Biomass decreases from first to fourth trophic level
17. Energy content gradually increases from first to fourth trophic level
18. Number of individuals decreases from first trophic level to fourth trophic level
19. Energy content gradually decreases from first to fourth trophic level
20. Which of the following statements is incorrect regarding the phosphorus cycle?
21. Phosphates are the major form of phosphorus reservoir
22. Phosphorus solubilizing bacteria facilitate the release of phosphorus from organic remains
23. There is the appreciable respiratory release of phosphorus into the atmosphere
24. It is a sedimentary cycle
25. The rate of decomposition is faster in the ecosystem due to the following factors EXCEPT:-
26. Detritus rich in sugars
27. Warm and moist environment
28. Presence of aerobic soil microbes
29. Detritus richer in lignin and chitin
30. Both, hydrarch and xerarch successions lead to :
31. Excessive wet conditions
32. Medium water conditions
33. Xeric conditions
34. Highly dry conditions
35. Which one of the following animals may occupy more than one trophic levels in the same ecosystem at the same time ?
36. Frog
37. Sparrow
38. Lion
39. Goat
40. The breakdown of detritus into smaller particles
by earthworm is a process called :
41. Catabolism
42. Humification
43. Fragmentation
44. Mineralisation
45. Total amount of energy trapped by green plants in food is called :
46. Gross primary production
47. Net primary production
48. Standing crop
49. Standing state
50. Bacteria are essential in carbon cycle as:
51. Decomposer
52. Synthesizer
53. Consumer
54. Pri. Producer
55. The total amount of carbon fixed annually by plants is:
$1.4 \times 10^{23} \mathrm{~kg}$
$2.4 \times 10^{13} \mathrm{~kg}$
$3.4 \times 10^{10} \mathrm{~kg}$
$4.4 \times 10^{11} \mathrm{~kg}$
56. Which of the following is expected to have the highest value ($\mathrm{gm} / \mathrm{m}^{2} / \mathrm{yr}$) in a grassland ecosystem : -
(1) Tertiary production
(2) Gross production (GP)
(3) Net production (NP)
(4) Secondary production
57. Percentage energy transferred to higher tropic level in food chain is :
58. 1%
59. 10%
60. 90%
61. 100%
62. Which is the reason for highest biomass in aquatic ecosystem :
63. Nano plankton, blue green algae, green algae
64. Sea grass, and slime molds
65. Benthonic and brown algae
66. Diatoms
67. Bamboo plant is growing in a far forest then what will be the trophic level of it :-
(1) First trophic level $\left(T_{1}\right)$
(2) Second trophic level $\left(\mathrm{T}_{2}\right)$
(3) Third trophic level $\left(\mathrm{T}_{3}\right)$
(4) Fourth trophic level $\left(\mathrm{T}_{4}\right)$
68. In the equation GPP $-\mathrm{R}=\mathrm{NPP}$

R represents:
(1) Environment factor
(2) Respiration losses
(3) Radiant energy
(4) Retardation factor
41. Which of the following statements is not correct?

1. Pyramid of energy is always upright.
2. Pyramid of numbers in a grassland ecosystem is upright.
3. Pyramid of biomass in sea is generally inverted.
4. Pyramid of biomass in sea is generally upright.
5. The amount of nutrients, such as carbon, nitrogen, phosphorus, and calcium present in the soil at any given time, is referred as:
6. Standing state
7. Standing crop
8. Climax
9. Climax community

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Biodiversity \& Conservation

(Expected Questions in NEET 2022: 2)

Subtopic Name

Number of Questions

In Situ Conservation of Biodiversity 11
Loss of Biodiversity 11

Ex Situ Conservation of Biodiversity	10
Magnitude of Biodiversity	7

Biodiversity Patterns 3

Introduction \& Types	2
Importance of Biodiversity	$\mathbf{1}$

Importance of Biodiversity	1

1. Which one of the following is related to Ex-situ 9. conservation of threatened animals and plants?
2. Biodiversity hot spots
3. Amazon rainforest
4. Himalayan region
5. Wildlife safari parks
6. How many hotspots of biodiversity in the world have been identified till date by Norman Myers?
7. 17
8. 25
9. 34
10. 43

In which of the following both pairs have correct combination?

1. In situ conservation/National park

Ex situ conservation/Botanical garden
2. In situ conservation/Cryopreservation

Ex situ conservation/Wildlife sanctuary
3. In situ conservation/Seed bank

Ex situ conservation/ National park
4. In situ conservation/Tissue culture

Ex situ conservation/Sacred groves
3.

All of the following are included in 'Ex-situconservation' except

1. Wildlife safari parks
2. Sacred groves
3. Botanical Gardens
4. Seed banks
5. Which of the following is correctly matched?
6. aerenchyma-opuntia
7. age pyramid - biome
8. parthenium hysterophorus - threat to biodiversity
9. stratification - population
10. Red List contains data or information on
11. all economically important plants
12. plants whose products are in international trade
13. threatened species
14. marine vertebrates only
15. Alexander Von Humboldt described for the first time:
16. Laws of limiting factor
17. Species-Area relationships
18. Population Growth equations
19. Ecological Biodiversity
20.

Which of the following is the most important cause of animals and plants being driven to extinction ?

1. Alien species invasion
2. Habitat loss and fragmentation
3. Co-extinctions
4. Over-exploitation
5. The species confined to a particular region and not found elsewhere is termed as
6. Keystone
7. Alien
8. Endemic
9. Rare
10. The extent of global diversity of invertebrates is represented in the image below. Choose the correct combination of groups (A-D) respectively?

A
B
C
D

1. Insects
2. Molluscs

4 Insects
Molluscs

1. 1
2. 2
3. 3
4. 4

Other animal Crustaceans Insects
groups

Other animal groups
17. Which one of the following areas in India is a hot spot of biodiversity?

1. Eastern Ghats
2. Gangetic plain
3. Sunder bans
4. Western Ghats
5. The highest number of species in the world is represented by
6. Fungi
7. Mosses
8. Algae
9. Lichens
10.

Which one of the following has the highest number of species in nature?

1. Insects
2. Birds
3. Angiosperms
4. Fungi
5.

Which one of the following shows maximum genetic diversity in India?

1. Rice
2. Maize
3. Mango
4. Groundnut
5. Which one of the following is an example of ex-situ conservation?
6. Wildlife santuary
7. Seed bank
8. Sacred groves
9. National park
10.

Which one of the following is not observed in biodiversity hot spots?

1. Endemism
2. Accelerated species loss
3. Lesser inter specific competition
4. Species richness
5.

World Summit on Sustainable Development (2002) was held in

1. Brazil
2. Sweden
3. Argentina
4. South Africa
5. Which one of the following pairs of organisms are exotic species introduced in India?
6. Ficus religiosa. Lantana camara
7. Lantana camara, Water hyacinth
8. Water hyacinth, Prosopis cinereria
9. Nile perch, Fricus religiosa
10. Which one of the following is not included under in situ conservation?
11. Sanctuary
12. Botanical garden
13. Biosphere reserve
14. National park
15. Which of the following is considered a hot-spot of biodiversity in India?
16. Western ghats
17. Indo-Gangetic plain
18. Eastern ghats
19. Aravalli hills
20. The Earth Summit held in Rio de Janeiro in 1992 was called:
21. for immediate steps to discontinue use of CFCs that were damaging the ozone layer
22. to reduce CO_{2} emissions and global warming
23. for conservation of biodiversity and sustainable utilization of its benefits
24. to asess threat posed to native species by invasive weed species
25. Which one of the following is not a method of in situ conservation of biodiversity?
26. Sacred Grove
27. Biosphere Reserve
28. Wildlife Sanctuary
29. Botanical Garden
30. Which of the following is the most important cause for animals and plants being driven to extinction?
31. Alien species invasion
32. Habitat loss and fragmentation
33. Drought and floods
34. Economic exploitation
35. Decline in the population of Indian native fishes due to introduction of Clarias gariepinus in river Yamuna can be categorised as
36. Co-extinction
37. Habitat fragmentation
38. Over exploitation
39. Alien species invasion
40. Western Ghats have a large number of plant and animal species that are not found anywhere else. Which of the following terms will you use to notify such species ?
41. Endemic
42. Vulnerable
43. Threatened
44. Keystone
45. Exploration of molecular, genetic and species level diversity for novel products of economic importance is known as :
46. Biopiracy
47. Bioenergetics
48. Bioremediation
49. Bioprospecting
50. Which of the following regions of the globe exhibits highest species diversity?
(1) Madagascar
(2) Himalayas
(3) Amazon forests
(4) Western Ghats of India
51. According to Robert May, the global species diversity is about:
52. 20 Million
53. 50 Million
54. 7 Million
55. 1.5 Million
56. According to Alexander von Humboldt :
57. Species richness decreases with increasing area of exploration
58. Species richness increases with the increasing area, but only up to limit
59. There is no relationship between species richness and area explored.
60. Species richness goes on increasing with increasing area of exploration
61. In the following, in each set, a conservation approach and an example of a method of conservation are given
(a) In situ conservation - Biosphere Reserve
(b) Ex situ conservation - Sacred groves
(c) In situ conservation - Seed bank
(d) Ex situ conservation - Cryopreservation `

Select the option with the correct match of approach and method:

1. (a) and (c)
2. (a) and (d)
3. (b) and (d)
4. (a) and (b)
5. Sacred groves are specially useful in -
6. preventing soil erosion
7. year-round flow of water in rivers
8. conserving rare and threatened species
9. generating environmental awareness
10. Biodiversity of a geographical region represents :
11. Species endemic to the region
12. Endangered species found in the region
13. The diversity in the organisms living in the region
14. Genetic diversity present in the dominant species of the region.
15. One of the most important functions of botanical gardens is that -
(1) They allow ex-situ conservation of germ plasm
(2) They provide the natural habitat for wild life
(3) One can observe tropical plants there
(4) They provide a beautiful area for recreation
16. Reason for elimination of wild life is :
17. Deforestation
18. Forest fire
19. Floods
20. Less Rain fall
21. Main reason for disturbance of biological diversity :
22. Green house effect
23. Hunting
24. Soil erosion
25. Destruction of natural habitats
26. Best method to preserve the wild relatives of plants:
27. By growing them in natural habitats
28. Gene library
29. By storing seeds
30. Cryopreservation
31. Species diversity is maximum in :
32. Tropical rain forests
33. Temperate forests
34. Deserts
35. Hill slopes
36. Number of wild life is continuously decreasing. What is the main reason of this :-
(1) Predation
(2) Cutting down of forest
(3) Destruction of habitat
(4) Hunting
37. Viable material of endangered species can be preserved by :
38. Gene bank
39. Gene library
40. Herbarium
41. Gene pool

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get

 FREE ACCESS for 3 days of ANY NEETprep courseSelected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Environmental Issues

(Expected Questions in NEET 2022: 3)

Subtopic Name

Number of Questions
Water Pollution 16
Ozone Layer Depletion
12
Green House Effect \& Global Warming

9
Air Pollution
Improper Resource Utilisation \&
Maintenance
3
Agrochemical \& Radioactive Waste
Solid Waste Pollution
2
1.

In stratosphere, which of the following element acts as a catalyst in degradation of ozone and release of molecular oxygen?

1. Carbon
2. Cl
3. Fe
4. Oxygen
5.

Depletion of which gas in the atmosphere can lead to an increased of skin cancers

1. ozone
2. ammonia
3. methane
4. nitrous oxide
5. Match the items given in Column I with those 8 inColumn II and select the correct option givenbelow:

Column I
a. Eutrophication
b. Sanitary landfill
c. Snow blindness
d. Jhum cultivation

1. a-ii b-i c-iii d-iv
2. a-i b-iii c-iv d-ii
3. a-iii b-iv c-i d-ii
4. a-i b-ii c-iv d-iii

Column II
i. UV-B radiation
ii. Deforestation
iii. Nutrient enrichment
iv. Waste disposal

8.

Joint Forest Management Concept was introduced in India during

1. 1970s
2. 1980s
3. 1990s
4. 1960s
5. Biochemical Oxygen Demand (BOD) may not be a good index for pollution in water bodies receiving effluents from
6. domestic sewage
7. dairy industry
8. petroleum industry
9. sugar industry
10. A lake which is rich in organic waste may result in
11. increased population of aquatic organisms due to minerals
12. drying of the lake due to algal bloom
13. increased population of fish due to lots of nutrients
14. mortality of fish due to lack of oxygen
15. The 'highest DDT concentration in aquatic food chain shall occur in
16. phytoplankton
17. seagull
18. crab
19. eel
20. Which one of the following statements is not valid for aerosols?
21. They alter rainfall and monsoon patterns
22. They caused increased agricultural productivity.
23. They have negative impact on agricultural land.
24. They are harmful to human health.
25.

A river with an inflow of domestic sewage rich in organic waste may result in

1. increased population of aquatic food web organisms
2. an increased production of fish due to biodegradable nutrients
3. death of fish due to lack of oxygen
4. drying of the river very soon due to algal bloom
5. Increase in concentration of the toxicant at successive trophic levels is known as
6. Biomagnifications
7. Biodeterioration
8. Biotransformation
9. Biogeochemical cycling
10. Eutrophication of water bodies leading to killing of fishes is mainly due to non-availability of
11. Food
12. Light
13. Essential minerals
14. Oxygen
15. The zone of atmosphere in which the ozone layer is present is called
16. Ionosphere
17. Mesosphere
18. Stratosphere
19. Troposphere
20.

The Air Prevention and Control of Pollution Act came into force in:

1. 1981
2. 1985
3. 1990
4. 1975
5. A scrubber in the exhaust of a chemical industrial plant removes:
6. Gases like sulphue dioxide
7. Particulate matter of the size 5 micrometer or above
8. Gases like ozone and methane
9. Particulate matter of the size 2.5 micrometer or less
10. Global warming can be controlled by:
11. Reducing reforestation, increasing the use of fossil fuel.
12. Increasing deforestation, slowing down the growth of human population
13. Increasing deforestation, reducing efficiency of energy usage.
14. Reducing deforestation, cutting down use of fossil fuel.
15. In an area where DDT had been used extensively, the population of birds declined significantly because
16. Birds stopped laying eggs
17. Earthworms in the area got eradicated
18. Cobras were feeding exclusively on birds
19. Many of the birds laid eggs, but eggs did not hatch
20. Which one of the following is a wrong statement?
21. Most of the forests have been lost in tropical areas
22. Ozone in upper part of atmosphere is harmful to animals
23. Greenhouse effect is a natural phenomenon
24. Eutrophication is a natural phenomenon in freshwater bodies
25. Which one of the following pairs of gases are the cause of 'Green house effect'?
26. CO_{2} and CO
27. $\mathrm{CFC}_{\mathrm{s}}$ and SO_{2}
28. CO_{2} and $\mathrm{N}_{2} \mathrm{O}$
29. CO_{2} and O_{3}
30. dB is a standard abbreviation used for the quantitative expression of
31. the density of bacteria in a medium
32. a particular pollutant
33. the dominant Bacillus in a culture
34. a certain pesticide
35. The two gases making highest relative contribution to the greenhouse gases are
36. CO_{2} and CH_{4}
37. CH_{4} and NO_{2}
38. CFCs and $\mathrm{N}_{2} \mathrm{O}$
39. CO_{2} and $\mathrm{N}_{2} \mathrm{O}$
40. Chipko movement was launched for the protection of 1. grasslands
41. forests
42. livestock
43. wet lands
44. Montreal protocol aims at
45. reduction of ozone depleting substances
46. biodiversity conservation
47. control of water pollution
48. control of CO_{2} emission
49. Biochemical Oxygen Demand (BOD) in a river water 1. remains unchanged when algal bloom occurs
50. has no relationship with concentration of oxygen in the water
51. gives a measure of Salmonella in the water
52. increases when sewage gets mixed with river water
53. Global agreement in specific control strategies to reduce the release of ozone depleting substance, was adopted by
54. Rio de Janeiro Conference
55. The Montreal Protocol
56. The Koyoto Protocol
57. The Vienna Convention
58.

According to Central Pollution Control Board (CPCB), which particulate size in diameter(in micrometres) of the air pollutants is responsible for greatest harm to human health?

1. 2.5 or less
2. 1.5 or less
3. 1.0 or less
4. 5.2 or 2.5
5. Which one of the following statements is correct?
6. Extensive use of chemical fertilizers may lead to eutrophication of nearby water bodies
7. Both Azotobacter and Rhizobium in root nodules of plants
8. Cyanobacteria such as Anabaena and Nostoc are important mobilizers of phosphates and potassium for plant nutrition in soil
9. At present it is not possible to grow maize without chemical fertilizers
10.

Which one of the following is the correct percentage of the two (out of the total of 4) green-house gases that contribute to the total global warming?

1. CFCs 14%, CH4 20%
2. CO2 40%, CFCs 30%
3. N2O 6\%, CO2 86\%
4. $\mathrm{CH} 420 \%, \mathrm{~N} 2 \mathrm{O} 18 \%$
5. Montreal protocol which calls for appropriate action to protect the ozone layer from human activities was passed in the year:
6. 1986
7. 1987
8. 1988
9. 1985
10. Which of these following methods is the most suitable for disposal of nuclear waste?
11. Bury the waste within rocks deep below the Earth's surface
12. Shoot the waste into space
13. Bury the waste under Antarctic ice-cover
14. Dump the waste within rocks under deep ocean
15. Which of the following pairs of gases is mainly responsible for green house effect?
16. Carbon dioxide and methane
17. Ozone and Ammonia
18. Oxygen and Nitrogen
19. Nitrogen and Sulphur dioxide
20. Polyblend, a fine powder of recycled modified plastic, has proved to be a good material for:
21. making tubes and pipes
22. making plastic sacks
23. use as a fertilizer
24. construction of roads
25. Which of the following protocols did aim for reducing emission of chlorofluorocarbons into the atmosphere?
26. Geneva protocol
27. Montreal protocol
28. Kyoto protocol
29. Gothenburg protocol
30. Which of the following statements about ozone is correct?
31. Tropospheric ozone protects us from UV radiations.
32. Stratospheric ozone is 'bad'.
33. Tropospheric ozone is 'good'
34. Stratospheric ozone protects us from UV radiations.
35. Which of the following is an innovative remedy for plastic waste ?
36. Burning in the absence of oxygen
37. Burrying 500 m deep below soil surface
38. Polyblend
39. Electrostatic precipitator
40. If an agricultural field is liberally, irrigated for a prolonged period of time, it is likely to face a problem of :
41. Metal toxicity
42. Alkalinity
43. Acidity
44. Salinity
45. Snow-blindness in Antarctic regions is due to:
46. Inflammation of cornea due to high doses of UV-B radiation
47. High reflection of light from snow
48. Damage to the retina caused by infra-red rays
49. Freezing of fluids in the eye by low temperature
50. A species that was introduced for ornamentation but has become a troublesome weed in India :
51. Parthenium hysterophorus
52. Eichhornia crassipes
53. Prosopis juliflora
54. Trapa Spinosa
55. Air (Prevention and Control of Pollution) Act was amended in 1987 to include among pollutants
56. Vehicular exhaust
57. Allergy causing pollen
58. Noise
59. Particulates of size 2.5 micrometer or below
60. According to the Central Pollution Control Board [CPCB] what size (in diameter) of particulate is responsible for causing greater harm to human health?
61. 3.5 micrometers
62. 2.5 micrometers
63. 4.0 micrometers
64. 3.0 micrometers
65. When domestic sewage mixes with river water -
66. The increased microbial activity releases micronutrients such as iron
67. The increased microbial activity uses up dissolved oxygen
68. The river water is still suitable for drinking as impurities are only about 0.1%
69. Small animals like rats will die after drinking river water
70. "Good ozone" is found in the :
71. Ionosphere
72. Mesosphere
73. Troposphere
74. Stratosphere
75. Consider the following statements (A-D) about organic farming :
(A) Utilizes genetically modified crops like Bt cotton
(B) Uses only naturally produced inputs like compost
(C) Does not use pesticides and urea
(D) Produces vegetables rich in vitamins and minerals
Which of the above statements are correct?
76. (A) and (B) only
77. (B), (C) and (D)
78. (C) and (D) only
79. (B) and (C) only
80. If CO_{2} is absent in the atmosphere of the earth then :
81. Temperature will decrease
82. Temperature will increase
83. Plants will flourish well
84. No effect
85. Besides other green house gas is :
86. SO_{2}
87. NH_{3}
88. $\mathrm{N}_{2} \mathrm{O}$
89. CFC
90. Temperature variation in Pacific ocean in present time is called :
91. Cyclone effect
92. El Nino effect
93. Green house effect
94. Gaudikov's effect
95. Sewage purification is performed by :
96. Microbes
97. Fertilisers
98. Antibiotics
99. Antiseptics
100. Concentration of DDT is highest in :
101. Primary consumer
102. Producers
103. Top consumer
104. Decomposers
105. Large scale death of fishes occur in :
106. Saline lake
107. Oligotrophic lake
108. Eutrophic lake
109. Shallow lake
*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

Fill OMR Sheet*

49. Maximum DDT is present in birds feeding on
50. Fishes
51. Meat
52. Insects
53. Seeds
54. Green house effect is :
55. Gardening outside the house
56. Global cooling
57. Global warming
58. Green colour house
59. Dobson units are used to measure thickness of:
(1) Ozone
(2) Troposphere
(3) CFCs
(4) Stratosphere

CLICK HERE to get

 FREE ACCESS for 3 days of ANY NEETprep course
Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Units \& Measurements

(Expected Questions in NEET 2022: 1)

Subtopic Name Number of Questions

Dimensions	22
Errors	6
Measurement \& Measuring Devices	5
Significant Figures	1

1. A physical quantity of the dimensions of length that can be formed out of c, G and $\frac{e^{2}}{4 \pi \varepsilon_{0}}$ is [c is the velocity of light, G is the universal constant of gravitation and e is charge]:
2. $c^{2}\left[G \frac{e^{2}}{4 \pi \varepsilon_{0}}\right]^{\frac{1}{2}}$
3. $\frac{1}{c^{2}}\left[\frac{e^{2}}{4 G \pi \varepsilon_{0}}\right]^{\frac{1}{2}}$
4. $\frac{1}{c} G \frac{e^{2}}{4 \pi \varepsilon_{0}}$
5. $\frac{1}{c^{2}}\left[G \frac{e^{2}}{4 \pi \varepsilon_{0}}\right]^{\frac{1}{2}}$
6. Planck's constant (h), speed of light in the vacuum (c) and Newton's gravitational constant (G) are three fundamental constants. Which of the following combinations of these has the dimension of length?
7. $\frac{\sqrt{\mathrm{hG}}}{\mathrm{c}^{3 / 2}}$
8. $\frac{\sqrt{\mathrm{hG}}}{\mathrm{c}^{5 / 2}}$
9. $\frac{\sqrt{\mathrm{hG}}}{\mathrm{G}}$
10. $\frac{\sqrt{\mathrm{Gc}}}{\mathrm{h}^{3 / 2}}$
11. A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm . The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004 cm , the correct diameter of the ball is:
12. 0.521 cm
13. 0.525 cm
14. 0.053 cm
15. 0.529 cm
16. If dimensions of critical velocity v_{c} of a liquid flowing through a tube are expressed as $\left[\eta^{\mathrm{x}} \rho^{\mathrm{y}} \mathrm{r}^{\mathrm{z}}\right]$, where η, ρ and r are the coefficient of viscosity of the liquid, the density of liquid and radius of the tube respectively, then the values of x, y and z are given by:
17. $1,-1,-1$
18. $-1,-1,1$
19. $-1,-1,-1$
20. 1, 1, 1,
21.

If energy (E), velocity (v) and time (T) are chosen as the fundamental quantities, the dimensional formula of surface tension will be:

1. $\left[\mathrm{Ev}^{-2} \mathrm{~T}^{-1}\right]$
2. $\left[\mathrm{Ev}^{-1} \mathrm{~T}^{-2}\right]$
3. $\left[\mathrm{Ev}^{-2} \mathrm{~T}^{-2}\right]$
4. $\left[\mathrm{E}^{-2} \mathrm{v}^{-1} \mathrm{~T}^{-3}\right]$
5. If force (F), velocity (v) and time (T) are taken as fundamental units, the dimensions of mass are:
6. $\left[\mathrm{FvT}^{-1}\right]$
7. $\left[\mathrm{FvT}^{-2}\right]$
8. $\left[\mathrm{Fv}^{-1} \mathrm{~T}^{-1}\right]$
9. $\left[\mathrm{Fv}^{-1} \mathrm{~T}\right]$
10.

In an experiment four quantities $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are measured with percentage error $1 \%, 2 \%, 3 \%$ and 4% respectively. Quantity P is calculated as follows :
$\mathrm{P}=\frac{a^{3} b^{2}}{c d} \%$ error in P is :

1. 10%
2. 7%
3. 4%
4. 14%
5. The dimensions of $\left(\mu_{0} \varepsilon_{0}\right)^{-1 / 2}$ are
6. $\left[\mathrm{L}^{-1} \mathrm{~T}\right]$
7. $\left[\mathrm{LT}^{-1}\right]$
8. $\left[\mathrm{L}^{-1 / 2} \mathrm{~T}^{1 / 2}\right]$
9. $\left[\mathrm{L}^{-1 / 2} \mathrm{~T}^{-1 / 2}\right]$
10. The dimensions of $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2}$ where ε_{0} is the permittivity of free space and E is the electric field, are:
11. $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
12. $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
13. $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
14. $\left[\mathrm{MLT}^{-1}\right]$
15.

If the dimensions of a physical quantity are given by $\mathrm{M}^{\mathrm{a}} \mathrm{L}^{\mathrm{b}} \mathrm{T}^{\mathrm{c}}$, then the physical quantity will be:

1. Pressure if $\mathrm{a}=1, \mathrm{~b}=-1, \mathrm{c}=-2$
2. Velocity if $\mathrm{a}=1, \mathrm{~b}=0, \mathrm{c}=-1$
3. Acceleration if $\mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=-2$
4. Force if $a=0, b=-1, c=-2$
5. If the error in the measurement of the radius of a sphere is 2%, then the error in the determination of the volume of the sphere will be:
6. 4%
7. 6%
8. 8%
9. 2%
10.

Which two of the following five physical parameters have the same dimensions?
(1) Energy density
(2) Refractive index
(3) Dielectric constant
(4) Young's modulus
(5) Magnetic field

1. 2 and 4
2. 3 and 5
3. 1 and 4
4. 1 and 5
5. The unit of thermal conductivity is:
6. $W m^{-1} K^{-1}$
7. $J m K^{-1}$
8. $J m^{-1} K^{-1}$
9. $W m K^{-1}$
10. In an experiment, the percentage errors that occured in the measurement of physical quantities $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are $1 \%, 2 \%, 3 \%$ and 4% respectively. Then the maximum percentage of error in the measurement of X , where $X=\frac{A^{2} B^{\frac{1}{2}}}{C^{\frac{1}{3}} D^{3}}$, will be:
11. 10%
12. $\left(\frac{3}{13}\right) \%$
13. 16%
14. -10%
15. The main scale of a vernier calliper has n divisions $/ \mathrm{cm}$. n divisions of the vernier scale coincide with ($\mathrm{n}-1$) divisions of the main scale. The least count of the vernier callipers is:
(1) $\frac{1}{(n+1)(n-1)} \mathrm{cm}$
(2) $\frac{1}{n} \mathrm{~cm}$
(3) $\frac{1}{n^{2}} \mathrm{~cm}$
(4) $\frac{1}{n(n+1)} \mathrm{cm}$
16. A screw gauge has least count of 0.01 mm and there are 50 divisions in its circular scale.
The pitch of the screw gauge is:
(1) 0.25 mm
(2) 0.5 mm
(3) 1.0 mm
(4) 0.01 mm
17. Taking into account the significant figures, what is the value of ($9.99 \mathrm{~m}-0.0099 \mathrm{~m}$)?
1.9 .98 m
18. 9.980 m
3.9 .9 m
19. 9.9801 m
20. The energy required to break one bond in DNA is 10 ${ }^{-20} \mathrm{~J}$. This value in eV is nearly:
(1) 0.6
(2) 0.06
(3) 0.006
(4) 6
21. $\left[\mathrm{LT}^{-2}\right],[\mathrm{L}]$ and $[\mathrm{T}]$
22. $\left[\mathrm{L}^{2}\right],[\mathrm{T}]$ and $\left[\mathrm{LT}^{2}\right]$
23. $\left[\mathrm{LT}^{2}\right],[\mathrm{LT}]$ and $[\mathrm{L}]$
24. $[\mathrm{L}],[\mathrm{LT}]$ and $\left[\mathrm{T}^{2}\right]$
25. Dimensions of stress are:
(1)

(3) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
(4) $\left[\mathrm{MLT}^{-2}\right]$
26. The angle of 1^{\prime} (minute of arc) in radian is nearly equal to:
27. $2.91 \times 10^{-4} \mathrm{rad}$
28. $4.85 \times 10^{-4} \mathrm{rad}$
29. $4.80 \times 10^{-6} \mathrm{rad}$
30. $1.75 \times 10^{-2} \mathrm{rad}$
31. Time intervals measured by a clock give the following readings :
$1.25 \mathrm{sec}, 1.24 \mathrm{sec}, 1.27 \mathrm{sec}, 1.21 \mathrm{sec}$ and 1.28 sec .
What is the percentage relative error of the observations?
32. 2%
33. 4%
34. 16%
35. 1.6%
36. The dimensions of $\left(\mu_{0} \varepsilon_{0}\right)^{-1 / 2}$ are -
37. $\left[L^{-1} T\right]$
38. $\left[L T^{-1}\right]$
39. $\left[L^{1 / 2} T^{1 / 2}\right]$
40. $\left[L^{1 / 2} T^{-1 / 2}\right]$
41. The density of a material in CGS system of units is $4 \mathrm{~g} / \mathrm{cm}^{3}$. In a system of units in which unit of length is 10 cm and unit of mass is 100 g , the value of density of material will be
42. 0.04
43. 0.4
44. 40
45. 400
46. A student measures the distance traversed in free fall of a body, initially at rest in a given time. He uses this data to estimate g, the accelration due to gravity. If the maximum percentage errors in measurement of the distance and the time are e_{1} and e_{2} respectively, the percentage error in the estimation of g is -
47. $e_{1}+2 e_{2}$
48. $e_{1}+e_{2}$
49. $e_{1}-2 e_{2}$
50. $e_{2}-e_{1}$
51. The ratio of the dimension of Planck's constant and that of the moment of inertia is the dimension of :
(1) Velocity
(2) Angular momentum
(3) Time
(4) Frequency
52. Which pair have not equal dimensions :
53. Energy and torque
54. Force and impulse
55. Angular momentum and Plank's constant
56. Elastic modulus and pressure
57. The error in measurement of radius of a sphere is 0.1% then error in its volume is -
58. 0.3%
59. 0.4%
60. 0.5%
61. 0.6%
62. The dimensions of universal gravitational constant are :-
(1) $\mathrm{ML}^{2} \mathrm{~T}^{-1}$
(2) $\mathrm{M}^{-2} \mathrm{~L}^{3} \mathrm{~T}^{-2}$
(3) $\mathrm{M}^{-2} \mathrm{~L}^{2} \mathrm{~T}^{-1}$
(4) $\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}$
63. The dimension of Planck constant equals to that of :
64. Energy
65. Momentum
66. Angular momentum
67. Power
68. If force [F], acceleration [A] and time [T] are chosen as the fundamental physical quantities. Find the dimensions of energy.
69. $[\mathrm{F}][\mathrm{A}]\left[\mathrm{T}^{-1}\right]$
70. $[\mathrm{F}]\left[\mathrm{A}^{-1}\right][\mathrm{T}]$
71. $[\mathrm{F}][\mathrm{A}][\mathrm{T}]$
72. $[\mathrm{F}][\mathrm{A}]\left[\mathrm{T}^{2}\right]$
73. A screw gauge gives the following readings when used to measure the diameter of a wire.
Main scale reading: 0 mm
Circular scale reading: 52 divisions
Given that 1 mm on the main scale corresponds to 100 divisions on the circular scale. The diameter of the wire from the above data is:
74. 0.26 cm
75. 0.052 cm
76. 0.52 cm
77. 0.026
78. If E and G respectively denote energy and gravitational constant, then $\frac{\mathrm{E}}{\mathrm{G}}$ has the dimensions of:
79. $[\mathrm{M}]\left[\mathrm{L}^{0}\right]\left[\mathrm{T}^{0}\right]$
80. $\left[\mathrm{M}^{2}\right]\left[\mathrm{L}^{-2}\right]\left[\mathrm{T}^{-1}\right]$
81. $\left[\mathrm{M}^{2}\right]\left[\mathrm{L}^{-1}\right]\left[\mathrm{T}^{0}\right]$
82. $[\mathrm{M}]\left[\mathrm{L}^{-1}\right]\left[\mathrm{T}^{-1}\right]$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

course

Uneet prep Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Motion in a Straight Line (Expected Questions in NEET 2022: 1)

Subtopic Name Number of

Questions

Uniformly Accelerated Motion	16
Average Speed \& Average Velocity	5
 Instantaneous Velocity	5
Non Uniform Acceleration	3
Relative Motion in One Dimension	$\mathbf{3}$
Distance \& Displacement	1
Graphs	1

1. Two cars P and Q start from a point at the same time in a straight line and their positions are represented by $\mathrm{x}_{\mathrm{p}}(\mathrm{t})=\mathrm{at}+\mathrm{bt}^{2}$ and $\mathrm{x}_{\mathrm{Q}}(\mathrm{t})=\mathrm{ft}-\mathrm{t}^{2}$. At what time do the cars have the same velocity?
2. $\frac{\mathrm{a}-\mathrm{f}}{1+\mathrm{b}}$
3. $\frac{\mathrm{a}+\mathrm{f}}{2(\mathrm{~b}-1)}$
4. $\frac{\mathrm{a}+\mathrm{f}}{2(\mathrm{~b}+1)}$
5. $\frac{\mathrm{f}-\mathrm{a}}{2(1+\mathrm{b})}$
6. Preeti reached the metro station and found that the escalator was not working. She walked up the stationary escalator in time t_{1}. On other days, if she remains stationary on the moving escalator, then the escalator takes her up in time t_{2}. The time taken by her to walk upon the moving escalator will be:
7. $\frac{t_{1} t_{2}}{t_{2}-t_{1}}$
8. $\frac{t_{1} t_{2}}{t_{2}+t_{1}}$
9. $t_{1}-t_{2}$
10. $\frac{t_{1}+t_{2}}{2}$
11. If the velocity of a particle is $\mathrm{v}=\mathrm{At}+\mathrm{Bt}^{2}$, where A and B are constants, then the distance travelled by it between 1 s and 2 s is:
12. $3 \mathrm{~A}+7 \mathrm{~B}$
13. $\frac{3}{2} \mathrm{~A}+\frac{7}{3} \mathrm{~B}$
14. $\frac{\mathrm{A}}{2}+\frac{\mathrm{B}}{3}$
15. $\frac{3}{2} \mathrm{~A}+4 \mathrm{~B}$
16. A particle of unit mass undergoes one-dimensional motion such that its velocity varies according to $\mathrm{v}(\mathrm{x})=\beta \mathrm{x}^{-2 \mathrm{n}}$ where, β and n are constants and x is the position of the particle. The acceleration of the particle as a function of x is given by-
17. $-2 n \beta^{2} x^{-2 n-1}$
18. $-2 n \beta^{2} x^{-4 n-1}$
19. $-2 \beta^{2} \mathrm{x}^{-2 \mathrm{n}+1}$
20. $-2 \mathrm{n} \beta^{2} \mathrm{x}^{-4 \mathrm{n}+1}$
21. A particle is moving such that its position coordinates
(x, y) are $(2 \mathrm{~m}, 3 \mathrm{~m})$ at time $\mathrm{t}=0,(6 \mathrm{~m}, 7 \mathrm{~m})$ at time $\mathrm{t}=2 \mathrm{~s}$ and $(13 \mathrm{~m}, 14 \mathrm{~m})$ at time $\mathrm{t}=5 \mathrm{~s}$,
Average velocity vector $\left(\vec{v}_{\text {avg }}\right)$ from $\mathrm{t}=0$ to $\mathrm{t}=5 \mathrm{~s}$ is :
22. $\frac{1}{5}(13 \hat{i}+14 \vec{j})$
23. $\frac{7}{3}(\hat{i}+\vec{j})$
24. $2(\hat{i}+\vec{j})$
25. $\frac{11}{5}(\hat{i}+\vec{j})$
26. A stone falls freely under gravity. It covers distances h_{1}, h_{2} and h_{3} in the first 5 seconds, the next 5 seconds and the next 5 seconds respectively. The relation between h_{1}, h_{2} and h_{3} is :
27. $\mathrm{h}_{1}=\frac{\mathrm{h}_{2}}{3}=\frac{\mathrm{h}_{3}}{5}$
28. $\mathrm{h}_{2}=3 \mathrm{~h}_{1}$ and $\mathrm{h}_{3}=3 \mathrm{~h}_{2}$
29. $\mathrm{h}_{1}=\mathrm{h}_{2}=\mathrm{h}_{3}$
30. $\mathrm{h}_{1}=2 \mathrm{~h}_{2}=3 \mathrm{~h}_{3}$
31. A particle has initial velocity $(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}})$ and acceleration $(0.3 \hat{\mathrm{i}}+0.2 \hat{\mathrm{j}})$. The magnitude of velocity after 10 sec will be:
32. $9 \sqrt{2}$ units
33. $5 \sqrt{2}$ units
34. 5 units
35. 9 unit
36. The motion of a particle along a straight line is described by equation
$x=8+12 t-t^{3}$ where x is in meter and t in second. The retardation of the particle when its velocity becomes zero is
37. $24 \mathrm{~ms}^{-2}$
38. zero
39. $6 \mathrm{~ms}^{-2}$
40. $12 \mathrm{~ms}^{-2}$
41.

A boy standing at the top of a tower of 20 m height drops a stone. Assuming $g=10 \mathrm{~ms}^{-2}$, the velocity with which it hits the ground is

1. $20 \mathrm{~m} / \mathrm{s}$
2. $40 \mathrm{~m} / \mathrm{s}$
3. $5 \mathrm{~m} / \mathrm{s}$
4. $10 \mathrm{~m} / \mathrm{s}$
5. A ball is dropped from a high rise platform at $t=0$ starting from rest. After 6 seconds another ball is thrown downwards from the same platform with a speed v . The two balls meet at $t=18 \mathrm{~s}$. What is the value of v ?
6. $75 \mathrm{~ms}^{-1}$
7. $55 \mathrm{~ms}^{-1}$
8. $40 \mathrm{~ms}^{-1}$
9. $60 \mathrm{~ms}^{-2}$
10. A particle moves a distance x in time t according to equation $X=(t+5)^{-1}$ The acceleration of particle is proportional to
11. (velocity) ${ }^{3 / 2}$
12. $(\text { distance })^{2}$
13. $(\text { distance })^{-2}$
14. $(\text { velocity })^{2 / 3}$
15.

A bus is moving with a speed of $10 \mathrm{~ms}^{-1}$ on a straight road. A scooterist wishes to overtake the bus in 100 s . If the bus is at a distance of 1 km from the scooterist, with what speed should the scooterist chase the bus?

1. $20 \mathrm{~ms}^{-1}$
2. $40 \mathrm{~ms}^{-1}$
3. $25 \mathrm{~ms}^{-1}$
4. $10 \mathrm{~ms}^{-1}$
5.

A particle starts its motion from rest under the action of a constant force. If the distance covered in the first 10 sec is S_{1} and that covered in the first 20 sec is S_{2}, then

1. $\mathrm{S}_{2}=2 \mathrm{~S}_{1}$
2. $\mathrm{S}_{2}=3 \mathrm{~S}_{1}$
3. $S_{2}=4 S_{1}$
4. $S_{2}=S_{1}$
5. The distance travelled by a particle starting from rest and moving with an acceleration $\frac{4}{3} \mathrm{~ms}^{-2}$, in the third second is:
6. 6 m
7. 4 m
8. $\frac{10}{3} \mathrm{~m}$
9. $\frac{19}{3} \mathrm{~m}$
10. A particle shows the distance-time curve as given in this figure. The maximum instantaneous velocity of the particle is around the point:

11. B
12. C
13. D
14. A
15. A particle moves in a straight line with a constant acceleration. It changes its velocity from $10 \mathrm{~ms}^{-1}$ to 20 ms^{-1} while covering a distance 135 m in ' t ' seconds. The value of ' t ' is
16. 10
17. 1.8
18. 12
19. 9
20. The position x of a particle with respect to time t along the x-axis is given by $x=9 t^{2}-t^{3}$ where x is in metre and t in second. What will be the position of this particle when it achieves maximum speed along the +x direction?
21. 32 m
22. 54 m
23. 81 m
24. 24 m
25. A car moves from X to Y with a uniform speed v_{u} and returns to X with a uniform speed v_{d}. The average speed for this round trip is :
26. $\frac{2 \mathrm{v}_{\mathrm{d}} \mathrm{v}_{\mathrm{u}}}{\mathrm{v}_{\mathrm{d}}+\mathrm{v}_{\mathrm{u}}}$
27. $\sqrt{\mathrm{v}_{\mathrm{u}} \mathrm{v}_{\mathrm{d}}}$
28. $\frac{\mathrm{v}_{\mathrm{d}} \mathrm{v}_{\mathrm{u}}}{\mathrm{v}_{\mathrm{d}}+\mathrm{v}_{\mathrm{u}}}$
29. $\frac{\mathrm{v}_{\mathrm{u}}+\mathrm{v}_{\mathrm{d}}}{2}$
30. A particle moving along the x -axis has acceleration f , at time t, given by $f=f_{0}\left(1-\frac{t}{T}\right)$, where f_{0} and T are constants. The particle at $\mathrm{t}=0$ has zero velocity. In the time interval between $\mathrm{t}=0$ and the instant when $\mathrm{f}=0$, the particle's velocity $\left(\mathrm{v}_{\mathrm{x}}\right)$ is:
31. $\mathrm{f}_{0} \mathrm{~T}$
32. $\frac{1}{2} \mathrm{f}_{0} \mathrm{~T}^{2}$
33. $\mathrm{f}_{0} \mathrm{~T}^{2}$
34. $\frac{1}{2} \mathrm{f}_{0} \mathrm{~T}$
35. A particle moves along a straight line OX. At a time t (in seconds), the displacement x (in metres) of the particle from O is given by $x=40+12 t-t^{3}$.
How long would the particle travel before coming to rest?
36. 24 m
37. 40 m
38. 56 m
39. 16 m
40. Two bodies, A (of mass 1 kg) and B (of mass 3 kg) are dropped from heights of 16 m and 25 m , respectively. The ratio of the time taken by them to reach the ground is:
41. 5/4
42. $12 / 5$
43. $5 / 12$
44. $4 / 5$
45. A person standing on the floor of an elevator drops a coin. The coin reaches the floor in time t_{1} if the elevator is moving uniformly and time t_{2} if the elevator is stationary. Then:
46. $t_{1}<t_{2}$ or $t_{1}>t_{2}$ depending upon whether the lift is going up or down.
47. $\mathrm{t}_{1}<\mathrm{t}_{2}$
48. $\mathrm{t}_{1}>\mathrm{t}_{2}$
49. $\mathrm{t}_{1}=\mathrm{t}_{2}$
50. A person travelling in a straight line moves with a constant velocity v_{1} for a certain distance ' x ' and with a constant velocity v_{2} for the next equal distance. The average velocity v is given by the relation:
51. $\frac{1}{\mathrm{v}}=\frac{1}{\mathrm{v}_{1}}+\frac{1}{\mathrm{v}_{2}}$
52. $\frac{2}{\mathrm{v}}=\frac{1}{\mathrm{v}_{1}}+\frac{1}{\mathrm{v}_{2}}$
53. $\frac{\mathrm{v}}{2}=\frac{\mathrm{v}_{1}+\mathrm{v}_{2}}{2}$
54. $v=\sqrt{v_{1} v_{2}}$
55. A ball is thrown vertically downward with a velocity of $20 \mathrm{~m} / \mathrm{s}$ from the top of a tower. It hits the ground after some time with the velocity of $80 \mathrm{~m} / \mathrm{s}$. The height of the tower is: $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
56. 340 m
57. 320 m
58. 300 m
59. 360 m
60. A person sitting on the ground floor of a building notices through the window, of height 1.5 m , a ball dropped from the roof of the building crosses the window in 0.1 sec . What is the velocity of the ball when it is at the topmost point of the window? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
61. $15.5 \mathrm{~m} / \mathrm{s}$
62. $14.5 \mathrm{~m} / \mathrm{s}$
63. $4.5 \mathrm{~m} / \mathrm{s}$
64. $20 \mathrm{~m} / \mathrm{s}$
65. A particle covers half of its total distance with speed v_{1} and the rest half distance with speed v_{2}.
Its average speed during the complete journey is :'
66. $\frac{v_{1}+v_{2}}{2}$
67. $\frac{v_{1} v_{2}}{v_{1}+v_{2}}$
68. $\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}$
69. $\frac{v_{1}^{2} v_{2}^{2}}{v_{1}^{2}+v_{2}^{2}}$
70. Motion of a particle is given by equation $S=\left(3 t^{3}+7 t^{2}+14 t+8\right) m$, The value of acceleration of the particle at $\mathrm{t}=1 \mathrm{sec}$. is :
71. $10 \mathrm{~m} / \mathrm{s}^{2}$
72. $32 \mathrm{~m} / \mathrm{s}^{2}$
73. $23 \mathrm{~m} / \mathrm{s}^{2}$
74. $16 \mathrm{~m} / \mathrm{s}^{2}$
75. The displacement x of a particle varies with time t as $\mathrm{x}=a \mathrm{e}^{-\alpha t}+\mathrm{be}^{\beta \mathrm{t}}$, where $\mathrm{a}, \mathrm{b}, \alpha$ and β are positive constants. The velocity of the particle will:
(1) be independent of α and β.
(2) go on increasing with time.
(3) drop to zero when $\alpha=\beta$.
(4) go on decreasing with time.
76. A car is moving with velocity v. If stop after applying break at a distance of 20 m . If velocity of car is doubled, then how much distance it will cover (travel) after applying break :
77. 40 m
78. 80 m
79. 160 m
80. 320 m
81. A body starts falling from height ' h ' and travels distance $h / 2$ during last second of motion then time of flight is (in second) -
82. $\sqrt{2}-1$
83. $2+\sqrt{2}$
84. $\sqrt{2}+\sqrt{3}$
85. $\sqrt{3}+2$
86. For a particle displacement time relation is $t=\sqrt{x}+3$. Its displacement when its velocity is zero -
87. 2 m
88. 4 m
89. 0
90. None of these
91. A ball of mass 2 kg and another of mass 4 kg are dropped together from a 60 feet tall building. After a fall of 30 feet each towards earth, their respective kinetic energies will be in the ratio of-
(1) $1: 4$
(2) $1: 2$
(3) $1: \sqrt{2}$
(4) $\sqrt{2}: 1$
92. A particle starts from rest with constant acceleration. The ratio of space-average velocity to the time-average velocity is :
where space-average velocity and time-average velocity is defined as follows:
$<v>_{t i m e}=\frac{\int v d t}{\int d t}$
$<v>_{\text {space }}=\frac{\int v d s}{\int d s}$
93. $\frac{1}{2}$
94. $\frac{3}{4}$
95. $\frac{4}{3}$
96. $\frac{3}{2}$
97. A particle is thrown vertically upward. Its velocity at half of the height is $10 \mathrm{~m} / \mathrm{s}$. Then the maximum height attained by it : $-\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
98. 8 m
99. 20 m
100. 10 m
101. 16 m
102. If a ball is thrown vertically upwards with speed u, the distance covered during the last ' t ' seconds of its ascent is
103. ut
104. $\frac{1}{2} \mathrm{gt}^{2}$
105. ut $-\frac{1}{2} \mathrm{gt}^{2}$
106. $(u+g t) t$
107. A man throws ball with the same speed vertically upwards one after the other at an interval of 2 seconds. What should be the speed of the throw so that more than two balls are in the sky at any time ? (Given $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
(1) More than $19.6 \mathrm{~m} / \mathrm{s}$
(2) At least $9.8 \mathrm{~m} / \mathrm{s}$
(3) Any speed less than $19.6 \mathrm{~m} / \mathrm{s}$
(4) Only with speed $19.6 \mathrm{~m} / \mathrm{s}$
108. A small block slides down on a smooth inclined plane starting from rest at time $\mathrm{t}=0$. Let S_{n} be the distance travelled by the block in the interval $\mathrm{t}=\mathrm{n}-1$ to $\mathrm{t}=\mathrm{n}$. Then the ratio $\frac{S_{n}}{S_{n}+1}$ is:
109. $\frac{2 \mathrm{n}+1}{2 \mathrm{n}-1}$
110. $\frac{2 \mathrm{n}}{2 \mathrm{n}-1}$
111. $\frac{2 \mathrm{n}-1}{2 \mathrm{n}}$
112. $\frac{2 \mathrm{n}-1}{2 \mathrm{n}+1}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

U. neetprep Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Motion in a Plane
(Expected Questions in NEET 2022: 2)

Subtopic Name

Number of Questions
Projectile Motion
Circular Motion
Relative Motion
Acceleration
Position \& Displacement
Speed \& Velocity

14 11
8
6
1
1

1. In the given figure, $a=15 \mathrm{~m} / \mathrm{s}^{2}$ represents the total acceleration of a particle moving in the clockwise direction in a circle of radius $\mathrm{R}=2.5 \mathrm{~m}$ at a given instant of time. The speed of the particle is:

2. $4.5 \mathrm{~m} / \mathrm{s}$
3. $5.0 \mathrm{~m} / \mathrm{s}$
4. $5.7 \mathrm{~m} / \mathrm{s}$
5. $6.2 \mathrm{~m} / \mathrm{s}$
6. The x and y coordinates of the particle at any time are $\mathrm{x}=5 \mathrm{t}-2 \mathrm{t}^{2}$ and $\mathrm{y}=10 \mathrm{t}$ respectively, where x and y are in meters and t in seconds. The acceleration of the particle at $\mathrm{t}=2 \mathrm{sec}$ is:
7. $5 \hat{i} \mathrm{~m} / \mathrm{s}^{2}$
8. $-4 \hat{i} \mathrm{~m} / \mathrm{s}^{2}$
9. $-8 \hat{j} \mathrm{~m} / \mathrm{s}^{2}$
10. 0
11.

A particle moves so that its position vector is given by $\overrightarrow{\mathrm{r}}=\cos \omega \mathrm{t} \hat{\mathrm{x}}+\sin \omega \mathrm{t} \hat{\mathrm{y}}$, where ω is a constant. Which of the following is true?

1. Velocity and acceleration both are parallel to \vec{r}.
2. Velocity is perpendicular to \vec{r} and acceleration is directed towards to origin.
3. Velocity is parallel to \vec{r} and acceleration is directed away from the origin.
4. Velocity and acceleration both are perpendicular to \vec{r}.
5.

A particle of mass 10 g moves along a circle of radius 6.4 cm with a constant tangential acceleration. What is the magnitude of this acceleration, if the kinetic energy of the particle becomes equal to $8 \times 10^{-4} \mathrm{~J}$ by the end of the second revolution after the beginning of the motion?

1. $0.15 \mathrm{~m} / \mathrm{s}^{2}$
2. $0.18 \mathrm{~m} / \mathrm{s}^{2}$
3. $0.2 \mathrm{~m} / \mathrm{s}^{2}$
4. $0.1 \mathrm{~m} / \mathrm{s}^{2}$
5. A ship A is moving Westwards with a speed of 10 kmph and a ship B 100 km South of A, is moving Northwards with a speed of 10 kmph . The time after which the distance between them becomes the shortest is:
1.0 h
6. 5 h
7. $5 \sqrt{2}$ h
8. $10 \sqrt{2} \mathrm{~h}$
9. Two particles A and B, move with constant velocities v_{1} and v_{2} respectively. At the initial moment, their position vectors are r_{1} and r_{2} respectively. The condition for particles A and B for their collision is:
10. $\frac{\mathrm{r}_{1}-\mathrm{r}_{2}}{\left|\mathrm{r}_{1}-\mathrm{r}_{2}\right|}=\frac{\mathrm{v}_{2}-\mathrm{v}_{1}}{\left|\mathrm{v}_{2}-\mathrm{v}_{1}\right|}$
11. $\mathrm{r}_{1} \cdot \mathrm{v}_{1}=\mathrm{r}_{2} \cdot \mathrm{v}_{2}$
12. $r_{1} \times v_{1}=r_{2} \times v_{2}$
13. $\mathrm{r}_{1}-\mathrm{r}_{2}=\mathrm{v}_{1}-\mathrm{v}_{2}$
14. The position vector of a particle R as a function of time t is given by

$$
\overrightarrow{\mathrm{R}}=4 \sin [2 \pi \mathrm{t}] \hat{\mathrm{i}}+4 \cos [2 \pi \mathrm{t}] \hat{\mathrm{j}}
$$

Where R is in meters, t is in seconds and \hat{i}, \hat{j} denote unit vectors along x and y -directions, respectively. Which one of the following statements is wrong for the motion of the particle?

1. Acceleration is along $-\vec{R}$.
2. Magnitude of the acceleration vector is $\frac{v^{2}}{R}$, where v is the velocity of the particle.
3. Magnitude of the velocity of the particle $8 \mathrm{~m} / \mathrm{s}$.
4. Path of the particle is a circle of radius 4 m .
5. A projectile is fired from the surface of the earth with a velocity of $5 \mathrm{~ms}^{-1}$ and at an angle θ with the horizontal. Another projectile fired from another planet with a velocity of $3 \mathrm{~ms}^{-1}$ at the same angle follows a trajectory which is identical with the trajectory of the projectile fired from the earth. The value of the acceleration due to gravity on the planet is: (given $=9.8 \mathrm{~ms}^{-2}$)
6. 3.5
7. 5.9
8. 16.3
9. 110.8
10. The velocity of a projectile at the initial point A is $(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$. Its velocity (in m / s) at point B is:

11. $-2 \hat{i}+3 \hat{j}$
12. $2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}$
13. $2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}$
14. $-2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}$
15. The horizontal range and the maximum height of a projectile are equal. The angle of projection of the projectile is:
16. $\theta=\tan ^{-1}\left(\frac{1}{4}\right)$
17. $\theta=\tan ^{-1}(4)$
18. $\theta=\tan ^{-1}(2)$
19. $\theta=45^{0}$
20. A particle moves in a circle of radius 5 cm with constant speed and time period $0.2 \pi \mathrm{sec}$. The acceleration of the particle is:
21. $25 \mathrm{~m} / \mathrm{s}^{2}$
22. $36 \mathrm{~m} / \mathrm{s}^{2}$
23. $5 \mathrm{~m} / \mathrm{s}^{2}$
24. $15 \mathrm{~m} / \mathrm{s}^{2}$
25. A body is moving with a velocity of $30 \mathrm{~m} / \mathrm{s}$ towards the east. After 10 sec , its velocity becomes $40 \mathrm{~m} / \mathrm{s}$ towards the north. The average acceleration of the body is:
26. $7 \mathrm{~m} / \mathrm{s}^{2}$
27. $\sqrt{7} \mathrm{~m} / \mathrm{s}^{2}$
28. $5 \mathrm{~m} / \mathrm{s}^{2}$
29. $1 \mathrm{~m} / \mathrm{s}^{2}$
30. A missile is fired for maximum range with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. If $g=10 \mathrm{~m} / \mathrm{s}^{2}$, the range of the missile is:
31. 50 m
32. 60 m
33. 20 m
34. 40 m
35. A particle has initial velocity $(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}})$ and has acceleration $(0.4 \hat{i}+0.3 \hat{j})$. Its speed after 10 s is
36. 7 units
37. $7 \sqrt{2}$ units
38. 8.5 units
39. 10 units
40. A particle of mass m is projected with velocity v making an angle of 45° with the horizontal. When the particle lands on the level ground, the magnitude of change in its momentum will be:
41. 2 mv
42. $\mathrm{mv} / \sqrt{2}$
43. $\mathrm{mv} \sqrt{2}$
44. zero
45. A particle starting from the origin $(0,0)$ moves in a straight line in the (x, y) plane. Its coordinates at a later time are $(\sqrt{3}, 3)$. The path of the particle makes with the x-axis an angle of:
46. 30°
47. 45°
48. 60°
49. 0°
50. For a projectile projected at angles $\left(45^{\circ}-\theta\right)$ and $\left(45^{\circ}\right.$ $+\theta$), the horizontal ranges described by the projectile are in the ratio of:
51. 1:1
52. $2: 3$
53. 1:2
54. $2: 1$
55. A car turns at a constant speed on a circular track of radius 100 m , taking 62.8 s for every circular lap. The average velocity and average speed for each circular lap respectively is :
56. 0,0
57. $0,10 \mathrm{~m} / \mathrm{s}$
58. $10 \mathrm{~m} / \mathrm{s}, 10 \mathrm{~m} / \mathrm{s}$
59. $10 \mathrm{~m} / \mathrm{s}, 0$
60. The speed of a swimmer in still water is $20 \mathrm{~m} / \mathrm{s}$. The speed of river water is $10 \mathrm{~m} / \mathrm{s}$ and is flowing due east. If he is standing on the south bank and wishes to cross the river along the shortest path, the angle at which he should make his stroke w.r.t north is given by:
61. 45° west of north
62. 30° west of north
63. 0° west of north
64. 60° west of north
65. Two particles A and B are moving in a uniform circular motion in concentric circles of radii r_{A} and r_{B} with speeds v_{A} and v_{B} respectively. Their time periods of rotation are the same. The ratio of angular speed of A to that of B will be:
66. 1: 1
67. $r_{A}: r_{B}$
68. $v_{A}: v_{B}$
69. $r_{B}: r_{A}$
70. A particle starting from rest moves in a circle of radius ' r '. It attains a velocity of $v_{0} \mathrm{~m} / \mathrm{s}$ on completion of n rounds. Its angular acceleration will be:
(1) $\frac{v_{0}}{n} \mathrm{rad} / \mathrm{s}^{2}$
(2) $\frac{v_{0}^{2}}{2 \pi \mathrm{nr}^{2}} \mathrm{rad} / \mathrm{s}^{2}$
(3) $\frac{v_{o}^{2}}{4 \pi \mathrm{nr}^{2}} \mathrm{rad} / \mathrm{s}^{2}$
(4) $\frac{v_{0}^{2}}{4 \pi \mathrm{nr}} \mathrm{rad} / \mathrm{s}^{2}$
71. Two bullets are fired horizontally and simultaneously towards each other from rooftops of two buildings 100 m apart and of the same height of 200 m , with the same velocity of $25 \mathrm{~m} / \mathrm{s}$. When and where will the two bullets collide? $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
72. after 2 s at a height of 180 m
73. after 2 s at a height of 20 m
74. after 4 s at a height of 120 m
75. they will not collide.
76. A projectile is fired at an angle of 45° with the horizontal. Elevation angle of the projectile at its highest point as seen from the point of projection, is :
77. 45°
78. 60°
79. $\tan ^{-1} \frac{1}{2}$
80. $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
81. The speed of a projectile at its maximum height is half of its initial speed. The angle of projection is -
82. 15°
83. 30°
84. 45°
85. 60°
86. A particle moves in the $x-y$ plane according to the rule $\mathrm{x}=\mathrm{a} \sin \omega \mathrm{t}$ and $\mathrm{y}=\mathrm{a} \cos \omega \mathrm{t}$. The particle follows:
87. a circular path.
88. a parabolic path.
89. a straight line path inclined equally to x and y -axes.
90. an elliptical path.
91. Two projectiles of same mass and with same velocity are thrown at an angle $60^{\circ} \& 30^{\circ}$ with the horizontal, then which quantity will remain same :
92. Time of flight
93. Horizontal range of projectile
94. Max height acquired
95. All of them
96. The width of river is 1 km . The velocity of boat is 5 $\mathrm{km} / \mathrm{hr}$. The boat covered the width of river with shortest will possible path in 15 min . Then the velocity of river stream is :
$1.3 \mathrm{~km} / \mathrm{hr}$
97. $4 \mathrm{~km} / \mathrm{hr}$
98. $\sqrt{29} \mathrm{~km} / \mathrm{hr}$
99. $\sqrt{41} \mathrm{~km} / \mathrm{hr}$
100. The speed of a boat is $5 \mathrm{~km} / \mathrm{hr}$ in still water. It crosses a river of width 1 km along the shortest possible path in 15 minutes. The velocity of river water is :
$1.3 \mathrm{~km} / \mathrm{hr}$
101. $4 \mathrm{~km} / \mathrm{hr}$
102. $5 \mathrm{~km} / \mathrm{hr}$
103. $2 \mathrm{~km} / \mathrm{hr}$
104. A stone tied to the end of a string of 1 m long is whirled in a horizontal circle at a constant speed. If the stone makes 22 revolutions in 44 seconds, what is the magnitude and direction of acceleration of the stone:
(1) $\pi^{2} \mathrm{~ms}^{-2}$ and direction along the tangent to the circle.
(2) $\pi^{2} \mathrm{~ms}^{-2}$ and direction along the radius towards the centre.
(3) $\frac{\pi^{2}}{4} \mathrm{~ms}^{-2}$ and direction along the radius towards the centre.
(4) $\pi^{2} \mathrm{~ms}^{-2}$ and direction along the radius away from the centre.
105. Two boys are standing at the ends A and B of a ground where $\mathrm{AB}=\mathrm{a}$. The boy at B starts running in a direction perpendicular to $A B$ with velocity v_{1}. The boy at A starts running simultaneously with velocity v and catches the other boy in a time t, where t is -
106. $\frac{a}{\sqrt{v^{2}+v_{1}^{2}}}$
107. $\frac{a}{\sqrt{v^{2}-v_{1}^{2}}}$
108. $\frac{a}{\left(v-v_{1}\right)}$
109. $\frac{a}{\left(v+v_{1}\right)}$
110. Two particles separated at a horizontal distance X as shown in fig. They are projected at the same line as shown in fig. with different initial speeds. The time after which the horizontal distance between them become zero-

111. $\frac{x}{u}$
112. $\frac{u}{2 x}$
113. $\frac{2 u}{x}$
114. None of these
115. Two particles are projected with same initial velocity one makes angle θ with horizontal while other makes an angle θ with vertical. If their common range is R then product of their time of flight is directly proportional to :
116. R
117. R^{2}
118. $\frac{1}{R}$
119. R^{0}
120. A particle (A) is droped from a height and another particle (B) is projected in horizontal direction with speed of $5 \mathrm{~m} / \mathrm{s}$ from the same height then correct statement is : -
(1) Particle (A) will reach at ground first with respect to particle (B)
(2) Particle (B) will reach at ground first with respect to particle (A)
(3) Both particles will reach at ground simultaneously
(4) Both particles will reach at ground with same speed
121. A particle is projected making angle 45° with horizontal having kinetic energy K . The kinetic energy at highest point will be :-
122. $\frac{K}{\sqrt{2}}$
123. $\frac{K}{2}$
124. 2 K
125. K
126. Two particles having mass ' M ' and ' m ' are moving in a circular path having radius $R \& r$ respectively. If their time periods are the same, then the ratio of angular velocities will be:
127. $\frac{r}{R}$
128. $\frac{R}{r}$
129. 1
130. $\sqrt{\frac{R}{r}}$
131. A particle moves along a circle of radius $\frac{20}{\pi} m$ with constant tangential acceleration. If the velocity of the particle is $80 \mathrm{~m} / \mathrm{s}$ at the end of the second revolution after motion has begun, the tangential acceleration is :-
(1) $40 \mathrm{~ms}^{-2}$
(2) $640 \pi \mathrm{~ms}^{-2}$
(3) $160 \pi \mathrm{~ms}^{-2}$
(4) $40 \pi \mathrm{~ms}^{-2}$
132. A car starts from rest and accelerates at $5 \mathrm{~m} / \mathrm{s}^{2}$. At $\mathrm{t}=$ 4 s , a ball is dropped out of a window by a person sitting in the car. What is the velocity and acceleration of the ball at $\mathrm{t}=6 \mathrm{~s}$?
(Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
133. $20 \sqrt{2} \mathrm{~m} / \mathrm{s}, 0 \mathrm{~m} / \mathrm{s}^{2}$
134. $20 \sqrt{2} \mathrm{~m} / \mathrm{s}, 10 \mathrm{~m} / \mathrm{s}^{2}$
135. $20 \mathrm{~m} / \mathrm{s}, 5 \mathrm{~m} / \mathrm{s}^{2}$
136. $20 \mathrm{~m} / \mathrm{s}, 0$
137. A particle moving in a circle of radius R with a uniform speed takes a time T to complete one revolution. If this particle were projected with the same speed at an angle ' θ ' to the horizontal, the maximum height attained by it equals 4R. The angle of projection, θ, is then given by:
138. $\theta=\sin ^{-1}\left(\frac{\pi^{2} \mathrm{R}}{\mathrm{gT}^{2}}\right)^{1 / 2}$
139. $\theta=\sin ^{-1}\left(\frac{2 \mathrm{gT}^{2}}{\pi^{2} \mathrm{R}}\right)^{1 / 2}$
140. $\theta=\cos ^{-1}\left(\frac{\mathrm{gT}^{2}}{\pi^{2} \mathrm{R}}\right)^{1 / 2}$
141. $\theta=\cos ^{-1}\left(\frac{\pi^{2} \mathrm{R}}{\mathrm{gT}^{2}}\right)^{1 / 2}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there
CLICK HERE to get
FREE ACCESS for 3
days of ANY NEETprep
course

Selected Questions (Only NCERT based)

 from AIPMT 1998 to NEET 2021
Laws of Motion

(Expected Questions in NEET 2022: 2)

Subtopic Name

Number of Questions

Application of Laws	22
Friction	17
Newton's Laws	11
Uniform Circular Motion	5
Non Uniform Vertical Circular	
Motion	4
Banking of Roads	2
String Constraint	1
Variable Mass System	1

1. A person of mass 60 kg is inside a lift of mass 940 kg and presses the button on control panel. The lift starts moving upwards with an acceleration $1.0 \mathrm{~m} / \mathrm{s}^{2}$. If $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, the tension in the supporting cable is:
2. 9680 N
3. 11000 N
4. 1200 N
5. 8600 N
6. A rigid ball of mass M strikes a rigid wall at 60° and gets reflected without loss of speed as shown in the figure. The value of impulse imparted by the wall on the ball will be:

7. Mv
8. 2 Mv
9. $\mathrm{Mv} / 2$
10. $\mathrm{Mv} / 3$
11. Which one of the following statements is incorrect?
12. Rolling friction is smaller than sliding friction.
13. Limiting value of static friction is directly proportional to normal reaction.
14. Frictional force opposes the relative motion.
15. Coefficient of sliding friction has dimensions of length.
16. Two blocks A and B of masses 3 m and m respectively are connected by a massless and inextensible string. The whole system is suspended by a massless spring as shown in the figure. The magnitudes of acceleration of A and B immediately after the string is cut, are respectively:

17. $\frac{g}{3}, g$
18. g, g
19. $\frac{g}{3}, \frac{g}{3}$
20. $g, \frac{g}{3}$
21. One end of the string of length ' 1 ' is connected to a particle of mass ' m ' and the other end is connected to a small peg on a smooth horizontal table. If the particle moves in a circle with speed ' v ', the net force on the particle (directed towards the centre) will be: (T represents the tension in the string)
22. $T+\frac{m v^{2}}{l}$
$2 . T-\frac{m v^{2}}{l}$
23. Zero
24. T
25. A block of mass m is placed on a smooth inclined wedge $A B C$ of inclination θ as shown in the figure. The wedge is given an acceleration 'a' towards the right. The relation between a and θ for the block to remain stationary on the wedge is:

26. $a=\frac{g}{\operatorname{cosec} \theta}$
27. $a=\frac{g}{\sin \theta}$
28. $a=g \cos \theta$
29. $a=g \tan \theta$

7.

A car is negotiating a curved road of radius R. The road is banked at angle θ. The coefficient of friction between the tyre of the car and the road is μ_{s}. The maximum safe velocity on this road is.

1. $\sqrt{\operatorname{gR}\left(\frac{\mu_{\mathrm{s}}+\tan \theta}{1-\mu_{\mathrm{s}} \tan \theta}\right)}$
2. $\sqrt{\frac{\mathrm{g}}{\mathrm{R}}\left(\frac{\mu_{\mathrm{s}}+\tan \theta}{1-\mu_{\mathrm{s}} \tan \theta}\right)}$
3. $\sqrt{\frac{\mathrm{g}}{\mathrm{R}^{2}}\left(\frac{\mu_{\mathrm{s}}+\tan \theta}{1-\mu_{\mathrm{s}} \tan \theta}\right)}$
4. $\sqrt{\mathrm{gR}^{2}\left(\frac{\mu_{\mathrm{s}}+\tan \theta}{1-\mu_{\mathrm{s}} \tan \theta}\right)}$
5. A plank with a box on it at one end is gradually raised about the other end. As the angle of inclination with the horizontal reaches 30°, the box starts to slip and slides 4.0 m down the plank in 4.0 s . The coefficients of static and kinetic friction between the box and the plank will be, respectively:

6. 0.6 and 0.6
7. 0.6 and 0.5
8. 0.5 and 0.6
9. 0.4 and 0.3
10. Two stones of masses m and 2 m are whirled in horizontal circles, the heavier one in a radius $\frac{r}{2}$ and the lighter one in radius r. The tangential speed if lighter stone is n times that of the value of heavier stone when they experience same centripetal forces. The value of n is-
11. 2
12. 3
13. 4
14. 1
15.

Three blocks A, B, and C of masses $4 \mathrm{~kg}, 2 \mathrm{~kg}$, and 1 kg respectively, are in contact on a frictionless surface, as shown. If a force of 14 N is applied on the 4 kg block, then the contact force between A and B is:

1. 2 N
2. 6 N
3. 8 N
4. 18 N
5. A block A of mass m_{1} rests on a horizontal table. A light string connected to it passes over a frictionless pulley at the edge of the table and from its other end, another block B of mass m_{2} is suspended. The coefficient of kinetic friction between block A and the table is μ_{k}. When block A is sliding on the table, the tension in the string is:
6. $\frac{\left(\mathrm{m}_{2}+\mu_{\mathrm{k}} \mathrm{m}_{1}\right) \mathrm{g}}{\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)}$
7. $\frac{\left(\mathrm{m}_{2}-\mu_{\mathrm{k}} \mathrm{m}_{1}\right) \mathrm{g}}{\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)}$
8. $\frac{\mathrm{m}_{1} \mathrm{~m}_{2}\left(1-\mu_{\mathrm{k}}\right) \mathrm{g}}{\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)}$
9. $\frac{\mathrm{m}_{1} \mathrm{~m}_{2}\left(1+\mu_{\mathrm{k}}\right)}{\mathrm{m}_{1}+\mathrm{m}_{2}} \mathrm{~g}$

Laws of Motion - NCERT based PYQs

12. A system consists of three masses $\mathrm{m}_{1}, \mathrm{~m}_{2}$, and m_{3} connected by a string passing over a pulley P. The mass m_{1} hangs freely and m_{2} and m_{3} are on a rough horizontal table (the coefficient of friction $=\mu$). The pulley is frictionless and of negligible mass. The downward acceleration of mass m_{1} is : (Assume $\mathrm{m}_{1}=$ $\mathrm{m}_{2}=\mathrm{m}_{3}=\mathrm{m}$)

13. $\frac{g(1-g \mu)}{9}$
14. $\frac{2 g \mu}{3}$
15. $\frac{g(1-2 \mu)}{3}$
16. $\frac{g(1-2 \mu)}{2}$
17. The force ' F ' acting on a particle of mass ' m ' is indicated by the force-time graph shown below. The change in momentum of the particle over the time interval from 0 to 8 s is :

18. 24 Ns
19. 20 Ns
20. 12 Ns
21. 6 Ns
22. A body of mass (4m) is lying in the $x-y$ plane at rest. It suddenly explodes into three pieces. Two pieces, each of mass (m) move perpendicular to each other with equal speeds (u). The total kinetic energy generated due to explosion is:
23. $m u^{2}$
24. $1.5 m u^{2}$
25. $2 m u^{2}$
26. $3 m u^{2}$
27.

The upper half of an inclined plane of inclination θ is perfectly smooth while the lower half is rough. A block starting from rest at the top of the plane will again come to rest at the bottom if the coefficient of friction between the block and lower half of the plane is given by:

1. $\mu=2 / \tan \theta$
2. $\mu=2 \tan \theta$
3. $\mu=\tan \theta$
4. $\mu=1 / \tan \theta$
5. Three blocks with masses $\mathrm{m}, 2 \mathrm{~m}$, and 3 m are connected by strings as shown in the figure. After an upward force, F is applied on block m , the masses move upward at constant speed v. What is the net force on the block of mass 2 m ? (g is the acceleration due to gravity).

6. 2 mg
7. 3 mg
3.6 mg
8. zero
9. A balloon with mass ' m ' is descending down with an acceleration 'a' (where $\mathrm{a}<\mathrm{g}$). How much mass should be removed from it so that it starts moving up with an acceleration 'a'?
10. $\frac{2 m a}{g+a}$
11. $\frac{2 m a}{g-a}$
12. $\frac{m a}{g+a}$
13. $\frac{m a}{g-a}$

Laws of Motion - NCERT based PYQs

18.

An explosion breaks a rock into three parts in a horizontal plane. Two of them go off at right angles to each other. The first part of mass 1 kg moves with a speed of $12 \mathrm{~ms}^{-}$ ${ }^{1}$ and the second part of mass 2 kg moves with $8 \mathrm{~ms}^{-}$ ${ }^{1}$ speed. If the third part flies off with $4 \mathrm{~ms}^{-1}$ speed, then its mass is:

1. 5 kg
2.7 kg
3.17 kg
4.3 kg
2. A car of mass 1000 kg negotiates a banked curve of radius 90 m on a frictionless road. If the banking angle is 45°, the speed of the car is:
3. $20 \mathrm{~ms}^{-1}$
4. $30 \mathrm{~ms}^{-1}$
5. $5 \mathrm{~ms}^{-1}$
6. $10 \mathrm{~ms}^{-1}$
7.

A person of mass 60 kg is inside a lift of mass 940 kg and presses the button on control panel. The lift starts moving upwards with an acceleration of $1.0 \mathrm{~ms}^{-2}$. If $\mathrm{g}=10 \mathrm{~ms}^{-2}$, the tension in the supporting cable is

1. 9680 N
2. 11000 N
3. 1200 N
4. 8600 N
5.

A body of mass M hits normally a rigid wall with velocity v and bounces back with the same velocity. The impulse experienced by the body is:

1. 1.5 Mv
2. 2 Mv
3. zero
4. Mv
5. A block of mass m is in contact with the cart C as shown in the figure.

The coefficient of static friction between the block and the cart is μ. The acceleration α of the cart that will prevent the block from falling satisfies:

1. $\alpha>\frac{\mathrm{mg}}{\mu}$
2. $\alpha>\frac{\mathrm{g}}{\mu \mathrm{m}}$
3. $\alpha \geq \frac{\mathrm{g}}{\mu}$
4. $\alpha<\frac{\mathrm{g}}{\mu}$
5. A gramophone record is revolving with an angular velocity ω. A coin is placed at a distance r from the centre of the record. The static coefficient of friction is μ. The coin will revolve with the record if:
6. $r=\mu g \omega^{2}$
7. $r<\frac{\omega^{2}}{\mu g}$
8. $r \leq \frac{\mu g}{\omega^{2}}$
9. $r \geq \frac{\mu g}{\omega^{2}}$
10.

An explosion blows a rock into three parts. Two parts go off at right angles to each other. These two are, the first part 1 kg moving with a velocity of $12 \mathrm{~ms}^{-1}$ and the second part 2 kg moving with a velocity of $8 \mathrm{~ms}^{-1}$. If the third part flies off with a velocity of $4 \mathrm{~ms}^{-1}$, its mass would be:

1. 5 kg
2.7 kg
3.17 kg
2. 3 kg
3.

The mass of a lift is 2000 kg . When the tension in the supporting cable is 28000 N , then its acceleration is: $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

1. $30 \mathrm{~ms}^{-2}$ downwards
2. $4 \mathrm{~ms}^{-2}$ upwards
$3.4 \mathrm{~ms}^{-2}$ downwards
3. $14 \mathrm{~ms}^{-2}$ upwards

Laws of Motion - NCERT based PYQs

26. A body, under the action of a force $\overrightarrow{\mathrm{F}}=6 \hat{i}-8 \hat{j}+10 \hat{k}$, acquires an acceleration of $1 \mathrm{~ms}^{-2}$. The mass of this body must be:
27. $2 \sqrt{ } 10 \mathrm{~kg}$
28. 10 kg
3.20 kg
29. $10 \sqrt{ } 2 \mathrm{~kg}$
30.

A roller coaster is designed such that riders experience "weightlessness" as they go round the top of a hill whose radius of curvature is 20 m . The speed of the car at the top of the hill is between:

1. $14 \mathrm{~m} / \mathrm{s}$ and $15 \mathrm{~m} / \mathrm{s}$
2. $15 \mathrm{~m} / \mathrm{s}$ and $16 \mathrm{~m} / \mathrm{s}$
3. $16 \mathrm{~m} / \mathrm{s}$ and $17 \mathrm{~m} / \mathrm{s}$
4. $13 \mathrm{~m} / \mathrm{s}$ and $14 \mathrm{~m} / \mathrm{s}$
5.

Sand is being dropped on a conveyor belt at the rate of M kg / s. The force necessary to keep the belt moving with a constant velocity of $\mathrm{v} \mathrm{m} / \mathrm{s}$ will be:

1. Mv Newton
2. 2 Mv Newton
3. $\frac{\mathrm{Mv}}{2}$ Newton
4. zero
5. A block B is pushed momentarily along a horizontal surface with an initial velocity v. If μ is the coefficient of sliding friction between B and the surface, the block B will come to rest after a time:
6. A 0.5 kg ball moving with a speed of $12 \mathrm{~m} / \mathrm{s}$ strikes a hard wall at an angle of 30° with the wall. It is reflected with the same speed and at the same angle. If the ball is in contact with the wall for 0.25 s , the average force acting on the wall is:

7. 48 N
8. 24 N
9. 12 N
10. 96 N
11. A tube of length L is filled completely with an incompressible liquid of mass M and closed at both ends. The tube is then rotated in a horizontal plane about one of its ends with a uniform angular velocity ω. The force exerted by the liquid at the other end is:
12. $\frac{M L \omega^{2}}{2}$
13. $\frac{M L^{2} \omega}{2}$
14. $M L \omega^{2}$
15. $\frac{M L^{2} \omega^{2}}{2}$
16. A block of mass 10 kg is in contact against the inner wall of a hollow cylindrical drum of radius 1 m . The coefficient of friction between the block and the inner wall of the cylinder is 0.1 . The minimum angular velocity needed for the cylinder which is vertical and rotating about its axis will be:
$\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
17. $10 \pi \mathrm{rad} / \mathrm{s}$
18. $\sqrt{10} \pi \mathrm{rad} / \mathrm{s}$
19. $\frac{10}{2 \pi} \mathrm{rad} / \mathrm{s}$
20. $10 \mathrm{rad} / \mathrm{s}$
21. $\frac{v}{g \mu}$
22. $\frac{g \mu}{v}$
23. $\frac{g}{v}$
24. $\frac{v}{g}$
25. A particle moving with velocity \vec{v} is acted by three forces shown by the vector triangle PQR. The velocity of the particle will:

26. change according to the smallest force $\overrightarrow{Q R}$.
27. increase.
28. decrease.
29. remain constant.
30. A truck is stationary and has a bob suspended by a light string in a frame attached to the truck. The truck suddenly moves to the right with an acceleration of a. In the frame of the truck, the pendulum will tilt:
(1) to the left and angle of inclination of the pendulum with the vertical is $\sin ^{-1}\left(\frac{a}{g}\right)$
(2) to the left and angle of inclination of the pendulum with the vertical is $\cos ^{-1}\left(\frac{a}{g}\right)$
(3) to the left and angle of inclination of the pendulum with the vertical is $\tan ^{-1}\left(\frac{a}{g}\right)$
(4) to the left and angle of inclination of the pendulum with the vertical is $\tan ^{-1}\left(\frac{g}{a}\right)$
31. A body of mass m is kept on a rough horizontal surface (coefficient of friction $=\mu$). A horizontal force is applied to the body but it does not move. The resultant of normal reaction and the frictional force acting on the object is given by \vec{F}, where:
32. $|\vec{F}|=m g+\mu m g$
33. $|\vec{F}|=\mu m g$
34. $|\vec{F}| \leq m g \sqrt{1+\mu^{2}}$
35. $|\vec{F}|=m g$
36. Two bodies of mass 4 kg and 6 kg are tied to the ends of a massless string. The string passes over a pulley which is frictionless (see figure). The acceleration of the system in terms of acceleration due to gravity (g) is:

37. $\mathrm{g} / 2$
38. $\mathrm{g} / 5$
39. $\mathrm{g} / 10$
40. g
41. A point mass ' m ' is moved in a vertical circle of radius ' r ' with the help of a string. The velocity of the mass is $\sqrt{7 \text { gr }}$ at the lowest point. The tension in the string at the lowest point is:
42. 6 mg
2.7 mg
43. 8 mg
44. 1 mg
45. Calculate the acceleration of the block and trolly system shown in the figure. The coefficient of kinetic friction between the trolly and the surface is 0.05 .
($g=10 \mathrm{~m} / \mathrm{s}^{2}$, mass of the string is negligible and no other friction exists).

46. $1.25 \mathrm{~m} / \mathrm{s}^{2}$
47. $1.50 \mathrm{~m} / \mathrm{s}^{2}$
48. $1.66 \mathrm{~m} / \mathrm{s}^{2}$
49. $1.00 \mathrm{~m} / \mathrm{s}^{2}$
50. A car of mass m is moving on a level circular track of radius R . If μ_{s} represents the static friction between the road and tyres of the car, the maximum speed of the car in circular motion is given by -
51. $\sqrt{R g / \mu_{s}}$
52. $\sqrt{m R g / \mu_{s}}$
53. $\sqrt{\mu_{s} R g}$
54. $\sqrt{\mu_{s} m R g}$
55. A conveyor belt is moving at a constant speed of $2 \mathrm{~m} / \mathrm{s}$. A box is gently dropped on it. The coefficient of friction between them is $\mu=0.5$. The distance that the box will move relative to belt before coming to rest on it, taking $\mathrm{g}=10 \mathrm{~ms}^{-2}$ is
56. 0.4 m
57. 1.2 m
58. 0.6 m
59. Zero
60. A small mass attached to a string rotates on a frictionless table top as shown. If the tension in the string is increased by pulling the string causing the radius of the circular motion to decrease by a factor of 2 , the kinetic energy of the mass will

61. decrease by a factor of 2
62. remain constant
63. increase by a factor of 2
64. increase by a factor of 4
65. Two masses as shown are suspended from a massless pulley. Calculate the acceleration of the system when masses are left free :

66. $2 \mathrm{~g} / 3$
67. $\mathrm{g} / 3$
68. $\mathrm{g} / 9$
69. $\mathrm{g} / 7$
70. A body of mass 3 kg hits a wall at an angle of $60^{\circ} \&$ returns at the same angle. The impact time was 0.2 s . Calculate the force exerted on the wall :

71. $150 \sqrt{3} \mathrm{~N}$
72. $50 \sqrt{3} \mathrm{~N}$
73. 100 N
74. $75 \sqrt{3} \mathrm{~N}$
75. A mass of 1 kg is thrown up with a velocity of 100 m / s. After 5 seconds, it explodes into two parts. One part of mass 400 g comes down with a velocity of $25 \mathrm{~m} / \mathrm{s}$. Calculate the velocity of another part:
$1.40 \mathrm{~m} / \mathrm{s}$ upward
76. $40 \mathrm{~m} / \mathrm{s}$ downward
77. $100 \mathrm{~m} / \mathrm{s}$ upward
78. $60 \mathrm{~m} / \mathrm{s}$ downward
79. A mass is performing vertical circular motion (see figure). If The average velocity of the particle is increased, then at which point the string will break :

80. A
81. B
82. C
83. D
84. If force $\mathrm{F}=500-100 t$, then function of impulse with time will be :
85. $500 \mathrm{t}-50 t^{2}$
86. $50 \mathrm{t}-10$
87. $50-t^{2}$
88. $100 t^{2}$
89. A man is slipping on a frictionless inclined plane \& a bag falls down from the same height. Then the speed of both is related as :
90. $V_{B}>V_{m}$
91. $\mathrm{V}_{\mathrm{B}}<\mathrm{V}_{\mathrm{m}}$
92. $\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{m}}$
93. V_{B} and V_{m} can't be related
94. A particle of mass m is tied to a string of length L and whirled into a horizontal plane. If the tension in the string is T, then the speed of the particle will be:
95. $\sqrt{\frac{T l}{m}}$
96. $\sqrt{\frac{2 T l}{m}}$
97. $\sqrt{\frac{3 T l}{m}}$
98. $\sqrt{\frac{T}{m l}}$
99. A small ball is suspended from a thread. It is lifted up with an acceleration $4.9 \mathrm{~ms}^{-2}$ and lowered with an acceleration $4.9 \mathrm{~ms}^{-2}$, then the ratio of tensions in the thread in both cases will be :
100. $1: 3$
101. $3: 1$
102. $1: 1$
103. $1: 5$
104. If a ladder is not in balance condition against a smooth vertical wall, then it can be made in balance condition by :
(1) Decreasing the length of ladder
(2) Increasing the length of ladder
(3) Increasing the angle of inclination
(4) Decreasing the angle of inclination
105. For a rocket propulsion velocity of exhaust gases relative to rocket is $2 \mathrm{~km} / \mathrm{s}$. If mass of rocket system is 1000 kg , then the rate of fuel consumption for a rocket to rise up with acceleration $4.9 \mathrm{~m} / s^{2}$ will be :
106. $12.25 \mathrm{~kg} / \mathrm{s}$
107. $17.5 \mathrm{~kg} / \mathrm{s}$
108. $7.35 \mathrm{~kg} / \mathrm{s}$
109. $5.2 \mathrm{~kg} / \mathrm{s}$
110. A rigid rod is placed against the wall as shown in figure. When its velocity of lower end is $10 \mathrm{~ms}^{-1}$ and its base makes an angle $\alpha=60^{\circ}$ with horizontal, then the vertical velocity of its end B will be :

111. $10 \sqrt{3}$
112. $10 / \sqrt{3}$
113. $5 \sqrt{3}$
114. $5 / \sqrt{3}$
115. If 100 N force is applied to 10 kg . block as shown in diagram then acceleration produced for slab-

$1.1 .65 \mathrm{~m} / \mathrm{s}^{2}$
116. $0.98 \mathrm{~m} / \mathrm{s}^{2}$
117. $1.2 \mathrm{~m} / \mathrm{s}^{2}$
118. $0.25 \mathrm{~m} / \mathrm{s}^{2}$
119. A block of mass m is placed on a smooth wedge of inclination θ. The whole system is accelerated horizontally so that the block does not slip on the wedge. The force exerted by the wedge on the block (g is the acceleration due to gravity) will be:
(1) $m g \sin \theta$
(2) mg
(3) $\mathrm{mg} / \cos \theta$
(4) $\mathrm{mg} \cos \theta$
120. The coefficient of static friction, μ_{s}, between block A of mass 2 kg and the table as shown in the figure is 0.2 . What would be the maximum mass value of block B so that the two blocks do not move? The string and the pulley are assumed to be smooth and massless. ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

(1) 4.0 kg
(2) 0.2 kg
(3) 0.4 kg
(4) 2.0 kg
121. An object of mass 3 kg is at rest. Now a force of $\vec{F}=6 t^{2} \hat{i}+4 t \hat{j}$ is applied on the object then velocity of object at $\mathrm{t}=3$ second is :-
122. $18 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}$
123. $18 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}$
124. $3 \hat{i}+18 \hat{j}$
125. $18 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}$
126. A block of mass 10 kg placed on rough horizontal surface having coefficient of friction $\mu=0.5$, if a horizontal force of 100 N acting on it then acceleration of the block will be : -
(1) $10 \mathrm{~m} / \mathrm{s}^{2}$
(2) $5 \mathrm{~m} / \mathrm{s}^{2}$
(3) $15 \mathrm{~m} / \mathrm{s}^{2}$
(4) $0.5 \mathrm{~m} / \mathrm{s}^{2}$
127. A lift of mass 1000 Kg is moving with acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$ in upward direction, then the tension developed in string which is connected to the lift is :-
(1) 9800 N
(2) $10,800 \mathrm{~N}$
(3) 11000 N
(4) $10,000 \mathrm{~N}$
128. A cricketer catches a ball of mass 150 gm . in 0.1 second moving with speed $20 \mathrm{~ms}^{-1}$. Then he experiences force of : -
129. 300 N
130. 30 N
131. 3 N
132. 0.3 N
133. On the horizontal surface of a truck a block of mass 1 kg is placed $(\mu=0.6)$ and truck is moving with acceleration $5 \mathrm{~m} / \mathrm{s}^{2}$ then the frictional force on block will be:
134. 5 N
135. 6 N
136. 5.88 N
137. 8 N
138. A monkey of mass 20 kg is holding a vertical rope. The rope will not break when a mass of 25 kg is suspended from it but will break if the mass exceeds 25 kg . What is the maximum acceleration with which the monkey can climb up along the rope? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(1) $5 \mathrm{~m} / \mathrm{s}^{2}$
(2) $10 \mathrm{~m} / \mathrm{s}^{2}$
(3) $25 \mathrm{~m} / \mathrm{s}^{2}$
(4) $2.5 \mathrm{~m} / \mathrm{s}^{2}$
139. A man weighs 80 kg . He stands on a weighing scale in a lift which is moving upwards with a uniform acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$. What would be the reading on the scale? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(1) Zero
(2) 400 N
(3) 800 N
(4) 1200 N
140. A 1 kg stationary bomb is exploded in three parts having mass $1: 1: 3$ respectively. Parts having same mass move in perpendicular direction with velocity $30 \mathrm{~ms}^{-1}$, then the velocity of bigger part will be :
141. $10 \sqrt{2} m s^{-1}$
142. $\frac{10}{\sqrt{2}} m s^{-1}$
143. $15 \sqrt{2} \mathrm{~ms}^{-1}$
144. $\frac{15}{\sqrt{2}} m s^{-1}$
145. A ball of mass 0.15 kg is dropped from a height 10 m , strikes the ground and rebounds to the same height. The magnitude of impulse imparted to the ball is ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$) nearly:
146. $2.1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
$2.1 .4 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
$3.0 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
147. $4.2 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

CLICK HERE
 to

- neet prep Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Work, Energy \& Power (Expected Questions in NEET 2022: 2)

Subtopic Name
 Number of

 Questions| Work Energy Theorem | 13 |
| :--- | :---: |
| Power | 10 |
| Elastic Potential Energy | 8 |
| Gravitational Potential Energy | 7 |
| Concept of Work | 5 |
| Work Done by Variable Force | 5 |
| Conservation of Mechanical
 Energy | 3 |
| Potential Energy: Relation with
 Force | 2 |

1. Consider a drop of rainwater having a mass of 1 gm falling from a height of 1 km . It hits the ground with a speed of $50 \mathrm{~m} / \mathrm{s}$. Take ' g ' constant with a value 10 $\mathrm{m} / \mathrm{s}^{2}$. The work done by the
(i) gravitational force and the
(ii) resistive force of air is:
2. (i) 1.25 J (ii) -8.25 J
3. (i) 100 J (ii) 8.75 J
4. (i) 10 J (ii) -8.75 J
5. (i) -10 J (ii) -8.75 J
6. A body initially at rest and sliding along a frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter $\mathrm{AB}=\mathrm{D}$. The height h is equal to :-

7. $\frac{3}{2} D$
8. D
9. $\frac{7}{4} D$
10. $\frac{5}{4} D$
11.

A body of mass 1 kg begins to move under the action of a time-dependent force $\vec{F}=\left(2 t \hat{\mathrm{i}}+3 \mathrm{t}^{2} \hat{\mathrm{j}}\right) \mathrm{N}$, where $\hat{\mathrm{i}}$ and $\hat{\mathrm{j}}$ are unit vectors along the X and Y-axis. What power will be developed by the force at the time (t) ?

1. $\left(2 t^{2}+4 t^{4}\right) W$
2. $\left(2 t^{3}+3 t^{3}\right) W$
3. $\left(2 t^{3}+3 t^{5}\right) W$
4. $\left(2 t^{3}+3 t^{4}\right) W$
5. A ball is thrown vertically downwards from a height of 20 m with an initial velocity v_{0}. It collides with the ground, losses 50% of its energy in a collision, and rebounds to the same height. The initial velocity v_{0} is:
[Take, $\mathrm{g}=10 \mathrm{~ms}^{-1}$]
6. $14 \mathrm{~ms}^{-1}$
7. $20 \mathrm{~ms}^{-1}$
8. $28 \mathrm{~ms}^{-1}$
9. $10 \mathrm{~ms}^{-1}$
10.

Two similar springs P and Q have spring constants k_{P} and k_{Q}, such that $\mathrm{k}_{\mathrm{P}}>\mathrm{k}_{\mathrm{Q}}$. They are stretched, first by the same amount (case a), then by the same force (case b). The work done by the springs W_{P} and W_{Q} are related as, in case (a) and case (b), respectively.

1. $\mathrm{W}_{\mathrm{P}}=\mathrm{W}_{\mathrm{Q}} ; \mathrm{W}_{\mathrm{P}}>\mathrm{W}_{\mathrm{Q}}$
2. $\mathrm{W}_{\mathrm{P}}=\mathrm{W}_{\mathrm{Q}} ; \mathrm{W}_{\mathrm{P}}=\mathrm{W}_{\mathrm{Q}}$
3. $\mathrm{W}_{\mathrm{P}}>\mathrm{W}_{\mathrm{Q}} ; \mathrm{W}_{\mathrm{P}}<\mathrm{W}_{\mathrm{Q}}$
4. $\mathrm{W}_{\mathrm{P}}<\mathrm{W}_{\mathrm{Q}} ; \mathrm{W}_{\mathrm{P}}<\mathrm{W}_{\mathrm{Q}}$
5.

A block of mass 10 kg , moving in the x -direction with a constant speed of $10 \mathrm{~ms}^{-1}$ is subjected to a retarding force $\mathrm{F}=0.1 \mathrm{xJ} / \mathrm{m}$ during its travel from $\mathrm{x}=20 \mathrm{~m}$ to 30 m . Its final K.E. will be:

1. 475 J
2. 450 J
3. 275 J
4. 250 J
5. What is the minimum velocity with which a body of mass m must enter a vertical loop of radius R so that it can complete the loop?
6. $\sqrt{2 g R}$
7. $\sqrt{3 g R}$
8. $\sqrt{5 g R}$
9. $\sqrt{g R}$
10.

A particle of mass m is driven by a machine that delivers a constant power k watts. If the particle starts from rest, the force on the particle at time t is

1. $\sqrt{\frac{m k}{2}} t^{-1 / 2}$
2. $\sqrt{m k} t^{-1 / 2}$
3. $\sqrt{2 m k} t^{-1 / 2}$
4. $\frac{1}{2} \sqrt{m k} t^{-1 / 2}$
5. Two particles of masses m_{1} and m_{2} move with initial velocities u_{1} and u_{2} respectively. On collision, one of the particles gets excited to a higher level, after absorbing energy E. If the final velocities of particles are v_{1} and v_{2}, then we must have:
6. $\mathrm{m}_{1}^{2} \mathrm{u}_{1}+\mathrm{m}_{2}^{2} \mathrm{u}_{2}-\mathrm{E}=\mathrm{m}_{1}^{2} \mathrm{v}_{1}+\mathrm{m}_{2}^{2} \mathrm{v}_{2}$
7. $\frac{1}{2} \mathrm{~m}_{1} \mathrm{u}_{1}^{2}+\frac{1}{2} \mathrm{~m}_{2} \mathrm{u}_{2}^{2}=\frac{1}{2} \mathrm{~m}_{1} \mathrm{v}_{1}^{2}+\frac{1}{2} \mathrm{~m}_{2} \mathrm{v}_{2}^{2}$
8. $\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}-E=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}$
9. $\frac{1}{2} \mathrm{~m}_{1}^{2} \mathrm{u}_{1}^{2}+\frac{1}{2} \mathrm{~m}_{2}^{2} \mathrm{u}_{2}^{2}+\mathrm{E}=\frac{1}{2} \mathrm{~m}_{1}^{2} \mathrm{v}_{1}^{2}+\frac{1}{2} \mathrm{~m}_{2}^{2} \mathrm{v}_{2}^{2}$
10. On a frictionless surface, a block of mass M moving at speed v collides elastically with another block of the same mass M which is initially at rest. After the collision, the first block moves at an angle θ to its initial direction and has a speed $\frac{v}{3}$. The second block's speed after the collision is:
11. $\frac{2 \sqrt{2}}{3} v$
12. $\frac{3}{4} v$
13. $\frac{3}{\sqrt{2}} v$
14. $\frac{\sqrt{3}}{2} v$
15.

A uniform force of $(3 \hat{i}+\hat{j})$ newton acts on a particle of mass 2 kg . Hence the particle is displaced from position $(2 \hat{i}+\hat{k})$ meter to position $(4 \hat{i}+3 \hat{j}-\hat{k})$ meter. The work done by the force on the particle is:
1.6 J
2. 13 J
3. 15 J
4. 9 J
12. The potential energy of a particle in a force field is $\mathrm{U}=$ $\frac{A}{r^{2}}-\frac{B}{r}$ where A and B are positive constants and r is the distance of the particle from the center of the field. For stable equilibrium, the distance of the particle is:

1. B / A
2. $\mathrm{B} / 2 \mathrm{~A}$
3. $2 \mathrm{~A} / \mathrm{B}$
4. A / B
5. Two spheres A and B of masses m_{1} and m_{2} respectively collide. A is at rest initially and B is moving with velocity v along the x -axis. After collision B has a velocity $\frac{\mathrm{v}}{2}$ in a direction perpendicular to the original direction. The mass A moves after collision in the direction:
6. same as that of B.
7. opposite to that of B.
8. $\theta=\tan ^{-1}\left(\frac{1}{2}\right)$ to the positive x -axis.
9. $\theta=\tan ^{-1}\left(\frac{-1}{2}\right)$ to the positive x -axis
10.

A body projected vertically from the earth reaches a height equal to earth's radius before returning to the earth. The power exerted by the gravitational force is greatest:

1. at the instant just before the body hits the earth.
2. it remains constant all throughout.
3. at the instant just after the body is projected.
4. at the highest position of the body.
5.

The potential energy of a system increases if work is done

1. by the system against a conservative force
2. by the system against a non-conservative force
3. upon the system by a conservative force
4. upon the system by a non-conservative force
5. Force F on a particle moving in a straight line varies with distance d as shown in the figure. The work done on the particle during its displacement of 12 m is:

6. 21 J
7. 26 J
8. 13 J
9. 18 J
10. An engine pumps water through a hose pipe. Water passes through the pipe and leaves it with a velocity of 2 ms^{-1}. The mass per unit length of water in the pipe is $100 \mathrm{~kg} \mathrm{~m}^{-1}$. What is the power of the engine?
11. 400 W
12. 200 W
13. 100 W
14. 800 W

18.

A body of mass 1 kg is thrown upwards with a velocity 20 ms^{-1}. It momentarily comes to rest after attaining a height of 18 m . How much energy is lost due to air friction? (g $=10 \mathrm{~ms}^{-2}$)

1. 20 J
2. 30 J
3. 40 J
4. 10 J
5. An engine pumps water continuously through a hose. Water leaves the hose with a velocity v and m is the mass per unit length of the water jet. What is the rate at which kinetic energy is imparted to water?
6. $\frac{1}{2} m v^{3}$
7. $m v^{3}$
8. $\frac{1}{2} m v^{2}$
9. $\frac{1}{2} m^{2} v^{2}$
10.

A block of mass M is attached to the lower end of a vertical spring. The spring is hung from a ceiling and has force constant value k . The mass is released from rest with the spring initially upstretched. The maximum extension produced in the length of the spring will be:

1. Mg / k
2. $2 \mathrm{Mg} / \mathrm{k}$
3. $4 \mathrm{Mg} / \mathrm{k}$
4. $\mathrm{Mg} / 2 \mathrm{k}$
5.

Water falls from a height of 60 m at the rate of $15 \mathrm{~kg} / \mathrm{s}$ to operate a turbine. The losses due to frictional forces are 10% of energy. How much power is generated by the turbine? $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

1. 8.1 kW
2. 10.2 kW
3. 12.3 kW
4. 7.0 kW
5.

A shell of mass 200 g is ejected from a gun of mass 4 kg by an explosion that generates 1.05 kJ of energy. The initial velocity of the shell is:

1. $100 \mathrm{~ms}^{-1}$
2. $80 \mathrm{~ms}^{-1}$
3. $40 \mathrm{~ms}^{-1}$
4. $120 \mathrm{~ms}^{-1}$
5. A vertical spring with force constant k is fixed on a table. A ball of mass m at a height h above the free upper end of the spring falls vertically on the spring so that the spring is compressed by a distance d. The net work done in the process is:
6. $m g(h+d)+\frac{1}{2} k d^{2}$
7. $m g(h+d)-\frac{1}{2} k d^{2}$
8. $m g(h-d)-\frac{1}{2} k d^{2}$
9. $m g(h-d)+\frac{1}{2} k d^{2}$
10. The potential energy of a long spring when stretched by 2 cm is U. If the spring is stretched by 8 cm the potential energy stored in it is :
11. 4 U
12. 8 U
13. 16 U
14. $\mathrm{U} / 4$
15. A body of mass 3 kg is under a constant force which causes a displacement s in metres in it, given by the relation $s=\frac{1}{3} t^{2}$, where t is in sec. Work done by the force in 2 sec is :
16. $\frac{5}{19} \mathrm{~J}$
17. $\frac{3}{8} J$
18. $\frac{8}{3} \mathrm{~J}$
19. $\frac{19}{5} J$
20. 300 J of work is done in sliding a 2 kg block up an inclined plane of height 10 m . Taking $g=10 \mathrm{~m} / \mathrm{s}^{2}$, work done against friction is :
21. 200 J
22. 100 J
23. zero
24. 1000 J
25. When an object is shot from the bottom of a long smooth inclined plane kept at an angle of 60° with horizontal, it can travel a distance x_{1} along the plane. But when the inclination is decreased to 30° and the same object is shot with the same velocity, it can travel x_{2} distance. Then $x_{1}: x_{2}$ will be:
26. $1: 2 \sqrt{3}$
27. $1: \sqrt{2}$
28. $\sqrt{2}: 1$
29. $1: \sqrt{3}$
30. A force $\mathrm{F}=20+10 \mathrm{y}$ acts on a particle in the y -direction where F is in Newton and y in meter. Work done by this force to move the particle from $\mathrm{y}=0$ to $\mathrm{y}=1 \mathrm{~m}$ is:
31. 20 J
32. 30 J
33. 5 J
34. 25 J
35. A mass m is attached to a thin wire and whirled in a vertical circle. The wire is most likely to break when:
36. inclined at an angle of 60° from vertical.
37. the mass is at the highest point.
38. the wire is horizontal.
39. the mass is at the lowest point.
40.

A disc of radius 2 m and mass 100 kg rolls on a horizontal floor. Its centre of mass has speed of $20 \mathrm{~cm} / \mathrm{s}$. How much work is needed to stop it?

1. 1 J
2. 3 J
3. 30 J
4. 2 J
5. An object of mass 500 g initially at rest is acted upon by a variable force whose x-component varies with x in the manner shown. The velocities of the object at the points $\mathrm{x}=8 \mathrm{~m}$ and $\mathrm{x}=12 \mathrm{~m}$ would have the respective values of nearly:

6. $18 \mathrm{~m} / \mathrm{s}$ and $24.4 \mathrm{~m} / \mathrm{s}$
7. $23 \mathrm{~m} / \mathrm{s}$ and $24.4 \mathrm{~m} / \mathrm{s}$
$3.23 \mathrm{~m} / \mathrm{s}$ and $20.5 \mathrm{~m} / \mathrm{s}$
$4.18 \mathrm{~m} / \mathrm{s}$ and $20.5 \mathrm{~m} / \mathrm{s}$
8. A mass m moving horizontally (along the x -axis) with velocity v collides and sticks to a mass of 3 m moving vertically upward (along the y-axis) with velocity $2 v$. The final velocity of the combination is :
9. $\frac{3}{2} v \hat{i}+\frac{1}{4} v \hat{j}$
10. $\frac{1}{4} v \hat{i}+\frac{3}{2} v \hat{j}$
11. $\frac{1}{3} v \hat{i}+\frac{2}{3} v \hat{j}$
12. $\frac{2}{3} v \hat{i}+\frac{1}{3} v \hat{j}$
13. A car of mass m starts from rest and accelerates so that the instantaneous power delivered to the car has a constant magnitude P_{0}. The instantaneous velocity of this car is proportional to -
14. $t^{1 / 2}$
15. $t^{-1 / 2}$
16. t / \sqrt{m}
17. $t^{2} P_{0}$
18. A stone is dropped from a height h. It hits the ground with a certain momentum P. If the same stone is dropped from a height 100% more than the previous height, the momentum when it hits the ground will change by -
19. 41%
20. 200%
21. 100%
22. 68%
23. A particle of mass M starting from rest undergoes uniform acceleration. If the speed acquired in time T is V , the power delivered to the particle is -
24. $\frac{1}{2} \frac{M V^{2}}{T^{2}}$
25. $\frac{M V^{2}}{T^{2}}$
26. $\frac{1}{2} \frac{M V^{2}}{T}$
27. $\frac{M V^{2}}{T}$
28. If $x=3-4 t^{2}+t^{3}$, then work done in the first 4 s will be (Mass of the particle is 3 gram) :
29. 384 mJ
30. 168 mJ
31. 192 mJ
32. None of these
33. The bob of simple pendulum having length 1 , is displaced from mean position to an angular position θ with respect to vertical. If it is released, then velocity of bob at lowest position :
34. $\sqrt{2 g l(1-\cos \theta)}$
35. $\sqrt{2 g l(1+\cos \theta)}$
36. $\sqrt{2 g l \cos \theta}$
37. $\sqrt{2 g l}$
$38 . \quad$ If
$\vec{F}=(60 \hat{i}+15 \hat{j}-3 \hat{k}) N$ and $\vec{V}=(2 \hat{i}-4 \hat{j}+5 \hat{k}) m$, then instantaneous power is:
38. 195 watt
39. 45 watt
40. 75 watt
41. 100 watt
42. A ball is dropped from a height of 5 m , if it rebounds up to a height of 1.8 m , then the ratio of velocities of the ball after and before rebound is:
43. $\frac{3}{5}$
44. $\frac{2}{5}$
45. $\frac{1}{5}$
46. $\frac{4}{5}$
47. A force F acting on an object varies with distance x as shown here.

The force is in N and x in m . The work done by the force in moving the object from $x=0$ to $x=6 \mathrm{~m}$ is
(1) 18.0 J
(2) 13.5 J
(3) 4.5 J
(4) 9.0 J
41. A ball is thrown vertically upward. It has a speed of $10 \mathrm{~m} / \mathrm{sec}$ when it has reached one-half of its maximum height. How high does the ball rise? Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$ -
(1) 5 m
(2) 15 m
(3) 10 m
(4) 20 m
42. The K.E. of a person is just half of K.E. of a boy whose mass is just half of that person. If person increases its speed by $1 \mathrm{~m} / \mathrm{s}$, then its K.E. equals to that of boy, then initial speed of person was -

1. $(\sqrt{2}+1) \mathrm{m} / \mathrm{s}$
2. $(2+\sqrt{2}) \mathrm{m} / \mathrm{s}$
3. $2(\sqrt{2}+2) \mathrm{m} / \mathrm{s}$
4. None
5. A particle of mass m_{1} is moving with a velocity v_{1} and m another particle of mass m_{2} is moving with a velocity v_{2}. Both of them have the same momentum but their different kinetic energies are E_{1} and E_{2} respectively. If $m_{1}>m_{2}$ then:
6. $\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}$
7. $\mathrm{E}_{1}>\mathrm{E}_{2}$
8. $\mathrm{E}_{1}=\mathrm{E}_{2}$
9. $\mathrm{E}_{1}<\mathrm{E}_{2}$
10. A stone is tied to a string of length ' l ' and is whirled in a vertical circle with the other end of the string as the centre. At a certain instant of time, the stone is at its lowest position and has a speed 'u'. The magnitude of the change in velocity as it reaches a position where the string is horizontal (g being acceleration due to gravity) is:
11. $\sqrt{u^{2}-g \ell}$
12. $u-\sqrt{u^{2}-2 g \ell}$
13. $\sqrt{2 \mathrm{~g} \ell}$
14. $\sqrt{2\left(\mathrm{u}^{2}-\mathrm{g} \ell\right)}$
15. A mass of 0.5 kg moving with a speed of $1.5 \mathrm{~m} / \mathrm{s}$ on a horizontal smooth surface, collides with a nearly weightless spring of force constant $k=50 \mathrm{~N} / \mathrm{m}$. The maximum compression of the spring would be :-

(1) 0.12 m
(2) 1.5 m
(3) 0.5 m
(4) 0.15 m
16. Two springs A and $\mathrm{B}\left(K_{A}=2 K_{B}\right)$ are stretched by the same suspended weights, then the ratio of work done in stretching is:
17. $1: 2$
18. $2: 1$
19. $1: 1$
20. $1: 4$
21. When spring is subjected to 4 N force its length is a metre and if 5 N is applied length is b metre. If 9 N is applied its length is :
22. $4 b-3 a$
23. $5 \mathrm{~b}-\mathrm{a}$
24. $5 \mathrm{~b}-4 \mathrm{a}$
25. $5 \mathrm{~b}-2 \mathrm{a}$
26. If kinetic energy of a body is increased by 300% than percentage change in momentum will be
(1) 100%
(2) 150%
(3) 265%
(4) 73.2%
27. Two springs A and B having spring constant K_{A} and $K_{B}\left(K_{A}=2 K_{B}\right)$ are stretched by applying force of equal magnitude. If energy stored in spring A is E then energy stored in B will be :-
28. 2 E
29. $\frac{E}{4}$
30. $\frac{E}{2}$
31. 4 E
32. When a long spring is stretched by 2 cm , its potential energy is U. If the spring is stretched by 10 cm , the potential energy stored in it will be :
(1) $U / 5$
(2) 5 U
(3) 10 U
(4) 25 U
33. 250 N force is required to raise 75 kg mass from a pulley. If rope is pulled 12 m then the load is lifted to 3 m , the efficiency of pulley system will
be : -
34. 25%
35. 33.3%
36. 75%
37. 90%
38. A particle is released from height S from the surface of the earth. At a certain height, its kinetic energy is three times its potential energy. The height from the surface of the earth and the speed of the particle at that instant are respectively:
39. $\frac{\mathrm{S}}{2}, \frac{\sqrt{3 \mathrm{gS}}}{2}$
40. $\frac{\mathrm{S}}{4}, \sqrt{\frac{3 \mathrm{gS}}{2}}$
41. $\frac{\mathrm{S}}{4}, \frac{3 \mathrm{gS}}{2}$
42. $\frac{S}{4}, \frac{\sqrt{3 \mathrm{gS}}}{2}$
43. Water falls from a height of 60 m at the rate of $15 \mathrm{~kg} / \mathrm{s}$ to operate a turbine. The losses due to frictional force are 10% of the input energy. How much power is generated by the turbine? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
44. 12.3 kW
45. 7.0 kW
46. 10.2 kW
47. 8.1 kW
48. A child is sitting on a swing. Its minimum and maximum heights from the ground is 0.75 m and 2 m respectively, its maximum speed will be
49. $10 \mathrm{~m} / \mathrm{s}$
50. $5 \mathrm{~m} / \mathrm{s}$
51. $8 \mathrm{~m} / \mathrm{s}$
52. $15 \mathrm{~m} / \mathrm{s}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there
CLICK HERE to get
FREE ACCESS for 3
days of ANY NEETprep
course

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

System of Particles \& Rotational Motion

 (Expected Questions in NEET 2022: 3)
Subtopic Name Number of Questions

Moment of Inertia	17
Rolling Motion	16
Angular Momentum	15
Collisions	13
Torque	12
Center of Mass	11
Rotational Motion: Kinematics	6
Linear Momentum	5
Rotational Motion: Dynamics	3

1. A bullet of mass 10 g moving horizontal with a velocity of $400 \mathrm{~m} / \mathrm{s}$ strikes a wood block of mass 2 kg which is suspended by light inextensible string of length 5 m . As result, the centre of gravity of the block found to rise a vertical distance of 10 cm . The speed of the bullet after it emerges of horizontally from the block will be
2. $100 \mathrm{~m} / \mathrm{s}$
3. $80 \mathrm{~m} / \mathrm{s}$
4. $120 \mathrm{~m} / \mathrm{s}$
5. $160 \mathrm{~m} / \mathrm{s}$
6. Two identical balls A and B having velocities of $0.5 \mathrm{~m} / \mathrm{s}$ and $-0.3 \mathrm{~m} / \mathrm{s}$ respectively collide elastically in one dimension. The velocities of B and A after the collision respectively will be
7. $-0.5 \mathrm{~m} / \mathrm{s}$ and $0.3 \mathrm{~m} / \mathrm{s}$
8. $0.5 \mathrm{~m} / \mathrm{s}$ and $-0.3 \mathrm{~m} / \mathrm{s}$
9. $-0.3 \mathrm{~m} / \mathrm{s}$ and $0.5 \mathrm{~m} / \mathrm{s}$
10. $0.3 \mathrm{~m} / \mathrm{s}$ and $0.5 \mathrm{~m} / \mathrm{s}$
11. Two rotating bodies A and B of masses m and 2 m with moments of inertia I_{A} and $\mathrm{I}_{\mathrm{B}}\left(\mathrm{I}_{\mathrm{B}}>\mathrm{I}_{\mathrm{A}}\right)$ have the equal kinetic energy of rotation. If L_{A} and L_{B} be their angular momenta respectively, then:
12. $\mathrm{L}_{\mathrm{A}}=\frac{L_{B}}{2}$
13. $\mathrm{L}_{\mathrm{A}}=2 \mathrm{~L}_{\mathrm{B}}$
14. $\mathrm{L}_{\mathrm{B}}>\mathrm{L}_{\mathrm{A}}$
15. $\mathrm{L}_{\mathrm{A}}>\mathrm{L}_{\mathrm{B}}$
16. A solid sphere of mass m and radius R is rotating about its diameter. A solid cylinder of the same mass and same radius is also rotating about its geometrical axis with an angular speed twice that of the sphere. The ratio of their kinetic energies of rotation (Sphere/cylinder) will be:
17. $2: 3$
18. $1: 5$
19. $1: 4$
20. $3: 1$
21. A light rod of length 1 has two masses m_{1} and m_{2} attached to its two ends. The moment of inertia of the system about an axis perpendicular to the rod and passing through the centre of mass is:
22. $\frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \mathrm{I}^{2}$
23. $\frac{\mathrm{m}_{1}+\mathrm{m}_{2}}{\mathrm{~m}_{1} \mathrm{~m}_{2}} \mathrm{I}^{2}$
24. $\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{I}^{2}$
25. $\sqrt{\mathrm{m}_{1}+\mathrm{m}_{2} \mathrm{I}^{2}}$
26. A moving block having mass m collides with another stationary block having a mass of 4 m . The lighter block comes to rest after the collision. When the initial velocity of the lighter block is v, then the value of the coefficient of restitution (e) will be:
27. 0.5
28. 0.25
29. 0.8
30. 0.4
31. Three objects, $\mathrm{A}:(\mathrm{a}$ solid sphere), $\mathrm{B}:$ (a thin circular disk) and $C=$ (a circular ring), each have the same mass M and radius R . They all spin with the same angular speed about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation:
32. $\mathrm{W}_{\mathrm{C}}>\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{A}}$
33. $\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{C}}$
34. $\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{C}}$
35. $\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{C}}>\mathrm{W}_{\mathrm{B}}$
36. A rope is wound around a hollow cylinder of mass 3 kg and radius 40 cm . What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N ?
37. $0.25 \mathrm{rad} / \mathrm{s}^{2}$
38. $25 \mathrm{rad} / \mathrm{s}^{2}$
$3.5 \mathrm{~m} / \mathrm{s}^{2}$
39. $25 \mathrm{~m} / \mathrm{s}^{2}$
40. Two discs of the same moment of inertia are rotating about their regular axis passing through centre and perpendicular to the plane of disc with angular velocities ω_{1} and ω_{2}. They are brought into contact face to face with their axis of rotation coinciding. The expression for loss of energy during this process is:-
41. $\frac{1}{4} I\left(\omega_{1}-\omega_{2}\right)^{2}$
42. $I\left(\omega_{1}-\omega_{2}\right)^{2}$
43. $\frac{1}{8} I\left(\omega_{1}-\omega_{2}\right)^{2}$
44. $\frac{1}{2} I\left(\omega_{1}-\omega_{2}\right)^{2}$
45. Which of the following statements are correct?
(a) Centre of mass of a body always coincides with the centre of gravity of the body
(b) Centre of gravity of a body is the point about which the total gravitational torque on the body is zero
(c) A couple on a body produce both translational and rotation motion in a body
(d) Mechanical advantage greater than one means that small effort can be used to lift a large load
46. (a) and (b)
47. (b) and (c)
48. (c) and (d)
49. (b) and (d)

System of Particles \& Rotational Motion - NCERT based
 PYQs

11. The moment of the force, $\vec{F}=4 \hat{i}+5 \hat{j}-6 \hat{k}$ at point $(2,0,-3)$ about the point $(2,-2,-2)$ is given by:
12. $-8 \hat{i}-4 \hat{j}-7 \hat{k}$
13. $-4 \hat{i}-\hat{j}-8 \hat{k}$
14. $-7 \hat{i}-8 \hat{j}-4 \hat{k}$
15. $-7 \hat{i}-4 \hat{j}-8 \hat{k}$
16. A solid sphere is in rolling motion. In rolling motion, a body possesses translational kinetic energy $\left(\mathrm{K}_{\mathrm{t}}\right)$ as well as rotational kinetic energy $\left(\mathrm{K}_{\mathrm{r}}\right)$ simultaneously. The ratio $\mathrm{K}_{\mathrm{t}}:\left(\mathrm{K}_{\mathrm{t}}+\mathrm{K}_{\mathrm{r}}\right)$ for the sphere is:
17. 7:10
18. 5:7
19. 10:7
20. 2:5
21. A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass the same. Which of the following physical quantities would remain constant for the sphere?
22. Angular velocity
23. moment of inertia
24. rotational kinetic energy
25. Angular momentum

14.

From a disc of radius R and mass M , a circular hole of diameter R, whose rim passes through the centre is cut. What is the moment of inertia of the remaining part of the disc about a perpendicular axis, passing through the centre?

1. $13 \mathrm{MR}^{2} / 32$
2. $11 \mathrm{MR}^{2 / 32}$
3. $9 \mathrm{MR}^{2} / 32$
4. $15 \mathrm{MR}^{2} / 32$
5. A disc and a solid sphere of the same radius but different masses roll off on two inclined planes of the same altitude and length. Which one of the two objects gets to the bottom of the plane first?
6. Sphere
7. Both reach at the same time
8. Depends on their masses
9. Disc

16.

A uniform circular disc of radius 50 cm at rest is free to turn about an axis that is perpendicular to its plane and passes through its centre. It is subjected to a torque that produces a constant angular acceleration of $2.0 \mathrm{rad} \mathrm{s}^{-2}$. Its net acceleration in ms^{-2} at the end of 2.0 s is approximately:
1.7
2.6
3.3
4. 8

17.

Point masses m_{1} and m_{2}, are placed at the opposite ends of a rigid rod of length L and negligible mass. The rod is to be set rotating about an axis perpendicular to it. The position of point P on this rod through which the axis should pass so that the work required to set the rod rotating with angular velocity ω_{0} is minimum is given by:

1. $x=\frac{m_{1} L}{m_{1}+m_{2}}$
2. $x=\frac{m_{1}}{m_{2}} L$
3. $x=\frac{m_{2}}{m_{1}} L$
4. $x=\frac{m_{2} L}{m_{1}+m_{2}}$
5. A rod of weight w is supported by two parallel knife edges A and B and is in equilibrium in a horizontal position. The knives are at a distance d from each other. The Centre of mass of the rod is at a distance x from A. The normal reaction on A is:
6. $\frac{w x}{d}$
7. $\frac{w d}{x}$
8. $\frac{w(d-x)}{x}$
9. $\frac{w(d-x)}{d}$

System of Particles \& Rotational Motion - NCERT based
 PYQs

19.

A mass m moves in a circle on a smooth horizontal plane with velocity v_{0} at a radius R_{0}. The mass is attached to a string that passes through a smooth hole in the plane as shown.

The tension in the string is increased gradually and finally m moves in a circle of radius $\frac{R_{0}}{2}$. The final value of the kinetic energy is:

1. $m v_{0}^{2}$
2. $\frac{1}{4} m v_{0}^{2}$
3. $2 m v_{0}^{2}$
4. $\frac{1}{2} m v_{0}^{2}$

20.

Three identical spherical shells, each of mass m and radius r are placed as shown in the figure. Consider an axis XX^{\prime}, which is touching two shells and passing through the diameter of the third shell. The moment of inertia of the system consisting of these three spherical shells about the XX^{\prime} axis is:

1. $\frac{11}{5} m r^{2}$
2. $3 m r^{2}$
3. $\frac{16}{5} m r^{2}$
4. $4 m r^{2}$
5. A force $\vec{F}=\alpha \hat{i}+3 \hat{j}+6 \hat{k}$ is acting at a point $\vec{r}=2 \hat{i}-6 \hat{j}-12 \hat{k}$. The value of α for which angular momentum about the origin is conserved is:
6. -1
7. 2
8. zero
9. 1
10. An automobile moves on a road with a speed of 54 kmh^{-1}. The radius of its wheels is 0.45 m and the moment of inertia of the wheel about its axis of rotation is $3 \mathrm{~kg}-\mathrm{m}^{2}$. If the vehicle is brought to rest in 15 s , the magnitude of average torque transmitted by its brakes to the wheel is:
11. $6.66 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
12. $8.58 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
13. $10.86 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
14. $2.86 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
15. A solid cylinder of mass 50 kg and radius 0.5 m is free to rotate about the horizontal axis. A massless string is wound around the cylinder with one end attached to it and the other hanging freely. Tension in the string required to produce an angular acceleration of 2 revolutions s^{-2} is:
16. 25 N
17. 50 N
18. 78.5 N
4.157 N
19. The ratio of the acceleration for a solid sphere (mass ' m ' and radius ' R ') rolling down an incline of angle ' θ ' without slipping and slipping down the incline without rolling is:
20. 5:7
21. $2: 3$
22. $2: 5$
23. 7:5
24.

A small object of uniform density rolls up a curved surface with an initial velocity ' v '. It reaches up to a maximum height $\frac{3 \mathrm{v}^{2}}{4 \mathrm{~g}}$ with respect to the initial position.
The object is:

1. Solid sphere
2. Hollow sphere
3. Disc
4. Ring
5. A rod $P Q$ of mass M and length L is hinged at end P. The rod is kept horizontal by a massless string tied to point Q as shown in the figure. When the string is cut, the initial angular acceleration of the rod is:

6. g / L
7. $2 \mathrm{~g} / \mathrm{L}$
8. $2 \mathrm{~g} / 3 \mathrm{~L}$
9. $3 \mathrm{~g} / 2 \mathrm{~L}$
10. When a mass is rotating in a plane about a fixed point, its angular momentum is directed along:
11. a line perpendicular to the plane of rotation
12. the line making an angle of 45° to the plane of rotation
13. the radius
14. the tangent to the orbit
15. Two persons of masses 55 kg and 65 kg respectively, are at the opposite ends of a boat. The length of the boat is 3.0 m and weighs 100 kg . The 55 kg man walks up to the 65 kg man and sits with him. If the boat is in still water the center of mass of the system shifts by:
16. 3.0 m
17. 2.3 m
18. zero
19. 0.75 m
20. A solid cylinder of mass 3 kg is rolling on a horizontal surface with a velocity of $4 \mathrm{~ms}^{-1}$. It collides with a horizontal spring of force constant $200 \mathrm{Nm}^{-1}$. The maximum compression produced in the spring will be:
21. 0.5 m
22. 0.6 m
23. 0.7 m
24. 0.2 m
25. ABC is an equilateral triangle with O as its centre. F_{1}, F_{2}, and F_{3} represent three forces acting along the sides AB, BC and AC respectively. If the total torque about O is zero, then the magnitude of F_{3} is:

26. $\mathrm{F}_{1}+\mathrm{F}_{2}$
27. $\mathrm{F}_{1}-\mathrm{F}_{2}$
28. $\frac{\mathrm{F}_{1}+\mathrm{F}_{2}}{2}$
29. $2\left(\mathrm{~F}+\mathrm{F}_{2}\right)$
30.

The instantaneous angular position of a point on a rotating wheel is given by the equation,
$\theta(t)=2 \mathrm{t}^{3}-6 \mathrm{t}^{2}$
The torque on the wheel becomes zero at:

1. $\mathrm{t}=0.5 \mathrm{~s}$
2. $\mathrm{t}=0.25 \mathrm{~s}$
3. $\mathrm{t}=2 \mathrm{~s}$
4. $\mathrm{t}=1 \mathrm{~s}$
5. The moment of inertia of a thin uniform rod of mass M and length L about an axis passing through its midpoint and perpendicular to its length is I_{0}. Its moment of inertia about an axis passing through one of its ends and perpendicular its length is:
6. $\mathrm{I}_{0}+\mathrm{ML}^{2} / 4$
7. $\mathrm{I}_{0}+2 \mathrm{ML}^{2}$
8. $\mathrm{I}_{0}+\mathrm{ML}^{2}$
9. $\mathrm{I}_{0}+\mathrm{ML}^{2} / 2$
10. A circular disk of a moment of inertia I_{t} is rotating in a horizontal plane, about its symmetric axis, with a constant angular speed ω_{i}. Another disk of a moment of inertia I_{b} is dropped coaxially onto the rotating disk. Initially, the second disk has zero angular speed. Eventually, both the disks rotate with a constant angular speed ω_{f}. The energy lost by the initially rotating disc due to friction is:
11. $\frac{1}{2} \frac{\mathrm{I}_{\mathrm{b}}^{2}}{\left(\mathrm{I}_{\mathrm{t}}+\mathrm{I}_{\mathrm{b}}\right)} \omega_{\mathrm{i}}^{2}$
12. $\frac{1}{2} \frac{\mathrm{I}_{\mathrm{t}}^{2}}{\left(\mathrm{I}_{\mathrm{t}}+\mathrm{I}_{\mathrm{b}}\right)} \omega_{\mathrm{i}}^{2}$
13. $\frac{1}{2} \frac{\mathrm{I}_{\mathrm{b}}-\mathrm{I}_{\mathrm{t}}}{\left(\mathrm{I}_{\mathrm{t}}+\mathrm{I}_{\mathrm{b}}\right)} \omega_{\mathrm{i}}^{2}$
14. A ball moving with velocity $2 \mathrm{~ms}^{-1}$ collides head-on with another stationary ball of double the mass. If the coefficient of restitution is 0.5 , then their velocities (in ms^{-} ${ }^{1}$) after the collision will be:
15. 0,1
16. 1, 1
17. $1,0.5$
18. 0,2
19. Two particles that are initially at rest, move towards each other under the action of their mutual attraction. If their speeds are v and $2 v$ at any instant, then the speed of the centre of mass of the system will be:
20. 2 v
21. 0
22. 1.5 v
23. v
24. A man of 50 kg mass is standing in a gravity-free space at a height of 10 m above the floor. He throws a stone of 0.5 kg mass downwards with a speed of $2 \mathrm{~ms}^{-1}$. When the stone reaches the floor, the distance of the man above the floor will be:
1.9 .9 m
25. 10.1 m
26. 10 m
27. 20 m

37.

If $\overrightarrow{\mathrm{F}}$ is the force acting on a particle having position vector \vec{r} and $\vec{\tau}$ be the torque of this force about the origin, then:

1. $\vec{r} \cdot \vec{\tau} \neq 0$ and $\vec{F} \cdot \vec{\tau}=0$
2. $\vec{r} \cdot \vec{\tau}>0$ and $\vec{F} \cdot \vec{\tau}<0$
3. $\vec{r} \cdot \vec{\tau}=0$ and $\vec{F} \cdot \vec{\tau}=0$
4. $\vec{r} \cdot \vec{\tau}=0$ and $\vec{F} \cdot \vec{\tau} \neq 0$
5. A thin circular ring of mass M and radius R is rotating in a horizontal plane about an axis vertical to its plane with a constant angular velocity ω. If two objects each of mass m be attached gently to the opposite ends of a diameter of the ring, the ring will then rotate with an angular velocity:
6. $\frac{\omega(M-2 m)}{M+2 m}$
7. $\frac{\omega M}{M+2 m}$
8. $\frac{\omega(M+2 m)}{M}$
9. $\frac{\omega M}{M+m}$
10.

Two bodies of mass 1 kg and 3 kg have position vectors $\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\widehat{\mathrm{k}}$ and $-3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\widehat{\mathrm{k}}$ respectively. The centre of mass of this system has a position vector:

1. $-2 \hat{i}+2 \hat{k}$
2. $-2 \hat{i}-\hat{j}+\hat{k}$
3. $2 \hat{i}-\hat{j}-2 \hat{k}$
4. $-\hat{i}+\hat{j}+\hat{k}$
5.

Four identical thin rods each of mass M and length 1 form a square frame. The moment of inertia of this frame about an axis through the centre of the square and perpendicular to its plane is:

1. $\frac{4}{3} M l^{2}$
2. $\frac{2}{3} M l^{2}$
3. $\frac{13}{3} M l^{2}$
4. $\frac{1}{3} M l^{2}$
5. The ratio of the radii of gyration of a circular disc to that of a circular ring, each of the same mass and radius, around their respective axes is:
6. $\sqrt{3}: \sqrt{2}$
7. $1: \sqrt{2}$
8. $\sqrt{2}: 1$
9. $\sqrt{2}: \sqrt{3}$
10. A thin rod of length L and mass M is bent at its midpoint into two halves so that the angle between them is 90°. The moment of inertia of the bent rod about an axis passing through the bending point and perpendicular to the plane defined by the two halves of the rod is:
11. $\frac{\mathrm{ML}^{2}}{24}$
12. $\frac{\mathrm{ML}^{2}}{12}$
13. $\frac{\mathrm{ML}^{2}}{6}$
14. $\frac{\sqrt{2} \mathrm{ML}^{2}}{24}$
15. A wheel has an angular acceleration of $3.0 \mathrm{rad} / \mathrm{s}^{2}$ and an initial angular speed of $2.00 \mathrm{rad} / \mathrm{s}$. In a time of 2 s , it has rotated through an angle (in radian) of:
16. 6
17. 10
18. 12
19. 4
20. A uniform $\operatorname{rod} A B$ of length l and mass m is free to rotate about point A. The rod is released from rest in the horizontal position. Given that the moment of inertia of the rod about A is $\frac{m l^{2}}{3}$, the initial angular acceleration of the rod will be:

21. $\frac{2 g}{3 l}$
22. $\mathrm{mgl} / 2$
23. $\frac{3}{2} g^{*} l$
24. $\frac{3 g}{2 l}$
25. A particle of mass m moves in the $X Y$ plane with a velocity v along the straight line $A B$. If the angular momentum of the particle with respect to origin O is L_{A} when it is at A and L_{B} when it is at B, then:

26. $L_{A}>L_{B}$
27. $L_{A}=L_{B}$
28. the relationship between L_{A} and L_{B} depends upon the slope of the line $A B$
29. $L_{A}<L_{B}$
30. The moment of inertia of a uniform circular disc of radius R and mass M about an axis touching the disc at its diameter and normal to the disc is:
31. $M R^{2}$
32. $\frac{2}{5} M R^{2}$
33. $\frac{3}{2} M R^{2}$
34. $\frac{1}{2} M R^{2}$
35. A uniform rod of length 1 and mass M is free to rotate in a vertical plane about A. The rod initially in the horizontal position is released. The initial angular acceleration of the rod is: (Moment of inertia of the rod about A is $\frac{\mathrm{ML}^{2}}{3}$)

36. $\frac{3 g}{2 l}$
37. $\frac{2 l}{3 g}$
38. $\frac{3 g}{2 l^{2}}$
39. $m g \frac{1}{2}$
40. Body A of mass 4 m moving with speed u collides with another body B of mass 2 m at rest. The collision is headon and elastic in nature. After the collision, the fraction of energy lost by the colliding body A is:
41. $\frac{5}{9}$
42. $\frac{1}{9}$
43. $\frac{8}{9}$
44. $\frac{4}{9}$
45. A solid cylinder of mass 2 kg and radius 4 cm is rotating about its axis at the rate of 3 rpm . The torque required to stop after 2π revolutions is:
$1.2 \times 10^{6} \mathrm{Nm}$
46. $2 \times 10^{-6} \mathrm{Nm}$
47. $2 \times 10^{-3} \mathrm{Nm}$
48. $12 \times 10^{-4} \mathrm{Nm}$
49. An object flying in the air with velocity $(20 \hat{i}+25 \hat{j}-12 \hat{k})$ suddenly breaks into two pieces whose masses are in the ratio of 1:5. The smaller mass flies off with a velocity $(100 \hat{i}+35 \hat{j}+8 \hat{k})$. The velocity of the larger piece will be:
50. $4 \hat{i}+23 \hat{j}-16 \hat{k}$
51. $-100 \hat{i}-35 \hat{j}-8 \hat{k}$
52. $20 \hat{i}+15 \hat{j}-80 \hat{k}$
53. $-20 \hat{i}-15 \hat{j}-80 \hat{k}$
54. A particle of mass 5 m at rest suddenly breaks on its own into three fragments. Two fragments of mass m each move along with mutually perpendicular directions with speed v each. The energy released during the process is,
(1) $\frac{3}{5} m v^{2}$
(2) $\frac{5}{3} m v^{2}$
(3) $\frac{3}{3} m v^{2}$
(4) $\frac{4}{3} m v^{2}$
55. A solid cylinder of mass 2 kg and radius 50 cm rolls up an inclined plane of the angle of inclination 30°. The centre of mass of the cylinder has a speed of $4 \mathrm{~m} / \mathrm{s}$. The distance travelled by the cylinder on the inclined surface will be, [take $g=10 \mathrm{~m} / \mathrm{s}^{2}$]
56. 2.2 m
57. 1.6 m
58. 1.2 m
59. 2.4 m
60. Two particles of mass 5 kg and 10 kg respectively are attached to the two ends of a rigid rod of length 1 m with negligible mass. The centre of mass of the system from the 5 kg particle is nearly at a distance of :
1.50 cm
2.67 cm
61. 80 cm
62. 33 cm
63. Find the torque about the origin when a force $3 \hat{j} N$ acts on a particle whose position vector $2 \widehat{\mathrm{k}} \mathrm{m}$.
64. $6 \hat{\mathrm{j}} \mathrm{Nm}$
65. $-6 \hat{\mathrm{i}} \mathrm{Nm}$
66. $6 \widehat{\mathrm{k}} \mathrm{Nm}$
67. $6 \hat{\mathrm{i}} \mathrm{N} \mathrm{m}$
68. The angular speed of the wheel of a vehicle is increased from 360 rpm to 1200 rpm in 14 seconds. Its angular acceleration is:
69. $2 \pi \mathrm{rad} / \mathrm{s}^{2}$
70. $28 \pi \mathrm{rad} / \mathrm{s}^{2}$
71. $120 \pi \mathrm{rad} / \mathrm{s}^{2}$
72. $1 \mathrm{rad} / \mathrm{s}^{2}$
73. Three identical spheres, each of mass M, are placed at the corners of a right-angle triangle with mutually perpendicular sides equal to 2 m (see figure). Taking the point of intersection of the two mutually perpendicular sides as the origin, find the position vector of the centre of mass.

74. $2(\hat{i}+\hat{j})$
75. $(\hat{i}+\hat{j})$
76. $\frac{2}{3}(\hat{i}+\hat{j})$
77. $\frac{4}{3}(\hat{i}+\hat{j})$
78. The moment of inertia of a uniform circular disc is maximum about an axis perpendicular to the disc and passing through -

79. C
80. D
81. A
82. B
83. A circular platform is mounted on a frictionless vertical axle. Its radius $\mathrm{R}=2 \mathrm{~m}$ and its moment of intertia about the axle is 200 kg m . It is initially at rest. A 50 kg man stands on the edge of the platform and begins to walk along the edge at the speed of $1 \mathrm{~ms}^{-1}$ relative to the ground. Time taken by the man to complete one revolution is -
84. $\frac{3 \pi}{2} s$
85. $2 \pi s$
86. $\frac{\pi}{2} s$
87. πs
88. Three masses are placed on the x -axis : 300 g at origin, 500 g at $\mathrm{x}=40 \mathrm{~cm}$ and 400 g at $\mathrm{x}=70 \mathrm{~cm}$. The distance of the centre of mass from the origin is -
89. 45 cm
90. 50 cm
91. 30 cm
92. 40 cm
93. A thin circular ring of mass M and radius r is rotating about its axis with constant angular velocity ω. Two objects each of mass m are attached gently to the opposite ends of a diameter of the ring. The ring now rotates with angular velocity given by -
94. $\frac{2 M \omega}{M+2 m}$
95. $\frac{(M+2 m) \omega}{M}$
96. $\frac{M \omega}{M+2 m}$
97. $\frac{(M+2 m) \omega}{2 m}$
98. From a circular disc of radius R and mass $9 M$, a small disc of mass M and radius $\mathrm{R} / 3$ is removed concentrically. The moment of inertia of the remaining disc about an axis perpendicular to the plane of the disc and passing through its centre is -
99. $M R^{2}$
100. $4 M R^{2}$
101. $\frac{4}{9} M R^{2}$
102. $\frac{40}{9} M R^{2}$
103. A solid cylinder and a hollow cylinder both of the same mass and same external diameter are released from the same height at the same time on an inclined plane. Both roll down without slipping. Which one will reach the bottom first-
104. Both together
105. Hollow cylinder
106. Solid cylinder
107. Both together only when angle of inclination of plane is 45°
108. (a) Centre of gravity (C, G) of a body is the point at which the weight of the body acts.
(b) Centre of mass coincides with the centre of gravity if the eath is assumed to have
infinitely large radius.
(c) To evaluate the gravitational field intensity due to any body at an external point, the entire mass of the body can be considered to be concentrated at its C.G.
(d) The radius of gyration of any body rotation about an axis is the length of the
perpendicular dropped from the C.G. of the body to the axis.
Which one of the following pairs of statements is correct -
109. (a) and (b)
110. (b) and (c)
111. (c) and (d)
112. (d) and (a)
113. A circular ring of mass M and radius R is rotating about its axis with constant angular velocity ω. Two particle each of mass m are attached gently to the opposite ends of a diameter of the ting. The angular velocity of the ring will now become :
114. $\frac{m \omega}{M+2 m}$
115. $\frac{m \omega}{M-2 m}$
116. $\frac{M \omega}{M+2 m}$
117. $\frac{M+2 m}{M \omega}$
118. For a hollow cylinder \& a solid cylinder rolling without slipping on an inclined plane, then which of these reaches earlier on the ground :
119. Solid cylinder
120. Hollow cylinder
121. Both simultaneously
122. Can't say anything
123. Two identical balls A and B are moving with velocity $+0.5 m s^{-1}$ and $-0.3 m s^{-1}$ respectively. They collide head on elastically, then their velocities after collision will be :
124. $-0.3 \mathrm{~ms}^{-1}$ and $0.5 \mathrm{~ms}^{-1}$
125. $+0.5 \mathrm{~ms}^{-1}$ and $+0.3 \mathrm{~ms}^{-1}$
126. $-0.4 \mathrm{~ms}^{-1}$ and $0.3 \mathrm{~ms}^{-1}$
127. $-0.3 m s^{-1}$ and $-0.4 m s^{-1}$
128. A bomb of mass 30 kg at rest explodes into two pieces of masses 18 kg and 12 kg . The velocity of 18 kg mass is $6 \mathrm{~ms}^{-1}$. The kinetic energy of the other mass is :
(1) 524 J
(2) 256 J
(3) 486 J
(4) 324 J
129. The moment of inertia of a uniform circular disc of radius ' R ' and mass ' M ' about an axis passing from the edge of the disc and normal to the disc is:
130. $\frac{1}{2} \mathrm{MR}^{2}$
131. $\frac{7}{2} \mathrm{MR}^{2}$
132. $\frac{3}{2} \mathrm{MR}^{2}$
133. MR^{2}
134. For the adjoining diagram, a triangular lamina is shown the correct relation between $I_{1}, I_{2} \& I_{3}$ is (I moment of inertia)

135. $\mathrm{I}_{1}>\mathrm{I}_{2}$
136. $\mathrm{I}_{2}>\mathrm{I}_{1}$
137. $\mathrm{I}_{3}>\mathrm{I}_{1}$
138. $\mathrm{I}_{3}>\mathrm{I}_{2}$
139. O is the centre of an equilateral triangle ABC $\overrightarrow{\mathrm{F}_{1}}, \overrightarrow{\mathrm{~F}_{2}}, \overrightarrow{\mathrm{~F}_{3}}$ are three forces acting along the sides AB , BC and AC as shown in fig. What should be the magnitude of $\overrightarrow{F_{3}}$ so that total torque about O is zero :

140. $\left|\vec{F}_{3}\right|=\left|\overrightarrow{F_{1}}\right|+\left|\overrightarrow{F_{2}}\right|$
141. $\left|\overrightarrow{F_{3}}\right|=\left|\overrightarrow{F_{1}}\right|-\left|\overrightarrow{F_{2}}\right|$
142. $\left|\overrightarrow{F_{3}}\right|=\overrightarrow{F_{1}}+2 \overrightarrow{F_{2}}$
143. Not possible
144. A drum of radius R and mass M rolls down without slipping along an inclined plane of angle θ. The frictional force:
(1) Decreases the rotational and translational motion
(2) Dissipates energy as heat
(3) Decreases the rotational motion
(4) Converts translational energy to rotational energy
145. Two bodies have their moments of inertia I and 2I respectively about their axis of rotation. If their kinetic energies of rotation are equal, their angular momentum will be in the ratio -
(1) $1: 2$
(2) $\sqrt{2}: 1$
(3) $1: \sqrt{2}$
(4) $2: 1$
146. A particle is projected with velocity 'u' makes an angle θ w.r.t. horizontal. Now it breaks in two identical parts at highest point of trajectory. If one part is retrace its path, then velocity of other part is -
147. $3 \mathrm{u} \cos \theta$
148. $2 \mathrm{u} \cos \theta$
149. $u \cos \theta$
150. u
151. The ratio of the radii of gyration of a circular disc about a tangential axis in the plane of the disc and of a circular ring of the same radius about a tangential axis in the plane of the ring is:-
(1) $2: 1$
(2) $\sqrt{5}: \sqrt{6}$
(3) $2: 3$
(4) $1: \sqrt{2}$
152. A round disc of the moment of inertia I_{2} about its axis perpendicular to its plane and passing through its centre is placed over another disc of the moment of inertia I_{1} rotating with an angular velocity ω about the same axis. The final angular velocity of the combination of discs is:
(1) ω
(2) $\frac{\mathrm{I}_{1} \omega}{\mathrm{I}_{1}+\mathrm{I}_{2}}$
(3) $\frac{\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \omega}{\mathrm{I}_{1}}$
(4) $\frac{\mathrm{I}_{2} \omega}{\mathrm{I}_{1}+\mathrm{I}_{2}}$

System of Particles \& Rotational Motion - NCERT based
 PYQs

76. Three particles, each of mass m gram, are situated at the vertices of an equilateral triangle ABC of side 1 cm (as shown in the figure). The moment of inertia of the system about a line AX perpendicular to AB and in the plane of ABC , in gram cm^{2} units will be:

(1) $2 \mathrm{~m} \ell^{2}$
(2) $\frac{5}{4} m \ell^{2}$
(3) $\frac{3}{2} m \ell^{2}$
(4) $\frac{3}{4} m \ell^{2}$
77. A wheel having a moment of inertia of $2 \mathrm{~kg}-\mathrm{m}^{2}$ about its vertical axis rotates at the rate of 60 rpm about the axis. The torque which can stop the wheel's rotation in one minute would be:
(1) $\frac{\pi}{12} \mathrm{~N}-\mathrm{m}$
(2) $\frac{\pi}{15} \mathrm{~N}-\mathrm{m}$
(3) $\frac{\pi}{18} \mathrm{~N}-\mathrm{m}$
(4) $\frac{2 \pi}{15} \mathrm{~N}-\mathrm{m}$
78. Consider a system of two particles having masses m_{1} and m_{2}. If the particle of mass m_{1} is pushed towards the mass centre of particles through a distance ' d ', by what distance would the particle of mass m_{2} move so as to keep the mass centre of particles at the original position:
79. $\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}} \mathrm{~d}$
80. d
81. $\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}$
82. $\frac{\mathrm{m}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} d$
83. A circular disc is to be made by using iron and aluminium so that it acquires maximum moment of inertia about geometrical axis. It is possible with : -
(1) Aluminium at interior and iron surrounding it
(2) Iron at interior and aluminium surrounding it
(3) Using iron and aluminium layers in alternate order
(4) Sheet of iron is used at both external surface ands aluminium sheet as internal layer
84. A disc is rotating with angular speed ω. If a child sits on it, what is conserved :-
(1) Linear momentum
(2) Angular momentum
(3) Kinetic energy
(4) Potential energy
85. A solid sphere of radius R is placed on a smooth horizontal surface. A horizontal force ' F ' is applied at height ' h ' from the lowest point. For the maximum acceleration of the centre of mass, which is correct:
(1) $h=R$
(2) $h=2 R$
(3) $h=0$
(4) No relation between h and R
86. For a body, angular velocity $\vec{\omega}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \widehat{\mathrm{k}}$ and radius vector is $\vec{r}=\hat{i}+\hat{j}+\widehat{k}$, then its velocity is :
87. $-5 \hat{i}+2 \hat{j}+3 \hat{k}$
88. $-5 \hat{i}+2 \hat{j}-3 \hat{k}$
89. $-5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \widehat{\mathrm{k}}$
90. $-5 \hat{i}-2 \hat{j}-3 \hat{k}$
91. When a stick is released (as shown in fig.). Its free end velocity when it strikes the ground is :

(1) $4.2 \mathrm{~m} / \mathrm{s}$
(2) $1.4 \mathrm{~m} / \mathrm{s}$
(3) $2.8 \mathrm{~m} / \mathrm{s}$
(4) $\sqrt{6} \mathrm{~m} / \mathrm{s}$
92. A point P consThus for the disc the condition for rolling without slipping is ider at contact point of a wheel on ground which rolls on ground without sliping then value of displacement of point P when wheel completes half of rotation (If radius of wheel is 1 m) : -
(1) 2 m
(2) $\sqrt{\pi^{2}+4 m}$
(3) $\pi \mathrm{m}$
(4) $\sqrt{\pi^{2}+2 m}$
93. A rod of length is 3 m and its mass acting per unit length is driectly proportional to distance x from one of its end then its centre of gravity from that end will be at :-
(1) 1.5 m
(2) 2 m
(3) 2.5 m
(4) 3.0 m
94. A thin circular ring M and radius ' r ' is rotating about its axis with a constant angular velocity ω. Four objects each of mass m, are kept gently to the opposite ends of two perpendicular diameters of the ring. The angular velocity of the ring will be -
95. $\frac{\mathrm{M} \omega}{4 \mathrm{~m}}$
96. $\frac{\mathrm{M} \omega}{\mathrm{M}+4 \mathrm{~m}}$
97. $\frac{(\mathrm{M}+4 \mathrm{~m}) \omega}{\mathrm{M}}$
98. $\frac{(\mathrm{M}+4 \mathrm{~m}) \omega}{\mathrm{M}+4 \mathrm{~m}}$
99. A stationary particle explodes into two particles of masses m_{1} and m_{2} which move in opposite directions with velocities v_{1} and v_{2}. The ratio of their kinetic energies $\mathrm{E}_{1} / \mathrm{E} 2$ is :
(1) m_{2} / m_{1}
(2) m_{1} / m_{2}
(3) 1
(4) $m_{1} v_{2} / m_{2} v_{1}$
100. A solid cylinder of mass M and radius R rolls without slipping down an inclined plane of length L and height h. What is the speed of its centre of mass when the cylinder reaches its bottom -
101. $\sqrt{2 \mathrm{gh}}$
102. $\sqrt{\frac{3}{4} g h}$
103. $\sqrt{\frac{4}{3} g h}$
104. $\sqrt{4 g h}$
105. A ball rolls without slipping. The radius of gyration of the ball about an axis passing through its centre of mass is K. If radius of the ball be R, then the fraction of total energy associated with its rotational energy will be :
106. $\frac{\mathrm{K}^{2}+\mathrm{R}^{2}}{\mathrm{R}^{2}}$
107. $\frac{\mathrm{K}^{2}}{\mathrm{R}^{2}}$
108. $\frac{\mathrm{K}^{2}}{\mathrm{~K}^{2}+\mathrm{R}^{2}}$
109. $\frac{\mathrm{R}^{2}}{\mathrm{~K}^{2}+\mathrm{R}^{2}}$
110. A disc is rolling the velocity of its centre of mass is $V_{c m}$ then which one will be correct : -
111. The velocity of highest point is $2 V_{c m}$ and point of contact is zero
112. The velocity of highest point is $V_{c m}$ and point of contact is V_{cm}
113. The velocity of highest point is $2 V_{c m}$ and point of contact is V_{cm}
114. The velocity of highest point is $2 V_{c m}$ and point of contact of contact is $2 \mathrm{~V}_{\mathrm{cm}}$
115. From a circular ring of mass ' M ' and radius ' R ' an arc corresponding to a 90° sector is removed. The moment of inertia of the remaining part of the ring about an axis passing through the centre of the ring and perpendicular to the plane of the ring is ' K ' times ${ }^{\prime} \mathrm{MR}^{2}$ '. Then the value of ' K ' is:
116. $\frac{1}{4}$
117. $\frac{1}{8}$
118. $\frac{3}{4}$
119. $\frac{7}{8}$
120. A uniform rod of length 200 cm and mass 500 g is balanced on a wedge placed at 40 cm mark. A mass of 2 kg is suspended from the rod at 20 cm and another unknown mass ' m ' is suspended from the rod at 160 cm mark as shown in the figure. Find the value of ' m ' such that the rod is in equilibrium. $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

121. $\frac{1}{6} \mathrm{~kg}$
122. $\frac{1}{12} \mathrm{~kg}$
123. $\frac{1}{2} \mathrm{~kg}$
124. $\frac{1}{3} \mathrm{~kg}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get
 FREE ACCESS for 3
 days of ANY NEETprep

course

- neet?rep Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Gravitation

(Expected Questions in NEET 2022: 1)

Subtopic Name

 Number of

 Number of Questions

Acceleration due to Gravity	14
Escape velocity	9
Satellite	7
Kepler's Laws	5
Gravitational Potential	4
Newton's Law of Gravitation	4
Gravitational Field	$\mathbf{3}$
Orbital velocity	$\mathbf{2}$

1. Starting from the centre of the earth having radius R , the variation of g (acceleration due to gravity) is shown by:

2.

2. A satellite of mass m is orbiting the earth (of radius R) at a height h from its surface. The total energy of the satellite in terms of g_{0}, the value of acceleration due to gravity at the earth's surface, is:

1. $\frac{m g_{0} R^{2}}{2(R+h)}$
2. $-\frac{m g_{0} R^{2}}{2(R+h)}$
3. $\frac{2 m g_{0} R^{2}}{(R+h)}$
4. $-\frac{2 m g_{0} R^{2}}{(R+h)}$
5. The acceleration due to gravity at a height 1 km above the earth's surface is the same as at a depth d below the surface of the earth. Then:
6. $\mathrm{d}=1 \mathrm{Km}$
7. $\mathrm{d}=\frac{3}{2} \mathrm{Km}$
8. $\mathrm{d}=2 \mathrm{Km}$
9. $\mathrm{d}=\frac{1}{2} \mathrm{Km}$
10. Two astronauts are floating in gravitational free space after having lost contact with their spaceship. The two will:
11. move towards each other.
12. move away from each other.
13. become stationary.
14. keep floating at the same distance between them.
15. At what temperature will the RMS speed of oxygen molecules become just sufficient for escaping from the earth's atmosphere?
(Given : Mass of oxygen molecule $(\mathrm{m})=2.76 \times 10^{-26} \mathrm{~kg}$, Boltzmann's constant $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$):
16. $2.508 \times 10^{4} \mathrm{~K}$
17. $8.360 \times 10^{4} K$
18. $5.016 \times 10^{4} K$
19. $1.254 \times 10^{4} \mathrm{~K}$
20. If mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is not correct?
21. Raindrops would drop faster.
22. walking on the ground would become more difficult.
23. Time period of a simple pendulum on the Earth would 4. decrease.
24. ' g ' on earth would not change.
25. The kinetic energies of a planet in an elliptical orbit around the Sun, at positions A, B and C are K_{A}, K_{B} and K_{C} respectively. $A C$ is the major axis and $S B$ is perpendicular to $A C$ at the position of the $\operatorname{Sun} S$ as shown in the figure. Then:

26. $\mathrm{K}_{\mathrm{A}}<\mathrm{K}_{\mathrm{B}}<\mathrm{K}_{\mathrm{C}}$
27. $\mathrm{K}_{\mathrm{A}}>\mathrm{K}_{\mathrm{B}}>\mathrm{K}_{\mathrm{C}}$
28. $\mathrm{K}_{\mathrm{B}}<\mathrm{K}_{\mathrm{A}}<\mathrm{K}_{\mathrm{C}}$
29. $\mathrm{K}_{\mathrm{B}}>\mathrm{K}_{\mathrm{A}}>\mathrm{K}_{\mathrm{C}}$
30.

At what height from the surface of the earth, the gravitation potential and the value of g are: $5.4 \times 10^{7} \mathrm{Jkg}^{-}$ 2 and $6.0 \mathrm{~ms}^{-2}$ respectively? (Take, the radius of earth as 6400 km)

1. 1600 Km
2. 1400 km
3. 2000 km
4. 2600 km
5.

The ratio of escape velocity at earth (v_{e}) to the escape velocity at a planet (v_{p}) whose radius and mean density are twice that of the earth is:

1. $1: 2 \sqrt{2}$
2. $1: 4$
3. $1: \sqrt{2}$
4. 1:2
5. A remote sensing satellite of earth revolves in a circular orbit at a height of $0.25 \times 10^{6} \mathrm{~m}$ above the surface of the earth. If Earth's radius is $6.38 \times 10^{6} \mathrm{~m}$ and $\mathrm{g}=9.8$ ms^{-2}, then the orbital speed of the satellite is:
6. $7.76 \mathrm{kms}^{-1}$
7. $8.56 \mathrm{kms}^{-1}$
8. $9.13 \mathrm{kms}^{-1}$
9. $6.67 \mathrm{kms}^{-1}$
10. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is very small as compared to the mass of the earth. Then,
11. The angular momentum of S about the centre of the earth changes in direction, but its magnitude remains constant.
12. The total mechanical energy of S varies periodically with time.
13. The linear momentum of S remains constant in magnitude.
14. The acceleration of S is always directed towards the centre of the earth.

12.

Kepler's third law states that square of the period of revolution (T) of a planet around the sun, is proportional to the third power of average distance r between the sun and planet i.e. $\mathrm{T}^{2}=\mathrm{Kr}^{3}$, here K is constant. If the masses of the sun and planet are M and m respectively, then as per Newton's law of gravitation, the force of attraction between them is $F=\frac{G M m}{r^{2}}$, here G is gravitational constant. The relation between G and K is described as:

1. $\mathrm{GK}=4 \pi^{2}$
2. $\mathrm{GMK}=4 \pi^{2}$
3. $\mathrm{K}=\mathrm{G}$
4. $K=\frac{I}{G}$
5. Two spherical bodies of masses M and 5 M and radii R and 2 R are released in free space with initial separation between their centres equal to 12 R . If they attract each other due to gravitational force only, then the distance covered by the smaller body before the collision is:
6. 2.5 R
7. 4.5 R
8. 7.5 R
9. 1.5 R
10. A black hole is an object whose gravitational field is so strong that even light cannot escape from it. To what approximate radius would earth (mass $=5.98 \times 10^{24} \mathrm{~kg}$) have to be compressed to be a black hole?
11. $10^{-9} \mathrm{~m}$
12. $10^{-6} \mathrm{~m}$
13. $10^{-2} \mathrm{~m}$
14. 100 m
15. Dependence of intensity of gravitational field (E) of the earth with distance (r) from the centre of the earth is correctly represented by:

16.

16. A body of mass ' m ' is taken from the Earth's surface to the height equal to twice the radius (R) of the Earth.
The change in potential energy of the body will be:
$1.2 / 3 \mathrm{mgR}$
2. 3 mgR
3. $1 / 3 \mathrm{mgR}$
4. 2 mgR
17.

An infinite number of bodies, each of mass 2 kg are situated on the x -axis at distances $1 \mathrm{~m}, 2 \mathrm{~m}, 4 \mathrm{~m}, 8 \mathrm{~m}$, \qquad respectively, from the origin. The resulting gravitational potential due to this system at the origin will be :

1. $-\frac{8}{3} \mathrm{G}$
2. $-\frac{4}{3} \mathrm{G}$
3. -4 G
4. -G
5. The height at which the weight of a body becomes $1 / 16^{\text {th }}$ of its weight on the surface of the earth (radius R) is:
6. 5 R
7. 15 R
8. 3 R
9. 4 R
10. A spherical planet has a mass M_{p} and diameter D_{p}. A particle of mass m falling freely near the surface of this planet will experience acceleration due to gravity equal to:
11. $\frac{4 \mathrm{GM}_{\mathrm{p}} \mathrm{m}}{\mathrm{D}_{\mathrm{p}}{ }^{2}}$
12. $\frac{4 \mathrm{GM}_{\mathrm{p}}}{\mathrm{D}_{\mathrm{p}}{ }^{2}}$
13. $\frac{\mathrm{GM}_{\mathrm{p}} \mathrm{m}}{\mathrm{D}_{\mathrm{p}}{ }^{2}}$
14. $\frac{\mathrm{GM}_{\mathrm{p}}}{\mathrm{D}_{\mathrm{p}}{ }^{2}}$
15. A geostationary satellite is orbiting the earth at a height of 5 R above that surface of the earth, R being the radius of the earth. The time period of another satellite in hours at a height of 2 R from the surface of the earth is
16. 5
17. 10
18. $6 \sqrt{2}$
19. $6 / \sqrt{2}$
20. A planet moving along an elliptical orbit is closest to the sun at a distance r_{1} and farthest away at a distance of r_{2}. If v_{1} and v_{2} are the linear velocities at these points respectively, then the ratio $\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}$ is:
21. $\mathrm{r}_{2} / \mathrm{r}_{1}$
22. $\left(\mathrm{r}_{2} / \mathrm{r}_{1}\right)^{2}$
23. $\mathrm{r}_{1} / \mathrm{r}_{2}$
24. $\left(\mathrm{r}_{1} / \mathrm{r}_{2}\right)^{2}$
25. The radii of circular orbits of two satellites A and B of the earth are 4 R and R respectively. If the speed of satellite A is 3 v , then the speed of satellite B will be:
26. $3 \mathrm{v} / 4$
27. 6 v
28. 12 v
29. $3 \mathrm{v} / 2$
30. A particle of mass M is situated at the centre of a spherical shell of same mass and radius a. The gravitational potential at a point situated at a / 2 distance from the centre, will be:
31. $-\frac{3 G M}{a}$
32. $-\frac{\stackrel{\rightharpoonup}{a} M}{a}$
33. $-\frac{G M}{a}$
34. $-\frac{4 G M}{a}$
35. The figure shows the elliptical orbit of a planet m about the sun S . The shaded area SCD is twice the shaded area $S A B$. If t_{1} is the time for the planet to move from C to D and t_{2} is the time to move from A to B , then,

36. $t_{1}>t_{2}$
37. $t_{1}=4 t_{2}$
38. $t_{1}=2 t_{2}$
39. $t_{1}=t_{2}$
40. Two satellites of earth, S_{1} and S_{2}, are moving in the same orbit. The mass of S_{1} is four times the mass of S_{2}. Which one of the following statements is true?
41. The time period of S_{1} is four times that of S_{2}.
42. The potential energies of the earth and satellite in the two cases are equal.
43. S_{1} and S_{2} are moving at the same speed.
44. The kinetic energies of the two satellites are equal.
45. The earth is assumed to be a sphere of radius R. A platform is arranged at a height R from the surface of the earth. The escape velocity of a body from this platform is fv_{e}, where v_{e} is its escape velocity from the surface of the earth. The value of f is :
46. $\sqrt{2}$
47. $\frac{1}{\sqrt{2}}$
48. $\frac{1}{3}$
49. $\frac{1}{2}$
50. The work done to raise a mass m from the surface of the earth to a height h , which is equal to the radius of the earth, is:
51. $\frac{3}{2} m g R$
52. mgR
53. 2 mgR
54. $\frac{1}{2} m g R$
55. A body weighs 200 N on the surface of earth. How much will it weigh halfway down the centre of the earth?
56. 100 N
57. 150 N
58. 200 N
59. 250 N
60. A mass falls from a height ' h ' and its time of fall ' t ' is recorded in terms of time period T of a simple pendulum. On the surface of the earth, it is found that $t=2 T$. The entire set up is taken on the surface of another planet whose mass is half of that of the earth and radius is same. The same experiment is repeated and corresponding times noted as t^{\prime} and T^{\prime}. Then we can say:
61. $\mathrm{t}^{\prime}=\sqrt{2} T$
62. $\mathrm{t}^{\prime}>2 \mathrm{~T}^{\prime}$
63. $\mathrm{t}^{\prime}<2 \mathrm{~T}^{\prime}$
64. $\mathrm{t}^{\prime}=2 \mathrm{~T}^{\prime}$
65. The time period of a geostationary satellite is 24 h at a height $6 R_{E}$ (R_{E} is the radius of the earth) from the surface of the earth. The time period of another satellite whose height is $2.5 R_{E}$ from the surface, will be:
66. $6 \sqrt{2} h$
67. $12 \sqrt{2} h$
68. $\frac{24}{2.5} h$
69. $\frac{12}{2.5} h$
70. Assuming that the gravitational potential energy of an object at infinity is zero, the change in potential energy (final - initial) of an object of mass m when taken to a height h from the surface of the earth (of radius R and mass M), is given by:
71. $\frac{G M m}{R+h}$
72. $\frac{G M m h}{R(R+h)}$
73. mgh
74. $\frac{G M m}{R+h}$
75. A body weighs 72 N on the surface of the earth. What is the gravitational force on it at a height equal to half the radius of the earth?
76. 32 N
77. 30 N
78. 24 N
79. 48 N
80. What is the depth at which the value of acceleration due to gravity becomes $1 / n$th time it's value at the surface of the earth? (radius of the earth $=\mathrm{R}$)
81. $\frac{\mathrm{R}}{\mathrm{n}^{2}}$
82. $\frac{\mathrm{R}(\mathrm{n}-1)}{\mathrm{n}}$
83. $\frac{\mathrm{Rn}}{(\mathrm{n}-1)}$
84. R / n
85. If v_{e} is the escape velocity and v_{o} is the orbital velocity of a satellite for orbit close to the earth's surface, then these are related by:
86. $v_{o}=v_{e}$
87. $v_{e}=\sqrt{2 v_{o}}$
88. $v_{e}=\sqrt{2} v_{o}$
89. $v_{o}=\sqrt{2} v_{e}$
90. Which one of the following plots represents the variation of gravitational field on a particle with distance r due to a thin spherical shell of radius R ? (r is measured from the centre of the spherical shell).

91.

(2)

2.
(3)

3.
4.

neet
36. A particle of mass m is thrown upwards from the surface of the earth, with a velocity u. The mass and the radius of the earth are, respectively, M and R . G is gravitational constant and g is acceleration due to gravity on the surface of the earth. The minimum value of u so that the particle does not return back to earth is :

1. $\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}^{2}}}$
2. $\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}$
3. $\sqrt{\frac{2 \mathrm{gM}}{\mathrm{R}^{2}}}$
4. $\sqrt{2 \mathrm{gR}^{2}}$
5. A particle of mass M is situated at the center of a spherical shell of same mass and radius a. The magnitude of the gravitational potential at a point situated at a/2 distance from the center, will be :
6. $-\frac{\mathrm{GM}}{\mathrm{a}}$
7. $-\frac{2 \mathrm{GM}}{\mathrm{a}}$
8. $-\frac{3 \mathrm{GM}}{\frac{a}{\mathrm{GM}}}$
9. $-\frac{4 \mathrm{GM}}{\mathrm{a}}$
10. The dependence of acceleration due to gravity ' g ' on the distance ' r ' from the centre of the earth, assumed to be a sphere of radius R of uniform density is as shown in figure below-
(a)

(c)

(b)

(d)

The correct figure is

1. a
2. b
3. c
4. d
5. The additional kinetic energy to be provided to a satellite of mass m revolving around a planet of mass M, to transfer it from a circular orbit of radius R_{1} to another of radius $R_{2}\left(R_{2}>R_{1}\right)$ is -
6. $\operatorname{GmM}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
7. $2 \mathrm{GmM}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
8. $\frac{1}{2} G m M\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
9. $\operatorname{GmM}\left(\frac{1}{R_{1}^{2}}-\frac{1}{R_{2}^{2}}\right)$
10. A body of weight 72 N moves from the surface of earth at a height half of the radius of the earth, then gravitational force exerted on it will be :
11. 36 N
12. 32 N
13. 144 N
14. 50 N
15. For a satellite moving in an orbit around the earth, the ratio of kinetic energy to potential energy is:
(1) $\frac{1}{\sqrt{2}}$
(2) 2
(3) $\sqrt{2}$
(4) $\frac{1}{2}$
16. Imagine a new planet having the same density as that of the earth but it is 3 times bigger than the earth in size. If the acceleration due to gravity on the surface of the earth is g and that on the surface of the new planet is ' g ', then -
(1) $g^{\prime}=3 g$
(2) $\mathrm{g}^{\prime}=9 \mathrm{~g}$
(3) $g^{\prime}=g / 9$
(4) $g^{\prime}=27 g$
17. For a planet having mass equal to mass of the earth but radius equal to one fourth of radius of the earth. Then escape velocity for this planet will be:
18. $11.2 \mathrm{~km} / \mathrm{s}$
19. $22.4 \mathrm{~km} / \mathrm{s}$
20. $5.6 \mathrm{~km} / \mathrm{s}$
21. $44.8 \mathrm{~km} / \mathrm{s}$
22. The density of the newly discovered planet is twice that of the earth. The acceleration due to gravity at the surface of the planet is equal to that at the surface of the earth. If the radius of the earth is R, the radius of the planet would be:
(1) 4R
(2) $1 / 4 \mathrm{R}$
(3) $1 / 2 \mathrm{R}$
(4) 2 R
23. If the radius of earth shrinks by 1% then for acceleration due to gravity:
24. No change at poles
25. No change at equator
26. Max. change at equator
27. Equal change at all locations
28. Rohini satellite is at a height of 500 km and Insat-B is at a height of 3600 km from the surface of the earth. The relation between their orbital velocity $\left(v_{R}, v_{i}\right)$ is:
29. $v_{R}>v_{i}$
30. $v_{R}<v_{i}$
31. $v_{R}=v_{i}$
32. No relation
33. For moon, its mass is $1 / 81$ of Earth's mass and its diameter is $1 / 3.7$ of Earth's diameter. If acceleration due to gravity at Earth's surface is $9.8 \mathrm{~m} / s^{2}$ then at the moon its value is :
34. $2.86 \mathrm{~m} / \mathrm{s}^{2}$
35. $1.65 \mathrm{~m} / \mathrm{s}^{2}$
36. $8.65 \mathrm{~m} / s^{2}$
37. $5.16 \mathrm{~m} / \mathrm{s}^{2}$
38. A body of mass m is placed on earth surface which is taken from earth surface to a height of $h=3 R$ then change in gravitational potential energy is :-
39. $\frac{\mathrm{mgR}}{4}$
40. $\frac{2}{3} \mathrm{mgR}$
41. $\frac{3}{4} \mathrm{mgR}$
42. $\frac{\mathrm{mgR}}{2}$
43. With what velocity should a particle be projected so that its height becomes equal to the radius of the earth:
44. $\left(\frac{G M}{R}\right)^{1 / 2}$
45. $\left(\frac{8 G M}{R}\right)^{1 / 2}$
46. $\left(\frac{2 G M}{R}\right)^{1 / 2}$
47. $\left(\frac{4 G M}{R}\right)^{1 / 2}$
48. The acceleration due to gravity on the planet A is 9 times the acceleration due to gravity on planet B. A man jumps to a height of 2 m on the surface of A. What is the height of jump by the same person on the planet B.
(1) $2 / 9 \mathrm{~m}$
(2) 18 m
(3) 6 m
(4) $2 / 3 \mathrm{~m}$
49. Two spheres of masses m and M are situated in air and the gravitational force between them is F. If the space around the masses is filled with a liquid of specific density 3, the gravitational force will become :
(1) 3 F
(2) F
(3) $F / 3$
(4) $F / 9$
50. The escape velocity from the Earth's surface is v. The escape velocity from the surface of another planet having a radius, four times that of Earth and same mass density is:
51. 3 v
52. 4 v
53. v
54. 2 v
55. A particle of mass ' m ' is projected with a velocity $\mathrm{v}=\mathrm{k} \mathrm{V}_{\mathrm{e}}(\mathrm{k}<1)$ from the surface of the earth.
($\mathrm{V}_{\mathrm{e}}=$ escape velocity)
The maximum height above the surface reached by the particle is:
56. $\frac{\mathrm{R}^{2} \mathrm{k}}{1+\mathrm{k}}$
57. $\frac{\mathrm{Rk}^{2}}{1-\mathrm{k}^{2}}$
58. $\mathrm{R}\left(\frac{\mathrm{k}}{1-\mathrm{k}}\right)^{2}$
59. $\mathrm{R}\left(\frac{\mathrm{k}}{1+\mathrm{k}}\right)^{2}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Mechanical Properties of Solids
(Expected Questions in NEET 2022: 1)

Subtopic Name Number of Questions

Elasticity	5
Stress - Strain Curve	2

1. Two wires are made of the same material and have the same volume. The first wire has cross-sectional area A and the second wire has cross-sectional area 3A. If the length of the first wire is increased by $\Delta \mathrm{l}$ on applying a force F , how much force is needed to stretch the second wire by the same amount?
2. 9 F
3. 6 F
4. 4 F
5. F
6. The bulk modulus of a spherical object is ' B '. If it is subjected to uniform pressure ' P ', the fractional decrease in radius is:
7. $\frac{\mathrm{B}}{3 \mathrm{P}}$
8. $\frac{3 \mathrm{P}}{\mathrm{B}}$
9. $\frac{\mathrm{P}}{3 \mathrm{~B}}$
10. $\frac{\mathrm{P}}{\mathrm{B}}$
11. The Young's modulus of steel is twice that of brass. Two wires of the same length and of the same area of cross-section, one of steel and another of brass, are suspended from the same roof. If we want the lower ends of the wires to be at the same level, then the weights added to the steel and brass wires must be in the ratio of: 1. 1:2
12. $2: 1$
13. $4: 1$
14. 1:1
15. Copper of fixed volume ' V ' is drawn into a wire of length ' 1 '. When this wire is subjected to a constant force ' F ', the extension produced in the wire is ' $\Delta \mathrm{l}$ '. Which of the following graph is a straight line?
16. $\Delta \mathrm{l}$ vs $\frac{1}{1}$
17. $\Delta \mathrm{l} \mathrm{vs} \mathrm{l}^{2}$
18. $\Delta \mathrm{l}$ vs $\frac{1}{1^{2}}$
19. $\Delta \mathrm{l}$ vs l
20.

The following four wires are made of the same material. Which of these will have the largest extension when the same tension is applied?

1. length $=100 \mathrm{~cm}$, diameter $=1 \mathrm{~mm}$
2. length $=200 \mathrm{~cm}$, diameter $=2 \mathrm{~mm}$
3. length $=300 \mathrm{~cm}$, diameter $=3 \mathrm{~mm}$
4. length $=50 \mathrm{~cm}$, diameter $=0.5 \mathrm{~mm}$
5. When a block of mass M is suspended by a long wire of length L, the length of the wire becomes $(\mathrm{L}+1)$. The elastic potential energy stored in the extended wire is:
6. $\frac{1}{2} \mathrm{MgL}$
7. Mgl
8. MgL
9. The stress-strain curves are drawn for two different materials X and Y. It is observed that the ultimate strength point and the fracture point are close to each other for material X but are far apart for material Y. We can say that materials X and Y are likely to be: (respectively)
10. ductile and brittle.
11. brittle and ductile.
12. brittle and plastic.
13. plastic and ductile.
14. A wire of length L, area of cross section A is hanging from a fixed support. The length of the wire changes to L_{1} when mass M is suspended from its free end. The expression for Young's modulus is:
15. $\frac{\mathrm{Mg}\left(\mathrm{L}_{1}-\mathrm{L}\right)}{\mathrm{AL}}$
16. $\frac{\mathrm{MgL}}{\mathrm{AL}_{1}}$
17. $\frac{\mathrm{MgL}}{\mathrm{A}\left(\mathrm{L}_{1}-\mathrm{L}\right)}$
18. $\frac{\mathrm{MgL}_{1}}{\mathrm{AL}}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep course

U`neet.trep Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Mechanical Properties of Fluids
(Expected Questions in NEET 2022: 2)

Subtopic Name
 Number of Questions

Surface Tension	5
Pressure	4
Capillary Rise	3
Viscosity	3
Bernoulli's Theorem	2
Archimedes' Principle	1
Equation of Continuity	1

1. A small sphere of radius ' r ' falls from rest in a viscous liquid. As a result, heat is produced due to the viscous force. The rate of production of heat when the sphere attains its terminal velocity is proportional to:
2. r^{3}
3. r^{2}
4. r^{5}
5. r^{4}
6. A rectangular film of liquid is extended from ($4 \mathrm{~cm} \times 2$ $\mathrm{cm})$ to $(5 \mathrm{~cm} \times 4 \mathrm{~cm})$. If the work done is $3 \times 10^{-4} \mathrm{~J}$, the value of the surface tension of the liquid is:
7. $0.250 \mathrm{Nm}^{-1}$
8. $0.125 \mathrm{Nm}^{-1}$
9. $0.2 \mathrm{Nm}^{-1}$
10. $8.0 \mathrm{Nm}^{-1}$
11. Three liquids of densities ρ_{1}, ρ_{2}, and ρ_{3} (with $\rho_{1}>\rho_{2}>$ ρ_{3}) having the same value of surface tension T , rise to the same height in three identical capillaries. The angles of contact θ_{1}, θ_{2}, and θ_{3} obey:
12. $\frac{\pi}{2}>\theta_{1}>\theta_{2}>\theta_{3} \geq 0$
13. $0 \leq \theta_{1}<\theta_{2}<\theta_{3}<\frac{\pi}{2}$
14. $\frac{\pi}{2}<\theta_{1}<\theta_{2}<\theta_{3}<\pi$
15. $\pi>\theta_{1}>\theta_{2}>\theta_{3}>\frac{\pi}{2}$
16.

A U-tube with both ends open to the atmosphere is partially filled with water. Oil, which is immiscible with water, is poured into one side until it stands at a distance of 10 mm above the water level on the other side. Meanwhile, the water rises by 65 mm from its original level (see diagram). The density of the oil is:

1. $425 \mathrm{~kg} \mathrm{~m}{ }^{-3}$
2. $800 \mathrm{Kg} m^{-3}$
3. $928 \mathrm{Kg} \mathrm{m} m^{-3}$
4. $650 \mathrm{Kg} \mathrm{m} m^{-3}$
5.

Two non-mixing liquids of densities ρ and $n \rho(n>1)$ are put in a container. The height of each liquid is h. A solid cylinder of length L and density d is put in this container. The cylinder floats with its axis vertical and length $\mathrm{rL}(\mathrm{r}<1)$ in the denser liquid. The density d is equal to:

1. $[2+(n+1) r] \rho$
2. $[2+(n-1) r] \rho$
3. $[1+(n-1) r] \rho$
4. $[1+(n+1) r] \rho$
5. The cylindrical tube of a spray pump has radius R, one end of which has n fine holes, each of radius r. If the speed of the liquid in the tube is v, the speed of the ejection of the liquid through the holes is:
6. $\frac{v R^{2}}{n^{2} r^{2}}$
7. $\frac{v R^{2}}{n r^{2}}$
8. $\frac{v R^{2}}{n^{3} r^{2}}$
9. $\frac{v^{2} R}{n r}$
10. Water rises to height ' h ' in capillary tube. If the length of capillary tube above the surface of water is made less than ' h ', then -
(1) water does not rise at all.
(2) water rises upto the tip of capillary tube and then starts overflowing like a fountain.
(3) water rises upto the top of capillary tube and stays there without overflowing.
(4) water rises upto a point a little below the top and stays there.
11. The heart of a man pumps 5 L of blood through the arteries per minute at a pressure of 150 mm of mercury. If the density of mercury be $13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, then the power of the heart in watt is:
12. 1.70
13. 2.35
14. 3.0
15. 1.50
16. The approximate depth of an ocean is 2700 m . The compressibility of water is $45.4 \times 10^{-11} \mathrm{~Pa}^{-1}$ and density of water is $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. What fractional compression of water will be obtained at the bottom of the ocean?
17. 0.8×10^{-2}
18. 1.0×10^{-2}
19. 1.2×10^{-2}
20. 1.4×10^{-2}

10.

A wind with a speed of $40 \mathrm{~m} / \mathrm{s}$ blows parallel to the roof of a house. The area of the roof is $250 \mathrm{~m}^{2}$. Assuming that the pressure inside the house is atmospheric pressure, the force exerted by the wind on the roof and the direction of the force will be: $\left(\rho_{\text {air }}=1.2 \mathrm{~kg} / \mathrm{m}^{3}\right)$

1. $4 \times 10^{5} \mathrm{~N}$, downwards
2. $4 \times 10^{5} \mathrm{~N}$, upwards
3. 2.4 $\times 10^{5} \mathrm{~N}$, upwards
4. 2.4 X $10^{5} \mathrm{~N}$, downwards
5. A certain number of spherical drops of a liquid of radius ' r ' coalesce to form a single drop of radius ' R ' and volume ' V '. If ' T ' is the surface tension of the liquid, then:
6. Energy=4VT $\left(\frac{1}{r}-\frac{1}{R}\right)$ is released.
7. Energy $=3$ VT $\left(\frac{1}{r}+\frac{1}{R}\right)$ is released.
8. Energy=3VT $\left(\frac{1}{r}-\frac{1}{R}\right)$ is released.
9. Energy is neither released nor absorbed.
10.

The wettability of a surface by a liquid depends primarily on:

1. surface tension
2. density
3. angle of contact between the surface and the liquid
4. viscosity
5. A small hole of an area of cross-section $2 \mathrm{~mm}^{2}$ is present near the bottom of a fully filled open tank of height 2 m . Taking $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, the rate of flow of water through the open hole would be nearly:
6. $6.4 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}$
7. $12.6 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}$
8. $8.9 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}$
9. $2.23 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}$
10. A soap bubble, having a radius of 1 mm , is blown from a detergent solution having a surface tension of $2.5 \times 10^{-2} \mathrm{~N} / \mathrm{m}$. The pressure inside the bubble equals at a point Z_{0} below the free surface of the water in a container. Taking $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, density of water $=$ $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, the value of Z_{0} is:
11. 0.5 cm
12. 100 cm
13. 10 cm
14. 1 cm
15. Two small spherical metal balls, having equal masses, are made from materials of densities ρ_{1} and ρ_{2} such that $\rho_{1}=8 \rho_{2}$ and having radii of 1 mm and 2 mm , respectively. They are made to fall vertically (from rest) in a viscous medium whose coefficient of viscosity equals η and whose density is $0.1 \rho_{2}$. The ratio of their terminal velocities would be:
16. $\frac{79}{72}$
17. $\frac{19}{36}$
18. $\frac{39}{72}$
19. $\frac{79}{36}$
20. In a U-tube, as shown in the figure, the water and oil are in the left side and right side of the tube respectively. The height for water and oil columns are 15 cm and 20 cm respectively. The density of the oil is: $\left[\right.$ take $\left.\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}\right]$

21. $1200 \mathrm{~kg} / \mathrm{m}^{3}$
22. $750 \mathrm{~kg} / \mathrm{m}^{3}$
23. $1000 \mathrm{~kg} / \mathrm{m}^{3}$
24. $1333 \mathrm{~kg} / \mathrm{m}^{3}$
25. A capillary tube of radius r is immersed in water and water rises in it to a height h. The mass of the water in the capillary is 5 g . Another capillary tube of radius 2 r is immersed in water. The mass of water that will rise in this tube is :
26. 5.0 g
27. 10.0 g
28. 20.0 g
29. 2.5 g
30. A liquid does not wet the solid surface if the angle of contact is:
31. equal to 45°
32. equal to 60°
33. greater then 90°
34. zero
35. A barometer is constructed using a liquid (density $=$ $760 \mathrm{~kg} / \mathrm{m}^{3}$). What would be the height of the liquid column, when a mercury barometer reads 76 cm ?
(density of mercury $=13600 \mathrm{~kg} / \mathrm{m}^{3}$)
36. 1.36 m
37. 13.6 m
38. 136 m
39. 0.76 m
40. The velocity of a small ball of mass M and density d, when dropped in a container filled with glycerine becomes constant after some time. If the density of glycerine is $\frac{d}{2}$, then the viscous force acting on the ball will be:
41. $\frac{3}{2} \mathrm{Mg}$
42. 2 Mg
43. $\frac{\mathrm{Mg}}{2}$
44. Mg

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

course

Thermal Properties of Matter
(Expected Questions in NEET 2022: 1)

Subtopic Name Number of

 QuestionsConduction
11

Wien's Displacement Law	8

Stefan-Boltzmann Law	7
Radiation	6
Calorimetry	4
Newton's Law of Cooling	4
Thermal Expansion	3
Convection	2
Temperature Scales	1

1. Two rods A and B of different materials are welded together as shown in the figure. Their thermal conductivities are K_{1} and K_{2}. The thermal conductivity of the composite rod will be:

2. $\frac{3\left(K_{1}+K_{2}\right)}{2}$
3. $K_{1}+K_{2}$
4. $2\left(K_{1}+K_{2}\right)$
5. $\frac{K_{1}+K_{2}}{2}$
6. The power radiated by a black body is P and it radiates maximum energy at wavelength λ_{0}. If the temperature of the black body is now changed so that it radiates maximum energy at the wavelength $\frac{3}{4} \lambda_{0}$. The power radiated by it becomes nP . The value of n is:
7. $\frac{3}{4}$
8. $\frac{4}{3}$
9. $\frac{256}{81}$
10. $\frac{81}{256}$
11. Two identical bodies are made of a material for which the heat capacity increases with temperature. One of these is at $100{ }^{\circ} \mathrm{C}$, while the other one is at $0^{\circ} \mathrm{C}$. If the two bodies are brought into contact, then assuming no heat loss, the final common temperature is:
12. $50^{\circ} \mathrm{C}$
13. more than $50^{\circ} \mathrm{C}$
14. less than $50^{\circ} \mathrm{C}$ but greater than $0^{\circ} \mathrm{C}$
15. $0^{\circ} \mathrm{C}$
16. A body cools from a temperature of 3 T to 2 T in 10 minutes. The room temperature is T. Assume that Newton's law of cooling is applicable. The temperature of the body at the end of the next 10 minutes will be
17. $\frac{7}{4} \mathrm{~T}$
18. $\frac{3}{2} \mathrm{~T}$
19. $\frac{4}{3} \mathrm{~T}$
20. T
21. A spherical black body with a radius of 12 cm radiates 450 -watt power at 500 K . If the radius were halved and the temperature is doubled, the power radiated in watt would be:
22. 450
23. 1000
24. 1800
25. 225
26.

The coefficient of linear expansion of brass and steel rods are α_{1} and α_{2}. Lengths of brass and steel rods are 1_{1} and l_{2} respectively. If $\left(l_{2}-l_{1}\right)$ remains the same at all temperatures, which one of the following relations holds good?

1. $\alpha_{1} \mathrm{I}_{2}{ }^{2}=\alpha_{2} \mathrm{I}_{1}{ }^{2}$
2. $\alpha_{1}{ }^{2} \mathrm{I}_{2}=\alpha_{2}{ }^{2} \mathrm{l}_{1}$
3. $\alpha_{1} \mathrm{I}_{1}=\alpha_{2} \mathrm{I}_{2}$
4. $\alpha_{1} I_{2}=\alpha_{2} I_{1}$

7.

A black body is at a temperature of 5760 K . The energy of radiation emitted by the body at wavelength 250 nm is U_{1}, at wavelength 500 nm is U_{2} and that at 1000 nm is U_{3}. Wien's constant, $b=2.88 \times 10^{6} \mathrm{~nm}-\mathrm{K}$. Which of the following is correct?

1. $U_{3}=0$
2. $U_{1}>U_{2}$
3. $U_{2}>U_{1}$
4. $U_{1}=0$
5.

A piece of ice falls from a height h so that it melts completely. Only one-quarter of the heat produced is absorbed by the ice. The value of h is:
[Latent heat of ice is $3.4 \times 10^{5} \mathrm{~J} / \mathrm{kg}$ and $\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$]

1. 544 km
2. 136 km
3.68 km
3. 34 km
4. The value of the coefficient of volume expansion of glycerine is $5 \times 10^{-4} K^{-1}$. The fractional change in the density of glycerine for a rise of $40{ }^{0} \mathrm{C}$ in its temperature is:
5. 0.015
6. 0.020
7. 0.025
8. 0.010
9. On observing light from three different stars P, Q, and R , it was found that the intensity of the violet colour is maximum in the spectrum of P , the intensity of the green colour is maximum in the spectrum of R and the intensity of the red colour is maximum in the spectrum of Q. If $\mathrm{T}_{\mathrm{P},} \mathrm{T}_{\mathrm{Q}}$ and T_{R} are the respective absolute temperatures of P, Q, and R , then it can be concluded from the above observations that:
10. $\mathrm{T}_{\mathrm{P}}>\mathrm{T}_{\mathrm{Q}}>\mathrm{T}_{\mathrm{R}}$
11. $\mathrm{T}_{\mathrm{P}}>\mathrm{T}_{\mathrm{R}}>\mathrm{T}_{\mathrm{Q}}$
12. $\mathrm{T}_{\mathrm{P}}<\mathrm{T}_{\mathrm{R}}<\mathrm{T}_{\mathrm{Q}}$
13. $\mathrm{T}_{\mathrm{P}}<\mathrm{T}_{\mathrm{Q}}<\mathrm{T}_{\mathrm{R}}$
14.

A piece of iron is heated in a flame. It first becomes dull red, then becomes reddish yellow and finally turns to white-hot. The correct explanation for the above observation is possible by using:

1. Wien's displacement Law
2. Kirchoff's Law
3. Newton's Law of cooling
4. Stefan's Law
5. If the radius of a star is R and it acts as a black body, what would be the temperature of the star at which the rate of energy production is Q ?
6. $Q / 4 \pi \mathrm{R}^{2} \sigma$
7. $\left(Q / 4 \pi \mathrm{R}^{2} \sigma\right)^{\frac{-1}{2}}$
8. $\left(4 \pi \mathrm{R}^{2} Q / \sigma\right)^{\frac{1}{4}}$
9. $\left(Q / 4 \pi \mathrm{R}^{2} \sigma\right)^{\frac{1}{4}}$
10. Steam at $100{ }^{0} \mathrm{C}$ is passed into 20 g of water at $10^{0} \mathrm{C}$. When water acquires a temperature of $80^{\circ} \mathrm{C}$, the mass of water present will be:
[Take specific heat of water $=1 \mathrm{cal} \mathrm{g}^{-1}{ }^{0} \mathrm{C}^{-1}$ and latent heat of steam $=540 \mathrm{cal} \mathrm{g}^{-1}$]
11. 24 g
12. 31.5 g
3.42 .5 g
13. 22.5 g
14. A certain quantity of water cools from $70{ }^{0} \mathrm{C}$ to $60^{0} \mathrm{C}$ in the first 5 minutes and to $54{ }^{0} \mathrm{C}$ in the next 5 minutes. The temperature of the surroundings is:
15. $45^{\circ} \mathrm{C}$
16. $20^{\circ} \mathrm{C}$
17. $42^{\circ} \mathrm{C}$
18. $10^{\circ} \mathrm{C}$
19. Liquid oxygen at 50 K is heated up to 300 K at a constant pressure of 1 atm . The rate of heating is constant. Which one of the following graphs represents the variation of temperature with time?
20.

3.

4.

17. A cylindrical metallic rod in thermal contact with two reservoirs of heat at its two ends conducts an amount of heat Q in time t . The metallic rod is melted and the material is formed into a rod of half the radius of the original rod. What is the amount of heat conducted by the new rod when placed in thermal contact with the two reservoirs in the same time?

1. $\mathrm{Q} / 4$
2. $\mathrm{Q} / 16$
3. 2Q
4. $\mathrm{Q} / 2$
5. The total radiant energy per unit area, normal to the direction of incidence, received at a distance R from the centre of a star of radius r, whose outer surface radiates as a black body at a temperature T K is given by:
(where σ is Stefan's constant)
6. $\frac{\sigma \mathrm{r}^{2} \mathrm{~T}^{4}}{\mathrm{R}^{2}}$
7. $\frac{\sigma \mathrm{r}^{2} \mathrm{~T}^{4}}{4 \pi \mathrm{R}^{2}}$
8. $\frac{\sigma \mathrm{r}^{2} \mathrm{~T}^{4}}{\mathrm{R}^{4}}$
9. $\frac{4 \pi \sigma \mathrm{r}^{2} \mathrm{~T}^{4}}{\mathrm{R}^{2}}$
10.

A black body at $227^{\circ} \mathrm{C}$ radiates heat at the rate of 7 cal-$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$. At a temperature of $727{ }^{\circ} \mathrm{C}$, the rate of heat radiated in the same units will be:

1. 60
2. 50
3. 112
4. 80
5.

The two ends of a rod of length L and a uniform crosssectional area A are kept at two temperatures T_{1} and $\mathrm{T}_{2}\left(\mathrm{~T}_{1}>\mathrm{T}_{2}\right)$. The rate of heat transfer $\frac{\mathrm{dQ}}{\mathrm{dt}}$ through the rod in steady state is given by:

1. $\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{KL}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{A}}$
2. $\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{K}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{LA}}$
3. $\frac{\mathrm{dQ}}{\mathrm{dt}}=\operatorname{KLA}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)$
4. $\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{KA}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{L}}$
5. On a new scale of temperature, which is linear and called the W scale, the freezing and boiling points of water are $39{ }^{\circ} \mathrm{W}$ and $239{ }^{\circ} \mathrm{W}$ respectively. What will be the temperature on the new scale corresponding to a temperature of $39^{\circ} \mathrm{C}$ on the Celsius scale?
6. $78^{\circ} \mathrm{W}$
7. $117^{\circ} \mathrm{W}$
8. $200^{\circ} \mathrm{W}$
9. $139^{\circ} \mathrm{W}$
10. Assuming the sun to have a spherical outer surface of radius r, radiating like a black body at temperature $t^{\circ} \mathrm{C}$, the power received by a unit surface of the earth (normal to the incident rays) at a distance R from the centre of the sun is:
(where σ is Stefan's constant.)
11. $\frac{4 \pi r^{2} \sigma t^{4}}{R^{2}}$
12. $\frac{r^{2} \sigma(t+273)^{4}}{4 \pi R^{2}}$
13. $\frac{16 \pi^{2} r^{2} \sigma t^{4}}{R^{2}}$
$4 \frac{r^{2} \sigma(t+273)^{4}}{R^{2}}$
14. A black body is at $727^{\circ} \mathrm{C}$. It emits energy at a rate that is proportional to:
15. $(727)^{2}$
16. $(1000)^{4}$
17. $(1000)^{2}$
18. $(727)^{4}$
19. A black body at $1227{ }^{\circ} \mathrm{C}$ emits radiations with maximum intensity at a wavelength of $5000 \AA$. If the temperature of the body is increased by $1000{ }^{\circ} \mathrm{C}$, the maximum intensity will be observed at:
20. $4000 \AA$
21. $5000 \AA$
22. $6000 \AA$
23. $3000 \AA$
24. A copper rod of 88 cm and an aluminium rod of an unknown length have an equal increase in their lengths independent of an increase in temperature. The length of the aluminium rod is : $\left(\alpha_{C u}=1.7 \times 10^{-5} K^{-1}\right.$ and $\alpha_{A l}=2.2 \times 10^{-5} K^{-1}$)
1.68 cm
25. 6.8 cm
26. 113.9 cm
27. 88 cm
28. An object kept in a large room having an air temperature of $25^{\circ} \mathrm{C}$ takes 12 minutes to cool from $80^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The time taken to cool for the same object from $70^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ would be nearly -
29. 10 min
30. 12 min
31. 20 min
32. 15 min
33. A deep rectangular pond of surface area A, containing water (density $=\rho$, specific heat capacity $=s$), is located in a region where the outside air temperature is at a steady value of $-26^{\circ} \mathrm{C}$. The thickness of the ice layer in this pond at a certain instant is x. Taking the thermal conductivity of ice as k, and its specific latent heat of fusion as L , the rate of increase of the thickness of the ice layer, at this instant, would be given by:
34. $\frac{26 \mathrm{k}}{\mathrm{x} \rho(\mathrm{L}-4 \mathrm{~s})}$
35. $\frac{26 \mathrm{k}}{\mathrm{x}^{2} \rho \mathrm{~L}}$
36. $\frac{26 \mathrm{k}}{\mathrm{x} \rho \mathrm{L}}$
37. $\frac{26 \mathrm{k}}{\mathrm{x} \rho(\mathrm{L}+4 \mathrm{~s})}$
38. The quantities of heat required to raise the temperature of two solid copper spheres of radii r_{1} and r_{2} $\left(\mathrm{r}_{1}=1.5 \mathrm{r}_{2}\right)$ through 1 K are in the ratio:
39. $\frac{9}{4}$
40. $\frac{3}{2}$
41. $\frac{5}{3}$
42. $\frac{27}{8}$
43. Three stars A, B, and C have surface temperatures $\mathrm{T}_{\mathrm{A}}, \mathrm{T}_{\mathrm{B}}$, and T_{C} respectively. Star A appears bluish, star B appears reddish and star C yellowish. Hence,
44. $T_{A}>T_{B}>T_{C}$
45. $T_{B}>T_{C}>T_{A}$
46. $T_{C}>T_{B}>T_{A}$
47. $T_{A}>T_{C}>T_{B}$
48. A slab of stone with an area $0.36 \mathrm{~m}^{2}$ and thickness of 0.1 m is exposed on the lower surface to steam at $100^{\circ} \mathrm{C}$. A block of ice at $0^{\circ} C$ rests on the upper surface of the slab. In one hour 4.8 kg of ice is melted. The thermal conductivity of the slab will be:
(Given latent heat of fusion of ice $=3.36 \times 10^{5} \mathrm{~J} \mathrm{Kg}^{-1}$)
49. $1.29 / \mathrm{m} / \mathrm{s} /{ }^{0} \mathrm{C}$
50. $2.05 \mathrm{~J} / \mathrm{m} / \mathrm{s} /{ }^{0} \mathrm{C}$
51. $1.02 / \mathrm{m} / \mathrm{s} /{ }^{0} \mathrm{C}$
52. $1.24 / \mathrm{m} / \mathrm{s} /{ }^{0} \mathrm{C}$
53. Gravitational force is required for :
54. Stirring of liquid
55. Convection
56. Conduction
57. Radiation
58. Which of the following circular rods, (given radius r and length l) each made of the same energy material and whose ends are maintained at the same temperature will conduct most heat:
(1) $r=2 r_{0} ; 1=2 l_{0}$
(2) $r=2 r_{0} ; l=l_{0}$
(3) $r=r_{0} ; l=2 l_{0}$
(4) $r=r_{0} ; l=l_{0}$
59. Radiation energy corresponding to the temperature T of the sun is E . If its temperature is doubled, then its radiation energy will be :
60. 32 E
61. 16 E
62. 8 E
63. 4 E
64. A sphere maintained at temperature 600 K , has a cooling rate R in an external environment of 200 K temperature. If its temperature falls to 400 K then its colling rate will be
65. $\frac{3}{16} R$
66. $\frac{16}{3} R$
67. $\frac{9}{27} R$
68. None
69. If λ_{m} denotes the wavelength at which the radioactive emission from a black body at a temperature TK is maximum, then:-
(1) λ_{m} is independent of T
(2) $\lambda_{m} \propto T$
(3) $\lambda_{\mathrm{m}} \propto \mathrm{T}^{-1}$
(4) $\lambda_{m} \propto T^{-4}$
70. Two conducting slabs of heat conductivity K_{1} and K_{2} are joined as shown in fig. The temp. at ends of the slabs are θ_{1} and $\theta_{2}\left(\theta_{1}>\theta_{2}\right)$ the, final temp. $\left(\theta_{m}\right)$ of the junction will be:

71. $\frac{K_{1} \theta_{1}+K_{2} \theta_{2}}{K_{1}+K_{2}}$
72. $\frac{K_{1} \theta_{2}+K_{2} \theta_{1}}{K_{1}+K_{2}}$
73. $\frac{K_{1} \theta_{2}+K_{2} \theta_{1}}{K_{1}-K_{2}}$
74. None
75. The Wien's displacement law express relation between :-
(1) Wavelength corresponding to maximum energy and temperature
(2) Radiation energy and wavelength
(3) Temperature and wavelength
(4) Colour of light and temperature
76. Which of the following is closest to an ideal black body?
(1) Black lamp
(2) Cavity maintained at a constant temperature
(3) Platinum black
(4) A lump of charcoal heated to high temp.
77. For a black body at temperature $727^{\circ} \mathrm{C}$, its radiating power is 60 watt and temperature of surrounding is $227^{\circ} \mathrm{C}$. If temperature of black body is changed to $1227^{\circ} \mathrm{C}$ then its radiating power will be :-
(1) 304 W
(2) 320 W
(3) 240 W
(4) 120 W
78. Consider two rods of same length and different specific heats $\left(S_{1}, S_{2}\right)$, conductivities $\left(K_{1}, K_{2}\right)$ and area of cross-sections $\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ and both having temperature T_{1} and T_{2} at their ends. If rate of loss of heat due to conduction is equal, then :-
(1) $K_{1} A_{1}=K_{2} A_{2}$
(2) $\frac{K_{1} A_{1}}{S_{1}}=\frac{K_{2} A_{2}}{S_{2}}$
(3) $\mathrm{K}_{2} \mathrm{~A}_{1}=\mathrm{K}_{1} \mathrm{~A}_{2}$
(4) $\frac{K_{2} A_{1}}{S_{2}}=\frac{K_{1} A_{2}}{S_{1}}$
79. Unit of Stefan's constant is:-
(1) Watt-m ${ }^{2}-K^{4}$
(2) Watt- $\mathrm{m}^{2} / \mathrm{K}^{4}$
(3) Watt $/ \mathrm{m}^{2}-\mathrm{K}$
(4) Watt $/ \mathrm{m}^{2} \mathrm{~K}^{4}$
80. A black body has wavelength λ_{m} corresponding to maximum energy at 2000 K . Its wavelength corresponding to maximum energy at 3000 K will be : -
81. $\frac{3}{2} \lambda_{m}$
82. $\frac{2}{3} \lambda_{m}$
83. $\frac{16}{81} \lambda_{m}$
84. $\frac{81}{16} \lambda_{m}$
85. A cylindrical rod has temperatures T_{1} and T_{2} at its ends. The rate of flow of heat is $Q_{1} \mathrm{cal} / \mathrm{sec}$. If all the linear dimensions are doubled while keeping the temperature constant, then the rate of flow of heat Q_{2} will be:
86. $4 Q_{1}$
87. $2 Q_{1}$
88. $\frac{Q_{1}}{4}$
89. $\frac{Q_{1}}{2}$
90. We consider the radiation emitted by the human body. Which of the following statements is true :
(1) The radiation emitted is in the infrared region
(2) The radiation is emitted only during the day
(3) The radiation is emitted during the summers and absorbed during the winters
(4) The radiation emitted lies in the ultraviolet region and hence is not visible
91. Consider a compound slab consisting of two different materials having equal thicknesses and thermal conductivities K and 2 K , respectively. The equivalent thermal conductivity of the slab will be -
92. $2 / 6 \mathrm{~K}$
93. $\sqrt{2} \mathrm{~K}$
94. 3 K
95. $4 / 3 \mathrm{~K}$
96. A cup of coffee cools from 90° to $80^{\circ} \mathrm{C}$ in t minutes, when the room temperature is $20^{\circ} \mathrm{C}$. The time taken by a similar cup of coffee to cool from 80° to $60^{\circ} \mathrm{C}$ at room temperature same at $20^{\circ} \mathrm{C}$ is :
97. $\frac{10}{13} \mathrm{t}$
98. $\frac{5}{13} \mathrm{t}$
99. $\frac{13}{10} \mathrm{t}$
100. $\frac{13}{5} \mathrm{t}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to FREE ACCESS for days of ANY NEETprep

 course
Thermodynamics
 (Expected Questions in NEET 2022: 2)

Subtopic Name Number of

Questions

Types of Processes	16
Heat Engine \& Refrigerator	14
First Law of Thermodynamics	7
Cyclic Process	5
Molar Specific Heat	3
Work Done by Gas	2
Second Law of Thermodynamics	1

1.

Thermodynamic processes are indicated in the following diagram:

Match the following

Column-I
P. Process I
Q. Process II
R. Process III
S. Process IV

1. $\mathrm{P} \rightarrow \mathrm{c}, \mathrm{Q} \rightarrow \mathrm{a}, \mathrm{R} \rightarrow \mathrm{d}, \mathrm{S} \rightarrow \mathrm{b}$
2. $\mathrm{P} \rightarrow \mathrm{c}, \mathrm{Q} \rightarrow \mathrm{d}, \mathrm{R} \rightarrow \mathrm{b}, \mathrm{S} \rightarrow \mathrm{a}$
3. $\mathrm{P} \rightarrow \mathrm{d}, \mathrm{Q} \rightarrow \mathrm{b}, \mathrm{R} \rightarrow \mathrm{a}, \mathrm{S} \rightarrow \mathrm{c}$
4. $\mathrm{P} \rightarrow \mathrm{a}, \mathrm{Q} \rightarrow \mathrm{c}, \mathrm{R} \rightarrow \mathrm{d}, \mathrm{S} \rightarrow \mathrm{b}$
5. A sample of 0.1 g of water at $100^{\circ} C$ and normal pressure ($1.013 \times 10^{5} \mathrm{Nm}^{-2}$) requires 54 cal of heat energy to convert it into steam at $100^{\circ} C$. If the volume of the steam produced is 167.1 cc , the change in internal energy of the sample is:
6. 104.3 J
7. 208.7 J
8. 42.2 J
9. 84.5 J
10. One mole of an ideal monatomic gas undergoes a process described by the equation. $P V^{3}=c o n s \tan t$. The heat capacity of the gas during this process is:
11. $\frac{3}{2} \mathrm{R}$
12. $\frac{5}{2} \mathrm{R}$
13. 2 R
14. R

Column-II

a. Adiabatic
b. Isobaric
c. Isochoric
d. Isothermal
4. The temperature inside a refrigerator (reversible process) is $t_{2}{ }^{\circ} \mathrm{C}$ and the room temperature is $\mathrm{t}_{1}{ }^{\circ} \mathrm{C}$. The amount of heat delivered to the room for each joule of electrical energy consumed ideally will be:

1. $\frac{t_{1}}{t_{1}-t_{2}}$
2. $\frac{t_{1}+273}{t_{1}-t_{2}}$
3. $\frac{t_{2}+273}{t_{1}+t_{2}}$
4. $\frac{t_{1}+t_{2}}{t_{1}+273}$
5. a Carnot engine having an efficiency of $\frac{1}{10}$ a heat engine is used as a refrigerator. If the work done on the system is 10 J , the amount of energy absorbed from the reservoir at a lower temperature is:
6. 90 J
7. 99 J
8. 100 J
9. 1 J
10. The volume (V) of a monatomic gas varies with its temperature (T) as shown in the graph. The ratio of work done by the gas to the heat absorbed by it when it undergoes a change from state A to state B is:

11. $\frac{2}{5}$
12. $\frac{2}{3}$
13. $\frac{1}{3}$
14. $\frac{2}{7}$
15. The efficiency of an ideal heat engine working between the freezing point and boiling point of water is:
16. 26.8%
17. 20%
18. 6.25%
19. 12.5%
20.

A gas is compressed isothermally to half its initial volume. The same gas is compressed separately through an adiabatic process until its volume is again reduced to half. Then,

1. compressing the gas through an adiabatic process will require more work to be done.
2. compressing the gas isothermally or adiabatically will require the same amount of work.
3. which of the case (whether compression through isothermal or through the adiabatic
process) requires more work will depend upon the atomicity of the gas.
4. compressing the gas isothermally will require more work to be done.
5.

A refrigerator works between $4^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$. It is required to remove 600 calories of heat every second to keep the temperature of the refrigerated space constant. The power required is:
(Take, 1 cal= 4.2 Joules)

1. 23.65 W
2. 236.5 W
3. 2365 W
4. 2.365 W
5. An ideal gas is compressed to half its initial volume using several processes. Which of the process results in the maximum work done on the gas?
6. Adiabatic
7. Isobaric
8. Isochoric
9. Isothermal
10. The coefficient of performance of a refrigerator is 5 . If the temperature inside the freezer is $-20^{\circ} \mathrm{C}$, the temperature of the surroundings to which it rejects heat is: 1. $31^{\circ} \mathrm{C}$
11. $41^{\circ} \mathrm{C}$
12. $11^{\circ} \mathrm{C}$
13. $21^{\circ} \mathrm{C}$
14.

The figure below shows two paths that may be taken by gas to go from state A to state C.

In process $\mathrm{AB}, 400 \mathrm{~J}$ of heat is added to the system, and in process $\mathrm{BC}, 100 \mathrm{~J}$ of heat is added to the system. The heat absorbed by the system in the process AC will be:

1. 380 J
2. 500 J
3. 460 J
4. 300 J
5. A Carnot engine, having an efficiency of $\eta=\frac{1}{10}$ as a heat engine, is used as a refrigerator. If the work done on the system is 10 J , the amount of energy absorbed from the reservoir at a lower temperature is:
6. 100 J
7. 99 J
8. 90 J
9. 1 J
10. A monoatomic gas at a pressure P , having a volume V expands isothermally to a volume 2 V and then adiabatically to a volume 16 V . The final pressure of the gas is: (Take: $\gamma=5 / 3$)
11. 64 P
12. 32 P
13. $\mathrm{P} / 64$
14. 16 P
15. A thermodynamics system undergoes cyclic process ABCDA as shown in Fig. The work done by the system in the cycle is:

16. $P_{0} V_{0}$
17. $2 P_{0} V_{0}$
18. $\frac{P_{0} V_{0}}{2}$
19. Zero
20.

A gas is taken through the cycle $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{A}$, as shown. What is the net work done by the gas?

18.

During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its temperature. The ratio of $\frac{C_{P}}{C_{V}}$ for the gas is:

1. 2
2. 5/3
3. $3 / 2$
4. $4 / 3$
5. A thermodynamic system is taken through the cycle ABCD as shown in the figure. Heat rejected by the gas during the cycle is:

6. 2 PV
7. 4 PV
8. $\frac{1}{2} \mathrm{PV}$
9. PV
10. 1000 J
11. zero
12. -2000 J
13. 2000 J
14.

The molar specific heats of an ideal gas at constant pressure and volume are denoted by C_{P} and C_{V}, respectively. If $\gamma=\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}$ and R is the universal gas constant, then C_{V} is equal to:

1. $\frac{\mathrm{R}}{(\gamma-1)}$
2. $\frac{(\gamma-1)}{R}$
3. $\gamma \mathrm{R}$
4. $\frac{(\gamma-1) \mathrm{R}}{(\gamma+1)}$
5.

One mole of an ideal gas goes from an initial state A to the final state B with two processes. It first undergoes isothermal expansion from volume V to 3 V and then its volume is reduced from 3 V to V at constant pressure. The correct $\mathrm{P}-\mathrm{V}$ diagram representing the two processes is:

1.

3.

4. $\quad \longrightarrow V$
21.

When 1 kg of ice at $0^{0} \mathrm{C}$ melts into the water at $0^{0} \mathrm{C}$, the resulting change in its entropy, taking latent heat of ice to be $80 \mathrm{cal} / \mathrm{gm}$, is:

1. $8 \times 10^{4} \mathrm{cal} / \mathrm{K}$
2. $80 \mathrm{cal} / \mathrm{K}$
3. $293 \mathrm{cal} / \mathrm{K}$
4. $273 \mathrm{cal} / \mathrm{K}$
5.

During an isothermal expansion, a confined ideal gas does -150 J of work against its surrounding. This implies that,

1. 300 J of heat has been added to the gas.
2. no heat is transferred because the process is isothermal.
3. 150 J of heat has been added to the gas.
4. 150 J of heat has been removed from the gas.
5. If $\Delta \mathrm{U}$ and $\Delta \mathrm{W}$ represent the increase in internal energy and work done by the system respectively in a thermodynamical process. Which of the following is true?
6. $\Delta \mathrm{U}=-\Delta \mathrm{W}$, in an adiabatic process
7. $\Delta \mathrm{U}=\Delta \mathrm{W}$, in an isothermal process
8. $\Delta \mathrm{U}=\Delta \mathrm{W}$, in an adiabatic process
9. $\Delta \mathrm{U}=-\Delta \mathrm{W}$, in an isothermal process
10.

The internal energy change in a system that has absorbed 2 kcal of heat and done 500 J of work is:

1. 8900 J
2. 6400 J
3. 5400 J
4. 7900 J
5.

In thermodynamic processes which of the following statements is not true?

1. In an adiabatic process the system is insulated from the surroundings
2. In an isochoric process pressure remains constant
3. in an isothermal process the temperature remains constant
4. In an adiabatic process $P V^{\gamma}=$ constant
5.

If Q, E, and W denote respectively the heat added, the change in internal energy, and the work done in a closed cycle process, then:

1. $\mathrm{W}=0$
2. $\mathrm{Q}=\mathrm{W}=0$
3. $\mathrm{E}=0$
4. $\mathrm{Q}=0$
5. An engine has an efficiency of $\frac{1}{6}$. When the temperature of the sink is reduced by $62^{\circ} \mathrm{C}$, its efficiency is doubled. the temperature of the source is:
6. $124^{\circ} \mathrm{C}$
7. $37^{\circ} \mathrm{C}$
8. $62^{\circ} \mathrm{C}$
9. $99^{\circ} \mathrm{C}$
10. A Carnot engine whose sink is at 300 K has an efficiency of 40%. By how much should the temperature of the source be increased so as to increase its efficiency by 50% of original efficiency?
11. 275 K
12. 325 K
13. 250 K
14. 380 K
15. The molar specific heat at a constant pressure of an ideal gas is $(7 / 2) R$. The ratio of specific heat at constant pressure to that at constant volume is:
16. $7 / 5$
17. 8/7
18. 5/7
19. 9/7
20. In which of the following processes, the heat is neither absorbed nor released by a system?
21. Isochoric
22. Isothermal
23. Adiabatic
24. Isobaric
25. 1 g of water of volume $1 \mathrm{~cm}^{3}$ at $100{ }^{\circ} \mathrm{C}$ is converted into steam at the same temperature under normal atmospheric pressure $\approx 1 \times 10^{5} \mathrm{~Pa}$. The volume of steam formed equals $1671 \mathrm{~cm}^{3}$. If the specific latent heat of vaporization of water is $2256 \mathrm{~J} / \mathrm{g}$, the change in internal energy is:
26. 2423 J
27. 2089 J
28. 167 J
29. 2256 J
30. Two cylinders A and B of equal capacity are connected to each other via a stop cock. A contains an ideal gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stop cock is suddenly opened. The process is :
(1) adiabatic
(2) isochoric
(3) isobaric
(4) isothermal
31. The efficiency of a Carnot engine depends upon:
32. the temperature of the sink only.
33. the temperatures of the source and sink.
34. the volume of the cylinder of the engine.
35. the temperature of the source only.
36. The P-V diagram for an ideal gas in a piston-cylinder assembly undergoing a thermodynamic process is shown in the figure. The process is:

37. adiabatic
38. isochoric
39. isobaric
40. isothermal
41. An ideal gas goes from state A to state B via three different processes as indicated in the $\mathrm{P}-\mathrm{V}$ diagram -

If Q_{1}, Q_{2}, Q_{3} indicate thye heat absorbed by the gas along the three processes and $\Delta U_{1}, \Delta U_{2}, \Delta U_{3}$ indicate the change in internal energy along the three processes repectively, then -

1. $Q_{3}>Q_{2}>Q_{1}$ and $\Delta U_{1}=\Delta U_{2}=\Delta U_{3}$
2. $Q_{1}=Q_{2}=Q_{3}$ and $\Delta U_{1}>\Delta U_{2}>\Delta U_{3}$
3. $Q_{3}>Q_{2}>Q_{1}$ and $\Delta U_{1}>\Delta U_{2}>\Delta U_{3}$
4. $Q_{1}>Q_{2}>Q_{3}$ and $\Delta U_{1}=\Delta U_{2}=\Delta U_{3}$
5. A mass of diatomic gas $(\gamma=1.4)$ at a pressure of 2 atmospheres is compressed adiabatically so that its temperature rises from $27^{\circ} \mathrm{C}$ to $927^{\circ} \mathrm{C}$. The pressure of the gas in the final state is:
(1) 8 atm
(2) 28 atm
(3) 68.7 atm
(4) 256 atm
6. A monoatomic gas at pressure P_{1} and volume V_{1} is compressed adiabatically to $1 / 8$ th its original volume. What is the final pressure of gas -
7. P_{1}
8. $16 \mathrm{P}_{1}$
9. $32 \mathrm{P}_{1}$
10. $64 \mathrm{P}_{1}$
11. Which of the following processes is reversible?
(1) Transfer of heat by radiation
(2) Transfer of heat by conduction
(3) Isothermal compression
(4) Electrical heating of a nichrome wire
12. The ratio (W/Q) for a carnot - engine is $\frac{1}{6}$. Now the temp. of sink is reduced by $62^{\circ} \mathrm{C}$, then this ratio becomes twice, therefore the initial temp. of the sink and source are respectively:
13. $33^{\circ} \mathrm{C}, 67^{\circ} \mathrm{C}$
14. $37^{\circ} \mathrm{C}, 99^{\circ} \mathrm{C}$
15. $67^{\circ} \mathrm{C}, 33^{\circ} \mathrm{C}$
16. $97 \mathrm{~K}, 37 \mathrm{~K}$
17. An ideal gas heat engine operates in a Carnot cycle between $227^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$. It absorbs 6×10^{4} cals of heat at higher temperatures. Amount of heat converted to work is:-
(1) $4.8 \times 10^{4} \mathrm{cals}$
(2) 2.4×10^{4} cals
(3) $1.2 \times 10^{4} \mathrm{cals}$
(4) 6×10^{4} cals
18. When volume changes from V to 2 V at constant pressure (P), then the change in internal energy will be :
19. PV
20. 3 PV
21. $\frac{P V}{\gamma-1}$
22. $\frac{R V}{Y-1}$
23. A gas of volume changes 2 litre to 10 litre at constant temperature 300 K , then the change in internal energy will be :
24. 12 J
25. 24 J
26. 36 J
27. 0 J
28. We consider a thermodynamic system. If ΔU represents the increase in its internal energy and W the work done by the system, which of the following statements is true?
29. $\Delta \mathrm{U}=-\mathrm{W}$ in an isothermal process
30. $\Delta \mathrm{U}=\mathrm{W}$ in an isothermal process
31. $\Delta \mathrm{U}=-\mathrm{W}$ in an adiabatic process
32. $\Delta \mathrm{U}=\mathrm{W}$ in an adiabatic process
33. The initial pressure and volume of a gas are P and V respectively. First, its volume is expanded to 4 V by isothermal process and then again its volume makes to be V by the adiabatic process then its final pressure is $(\gamma=$ 1.5):
34. 8 P
35. 4 P
36. P
37. 2 P
38. One mole of an ideal gas at an initial temperature of T K does 6 R joules of work adiabatically. If the ratio of specific heats of this gas at constant pressure and at constant volume is $5 / 3$, the final temperature of the gas will be:
(1) $(\mathrm{T}-2.4) \mathrm{K}$
(2) $(T+4) K$
(3) $(\mathrm{T}-4) \mathrm{K}$
(4) $(T+2.4) K$
39. The efficiency of carnot engine is 50% and temperature of sink is 500 K . If temperature of source is kept constant and its efficiency raised to 60%, then the required temperature of the sink will be : -
(1) 100 K
(2) 600 K
(3) 400 K
(4) 500 K
40. A scientist says that the efficiency of his heat engine which work at source temperature $127^{\circ} \mathrm{C}$ and sink temperature $27^{\circ} \mathrm{C}$ to 26%, then
41. It is impossible
42. It is possible but less probable
43. It is quite probable
44. Data are incomplete
45. An ideal gas heat engine operates in a carnot cycle between $227^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$. It absorbs 6 kcal at the higher temperature. The amount of heat (in kcal) converted into work is equal to -
(1) 4.8
(2) 3.5
(3) 1.6
(4) 1.2

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get
 FREE ACCESS for 3
 days of ANY NEETprep

course

neetprep Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Kinetic Theory of Gases
 (Expected Questions in NEET 2022: 1)

Subtopic Name Number of

 Questions| Ideal Gas | $\mathbf{7}$ |
| :--- | :--- |
| Law of Equipartition of Energy | 5 |
| Mean Free Path | $\mathbf{3}$ |
| Specific Heat | $\mathbf{3}$ |
| Kinetic Energy of Gas | $\mathbf{2}$ |

1. A given sample of an ideal gas occupies a volume V at a pressure P and absolute temperature T . The mass of each molecule of the gas is m . Which of the following gives the density of the gas?
2. $\mathrm{P} /(\mathrm{kT})$
3. $\mathrm{Pm} /(\mathrm{kT})$
4. $\mathrm{P} /(\mathrm{kTV})$
5. mkT
6. A gas mixture consists of 2 moles of O_{2} and 4 moles of

Ar at temperature T. Neglecting all vibrational modes, the total internal energy of the system is:

1. 15 RT
2. 9 RT
3. 11 RT
4. 4 RT
5.

The molecules of a given mass of gas have RMS. velocity of $200 \mathrm{~ms}^{-1}$ at $27{ }^{\circ} \mathrm{C}$ and $1.0 \times 10^{5} \mathrm{Nm}^{-2}$ pressure. When the temperature and the pressure of the gas are respectively, $127{ }^{\circ} \mathrm{C}$ and $0.05 \times 10^{5} \mathrm{Nm}^{-2}$, the RMS velocity of its molecules in ms^{-1} is:

1. $\frac{400}{\sqrt{3}}$
2. $\frac{100 \sqrt{2}}{3}$
3. $\frac{100}{3}$
4. $100 \sqrt{2}$
5. Two vessels separately contain two ideal gases A and B at the same temperature, the pressure of A being twice that of B. Under such conditions, the density of A is found to be 1.5 times the density of B . The ratio of molecular weight of A and B is:
6. $\frac{2}{3}$
7. $\frac{3}{4}$
8. 2
9. $\frac{1}{2}$
10. One mole of an ideal diatomic gas undergoes a transition from A to B along a path AB as shown in the figure.

The change in internal energy of the gas during the transition is:

1. 20 kJ
2. -20 kJ
3. 20 J
4. -12 kJ
5. The ratio of the specific heats $\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}=\gamma$ in terms of degrees of freedom(n) is given by:
6. $\left(1+\frac{1}{n}\right)$
7. $\left(1+\frac{\mathrm{n}}{3}\right)$
8. $\left(1+\frac{2}{n}\right)$
9. $\left(1+\frac{n}{2}\right)$
10. The mean free path of molecules of a gas (radius 'r') is inversely proportional to:
11. r^{3}
12. r^{2}
13. r
14. \sqrt{r}
15.

In the given $(\mathrm{V}-\mathrm{T})$ diagram, what is the relation between pressure P_{1} and P_{2} ?

1. $\mathrm{P}_{2}>\mathrm{P}_{1}$
2. $\mathrm{P}_{2}<\mathrm{P}_{1}$
3. Cannot be predicted
4. $\mathrm{P}_{2}=\mathrm{P}_{1}$
5.

The amount of heat energy required to raise the temperature of 1 g of Helium at NTP, from $\mathrm{T}_{1} \mathrm{~K}$ to $\mathrm{T}_{2} \mathrm{~K}$ is:

1. $\frac{3}{2} \mathrm{~N}_{\mathrm{a}} \mathrm{k}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
2. $\frac{3}{4} \mathrm{~N}_{\mathrm{a}} \mathrm{k}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
3. $\frac{3}{4} \mathrm{~N}_{\mathrm{a}} \mathrm{k}_{\mathrm{B}} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
4. $\frac{3}{8} \mathrm{~N}_{\mathrm{a}} \mathrm{k}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
5. At $10^{\circ} \mathrm{C}$ the value of the density of a fixed mass of an ideal gas divided by its pressure is x . At $110^{\circ} \mathrm{C}$ this ratio is:
6. x
7. $\frac{383}{283} \mathrm{x}$
8. $\frac{10}{110} \mathrm{x}$
9. $\frac{283}{383} \mathrm{x}$
10. An increase in temperature of a gas-filled in a container would lead to:
11. decrease in intermolecular distance.
12. increase in its mass.
13. increase in its kinetic energy.
14. decrease in its pressure.
15. The value $\gamma=\left(\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}\right)$ for hydrogen, helium, and another ideal diatomic gas X (whose molecules are not rigid but have an additional vibrational mode), are respectively equal to:
16. $\frac{7}{5}, \frac{5}{3}, \frac{9}{7}$
17. $\frac{5}{3}, \frac{7}{5}, \frac{9}{7}$
18. $\frac{5}{3}, \frac{7}{5}, \frac{7}{5}$
19. $\frac{7}{5}, \frac{5}{3}, \frac{7}{5}$
20. The mean free path for gas, with molecular diameter d and number density n, can be expressed as:
(1) $\frac{1}{\sqrt{2} n \pi \mathrm{~d}^{2}}$
(2) $\frac{1}{\sqrt{2} n^{2} \pi d^{2}}$
(3) $\frac{1}{\sqrt{2} n^{2} \pi^{2} d^{2}}$
(4) $\frac{1}{\sqrt{2} n \pi \mathrm{~d}}$
21. A cylinder contains hydrogen gas at a pressure of 249 kPa and temperature $27^{\circ} \mathrm{C}$
Its density is: $\left(\mathrm{R}=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$
22. $0.2 \mathrm{~kg} / \mathrm{m}^{3}$
23. $0.1 \mathrm{~kg} / \mathrm{m}^{3}$
24. $0.02 \mathrm{~kg} / \mathrm{m}^{3}$
25. $0.5 \mathrm{~kg} / \mathrm{m}^{3}$
26. The average thermal energy for a mono-atomic gas is: (k_{B} is Boltzmann constant and T absolute temperature)
27. $\frac{3}{2} k_{\mathrm{B}} \mathrm{T}$
28. $\frac{5}{2} k_{\mathrm{B}} \mathrm{T}$
29. $\frac{7}{2} k_{\mathrm{B}} \mathrm{T}$
30. $\frac{1}{2} k_{\mathrm{B}} \mathrm{T}$
31. The mean free path 1 for a gas molecule depends upon the diameter, d of the molecule as:
32. $l \propto \frac{1}{d^{2}}$
33. $l \propto d$
34. $l \propto d^{2}$
35. $l \propto \frac{1}{d}$
36. An ideal gas equation can be written as $\mathrm{P}=\frac{\rho \mathrm{RT}}{\mathrm{M}_{0}}$ where ρ and M_{0} are respectively,
37. Mass density, the mass of the gas
38. Number density, molar mass
39. Mass density, molar mass
40. Number density, the mass of the gas
41. If C_{p} and C_{v} denote the specific heats (per unit mass) of an ideal gas of molecular weight M.-
42. $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$
43. $C_{p}-C_{v}=R / M$
44. $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{MR}$
45. $C_{p}-C_{v}=R / M^{2}$

Where R is the molar gas constant
19. To find out degree of freedom, the correct expression is:

1. $f=\frac{2}{\gamma-1}$
2. $f=\frac{\gamma+1}{2}$
3. $f=\frac{2}{\gamma+1}$
4. $f=\frac{1}{\gamma+1}$
5. The equation of state for 5 g of oxygen at a pressure P and temperature T , when occupying a volume V , will be :-
(1) $\mathrm{PV}=5 \mathrm{RT}$
(2) $\mathrm{PV}=(5 / 2) \mathrm{RT}$
(3) $\mathrm{PV}=(5 / 16) \mathrm{RT}$
(4) $\mathrm{PV}=(5 / 32) \mathrm{RT}$

Where R is the gas constant.
21. Match column - I and column - II and choose the correct match from the given choices.

	Column - I		Column - II
(A)	Root mean square speed of gas molecules	(P)	$\frac{1}{3} n m \bar{v}^{2}$
(B)	Pressure exerted by ideal gas	(Q)	$\sqrt{\frac{3 R T}{M}}$
(C)	Average kinetic energy of a molecule	(R)	$\frac{5}{2} R T$
(D)	Total internal energy of 1 mole of a diatomic gas	(S)	$\frac{3}{2} k_{B} T$

1. (A) - (Q), (B) - (P), (C) - (S), (D) - (R)
2. (A) - (R), (B) - (Q), (C) - (P), (D) - (S)
3. (A) - (R), (B) - (P), (C) - (S), (D) - (Q)
4. (A) - (Q), (B) - (R), (C) - (S), (D) - (P)

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE
 FREE ACCESS for 3 days of ANY NEETprep

 course
- neet prep Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Oscillations

(Expected Questions in NEET 2022: 2)

Subtopic Name
 Number of Questions

Simple Harmonic Motion 22
Linear SHM 10
Energy of SHM 6
Spring mass system
5
Damped Oscillations
4
Combination of Springs
Angular SHM 1

Forced Oscillations
1

Phasor Diagram	1

1. A spring of force constant k is cut into lengths of ratio $1: 2: 3$. They are connected in series and the new force constant is k^{\prime}. Then they are connected in parallel and force constant is k ". Then k ': k " is:
2. 1:9
3. 1:11
4. $1: 14$
5. 1:6
6. A body of mass m is attached to the lower end of a spring whose upper end is fixed. The spring has negligible mass. When the mass m is slightly pulled down and released, it oscillates with a time period of 3 s . When the mass m is increased by 1 kg , the time period of oscillations becomes 5 s . The value of m in kg is:
7. $\frac{3}{4}$
8. $\frac{4}{3}$
9. $\frac{16}{9}$
10. $\frac{9}{16}$
11. A particle executes linear simple harmonic motion with amplitude of 3 cm . When the particle is at 2 cm from the mean position, the magnitude of its velocity is equal to that of its acceleration. Then its time period in seconds is:-
12. $\frac{\sqrt{5}}{2 \pi}$
13. $\frac{4 \pi}{\sqrt{5}}$
14. $\frac{4 \pi}{\sqrt{3}}$
15. $\frac{\sqrt{ } 5}{\pi}$
16. A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is $20 \mathrm{~m} / \mathrm{s}^{2}$ at a distance of 5 m from the mean position. The time period of oscillation is:
17. $2 \pi \mathrm{~s}$
18. $\pi \mathrm{s}$
19. 2 s
20. 1 s
21. A particle is executing a simple harmonic motion. Its maximum acceleration is α and maximum velocity is β. Then its time period of vibration will be:
22. $\frac{\beta^{2}}{\alpha^{2}}$
23. $\frac{\beta}{\alpha}$
24. $\frac{\beta^{2}}{\alpha}$
25. $\frac{2 \pi \beta}{\alpha}$
26.

When two displacements represented by $y_{1}=\operatorname{asin}(\omega \mathrm{t})$ and $y_{2}=b \cos (\omega t)$ are superimposed, the motion is:

1. not a simple harmonic.
2. simple harmonic with amplitude $\frac{a}{b}$.
3. simple harmonic with amplitude $\sqrt{a^{2}+b^{2}}$.
4. simple harmonic with amplitude $\frac{(a+b)}{2}$.
5.

A particle is executing SHM along a straight line. Its velocities at distances x_{1} and x_{2} from the mean position are v_{1} and v_{2}, respectively. Its time period is:
$1.2 \pi \sqrt{\frac{\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}}{\mathrm{v}_{1}^{2}+\mathrm{v}_{2}^{2}}}$
2. $2 \pi \sqrt{\frac{\mathrm{x}_{2}^{2}-\mathrm{x}_{1}^{2}}{\mathrm{v}_{1}^{2}-\mathrm{v}_{2}^{2}}}$
3. $2 \pi \sqrt{\frac{v_{1}^{2}+v_{2}^{2}}{x_{1}^{2}+x_{2}^{2}}}$
4. $2 \pi \sqrt{\frac{v_{1}^{2}-v_{2}^{2}}{x_{1}^{2}-x_{2}^{2}}}$
8. The oscillation of a body on a smooth horizontal surface is represented by the equation, $\mathrm{X}=\mathrm{A} \cos (\omega \mathrm{t})$ where $\mathrm{X}=$ displacement at time t
$\omega=$ frequency of oscillation
Which one of the following graphs shows correctly the variation 'a' with 't'?
Here $\mathrm{a}=$ acceleration at time t
$\mathrm{T}=$ time period
1.

2.

3.

4.

9. The damping force of an oscillator is directly proportional to the velocity. The units of the constant of proportionality are:

1. $\mathrm{kg}_{\mathrm{msec}}{ }^{-1}$
2. $\mathrm{kg}-\mathrm{msec}^{-2}$
3. $\mathrm{kg}-\mathrm{sec}^{-1}$
4. kg -sec
5.

Out of the following functions, which represent/s SHM?
I. $\mathrm{y}=\sin \omega \mathrm{t}-\cos \omega \mathrm{t}$
II. $\mathrm{y}=\sin ^{3} \omega \mathrm{t}$
III. $\mathrm{y}=5 \cos \left(\frac{3 \pi}{4}-3 \omega \mathrm{t}\right)$
IV. $\mathrm{y}=1+\omega \mathrm{t}+\omega^{2} \mathrm{t}^{2}$

1. Only (IV) does not represent SHM
2. (I) and (III)
3. (I) and (II)
4. Only (I)
5. A particle of mass m is released from rest and follows a parabolic path as shown. Assuming that the displacement of the mass from the origin is small, which graph correctly depicts the position of the particle as a function of time?

1

.

4.

12. The displacement of a particle along the x-axis is given by $x=\operatorname{asin}^{2} \omega t$. The motion of the particle corresponds to:

1. Simple harmonic motion of frequency $\frac{\omega}{\pi}$
2. Simple harmonic motion of frequency $\frac{3 \omega}{2 \pi}$
3. non-simple harmonic motion
4. simple harmonic motion of frequency $\frac{\omega}{2 \pi}$
5. The period of oscillation of a mass M suspended from a spring of negligible mass is T. If along with it, another mass M is also suspended, the period of oscillation will now be
6. T
7. $\mathrm{T} / \sqrt{2}$
8. 2 T
9. $\sqrt{2} \mathrm{~T}$
10.

A simple pendulum performs simple harmonic motion about $x=0$ with an amplitude a and time period T. The speed of the pendulum at $x=\frac{a}{2}$ will be:

1. $\frac{\pi \mathrm{a} \sqrt{3}}{2 \mathrm{~T}}$
2. $\frac{\pi \mathrm{a}}{\mathrm{T}}$
3. $\frac{3 \pi^{2} \mathrm{a}}{\mathrm{T}}$
4. $\frac{\pi \mathrm{a} \sqrt{3}}{\mathrm{~T}}$
5.

Which one of the following equations of motion represents simple harmonic motion where $\mathrm{k}, \mathrm{k}_{0}, \mathrm{k}_{1}$, and a are all positive?

1. Acceleration $=-k_{0} x+k_{1} x^{2}$
2. Acceleration $=-k(x+a)$
3. Acceleration $=k(x+a)$
4. Acceleration $=\mathrm{kx}$
5.

Two simple harmonic motions of angular frequencies 100 and $1000 \mathrm{rad} \mathrm{s}^{-1}$ have the same displacement amplitude. The ratio of their maximum acceleration is:

1. $1: 10$
2. $1: 10^{2}$
3. $1: 10^{3}$
4. $1: 10^{4}$
5. A point performs simple harmonic oscillation of period T and the equation of motion is given by $x=a \sin (\omega t+\pi / 6)$. After the elapse of what fraction of the time period, the velocity of the point will be equal to half of its maximum velocity?
6. $\frac{\mathrm{T}}{8}$
7. $\frac{\mathrm{T}}{6}$
8. $\frac{\mathrm{T}}{3}$
9. $\frac{\mathrm{T}}{12}$
10. Two points are located at a distance of 10 m and 15 m from the source of oscillation. The period of oscillation is 0.05 s and the velocity of the wave is $300 \mathrm{~m} / \mathrm{s}$. What is the phase difference between the oscillations of two points?
11. $\frac{\pi}{3}$
12. $\frac{2 \pi}{3}$
13. π
14. $\frac{\pi}{6}$
15. A particle executes simple harmonic oscillation with an amplitude a. The period of oscillation is T. The minimum time taken by the particle to travel half of the amplitude from the equilibrium position is:
16. $\frac{\mathrm{T}}{4}$
17. $\frac{\mathrm{T}}{8}$
18. $\frac{\mathrm{T}}{12}$
19. $\frac{\mathrm{T}}{2}$
20. A particle executing simple harmonic motion has a kinetic energy $K_{0} \cos ^{2} \omega t$. The values of the maximum potential energy and the total energy are, respectively, 1. 0 and $2 K_{0}$
21. $\frac{K_{0}}{2}$ and K_{0}
22. K_{0} and $2 K_{0}$
23. K_{0} and K_{0}
24. A mass of 2.0 kg is put on a flat pan attached to a vertical spring fixed on the ground as shown in the figure. The mass of the spring and the pan is negligible. When pressed slightly and released, the mass executes a simple harmonic motion. The spring constant is $200 \mathrm{~N} / \mathrm{m}$. What should be the minimum amplitude of the motion, so that the mass gets detached from the pan?
(Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

25. 8.0 cm
26. 10.0 cm
27. Any value less than 12.0 cm
28. 4.0 cm
29. The phase difference between the instantaneous velocity and acceleration of a particle executing simple harmonic motion is:
30. 0.5π
31. π
32. 0.707π
33. zero
34. A rectangular block of mass m and area of crosssection A floats in a liquid of density ρ. If it is given a small vertical displacement from equilibrium, it undergoes oscillation with a time period T. Then:
35. $T \propto \sqrt{\rho}$
36. $T \propto \frac{1}{\sqrt{A}}$
37. $T \propto \frac{1}{\rho}$
38. $T \propto \frac{1}{\sqrt{m}}$
39. The displacement of a particle executing simple harmonic motion is given by,
$y=A_{0}+A \sin \omega t+B \cos \omega t$.
Then the amplitude of its oscillation is given by:
40. $A+B$
41. $A_{0}+\sqrt{A^{2}+B^{2}}$
42. $\sqrt{A^{2}+B^{2}}$
43. $\sqrt{A_{0}^{2}+(A+B)^{2}}$
44. The average velocity of a particle executing SHM in one complete vibration is:
45. zero
46. $\frac{A \omega}{2}$
47. $A \omega$
48. $\frac{A \omega^{2}}{2}$
49. The radius of the circle, the period of revolution, initial position and direction of revolution are indicated in the figure.

The y-projection of the radius vector of rotating particle P will be

1. $y(t)=3 \cos \left(\frac{\pi t}{2}\right)$, where y in m
2. $y(t)=-3 \cos 2 \pi \mathrm{t}$, where y in m
3. $y(t)=4 \sin \left(\frac{\pi \mathrm{t}}{2}\right)$, where y in m
4. $y(t)=3 \cos \left(\frac{3 \pi \mathrm{t}}{2}\right)$, where y in m
5. The distance covered by a particle undergoing SHM in one time period is: (amplitude=A)
6. zero
7. A
8. 2 A
9. 4 A
10. The phase difference between displacement and acceleration of a particle in a simple harmonic motion is:
11. $\frac{3 \pi}{2} \mathrm{rad}$
12. $\frac{\pi}{2} \mathrm{rad}$
13. Zero
14. $\pi \mathrm{rad}$
15. From the given functions, identify the function which represents a periodic motion:
16. $e^{\omega t}$
17. $\log _{e}(\omega t)$
18. $\sin \omega t+\cos \omega t$
19. $e^{-\omega t}$
20. The equation of a simple harmonic wave is given by $y=3 \sin \frac{\pi}{2}(50 t-x)$ where x and y are in meters and t is in seconds. The ratio of maximum particle velocity to the wave velocity is -
21. $\frac{3}{2} \pi$
22. 3π
23. $\frac{2}{3} \pi$
24. 2π
25. Two particles are oscillating along two close parallel straight lines side by side, with the same frequency and amplitudes. They pass each other, moving in opposite directions when their displacement is half of the amplitude. The mean positions of the two particles lie on a straight line perpendicular to the paths of the two particles. The phase difference is :
26. $\pi / 6$
27. 0
28. $2 \pi / 3$
29. π
30. Two pendulums suspended from the same point having lengths 2 m and 0.5 m . If they are displaced slightly and released then they will be in the same phase when the small pendulum has completed:
31. 2 oscillation
32. 4 oscillation
33. 3 oscillation
34. 5 oscillation
35. If the time of mean position from amplitude (extreme) position is 6 seconds, then the frequency of SHM will be :
36. 0.01 Hz
37. 0.02 Hz
38. 0.03 Hz
39. 0.04 Hz
40. A particle executing simple harmonic motion of amplitude 5 cm has a maximum speed of $31.4 \mathrm{~cm} / \mathrm{s}$. The frequency of its oscillation will be
(1) 1 Hz
(2) 3 Hz
(3) 2 Hz
(4) 4 Hz
41. Two spherical bob of masses M_{A} and M_{B} are hung vertically from two strings of length l_{A} and l_{B} respectively. They are executing SHM with frequency as per the relation $f_{A}=2 f_{B}$, Then
42. $l_{A}=\frac{l_{B}}{4}$
43. $l_{A}=4 l_{B}$
44. $l_{A}=2 l_{B} \& M_{A}=2 M_{B}$
45. $l_{A}=\frac{l_{B}}{2} \& M_{A}=\frac{M_{B}}{2}$
46. The circular motion of a particle with constant speed is:
(1) Periodic and simple harmonic
(2) Simple harmonic but not periodic
(3) Neither periodic nor simple harmonic
(4) Periodic but not simple harmonic
47. Frequency of spring is n after suspending mass M. Now, mass 4 M mass is suspended from spring, then the frequency will be:
48. 2 n
49. $\mathrm{n} / 2$
50. n
51. None of the above
52. A particle, with restoring force proportional to the displacement and resisting force proportional to velocity is subjected to a force $F \sin \omega t$. If the amplitude of the particle is maximum for $\omega=\omega_{1}$ and the energy of the particle maximum for $\omega=\omega_{2}$, then:
53. $\omega_{1} \neq \omega_{0}$ and $\omega_{2}=\omega_{0}$
54. $\omega_{1}=\omega_{0}$ and $\omega_{2}=\omega_{0}$
55. $\omega_{1}=\omega_{0}$ and $\omega_{2} \neq \omega_{0}$
56. $\omega_{1} \neq \omega_{0}$ and $\omega_{2} \neq \omega_{0}$
57. Which one of the following statements is true for the speed ' v ' and the acceleration 'a' of a particle executing simple harmonic motion?
(1) Value of a is zero whatever may be the value of ' v '.
(2) When ' v ' is zero, a is zero.
(3) When ' v ' is maximum, a is zero.
(4) When ' v ' is maximum, a is maximum.
58. Two springs of spring constants k_{1} and k_{2} are joined in series. The effective spring constant of the combination is given by:
59. $\frac{\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)}{2}$
60. $\mathrm{k}_{1}+\mathrm{k}_{2}$
61. $\frac{k_{1} k_{2}}{\left(k_{1}+k_{2}\right)}$
62. $\sqrt{\mathrm{k}_{1} \mathrm{k}_{2}}$
63. The amplitude of an S.H.O. reduces to $1 / 3$ in first 20 secs. then in first 40 sec . its amplitude becomes -
64. $\frac{1}{3}$
65. $\frac{1}{9}$
66. $\frac{1}{27}$
67. $\frac{1}{\sqrt{3}}$
68. A spring elongates by a length ' L ' when a mass ' M ' is suspended to $i t$. Now a tiny mass ' m ' is attached to the mass 'M' and then released. The new time period of oscillation will be
69. $2 \pi \sqrt{\frac{(\mathrm{M}+\mathrm{m}) \mathrm{l}}{\mathrm{Mg}}}$
70. $2 \pi \sqrt{\frac{\mathrm{ml}}{\mathrm{Mg}}}$
71. $2 \pi \sqrt{L / g}$
72. $2 \pi \sqrt{\frac{\mathrm{Ml}}{(m+M) g}}$
73. The frequency of a simple pendulum in a free-falling lift will be
74. Zero
75. Infinite
76. Can't be say
77. Finite
78. A mass is suspended separately by two different springs in successive order then the time period is t_{1} and t_{2} respectively. If it is connected by both springs as shown in the figure then the time period is t_{0}, the correct relation is:

79. $\mathrm{t}_{0}{ }^{2}=\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}$
80. $\mathrm{t}_{0}{ }^{-2}=\mathrm{t}_{1}{ }^{-2}+\mathrm{t}_{2}{ }^{-2}$
81. $\mathrm{t}_{0}{ }^{-1}=\mathrm{t}_{1}{ }^{-1}+\mathrm{t}_{2}{ }^{-1}$
82. $\mathrm{t}_{0}=\mathrm{t}_{1}+\mathrm{t}_{2}$
83. When an oscillator completes 100 oscillations, its amplitude is reduced to $\frac{1}{3}$ of initial value. What will be its amplitude, when it completes 200 oscillations:
84. $\frac{1}{8}$
85. $\frac{2}{3}$
86. $\frac{1}{6}$
87. $\frac{1}{9}$
88. The displacement between maximum potential energy position and maximum kinetic energy position for a particle executing simple harmonic motion is
89. $\pm \frac{a}{2}$
90. +a
91. $\pm \mathrm{a}$
92. -1
93. The total energy of particle performing SHM depend on : -
94. $\mathrm{K}, \mathrm{a}, \mathrm{m}$
95. K, a
96. $\mathrm{K}, \mathrm{a}, \mathrm{x}$
97. K, x
98. The time period of a mass suspended from a spring is T. If the spring is cut into four equal parts and the same mass is suspended from one of the parts, then the new time period will be -
(1) $T / 4$
(2) T
(3) $\mathrm{T} / 2$
(4) 2 T
99. A particle of mass m oscillates with simple harmonic motion between points x_{1} and x_{2}, the equilibrium position being O. Its potential energy is plotted. It will be as given below in the graph :
100.

2.

.

3.
4.

50. In case of a forced vibration, the resonance wave becomes very sharp when the :
(1) Damping force is small
(2) Restoring force is small
(3) Applied periodic force is small
(4) Quality factor is small
51. The potential energy of a simple harmonic oscillator when the particle is halfway to its endpoint will be

1. $2 / 3 \mathrm{E}$
2. $1 / 8 \mathrm{E}$
3. $1 / 4 \mathrm{E}$
4. $1 / 2 \mathrm{E}$
5. A body is executing simple harmonic motion with frequency ' n ', the frequency of its potential energy is:
6. 3 n
7. 4 n
8. n
9. 2 n
10. A spring is stretched by 5 cm by a force 10 N . The time period of the oscillations when a mass of 2 kg is suspended by it is:
11. 3.14 s
12. 0.628 s
13. 0.0628 s
14. 6.28 s

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

course

 from AIPMT 1998 to NEET 2021
Waves

(Expected Questions in NEET 2022: 2)

Subtopic Name Number of

Questions

Standing Waves	18
Beats	10
Doppler's Effect	10
Travelling Wave on String	10
Speed of Sound	2
Wave Motion	2
Energy of Waves	1
Types of Waves	1

Waves - NCERT based PYQs

1. The two nearest harmonics of a tube closed at one end and open at the other end are 220 Hz and 260 Hz . What is the fundamental frequency of the system?
2. 20 Hz
3. 30 Hz
4. 40 Hz
5. 10 Hz
6. Two cars moving in opposite directions approach each other with speeds of $22 \mathrm{~m} / \mathrm{s}$ and $16.5 \mathrm{~m} / \mathrm{s}$ respectively. The driver of the first car blows a horn having a frequency of 400 Hz . The frequency heard by the driver of the second car is [velocity of sound $340 \mathrm{~m} / \mathrm{s}$]:
7. 361 Hz
8. 411 Hz
9. 448 Hz
10. 350 Hz
11. The second overtone of an open organ pipe has the same frequency as the first overtone of a closed pipe L meter long. The length of the open pipe will be:
12. L
13. 2 L
14. $\mathrm{L} / 2$
15. 4 L
16. Three sound waves of equal amplitudes have frequencies $(\mathrm{n}-1), \mathrm{n},(\mathrm{n}+1)$. They superimpose to give beats. The number of beats produced per second will be
17. 1
18. 4
19. 3
20. 2
21. A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of $27^{\circ} \mathrm{C}$ two successive resonances are produced at 20 cm and 73 cm column length. If the frequency of the tuning fork is 320 Hz , the velocity of sound in air at $27^{\circ} \mathrm{C}$ is:
22. $330 \mathrm{~m} / \mathrm{s}$
23. $339 \mathrm{~m} / \mathrm{s}$
24. $350 \mathrm{~m} / \mathrm{s}$
25. $300 \mathrm{~m} / \mathrm{s}$
26. The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is 20 cm , the length of the open organ pipe is:
1.13 .2 cm
27. 8 cm
28. 12.5 cm
29. 16 cm
30. A siren emitting a sound of frequency 800 Hz moves away from an observer towards a cliff at a speed of $15 \mathrm{~ms}^{-}$ ${ }^{1}$. Then, the frequency of sound that the observer hears in the echo reflected from the cliff is:(Take, the velocity of sound in air $=330 \mathrm{~ms}^{-1}$)
31. 800 Hz
32. 838 Hz
33. 885 Hz
34. 765 Hz
35.

An air column, closed at one end and open at the other, resonates with a tuning fork when the smallest length of the column is 50 cm . The next larger length of the column resonating with the same tuning fork is:

1. 100 cm
2. 150 cm
3. 200 cm
4. 66.7 cm
5. A uniform rope of length L and mass m_{1} hangs vertically from a rigid support. A block of mass m_{2} is attached to the free end of the rope. A transverse pulse of wavelength λ_{1} is produced at the lower end of the rope. The wavelength of the pulse when it reaches the top of the rope is λ_{2}. The ratio $\frac{\lambda_{2}}{\lambda_{1}}$ is:
6. $\sqrt{\frac{m_{1}+m_{2}}{m_{2}}}$
7. $\sqrt{\frac{m_{2}}{m_{1}}}$
8. $\sqrt{\frac{m_{1}+m_{2}}{m_{1}}}$
9. $\sqrt{\frac{m_{1}}{m_{2}}}$
10.

A source of sound S emitting waves of frequency 100 Hz and an observer O is located at some distance from each other. The source is moving with a speed of $19.4 \mathrm{~ms}^{-1}$ at an angle of 60° with the source-observer line as shown in the figure. The observer is at rest. The apparent frequency observed by the observer (velocity of sound in air $330 \mathrm{~ms}^{-}$ ${ }^{1}$), is:

1. 100 Hz
2. 103 Hz
3. 106 Hz
4. 97 Hz
5. 4.0 gm of a gas occupies 22.4 litres at NTP. The specific heat capacity of the gas at constant volume is 5.0 $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. If the speed of sound in the gas at NTP is 952 ms^{-1}, then the molar heat capacity at constant pressure is: $\left[\right.$ Take $\left.R=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$
6. $8.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$2.7 .5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
7. $7.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
8. $8.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
9. A string is stretched between fixed points separated by 75.0 cm . It is observed to have resonant frequencies of 420 Hz and 315 Hz . There are no other resonant frequencies between these two. The lowest resonant frequency for this string is:
10. 155 Hz
11. 205 Hz
12. 10.5 Hz
13. 105 Hz
14. The fundamental frequency of a closed organ pipe of length 20 cm is equal to the second overtone of an organ pipe open at both ends. The length of the organ pipe open at both ends is:
15. 80 cm
16. 100 cm
17. 120 cm
18. 140 cm
19. If n_{1}, n_{2}, and n_{3} are the fundamental frequencies of three segments into which a string is divided, then the original fundamental frequency n of the string is given by:
20. $\frac{1}{n}=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}$
21. $\frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n_{1}}}+\frac{1}{\sqrt{n_{2}}}+\frac{1}{\sqrt{n_{3}}}$
22. $\sqrt{n}=\sqrt{n_{1}}+\sqrt{n_{2}}+\sqrt{n_{3}}$
23. $n=n_{1}+n_{2}+n_{3}$
24. The number of possible natural oscillations of the air column in a pipe closed at one end of length 85 cm whose frequencies lies below 1250 Hz are:(Velocity of sound= $340 \mathrm{~m} / \mathrm{s}$)
25. 4
26. 5
27. 7
28. 6
29. A speeding motorcyclist sees a traffic jam ahead of him. He slows down to $36 \mathrm{~km} /$ hour. He finds that traffic has eased and a car moving ahead of him at $18 \mathrm{~km} /$ hour is honking at a frequency of 1392 Hz . If the speed of sound is $343 \mathrm{~m} / \mathrm{s}$, the frequency of the honk as heard by him will be:
30. 1332 Hz
31. 1372 Hz
32. 1412 Hz
33. 1454 Hz
34. If we study the vibration of a pipe open at both ends, then the following statement is not true:
35. Odd harmonics of the fundamental frequency will be generated
36. All harmonics of the fundamental frequency will be generated
37. Pressure change will be maximum at both ends
38. Open end will be an antinode
39. A source of unknown frequency gives 4 beats/s when sounded with a source of known frequency 250 Hz . The second harmonic of the source of unknown frequency gives five beats per second when sounded with a source of frequency 513 Hz . The unknown frequency is:
40. 246 Hz
41. 240 Hz
42. 260 Hz
43. 254 Hz
44.

A wave travelling in the + ve x -direction having maximum displacement along y-direction as 1 m , wavelength $2 \pi \mathrm{~m}$ and frequency of $\frac{1}{\pi} \mathrm{~Hz}$, is represented by:

1. $y=\sin (2 \pi x-2 \pi t)$
2. $y=\sin (10 \pi x-20 \pi t)$
3. $y=\sin (2 \pi x+2 \pi t)$
4. $y=\sin (x-2 t)$
5. When a string is divided into three segments of lengths $1_{1}, l_{2}$ and l_{3}, the fundamental frequencies of these three segments are $\mathrm{v}_{1}, \mathrm{v}_{2}$ and v_{3} respectively. The original fundamental frequency (v) of the string is
6. $\sqrt{v}=\sqrt{v_{1}}+\sqrt{v_{2}}+\sqrt{v_{3}}$
7. $v=v_{1}+v_{2}+v_{3}$
8. $\frac{1}{v}=\frac{1}{v_{1}}+\frac{1}{v_{2}}+\frac{1}{v_{3}}$
9. $\frac{1}{\sqrt{v}}=\frac{1}{\sqrt{v_{1}}}+\frac{1}{\sqrt{v_{2}}}+\frac{1}{\sqrt{v_{3}}}$
10. Two sources of sound placed close to each other, are emitting progressive waves given by,
$y_{1}=4 \sin 600 \pi \mathrm{t}$ and $y_{2}=5 \sin 608 \pi \mathrm{t}$
An observer located near these two sources of sound will hear:
11. 4 beats per second with intensity ratio $25: 16$ between waxing and waning
12. 8 beats per second with intensity ratio $25: 16$ between waxing and waning
13. 8 beats per second with intensity ratio $81: 1$ between waxing and waning
14. 4 beats per second with intensity ratio $81: 1$ between waxing and waning
15. Two waves are represented by the equations $y_{1}=a \sin (\omega t+k x+0.57) m$ and
$y_{2}=a \cos (\omega t+k x) m$, where x is in meter and t in second. The phase difference between them is:
(1) 1.25 rad
(2) 1.57 rad
(3) 0.57 rad
(4) 1.0 rad
16.

Sound waves travel at $350 \mathrm{~m} / \mathrm{s}$ through the warm air and at $3500 \mathrm{~m} / \mathrm{s}$ through brass. The wavelength of a 700 Hz acoustic wave as it enters brass from warm air:

1. increase by a factor 20
2. increase by a factor 10
3. decrease by a factor 20
4. decrease by a factor 10
5. A transverse wave is represented by $y=A \sin (\omega t-k x)$. For what value of the wavelength is the wave velocity equal to the maximum particle velocity?
6. $\pi \mathrm{A} / 2$
7. $\pi \mathrm{A}$
8. $2 \pi \mathrm{~A}$
9. A
10. A tuning fork of frequency 512 Hz makes 4 beats/s with the vibrating string of a piano. The beat frequency decreases to 2 beats/s when the tension in the piano string is slightly increased. The frequency of the piano string before increasing the tension was:
11. 510 Hz
12. 514 Hz
13. 516 Hz
14. 508 Hz
15. A wave in a string has an amplitude of 2 cm . The wave travels in the $+v e$ direction of the x-axis with a speed of $128 \mathrm{~m} / \mathrm{s}$ and it is noted that 5 complete waves fit in 4 m length of the string. The equation describing the wave is:
16. $\mathrm{y}=(0.02) \mathrm{m} \sin (7.85 \mathrm{x}+1005 \mathrm{t})$
17. $y=(0.02) m \sin (15.7 x-2010 t)$
18. $y=(0.02) m \sin (15.7 x+2010 t)$
19. $y=(0.02) m \sin (7.85 x-1005 t)$
20. The driver of a car travelling with speed 30 m / s towards a hill sounds a horn of frequency 600 Hz . If the velocity of sound in air is $330 \mathrm{~m} / \mathrm{s}$ the frequency of reflected sound as heard by the driver is:
21. 550 Hz
22. 555.5 Hz
23. 720 Hz
24. 500 Hz
25.

Each of the two strings of length 51.6 cm and 49.1 cm are tensioned separately by 20 N force. Mass per unit length of both the strings is the same and equal to $1 \mathrm{~g} / \mathrm{m}$. When both the strings vibrate simultaneously the number of beats is:

1. 5
2. 7
3. 8
4. 3
5.

The wave described by $y=0.25 \sin (10 \pi x-2 \pi t)$, where x and y are in metre and t in second, is a wave travelling along the:

1. -ve x -direction with frequency 1 Hz
2. +ve x-direction with frequency $\pi \mathrm{Hz}$ and wavelength λ
$=0.2 \mathrm{~m}$
3. +ve x -direction with frequency 1 Hz and wavelength λ
$=0.2 \mathrm{~m}$
4. -ve x-direction with amplitude 0.25 m and wavelength $\lambda=0.2 \mathrm{~m}$
5. Two sound waves with wavelength 5.0 m and 5.5 m respectively, each propagates in gas with a velocity of 330 m / s. We expect the following number of beats per seconds:
6. 12
7. 0
8. 1
9. 6
10. A transverse wave propagating along the x-axis is represented by:
$y(x, t)=8.0 \sin \left(0.5 \pi \mathrm{x}-4 \pi \mathrm{t}-\frac{\pi}{4}\right)$ where x is in meters and t is in seconds. The speed of the wave is:
11. $4 \pi \mathrm{~m} / \mathrm{s}$
12. $0.5 \mathrm{~m} / \mathrm{s}$
13. $\frac{\pi}{4} \mathrm{~m} / \mathrm{s}$
14. $8 \mathrm{~m} / \mathrm{s}$
15. Which one of the following statements is true?
16. Both light and sound waves in the air are transverse.
17. The sound waves in the air are longitudinal while the light waves are transverse.
18. Both light and sound waves in the air are longitudinal.
19. Both light and sound waves can travel in a vacuum.
20. A tuning fork with a frequency 800 Hz produces resonance in a resonance column tube with the upper end open and the lower end closed by the water surface. Successive resonances are observed at lengths 9.75 cm , 31.25 cm , and 52.75 cm . The speed of sound in air is:
21. $500 \mathrm{~m} / \mathrm{s}$
22. $156 \mathrm{~m} / \mathrm{s}$
23. $344 \mathrm{~m} / \mathrm{s}$
24. $172 \mathrm{~m} / \mathrm{s}$
25. In a guitar, two strings A and B made of same material are slightly out of tune and produce beats of frequency 6 Hz . When tension in B is slightly decreased, the beat frequency increases to 7 Hz . If the frequency of A is 530 Hz , the original frequency of B will be
26. 524 Hz
27. 536 Hz
28. 537 Hz
4.523 Hz
29. The length of the string of a musical instrument is 90 cm and has a fundamental frequency of 120 Hz . Where should it be pressed to produce a fundamental frequency of 180 Hz ?
30. 75 cm
31. 60 cm
32. 45 cm
33. 80 cm
34. A train is moving at a speed of $220 \mathrm{~ms}^{-1}$ towards a stationary object, emits a sound of frequency 1000 Hz . Some of the sound reaching the object gets reflected back to the train as echo. The frequency of the echo as detected by the driver of the train is -(speed of sound in air is
$330 \mathrm{~ms}^{-1}$)
35. 4000 Hz
36. 5000 Hz
37. 3000 Hz
38. 3500 Hz
39. Two identical piano wires, kept under the same tension T, have a fundamental frequency of 600 Hz . The fractional increase in the tension of one of the wires which will lead to the occurrence of 6 beats/s when both the wires oscillate together would be :
40. 0.01
41. 0.02
42. 0.03
43. 0.04
44. For a wave $y=y_{0} \sin (\omega t-k x)$, for what value of λ is the maximum particle velocity equal to two times the wave velocity:
45. $\pi \mathrm{y}_{0}$
46. $2 \pi \mathrm{y}_{0}$
47. $\pi \mathrm{y}_{0} / 2$
48. $4 \pi \mathrm{y}_{0}$
49. Two stationary sources each emitting waves of wave length λ. An observer moves from one source to other with velocity u. Then number of beats heared by him :
50. $\frac{2 u}{\lambda}$
51. $\frac{u}{\lambda}$
52. $\sqrt{\mu \lambda}$
53. $\frac{\mu}{2 \lambda}$
54. A string is cut into three parts, having fundamental frequencies n_{1}, n_{2} and n_{3} respectively. Then original fundamental frequency ' n ' related by the expression as :
55. $\frac{1}{n}=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}$
56. $n=n_{1} \times n_{2} \times n_{3}$
57. $n=n_{1}+n_{2}+n_{3}$
58. $n=\frac{n_{1}+n_{2}+n_{3}}{3}$
59. The equations of two waves given as $x=\operatorname{acos}(\omega t+\delta)$ and $\mathrm{y}=\mathrm{a} \cos (\omega \mathrm{t}+\alpha)$, Where $\delta=\alpha+\pi / 2$, then resultant wave represent :
60. a circle (c.w)
61. a circle (a.c.w)
62. an Ellipse (c.w)
63. an ellipse (a.c.w)
64. Two vibrating tuning forks produce progressive waves given by $\mathrm{Y}_{1}=4 \sin 500 \pi \mathrm{t}$ and $\mathrm{Y}_{2}=2 \sin 506 \pi \mathrm{t}$. The number of beats produced per minute is:
(1) 3
(2) 360
(3) 180
(4) 60
65. A standing wave having 3 nodes and 2 antinodes is formed between $1.21 \AA$ distance, then the wavelength is :
66. $1.21 \AA$
67. $2.42 \AA$
68. $0.605 \AA$
69. $4.84 \AA$
70. A point source emits sound equally in all directions in a non-absorbing medium. Two points P and Q are at distances of 2 m and 3 m respectively from the source. The ratio of the intensities of the waves at P and Q is:
(1) $3: 2$
(2) $2: 3$
(3) $9: 4$
(4) $4: 9$
71. If a source moves perpendicularly from the listener, then the change in frequency will be :
72. 2 n
73. n
74. $\mathrm{n} / 2$
75. Zero
76. A car is moving towards a high cliff. The car driver sounds a horn of frequency ' f '. The reflected sound heard by the driver has a frequency of $2 f$. If ' v ' be the velocity of sound, then the velocity of the car, in the same velocity units, will be:
(1) $v / 3$
(2) $v / 4$
(3) $v / 2$
(4) $\mathrm{V} / \sqrt{2}$
77. A cylindrical tube $(\mathrm{L}=125 \mathrm{~cm})$ is resonant with a tuning fork of frequency 330 Hz . If it is filling by water then to get resonance again, minimum length of water column is $\left(V_{\text {air }}=330 \mathrm{~m} / \mathrm{s}\right)$ -
78. 50 cm
79. 60 cm
80. 25 cm
81. 20 cm
82. The phase difference between two waves, represented by
$\mathrm{y}_{1}=10^{-6} \sin \{100 \mathrm{t}+(\mathrm{x} / 50)+0.5\} \mathrm{m}$
$y_{2}=10^{-6} \cos \left\{100 t+\left(\frac{x}{50}\right)\right\} m$
where X is expressed in metres and t is expressed in seconds, is approximately:
(1) 2.07 radians
(2) 0.5 radians
(3) 1.5 radians
(4) 1.07 radians
83. A wave travelling in positive X -direction with $\mathrm{A}=0.2$ m velocity $=360 \mathrm{~m} / \mathrm{s}$ and $\lambda=60 \mathrm{~m}$, then correct expression for the wave is:
84. $y=0.2 \sin \left[2 \pi\left(6 t+\frac{x}{60}\right)\right]$
85. $\mathrm{y}=0.2 \sin \left[\pi\left(6 \mathrm{t}+\frac{\mathrm{x}}{60}\right)\right]$
86. $\mathrm{y}=0.2 \sin \left[2 \pi\left(6 \mathrm{t}-\frac{\mathrm{x}}{60}\right)\right]$
87. $\mathrm{y}=0.2 \sin \left[\pi\left(6 \mathrm{t}-\frac{\mathrm{x}}{60}\right)\right]$
88. A whistle revolves in a circle with angular speed $\omega=$ $20 \mathrm{rad} / \mathrm{sec}$ using a string of length 50 cm . If the frequency of sound from the whistle is 385 Hz , then what is the minimum frequency heard by an observer which is far away from the centre : $-\left(\mathrm{V}_{\text {sound }}=340 \mathrm{~m} / \mathrm{s}\right)$
(1) 385 Hz
(2) 374 Hz
(3) 394 Hz
(4) 333 Hz
89. If the tension and diameter of a sonometer wire of fundamental frequency n is doubled and density is halved then its fundamental frequency will become
90. $\frac{n}{4}$
91. $\sqrt{2} n$
92. n
93. $\frac{n}{\sqrt{2}}$
94. Two waves having equation
$x_{1}=a \sin \left(\omega t+\phi_{1}\right)$
$x_{2}=a \sin \left(\omega t+\phi_{2}\right)$
If in the resultant wave the frequency and amplitude remains equals to amplitude of superimposing waves. Then phase difference between them :-
95. $\frac{\pi}{6}$
96. $\frac{2 \pi}{3}$
97. $\frac{\pi}{4}$
98. $\frac{\pi}{3}$
99. An observer moves towards a stationary source of sound with a speed $1 / 5$ th of the speed of sound. The wavelength and frequency of the source emitted are λ and f respectively. The apparent frequency and wavelength recorded by the observer are respectively :
(1) $1.2 \mathrm{f}, 1.2 \lambda$
(2) $1.2 \mathrm{f}, \lambda$
(3) f, 1.2λ
(4) $0.8 \mathrm{f}, 0.8 \lambda$
100. The equation of a wave is represented by :-
$y=10^{-4} \sin \left(100 t-\frac{x}{10}\right) m$, then the velocity of wave will be :-
101. $100 \mathrm{~m} / \mathrm{s}$
102. $4 \mathrm{~m} / \mathrm{s}$
103. $1000 \mathrm{~m} / \mathrm{s}$
104. $0.00 \mathrm{~m} / \mathrm{s}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for

Selected Questions (Only NCERT based)
from AIPMT 1998 to NEET 2021

Electric Charges \& Fields

(Expected Questions in NEET 2022: 1-2)

Subtopic Name	Number of Questions
Electric Field	12
Gauss's Law	10
Electric Dipole	8
Coulomb's Law	7
Ways of Charging	1

1. Suppose the charge of a proton and an electron differ slightly. One of them is $-e$, the other is (e $+\Delta e$). If the net of electrostatic force and gravitational force between two hydrogen atoms placed at a distance d (much greater than atomic size) apart is zero, then $\Delta \mathrm{e}$ is of the order of? [Given mass of hydrogen $\mathrm{m}_{\mathrm{h}}=1.67 \times 10^{-27} \mathrm{~kg}$]
2. $10^{-23} \mathrm{C}$
3. $10^{-37} \mathrm{C}$
4. $10^{-47} \mathrm{C}$
5. $10^{-20} \mathrm{C}$
6. An electric dipole is placed at an angle of 30° with an electric field intensity $2 \times 10^{5} \mathrm{~N} / \mathrm{C}$. It experiences a torque equal to 4 Nm . The charge on the dipole, if the dipole length is 2 cm , is
7. 8 mC
8. 2 mC
9. 5 mC
10. $7 \mu C$
11. An electron falls from rest through a vertical distance h in a uniform and vertically upward-directed electric field E. The direction of the electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest through the same vertical distance h. The fall time of the electron in comparison to the fall time of the proton is:
12. smaller.
13. 5 times greater.
14. 10 times greater.
15. equal.
16. A toy car with charge q moves on a frictionless horizontal plane surface under the influence of a uniform electric field \vec{E}. Due to the force $\mathrm{q} \overrightarrow{\mathrm{E}}$, its velocity increases from 0 to $6 \mathrm{~m} / \mathrm{s}$ in one-second duration. At that instant, the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively:-
17. $2 \mathrm{~m} / \mathrm{s}, 4 \mathrm{~m} / \mathrm{s}$
18. $1 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s}$
$3.1 \mathrm{~m} / \mathrm{s}, 3.5 \mathrm{~m} / \mathrm{s}$
19. $1.5 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s}$
20.

Two identical charged spheres suspended from a common point by two massless strings of lengths 1 , are initially at a distance $\mathrm{d}(\mathrm{d} \ll 1)$ apart because of their mutual repulsion. The charges begin to leak from both the spheres at a constant rate. As a result, the spheres approach each other with a velocity v. Then, v varies as a function of the distance x between the sphere, as

1. $\mathrm{v} \propto \mathrm{x}$
2. $v \propto x^{-1 / 2}$
3. $v \propto x^{-1}$
4. $v \propto x^{1 / 2}$
5.

The electric field in a certain region is acting radially outward and is given by $\mathrm{E}=\mathrm{Ar}$. A charge contained in a sphere of radius 'a' centered at the origin of the field will be given by

1. $4 \pi \varepsilon_{o} \mathrm{Aa}^{2}$
2. $\varepsilon_{\mathrm{o}} \mathrm{Aa}^{2}$
3. $4 \pi \varepsilon_{\mathrm{o}} \mathrm{Aa}^{3}$
4. $\varepsilon_{\mathrm{o}} \mathrm{Aa}^{3}$

7.

Two pith balls carrying equal charges are suspended from a common point by strings of equal length, the equilibrium separation between them is r. Now the strings are rigidly clamped at half the height. The equilibrium separation between the balls now become:

1. $\frac{r}{\sqrt[3]{2}}$
2. $\frac{r}{\sqrt[2]{2}}$
3. $\frac{2 r}{3}$
4. None of the above
5. What is the flux through a cube of side a, if a point charge of q is placed at one of its corners?
6. $\frac{2 q}{\varepsilon_{o}}$
7. $\frac{q}{8 \varepsilon_{o}}$
8. $\frac{q}{\varepsilon_{o}}$
9. $\frac{q}{2 \varepsilon_{o}}$
10.

A charge Q is enclosed by a Gaussian spherical surface of radius R. If the radius is doubled, then the outward electric flux will

1. be reduced to half
2. remain the same
3. be doubled
4. increased four times
5. Two positive ions, each carrying a charge q, are separated by a distance d . If F is the force of repulsion between the ions, the number of electrons missing from each ion will be (e being the charge on an electron)
6. $\frac{4 \pi \varepsilon_{0} F d^{2}}{e^{2}}$
7. $\sqrt{\frac{4 \pi \varepsilon_{0} F d^{2}}{d^{2}}}$
8. $\sqrt{\frac{4 \pi \varepsilon_{0} F d^{2}}{e^{2}}}$
9. $\frac{4 \pi \varepsilon_{0} F d^{2}}{q^{2}}$
10.

A square surface of side L metre in the plane of the paper is placed in a uniform electric field E (volt $/ \mathrm{m}$) acting along the same place at an angle θ with the horizontal side of the square as shown in figure. The electric flux linked to the surface in unit of V -m, is

1. $E L^{2}$
2. $E L^{2} \cos \theta$
3. $E L^{2} \sin \theta$
4. 0
5.

The mean free path of electrons in a metal is $4 \times 10^{-8} \mathrm{~m}$. The electric field which can give on an average 2 eV energy to an electron in the metal will be in the unit of Vm^{-1}

1. 8×10^{7}
2. 5×10^{-11}
3. 8×10^{-11}
4. 5×10^{7}
5.

A thin conducting ring of radius R is given a charge +Q . The electric field at the centre O of the ring due to the charge on the part AKB of the ring is E . The electric field at the centre due to the charge on the part ACDB of the ring is

1. 3 E along KO
2. E along OK
3. f along KO
4. 3 E along OK
5. Three-point charges $+q$ and $-2 q$ and $+q$ are placed at points $\quad(x=0, \quad y=a, \quad z=0), \quad(x=0, \quad y=0, \quad z=0) \quad$ and $(\mathrm{x}=\mathrm{a}, \mathrm{y}=0, \mathrm{z}=0)$, respectively. The magnitude and direction of the electric dipole moment vector of this charge assembly are:
6. $\sqrt{2} \mathrm{qa}$ along +y direction
7. $\sqrt{2} \mathrm{qa}$ along the line joining points $(\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0)$

And ($\mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{a}, \mathrm{z}=0$)
3. qa along the line joining points $(x=0, y=0, z=0)$ And ($\mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{a}, \mathrm{z}=0$)
4. $\sqrt{2} \mathrm{qa}$ along +x direction
15. A hollow cylinder has a charge q coulomb within it(at the geometrical centre). If ϕ is the electric flux in unit of Volt-meter associated with the curved surface B, the flux linked with the plane surface A in unit of Volt-meter will be:

1. $\frac{1}{2}\left(\frac{q}{\varepsilon_{0}}-\Phi\right)$
2. $\frac{q}{2 \varepsilon_{0}}$
3. $\frac{\Phi}{3}$
4. $\frac{q}{\varepsilon_{0}}-\Phi$

16.

A square surface of side $L \mathrm{~m}$ is in the plane of the paper. A uniform electric field $\overrightarrow{\mathbf{E}}(\mathrm{V} / \mathrm{m})$, also in the plane of the paper, is limited only to the lower half of the square surface, (see figure). The electric flux in SI units associated with the surface is :

1. $E L^{2} /\left(2 \varepsilon_{0}\right)$
2. $E L^{2} / 2$
3. zero
4. $E L^{2}$
5. A hollow metal sphere of radius R is uniformly charged. The electric field due to the sphere at a distance r from the centre:
6. decreases as r increases for $r<R$ and for $r>R$.
7. increases as r increases for $r<R$ and for $r>R$.
8. zero as r increases for $r<R$, decreases as r increases for $r>R$.
9. zero as r increases for $r<R$, increases as r increases for $r>R$.
10. Two point charges A and B, having charges $+Q$ and $-Q$ respectively, are placed at certain distance apart and force acting between them is F . If 25% charge of A is transferred to B, then force between the charges becomes:
11. $\frac{4 F}{3}$
12. F
13. $\frac{9 F}{16}$
14. $\frac{16 F}{9}$
15. Two parallel infinite line charges with linear charge densities $+\lambda C / m$ and $+\lambda C / m$ are placed at a distance R. Electric field mid-way between the two line charges is-
16. $\frac{\lambda}{2 \pi \varepsilon_{0} \mathrm{R}} N / C$
17. zero
18. $\frac{2 \lambda}{\pi \varepsilon_{0} \mathrm{R}} N / C$
19. $\frac{\lambda}{\pi \varepsilon_{0} \mathrm{R}} N / C$
20. A sphere encloses an electric dipole with charges $\pm 3 \times 10^{-6} C$. What is the total electric flux through the sphere?
21. -3×10^{-6}
22. zero
23. $3 \times 10^{-6} \mathrm{Nm}^{2} / \mathrm{C}$
24. $6 \times 10^{-6} \mathrm{Nm}^{2} / \mathrm{C}$
25. A spherical conductor of radius 10 cm has a charge of $3.2 \times 10^{-7} \mathrm{C}$ distributed uniformly. What is the magnitude of the electric field at a point 15 cm from the center of the sphere?
$\left(\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)$
26. $1.28 \times 10^{5} \mathrm{~N} / \mathrm{C}$
27. $1.28 \times 10^{6} \mathrm{~N} / \mathrm{C}$
28. $1.28 \times 10^{7} \mathrm{~N} / \mathrm{C}$
29. $1.28 \times 10^{4} \mathrm{~N} / \mathrm{C}$
30. The electric field at a point on the equatorial plane at a distance r from the centre of a dipole having dipole moment \vec{P} is given by:
($\mathrm{r} \gg$ separation of two charges forming the dipole, ε_{0} $=$ permittivity of free space $)$
31. $\overrightarrow{\mathrm{E}}=\frac{\overrightarrow{\mathrm{P}}}{4 \pi \varepsilon_{0} \mathrm{r}^{3}}$
32. $\overrightarrow{\mathrm{E}}=\frac{2 \overrightarrow{\mathrm{P}}}{4 \pi \varepsilon_{0} \mathrm{r}^{3}}$
33. $\overrightarrow{\mathrm{E}}=-\frac{\overrightarrow{\mathrm{P}}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}}$
34. $\overrightarrow{\mathrm{E}}=-\frac{\overrightarrow{\mathrm{P}}}{4 \pi \varepsilon_{0} \mathrm{r}^{3}}$
35. The acceleration of an electron due to the mutual attraction between the electron and a proton when they are $1.6 \stackrel{o}{A}$ apart is,
$\left(m_{e} \simeq 9 \times 10^{-31} \mathrm{~kg}, e=1.6 \times 10^{-19} \mathrm{C}\right)$
$\left(\right.$ Take $\left.\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}\right)$
36. $10^{24} \mathrm{~m} / \mathrm{s}^{2}$
37. $10^{23} \mathrm{~m} / \mathrm{s}^{2}$
38. $10^{22} \mathrm{~m} / \mathrm{s}^{2}$
39. $10^{25} \mathrm{~m} / \mathrm{s}^{2}$
40. The electric field at a distance $\frac{3 R}{2}$ from the centre of a charged conducting spherical shell of radius R is E. The electric field at a distance $\frac{R}{2}$ from the centre of the sphere is -
41. E
42. $\frac{E}{2}$
43. $\frac{E}{2}$
44. Zero
45. A hollow sphere of radius 1 m is given a positive charge of $10 \mu \mathrm{C}$. The electric field at the centre of hollow sphere will be :
46. $60 \times 10^{3} \mathrm{Vm}^{-1}$
47. $90 \times 10^{3} \mathrm{Vm}^{-1}$
48. Zero
49. Electric field at centre O of semicircle of radius 'a' having linear charge density λ given is given by

50. $\frac{2 \lambda}{\epsilon_{0} a}$
51. $\frac{\lambda \pi}{\epsilon_{0} a}$
52. $\frac{\lambda}{2 \pi \epsilon_{0} a}$
53. $\frac{\lambda}{\pi \in{ }_{0} a}$
54. A charge Q is situated at the corner of a cube, the electric flux passed through all the six faces of the cube is :
55. $\frac{Q}{6 \epsilon_{0}}$
56. $\frac{Q}{8 \epsilon_{0}}$
57. $\frac{Q}{\epsilon_{0}}$
58. $\frac{Q}{2 \epsilon_{0}}$
59. Who evaluated the mass of electron indirectly with help of charge :
60. Thomson
61. Millikan
62. Rutherford
63. Newton
64. Infinite

Electric Charges \& Fields - NCERT based PYQs

29. A charge q is placed in an uniform electric field E. If it is released, then the K.E of the charge after travelling distance y will be :
30. qEy
31. $2 q E y$
32. $\frac{q E y}{2}$
33. $\sqrt{q E y}$
34. Electric field at the equator of a dipole is E. If strength and distance is now doubled then the electric field will be
35. $\mathrm{E} / 2$
36. $\mathrm{E} / 8$
37. $\mathrm{E} / 4$
38. E
39. A point Q lies on the perpendicular bisector of an electric dipole of dipole moment p. If the distance of Q from the dipole is r (much larger than the size of the dipole), then the electric field at Q is proportional to :
40. P^{2} and r^{-3}
41. P and r^{-2}
42. P^{-1} and r^{-2}
43. P and r^{-3}
44. The unit of permittivity of free space ε_{0} is :-
(1) Newton metre ${ }^{2} /$ Coulomb 2
(2) Coulomb ${ }^{2} /$ Newton metre 2
(3) Coulomb ${ }^{2} /(\text { Newton metre) })^{2}$
(4) Coulomb/Newton metre
45. In millikan oil drop experiment a charged drop falls with a terminal velocity v . If an electric field E is applied vertically upwards it moves with terminal velocity 2 v in upward direction. If electric field reduces to $\mathrm{E} / 2$ then its terminal velocity will be -
46. $\mathrm{v} / 2$
47. v
48. $\frac{3 v}{2}$
49. 2 v
50. A charge $\mathrm{Q} \mu \mathrm{c}$ is placed at the centre of cube, the flux coming out from any surfaces will be :-
51. $\frac{Q}{6 \varepsilon_{0}} \times 10^{-6}$
52. $\frac{Q}{6 \varepsilon_{0}} \times 10^{-3}$
53. $\frac{Q}{2 \varepsilon_{0}}$
54. $\frac{Q}{8 \varepsilon_{0}}$
55. A dipole of moment \vec{p} is placed in uniform electric field \vec{E} then torque acting on it is given by :-
56. $\vec{T}=\vec{p} \cdot \vec{E}$
57. $\vec{T}=\vec{p} \times \vec{E}$
58. $\vec{T}=\vec{p}+\vec{E}$
59. $\vec{T}=\vec{p}-\vec{E}$
60. A charge q is located at the centre of a cube. The electric flux through any face is -
61. $\frac{2 \pi \mathrm{q}}{6\left(4 \pi \varepsilon_{0}\right)}$
62. $\frac{4 \pi \mathrm{q}}{6\left(4 \pi \varepsilon_{0}\right)}$
63. $\frac{\pi \mathrm{q}}{6\left(4 \pi \varepsilon_{0}\right)}$
64. $\frac{\mathrm{q}}{6\left(4 \pi \varepsilon_{0}\right)}$
65. Polar molecules are the molecules:
66. acquire a dipole moment only when magnetic field is absent.
67. having a permanent electric dipole moment.
68. having zero dipole moment.
69. acquire a dipole moment only in the presence of electric field due to displacement of charges.
70. A dipole is placed in an electric field as shown. In which direction will it move?
71. towards the left as its potential energy will decrease.
72. towards the right as its potential energy will increase.
73. towards the left as its potential energy will increase.
74. towards the right as its potential energy will decrease.

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

Electrostatic Potential \&

 Capacitance (Expected Questions in NEET 2022: 2)| Subtopic Name | Number of |
| :--- | :---: |
| | Questions |
| Electric Potential | 12 |
| Energy stored in Capacitor | 11 |
| Combination of Capacitors | 8 |
| Dielectrics | 5 |
| Electric Potential Energy | 5 |
| Relation between Field \& Potential | 4 |
| Torque \& Energy of Dipole in | 4 |
| External Field | 2 |
| Capacitance | 1 |
| Electrostatic Shielding | 1 |
| Equipotential Surfaces | |

Electrostatic Potential \& Capacitance - NCERT based

PYQs

1. A capacitor is charged by a battery. The battery is removed and another identical uncharged capacitor is connected in parallel. The total electrostatic energy of resulting system:-
2. Decreases by a factor of 2
3. Remains the same
4. Increases by a factor of 2
5. Increases by a factor of 4
6. The diagrams below show regions of equipotential.

A positive charge is moved from A to B in each diagram.

1. In all the four cases, the work done is the same
2. Minimum work is required to move q in figure (a)
3. Maximum work is required to move q in figure (b)
4. Maximum work is required to move q in figure (c)
5. A parallel-plate capacitor of area A, plate separation d and capacitance C is filled with four dielectric materials having dielectric constants $\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}$ and k_{4} as shown in the figure below. If a single dielectric material is to be used to have the same capacitance C in this capacitor, then its dielectric constant k is given by:

6. $\mathrm{k}=\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3}+3 \mathrm{k}_{4}$
7. $\mathrm{k}=\frac{2}{3}\left(\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3}\right)+2 \mathrm{k}_{4}$
8. $\mathrm{k}=\frac{2}{3} \mathrm{k}_{4}\left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{1}+\mathrm{K}_{4}}+\frac{\mathrm{k}_{2}}{\mathrm{k}_{2}+\mathrm{k}_{4}}+\frac{\mathrm{k}_{3}}{\mathrm{k}_{3}+\mathrm{k}_{4}}\right)$
9. $\frac{1}{\mathrm{k}}=\frac{1}{\mathrm{k}_{1}}+\frac{1}{\mathrm{k}_{2}}+\frac{1}{\mathrm{k}_{3}}+\frac{3}{2 \mathrm{k}_{4}}$
10. The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and area A, is
11. Independent of the distance between the plates
12. linearly proportional to the distance between the plates
13. proportional to the sqaure root of the distance between the plates
14. inversely proportional to the distance between the plates
15. A capacitor of $2 \mu \mathrm{~F}$ is charged as shown in the figure. When the switch S is turned to position 2, the percentage of its stored energy dissipated is:

16. 20%
17. 75%
18. 80%
19. 0%
20. A parallel plate air capacitor has capacity C, distance of separation between plates is d and potential difference V is applied between the plates. Force of attraction between the plates of the parallel plate air capacitor is?
21. $\frac{C^{2} V^{2}}{2 d}$
22. $\frac{C V^{2}}{2 d}$
23. $\frac{C V^{2}}{d}$
24. $\frac{C^{2} V^{2}}{2 d^{2}}$
25.

A parallel plate air capacitor of capacitance C is connected to a cell of emf V and then disconnected from it. A dielectric slab of dielectric constant K, which can just fill the air gap of the capacitor, is now inserted in it. Which of the following is incorrect?

1. The potential difference between the plates decreases K times
2. The energy stored in the capacitor decreases K times
3. The change in energy stored is $\frac{1}{2} \mathrm{CV}^{2}\left(\frac{1}{\mathrm{~K}}-1\right)$
4. The charge on the capacitor is not conserved
5. Two thin dielectric slabs of dielectric constants K_{1} and $K_{2}\left(K_{1}<K_{2}\right)$ are inserted between plates of a parallel plate capacitor, as shown in the figure. The variation of electric field 'E' between the plates with distance 'd' as measured from plate P is correctly shown by:

6. A conducting sphere of radius R is given a charge Q. The electric potential and the electric field at the centre of the sphere respectively are:
7. Zero and $\frac{Q}{4 \pi \varepsilon_{0} \mathrm{R}^{2}}$
8. $\frac{Q}{4 \pi \varepsilon_{0} \mathrm{R}}$ and zero
9. $\frac{Q}{4 \pi \varepsilon_{0} \mathrm{R}}$ and $\frac{Q}{4 \pi \varepsilon_{0} \mathrm{R}^{2}}$
10. Both are zero.
11. A, B and C are three points in a uniform electric field. The electric potential is:

12. maximum at B
13. maximum at C
14. same at all the three points A, B and C
15. maximum at A
16. An electric dipole of moment p is placed in an electric field of intensity E . The dipole acquires a position such that the axis of the dipole makes an angle θ with the direction of the field. Assuming that the potential energy of the dipole to be zero when $\theta=90^{\circ}$, the torque and the potential energy of the dipole will respectively be
17. $p E \sin \theta,-p E \cos \theta$
18. $p E \sin \theta,-2 p E \cos \theta$
19. $p E \sin \theta, 2 p E \cos \theta$
20. $p E \cos \theta,-p E \sin \theta$
21. Four-point charges $-Q,-q, 2 q$ and $2 Q$ are placed, one at each corner of the square. The relation between Q and q for which the potential at the center of the square is zero is:
22. $Q=-q$
23. $Q=-2 q$
24. $Q=q$
25. $Q=2 q$
26. A parallel plate condenser has a uniform electric field $\mathrm{E}(\mathrm{V} / \mathrm{m})$ in the space between the plates. If the distance between the plates is $d(m)$ and the area of each plate is $\mathrm{A}\left(\mathrm{m}^{2}\right)$, the energy (joule) stored in the condenser is:
27. $\frac{1}{2}\left(\varepsilon_{\mathrm{o}}\right)(\mathrm{E})^{2}$
28. $\frac{\mathrm{E}^{2} \mathrm{Ad}}{\varepsilon_{\mathrm{o}}}$
29. $\frac{1}{2}\left(\varepsilon_{\mathrm{o}}\right) \mathrm{E}^{2} \mathrm{Ad}$
30. $\left(\varepsilon_{o}\right)$ EAd
31. Four electric charges $+q,+q,-q$ and $-q$ are placed at the corners of a square of side 2 L (see figure). The electric potential at point A, mid-way between the two charges +q and +q is:

32. $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \mathrm{q}}{\mathrm{L}}\left(1+\frac{1}{\sqrt{5}}\right)$
33. $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \mathrm{q}}{\mathrm{L}}\left(1-\frac{1}{\sqrt{5}}\right)$
34. zero
35. $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \mathrm{q}}{\mathrm{L}}(1+\sqrt{5})$
36. A series combination of n_{1} capacitors, each of value C_{1}, is charged by a source of potential difference 4 V . When another parallel combination of n_{2} capacitors, each of value C_{2}, is charged by a source of potential difference V , it has the same (total) energy stored in it, as the first combination has. The value of C_{2}, in terms of C_{1}, is then
37. $\frac{2 C_{1}}{n_{1} n_{2}}$
38. $16 \frac{n_{2}}{n_{1}} C_{1}$
39. $2 \frac{n_{2}}{n_{1}} C_{1}$
40. $\frac{16 C_{1}}{n_{1} n_{2}}$
41. Three concentric spherical shells have radii a, b and c $(\mathrm{a}<\mathrm{b}<\mathrm{c})$ and have surface charge densities $\sigma,-\sigma$ and σ respectively. If $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}$ and V_{C} denote the potential of the three shells, if $c=a+b$, we have
(1) $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{A}} \neq \mathrm{V}_{\mathrm{B}}$
(2) $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{B} \neq \mathrm{V}_{\mathrm{A}}$
(3) $\mathrm{V}_{\mathrm{C}} \neq \mathrm{V}_{B} \neq \mathrm{V}_{A}$
(4) $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{B}=\mathrm{V}_{A}$

17.

Three capacitors each of capacitance C and of breakdown voltage V are joined in series. The capacitance and breakdown voltage of the combination will be:

1. $\frac{C}{3}, \frac{V}{3}$
2. $3 C, \frac{V}{3}$
3. $\frac{C}{3}, 3 V$
4. 3C, 3 V
5. The electric potential at a point in free space due to a charge Q coulomb is $\mathrm{Q} \times 10^{11} \mathrm{~V}$. The electric field at that point is
6. $4 \pi \varepsilon_{0} \mathrm{Q} \times 10^{22} \mathrm{~V} / \mathrm{m}$
7. $12 \pi \varepsilon_{0} \mathrm{Q} \times 10^{20} \mathrm{~V} / \mathrm{m}$
8. $4 \pi \varepsilon_{0} \mathrm{Q} \times 10^{20} \mathrm{~V} / \mathrm{m}$
9. $12 \pi \varepsilon_{0} \mathrm{Q} \times 10^{22} \mathrm{~V} / \mathrm{m}$
10. The energy required to charge a parallel plate condenser of plate separation d and plate area of crosssection A such that the uniform electric field between the plates is E , is?
11. $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2} / \mathrm{Ad}$
12. $\varepsilon_{0} \mathrm{E}^{2} / \mathrm{Ad}$
13. $\varepsilon_{0} \mathrm{E}^{2} \mathrm{Ad}$
14. $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2} \mathrm{Ad}$
15. Two condensers, one of capacity C and the other of capacity $\mathrm{C} / 2$ are connected to a V volt battery, as shown.

The work done in charging fully both the condensers is?

1. $2 C V^{2}$
2. $\frac{1}{4} C V^{2}$
3. $\frac{3}{4} C V^{2}$
4. $\frac{1}{2} C V^{2}$
5. Charges $+q$ and $-q$ are placed at points A and B, respectively; which are at a distance $2 L$ apart, C is the midpoint between A and B. The work done in moving a charge +Q along the semicircle $C R D$ is

6. $\frac{q Q}{4 \pi \varepsilon_{0} \mathrm{~L}}$
7. $\frac{q Q}{2 \pi \varepsilon_{0} \mathrm{~L}}$
8. $\frac{q Q}{6 \pi \varepsilon_{0} \mathrm{~L}}$
9. $-\frac{q Q}{6 \pi \varepsilon_{0} \mathrm{~L}}$
10. A parallel plate air capacitor is charged to a potential difference of V volts. After disconnecting the charging battery, the distance between the plates of the capacitor is increased using an insulating handle. As a result the potential difference between the plates:
11. decreases
12. does not change
13. becomes zero
14. increases
15. Two metal spheres, one of radius R and the other of radius 2 R respectively have the same surface charge density σ. They are brought in contact and separated. What will be the new surface charge densities on them?
16. $\sigma_{1}=\frac{5}{6} \sigma, \sigma_{2}=\frac{5}{6} \sigma$
17. $\sigma_{1}=\frac{5}{2} \sigma, \quad \sigma_{2}=\frac{5}{6} \sigma$
18. $\sigma_{1}=\frac{5}{2} \sigma, \sigma_{2}=\frac{5}{3} \sigma$
19. $\sigma_{1}=\frac{5}{3} \sigma \quad, \sigma_{2}=\frac{5}{6} \sigma$
20. An electric dipole of moment \vec{p} is lying along a uniform electric field \vec{E}. The work done in rotating the dipole by 90° is :
21. $\sqrt{2} p E$
22. $\frac{2 E}{2}$
23. 2 pE
24. pE
25. Two identical capacitors C_{1} and C_{2} of equal capacitance are connected as shown in the circuit. Terminals a and b of the key k are connected to charge capacitor C_{1} using a battery of emf V volt. Now disconnecting a and b terminals, terminals b and c are connected. Due to this what will be the percentage loss of energy?

26. 75%
27. 0%
28. 50%
29. 25%
30. In a certain region of space with volume $0.2 \mathrm{~m}^{3}$, the electric potential is found to be 5 V throughout. The magnitude of electric field in this region is:
(1) $0.5 \mathrm{~N} / \mathrm{C}$
(2) $1 \mathrm{~N} / \mathrm{C}$
(3) $5 \mathrm{~N} / \mathrm{C}$
(4) zero
31. A short electric dipole has a dipole moment of $16 \times 10^{-9} \mathrm{C} \mathrm{m}$. The electric potential due to the dipole at a point at a distance of 0.6 m from the centre of the dipole situated on a line making an angle of 60° with the dipole axis is :
$\left(\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}^{2}\right)$
32. 200 V
33. 400 V
34. zero
35. 50 V
36. The capacitance of a parallel plate capacitor with air as medium is $6 \mu \mathrm{~F}$. With the introduction of a dielectric medium, the capacitance becomes $30 \mu \mathrm{~F}$. The permittivity of the medium is: $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
37. $1.77 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
38. $0.44 \times 10^{-10} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
39. $5.00 \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
40. $0.44 \times 10^{-13} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
41. The variation of electrostatic potential with radial distance r from the centre of a positively charged metallic thin shell of radius R is given by the graph:
42.

2.

30. A parallel plate capacitor having cross-sectional area A and separation d has air in between the plates. Now an insulating slab of the same area but thickness $\mathrm{d} / 2$ is inserted between the plates as shown in the figure having dielectric constant $K(=4)$. The ratio of new capacitance to its original capacitance will be?

1. $2: 1$
2. $8: 5$
3. $6: 5$
4. $4: 1$
5. Two metallic spheres of radii 1 cm and 3 cm are given charges of $-1 \times 10^{-2} C$ and $5 \times 10^{-2} C$, respectively. If these are connected by a conducting wire, then the final charge on the bigger sphere is-
6. $3 \times 10^{-2} C$
7. $4 \times 10^{-2} C$
8. $1 \times 10^{-2} C$
9. $2 \times 10^{-2} C$
10. A parallel plate capacitor has a uniform electric field E in the space between the plates. If the distance between the plates is d and area of each plate is A, the energy stored in the capacitor is-
11. $E^{2} A d / \varepsilon_{0}$
12. $\frac{1}{2} \varepsilon_{0} E^{2} A d$
13. $\varepsilon_{0} E A d$
14. $\frac{1}{2} \varepsilon_{0} E^{2}$
15. Three charges, each +q , are placed at the corners of an isosceles triangle ABC of sides BC and $\mathrm{AC}, 2 \mathrm{a} . \mathrm{D}$ and E are the mid points of BC and CA. The work done in taking a charge Q from D to E is :

16. $\frac{3 \mathrm{qQ}}{4 \pi \epsilon_{0} \mathrm{a}}$
17. $\frac{3 \mathrm{qQ}}{8 \pi \epsilon_{0} \mathrm{a}}$
18. $\frac{\mathrm{qQ}}{4 \pi \in_{0} \mathrm{a}}$
19. zero
20. The electric potential V at any point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$), all in meters in space is given by $V=4 x^{2}$ volt. The electric field at the point $(1,0,2)$ in volt/meter, is :
21. 8 along negative X -axis
22. 8 along positive X -axis
23. 16 along negative X -axis
24. 16 along positive X -axis
25. Two parallel metal plates having charges $+Q$ and $-Q$ face each each other at a certain
distance between them. If the plates are now dipped in kerosene oil tank, the electric field between the plates will
26. A capacitor is charged with a battery and energy stored is U. After disconnecting the battery another capacitor of the same capacity is connected in parallel with it. Then energy stored in each capacitor is :
27. $\mathrm{U} / 2$
28. $\mathrm{U} / 4$
29. 4 U
30. 2 U
31. Two charges q_{1} and q_{2} are placed 30 cm apart, as shown in the figure. A third charge q_{3} is moved along the arc of a circle of radius 40 cm from C to D . The change in the potential energy of the system is $\frac{\mathrm{q}_{3}}{4 \pi \epsilon_{0}} \mathrm{k}$, where k is -

(1) $8 q_{2}$
(2) $6 q_{2}$
(3) $8 q_{1}$
(4) $6 q_{1}$
32. increase
33. decrease
34. remain same
35. become zero
36. As per this diagram, a point charge +q is placed at the origin O. Work done in taking another point charge -Q from the point A , coordinates $(0, a)$, to another point B , coordinates $(a, 0)$, along the straight path $A B$ is

37. $\left(\frac{-\mathrm{qQ}}{4 \pi \varepsilon_{0}} \frac{1}{\mathrm{a}^{2}}\right) \sqrt{2} \mathrm{a}$
38. zero
39. $\left(\frac{\mathrm{qQ}}{4 \pi \varepsilon_{0}} \frac{1}{\mathrm{a}^{2}}\right) \frac{1}{\sqrt{2}}$
40. $\left(\frac{\mathrm{qQ}}{4 \pi \varepsilon_{0}} \frac{1}{\mathrm{a}^{2}}\right) \sqrt{2} \mathrm{a}$
41. A network of four capacitors of capacity equal to $\mathrm{C}_{1}=\mathrm{C}, \mathrm{C}_{2}=2 \mathrm{C}, \mathrm{C}_{3}=3 \mathrm{C}$ and $\mathrm{C}_{4}=4 \mathrm{C}$ conducted to a battery as shown in the figure. The ratio of the charges on C_{2} and C_{4} is -

42. $\frac{7}{4}$
43. $\frac{22}{3}$
44. $\frac{3}{22}$
45. $\frac{4}{7}$
46. The effective capacity of the network between terminals A and B is:

47. $6 \mu \mathrm{~F}$
48. $20 \mu \mathrm{~F}$
49. $3 \mu \mathrm{~F}$
50. $10 \mu \mathrm{~F}$
51. Eight equals charged tiny drops are combined to form a big drop. If the potential on each drop is 10 V then potential of big drop will be -
52. 40 V
53. 10 V
54. 30 V
55. 20 V
56. A bullet of mass 2 g is having a charge of $2 \mu \mathrm{C}$. Through what potential difference must it be accelerated, starting from rest, to acquire a speed of $10 \mathrm{~m} / \mathrm{s}$?
(1) 50 kV
(2) 5 V
(3) 50 V
(4) 5 kV
57. An electric dipole has the magnitude of its charges as q and its dipole moment is p . It is placed in a uniform electric field E . If its dipole moment is along the direction of the field, the force on it and its potential energy are respectively :-
(1) q.E and p.E
(2) zero and minimum
(3) q.E and maximum
(4) 2 q.E and minimum
58. The energy and capacity of a charged parallel plate capacitor are E and C respectively. Now a dielective slab of $E_{r}=6$ is inserted in it then energy and capacity becomes (Assuming charge on plates remains constant)
(1) $6 \mathrm{E}, 6 \mathrm{C}$
(2) E, C
(3) $\frac{E}{6}, 6 C$
(4) E, 6C
59. Some charge is being given to a conductor. Then its potential :-
(1) Is maximum at surface
(2) Is maximum at centre
(3) Is remain same throughout the conductor
(4) Is maximum somewhere between surface and centre
60. A capacitor of capacity C_{1} charged upto V volt and then connected to an uncharged capacitor C_{2}. Then final P.D. across each will be
61. $\frac{\mathrm{C}_{2} \mathrm{~V}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$
62. $\frac{\mathrm{C}_{1} \mathrm{~V}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$
63. $\left(1+\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}\right)$
64. $\left(1-\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}\right) \mathrm{V}$
65. Identical charges (-q) are placed at each corner of a cube of side ' b ' then electrical potential energy of charge $(+q)$ which is placed at centre of cube will be
66. $\frac{-4 \sqrt{2} q^{2}}{\pi \varepsilon_{0} \mathrm{~b}}$
67. $\frac{-8 \sqrt{2} \mathrm{q}^{2}}{\pi \varepsilon_{0} \mathrm{~b}}$
68. $\frac{-4 \mathrm{q}^{2}}{\sqrt{3} \pi \varepsilon_{0} \mathrm{~b}}$
69. $\frac{8 \sqrt{2} \mathrm{q}^{2}}{4 \pi \varepsilon_{0} \mathrm{~b}}$
70. Energy per unit volume for a capacitor having area A and separation d kept at potential diffeence V is given by :
71. $\frac{1}{2} \varepsilon_{0} \frac{V^{2}}{d^{2}}$
72. $\frac{1}{2 \varepsilon_{0}} \frac{V^{2}}{d^{2}}$
73. $\frac{1}{2} C V^{2}$
74. $\frac{Q^{2}}{2 C}$
75. Three capacitors each of capacity $4 \mu \mathrm{~F}$ are to be connected in such a way that the effective capacitance is $6 \mu \mathrm{~F}$. This can be done by:
(1) connecting all of them in series
(2) connecting them in parallel
(3) connecting two in series and one in parallel
(4) connecting two in parallel and one in series
76. The equivalent capacitance of the combination shown in the figure is:

77. $\mathrm{C} / 2$
78. $3 \mathrm{C} / 2$
79. 3C
80. 2 C
81. A parallel plate capacitor has a uniform electric field ${ }^{\prime} \overrightarrow{\mathrm{E}}$ ' in the space between the plates. If the distance between the plates is ' d ' and the area of each plate is ' A ', the energy stored in the capacitor is: *If above link doesn't work, please go to test link from $\left(\varepsilon_{0}=\right.$ permittivity of free space $) \quad$ where you got the pdf and fill OMR from there
82. $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2} \mathrm{Ad}$
83. $\frac{\mathrm{E}^{2} \mathrm{Ad}}{\varepsilon_{0}}$
84. $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2}$
85. ε_{0} EAd
86. Two charged spherical conductors of radius R_{1} and R_{2} are connected by a wire. Then the ratio of surface charge densities of the spheres $\left(\sigma_{1} / \sigma_{2}\right)$ is:
87. $\sqrt{\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)}$
88. $\frac{\mathrm{R}_{1}^{2}}{\mathrm{R}_{2}^{2}}$
89. $\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}$
90. $\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$
91. Twenty seven drops of same size are charged at 220 V each. They combine to form a bigger drop. Calculate the potential of the bigger drop.
92. 1520 V
93. 1980 V
94. 660 V
95. 1320 V

Fill OMR Sheet*

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep course

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Current Electricity

(Expected Questions in NEET 2022: 2)

Subtopic Name	Number of Questions
Heating Effects of Current	22
Combination of Resistors	19
Kirchoff's Voltage Law	13
 Potentiometer	13
emf \& Terminal Voltage	9
Wheatstone Bridge	6
Current \& Current Density	5
Grouping of Cells	5
Colour Coding of Resistors	1
Derivation of Ohm's Law	1

Current Electricity - NCERT based PYQs

Contact Number: 9667591930 / 8527521718

1. A set of ' n ' equal resistors, of value ' R ' each, are connected in series to a battery of emf ' E ' and internal resistance 'R'. The current drawn is I. Now, the ' n ' resistors are connected in parallel to the same battery. Then the current drawn becomes 10I. The value of ' n ' is:-
2. 10
3. 11
4. 20
5. 9
6.

The resistance of a wire is ' R ' ohm. If it is melted and stretched ' n ' times its original length, its new resistance will be:-

1. $\frac{R}{n}$
2. $n^{2} R$
3. $\frac{R}{n^{2}}$
4. nR
5.

A battery consists of a variable number ' n ' of identical cells (having internal resistance ' r ' each) which are connected in series. The terminals of the battery are shortcircuited and the current I is measured. Which of the graphs shows the correct relationship between I and n ?
1.

2.

3.

4. A carbon resistor $(47 \pm 4.7) \mathrm{k} \Omega$ is to be marked with rings of different colours for its identification. The colour code sequence will be :-

1. Violet - Yellow - Orange - Silver
2. Yellow - Violet - Orange - Silver
3. Yellow - Green - Violet - Gold
4. Green - Orange - Violet - Gold
5. A potentiometer is an accurate and versatile device to make electrical measurements of E.M.F. because the method involves:-
6. Potential gradients
7. A condition of no current flow through the galvanometer
8. A condition of cells, galvanometer, and resistances
9. Cells
10. The figure shows a circuit that contains three identical resistors with resistance $\mathrm{R}=9.0 \Omega$ each, two identical inductors with inductance $\mathrm{L}=2.0 \mathrm{mH}$ each, and an ideal battery with emf $\varepsilon=18 \mathrm{~V}$. The current 'i' through the battery just after the switch closed is:

11. 0.2 A
12. The potential difference $V_{A}-V_{B}$ between the points A and B in the given figure is :

13. -3 V
14. +3 V
15. +6 V
16. +9 V
17. A filament bulb ($500 \mathrm{~W}, 100 \mathrm{~V}$) is to be used in a 230 V main supply. When a resistance R is connected in series, the bulb works perfectly and consumes 500 W . The value of R is :
18. 230Ω
19. 46Ω
20. 26Ω
21. 13Ω
22.

A potentiometer wire is 100 cm long and a constant potential difference is maintained across it. Two cells are connected in series first to support one another and then in opposite direction. The balance points are obtained at 50 cm and 10 cm from the positive end of the wire in the two cases. The ratio of emf of two cells is-

1. $5: 4$
2. $3: 4$
3. $3: 2$
4. $5: 1$
5. 2 A
6. 4 A
7. 2 mA

Current Electricity - NCERT based PYQs

Contact Number: 9667591930 / 8527521718
10.

The charge following through a resistance R varies with time t as $Q=a t-b t^{2}$, where a and b are positive constants. The total heat produced in R is:

1. $\frac{a^{3} R}{3 b}$
2. $\frac{a^{3} R}{2 b}$
3. $\frac{a^{3} R}{b}$
4. $\frac{a^{3} R}{6 b}$
5. Two metal wires of identical dimensions are connected in series. If σ_{1} and σ_{2} are the conductivities of the metal wires respectively, the effective conductivity of the combination is:
6. $\frac{2 \sigma_{1} \sigma_{2}}{\sigma_{1}+\sigma_{2}}$
7. $\frac{\sigma_{1}+\sigma_{2}}{2 \sigma_{1} \sigma_{2}}$
8. $\frac{\sigma_{1}+\sigma_{2}}{\sigma_{1} \sigma_{2}}$
9. $\frac{\sigma_{1} \sigma_{2}}{\sigma_{1}+\sigma_{2}}$
10. A circuit contains an ammeter, a battery of 30 V , and a resistance 40.8Ω all connected in series. If the ammeter has the coil of resistance 480Ω and a shunt of 20Ω, then reading in the ammeter will be:
11. 0.5 A
12. 0.02 A
13. 2 A
14. 1 A
15. A potentiometer wire of length L and a resistance r are connected in series with a battery of e.m.f. E_{0} and resistance r_{1}. An unknown e.m.f. is balanced at a length 1 of the potentiometer wire. The e.m.f. E will be given by :
16. $\frac{L E_{0} r}{l r_{1}}$
17. $\frac{E_{0} r}{\left(r+r_{1}\right)} \cdot \frac{l}{L}$
18. $\frac{E_{0} l}{L}$
19. $\frac{L E_{0} r}{\left(r+r_{1}\right) 1}$
20.

A potentiometer wire has length 4 m and resistance 8Ω. The resistance that must be connected in series with the wire and an accumulator of emf 2 V , so as to get a potential gradient 1 mV per cm on the wire is

1. 32Ω
2. 40Ω
3. 44Ω
4. 48Ω
5.

A, B and C are voltmeters of resistance $\mathrm{R}, 1.5 \mathrm{R}$ and 3 R respectively as shown in the figure. When some potential difference is applied between X and Y , the voltmeter readings are V_{A}, V_{B} and V_{C} respectively.

Then,

1. $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{C}}$
2. $\mathrm{V}_{\mathrm{A}} \neq \mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{C}}$
3. $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}} \neq \mathrm{V}_{\mathrm{C}}$
4. $\mathrm{V}_{\mathrm{A}} \neq \mathrm{V}_{\mathrm{B}} \neq \mathrm{V}_{\mathrm{C}}$

Current Electricity - NCERT based PYQs

16.

Across a metallic conductor of non-uniform cross-section, a constant potential difference is applied. The quantity which remains constant along the conductor is :

1. current density
2. current
3. drift velocity
4. electric field
5. Two cities are 150 km apart. Electric power is sent from one city to another city through copper wires. The fall of potential per km is 8 volt and the average resistance per km is 0.5 The power loss in the wire is:
6. 19.2 W
7. 19.2 kW
8. 19.2 J
9. 12.2 kW
10. The figure shows a circuit when resistance in the two arms of the meter bridge are 5 and R , respectively. When the resistance R is shunted with an equal resistance, the new balance point is at 1.61_{1}. The resistance ' R ' is :

11. 10
12. 15
13. 20
14. 25
15. A potentiometer circuit has been set up for finding the internal resistance of a given cell. The main battery, used across the potentiometer wire, has an emf of 2.0 V and a negligible internal resistance. The potentiometer wire itself is 4 m long. When the resistance, R, connected across the given cell, has values of (i) infinity (ii) 9.5 , the 'balancing lengths, on the potentiometer wire, are found to be 3 m and 2.85 m , respectively.
The value of internal resistance of the cell is (in ohm) :
16. 0.25
17. 0.95
18. 0.5
19. 0.75
20.

A wire of resistance 4Ω is stretched to twice its original length. The resistance of stretched wire would be :

1. 4Ω
2. 8Ω
3. 16Ω
4. 2Ω
5.

The internal resistance of a 2.1 V cell which gives a current of 0.2 A through a resistance of 10Ω is :

1. 0.5Ω
2. 0.8Ω
3. 1.0Ω
4. 0.2Ω
5.

The resistances of the four arms $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S in a Wheatstone's bridge are 10 ohm, 30 ohm, 30 ohm and 90 ohm, respectively. The e.m.f. and internal resistance of the cell are 7 Volt and 5 ohm respectively. If the galvanometer resistance is 50 ohm, the current drawn from the cell will be :

1. 0.2 A
2. 0.1 A
3. 2.0 A
4. 1.0 A
5. In the circuit shown cells, A and B have negligible resistance. For $\mathrm{V}_{\mathrm{A}}=12 \mathrm{~V}, \mathrm{R}_{1}=500 \Omega$, and $\mathrm{R}=100 \Omega$, the galvanometer (G) shows no deflection. The value of V_{B} is:

6. 4 V
7. 2 V
8. 12 V
9. 6 V
10. If voltage across a bulb rated $220 \mathrm{~V}-100 \mathrm{~W}$ drops by 2.5% of its rated value, the percentage of the rated value by which the power would decrease is :
11. 20%
12. 2.5%
13. 5%
14. 10%
15. A ring is made of a wire having a resistance $\mathrm{R}_{0}=12 \Omega$. Find the points A and B, as shown in the figure, at which a current-carrying conductor should be connected so that the resistance R of the subcircuit between these points is equal to $8 / 3 \Omega$.

16. $\frac{l_{1}}{l_{2}}=\frac{5}{8}$
17. $\frac{l_{1}}{l_{2}}=\frac{1}{3}$
18. $\frac{l_{1}}{l_{2}}=\frac{3}{8}$
19. $\frac{l_{1}}{l_{2}}=\frac{1}{2}$
20. If power dissipated in the 9Ω resistor in the circuit shown is 36 W , the potential difference across the 2Ω resistor is:

21. 8 V
22. 10 V
23. 2 V
24. 4 V

Current Electricity - NCERT based PYQs

27. A current of 2 A flows through a 2Ω resistor when connected across a battery. The same battery supplies a current of 0.5 A when connected across a 9Ω resistor. The internal resistance of the battery is:
28. $1 / 3 \Omega$
29. $1 / 4 \Omega$
30. 1Ω
31. 0.5Ω
32.

A potentiometer circuit is set up as shown. The potential gradient across the potentiometer wire is k volt/ cm and the ammeter, present in the circuit, reads 1.0 A when the twoway key is switched off. The balance points, when the key between the terminals (i) 1 and 2 (ii) 1 and 3 , is plugged in, are found to be at lengths $l_{1} \mathrm{~cm}$ and $l_{2} \mathrm{~cm}$ respectively. The magnitudes, of the resistors R and X , in ohm, are then, equal, respectively, to

1. $k\left(l_{2}-l_{1}\right)$ and $k l_{2}$
2. $k l_{1}$ and $k\left(l_{2}-l_{1}\right)$
3. $k\left(l_{2}-l_{1}\right)$ and $k l_{1}$
4. $k l_{1}$ and $k l_{2}$
5. Consider the following two statements :
(A) Kirchhoff's junction law follows the conservation of charge.
(B) Kirchhoff's loop law follows the conservation of energy.

Which of the following is correct?

1. Both (A) and (B) are wrong.
2. (A) is correct but (B) is wrong.
3. (A) is wrong and (B) is correct.
4. Both (A) and (B) are correct.
5. A wire of resistance $12 \Omega \mathrm{~m}^{-1}$ is bent to form a complete circle of radius 10 cm . The resistance between its two diametrically opposite points, A and B as shown in the figure, is:

6. $0.6 \pi \Omega$
7. $3 \pi \Omega$
8. $61 \pi \Omega$
9. $6 \pi \Omega$
10.

A student measures the terminal potential difference (V) of a cell (of emf E and internal resistance r) as a function of the current (I) flowing through it. The slope and intercept of the graph between V and I, respectively, equal to:

1. E and -r
2. -r and E
3. r and $-E$
4. -E and r

Current Electricity - NCERT based PYQs

32. See the electrical circuit shown in this figure. Which of the following equations is a correct equation for it?

33. $\varepsilon_{1}-\left(i_{1}+i_{2}\right) R-i_{1} r_{1}=0$
34. $\varepsilon_{2}-i_{2} r_{2}-\varepsilon_{1}-i_{1} r_{1}=0$
35. $-\varepsilon_{2}-\left(i_{1}+i_{2}\right) R+i_{2} r_{2}=0$
36. $\varepsilon_{1}-\left(i_{1}+i_{2}\right) R+i_{1} r_{1}=0$
37. A current of 3 A flows through the 2Ω resistor shown in the circuit. The power dissipated in the 5Ω resistor is :

38. 4 W
39. 2 W
40. 1 W
41. 5 W
42.

A wire of a certain material is stretched slowly by ten percent, its new resistance and specific resistance become respectively:

1. 1.2 times, 1.1 times
2. 1.21 times, same
3. both remain the same
4. 1.1 times, 1.1 times
5.

An electric kettle takes 4 A current at 220 V. How much time will it take to boil 1 kg of water from temperature $20^{\circ} \mathrm{C}$? The temperature of boiling water is $100^{\circ} \mathrm{C}$.

1. 6.3 min
2. 8.4 min
3. 12.6 min
4. 4.2 min
5.

A cell can be balanced against 100 cm and 110 cm of potentiometer wire, respectively with and without being short-circuited through a resistance of 10Ω. its internal resistance is :

1. 1.0Ω
2. 0.5Ω
3. 2.0Ω
4. zero
5.

In the circuit shown, the current through the 4Ω resistors is 1 A when the points P and M are connected to a DC voltage source. The potential difference between the points M and N is:

1. 1.5 V
2. 1.0 V
3. 0.5 V
4. 3.2 V
5. The total power dissipated in watts in the circuit shown here is:

6. 16 W
7. 40 W
8. 54 W
9. 4 W
10. Three resistances $\mathrm{P}, \mathrm{Q}, \mathrm{R}$, each of 2Ω and an unknown resistance S form the four arms of a Wheatstone bridge circuit. When the resistance of 6Ω is connected in parallel to S, the bridge gets balanced. What is the value of S ?
11. 2Ω
12. 3Ω
13. 6Ω
14. 1Ω
15.

In the circuit shown, if a conducting wire is connected between points A and B, the current in this wire will: (All resistance given in ohms)

1. flow from A to B
2. flow in the direction which will be decided by the value of V
3. be zero
4. flow from B to A
5. Two cells having the same emf, are connected in series through an external resistance R . Cells have internal resistance r_{1} and r_{2} respectively. When the circuit is closed, the potential difference across the first cell is zero. The value of R is:
6. $r_{1}-r_{2}$
7. $\frac{r_{1}+r_{2}}{2}$
8. $\frac{r_{1}-r_{2}}{2}$
9. $r_{1}+r_{2}$

Current Electricity - NCERT based PYQs
Contact Number: 9667591930 / 8527521718
42. The power dissipated across the 8Ω resistor in the circuit shown here is 2 W . The power dissipated in watts across the 3Ω resistor is:

1. 2.0
2. 1.0
3. 0.5
4. 3.0
5. Kirchhoff's first and second laws for electrical circuits are consequences of:
6. conservation of energy.
7. conservation of electric charge and energy respectively.
8. conservation of electric charge.
9. conservation of energy and electric charge respectively.
10. In the circuits shown below, the readings of the voltmeters and the ammeters will be:

11. $V_{2}>V_{1}$ and $i_{1}=i_{2}$
12. $V_{2}=V_{1}$ and $i_{1}>i_{2}$
13. $V_{2}=V_{1}$ and $i_{1}=i_{2}$
14. $V_{2}>V_{1}$ and $i_{1}>i_{2}$
15. Six similar bulbs are connected as shown in the figure with a DC source of emf E and zero internal resistance.

The ratio of power consumption by the bulbs when (i) all are glowing and (ii) in the situation when two from section A and one from section B are glowing, will be:

1. $2: 1$
2. 4: 9
3. $9: 4$
4. 1:2
5. The reading of an ideal voltmeter in the circuit shown is:

6. 0.6 V
7. 0 V
8. 0.5 V
9. 0.4 V
10. The metre bridge shown is in a balanced position with $\frac{P}{Q}=\frac{l_{1}}{l_{2}}$. If we now interchange the position of the galvanometer and cell, will the bridge work? If yes, what will be the balanced condition?

11. Yes, $\frac{P}{Q}=\frac{l_{1}-l_{2}}{l_{1}+l_{2}}$
12. No, no null point
13. Yes, $\frac{P}{Q}=\frac{l_{2}}{l_{1}}$
14. Yes, $\frac{\mathrm{P}}{\mathrm{Q}}=\frac{\mathrm{l}_{1}}{\mathrm{l}_{2}}$
15. Which of the following graph represents the variation of resistivity (ρ) with temperature (T) for copper?
(1)

(2)

(3)

(4)

16. A charged particle having drift velocity of $7.5 \times 10^{-4} \mathrm{~ms}^{-1}$ in an electric field of $3 \times 10^{-10} V m^{-1}$, has mobility in $\mathrm{m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ of:
17. 2.5×10^{6}
18. 2.5×10^{-6}
19. 2.25×10^{-15}
20. 2.25×10^{15}

Current Electricity - NCERT based PYQs

50. A resistance wire connected in the left gap of a metre bridge balances a 10Ω resistance in the right gap at a point which divides the bridge wire in the ratio $3: 2$. If the length of the resistance wire is 1.5 m , then the length of 1 Ω of the resistance wire :
(1) $1.0 \times 10^{-1} \mathrm{~m}$
(2) $1.5 \times 10^{-1} \mathrm{~m}$
(3) $1.5 \times 10^{-2} \mathrm{~m}$
(4) $1.0 \times 10^{-2} \mathrm{~m}$
51. The colour code of resistance is given below:

The values of resistance and tolerance, respectively are:

1. $47 \mathrm{k} \Omega, 10 \%$
2. $4.7 \mathrm{k} \Omega, 5 \%$
3. $470 \Omega, 5 \%$
4. $470 \mathrm{k} \Omega, 5 \%$
5. For the circuit shown in the figure, the current I will be:
6. Two solid conductors are made up of the same material, have the same length and same resistance. One of them has a circular cross-section of area A_{1} and the other one has a square cross-section of area A_{2}. The ratio A_{1} / A_{2} is:
7. 1.5
8. 1
9. 0.8
10. 2
11. For the circuit given below, the Kirchoff's loop rule for the loop BCDEB is given by the equation:

12. $-\mathrm{i}_{2} \mathrm{R}_{2}+\mathrm{E}_{2}-\mathrm{E}_{3}+\mathrm{i}_{3} \mathrm{R}_{1}=0$
13. $\mathrm{i}_{2} \mathrm{R}_{2}+\mathrm{E}_{2}-\mathrm{E}_{3}-\mathrm{i}_{3} \mathrm{R}_{1}=0$
14. $\mathrm{i}_{2} \mathrm{R}_{2}+\mathrm{E}_{2}+\mathrm{E}_{3}+\mathrm{i}_{3} \mathrm{R}_{1}=0$
15. $-\mathrm{i}_{2} \mathrm{R}_{2}+\mathrm{E}_{2}+\mathrm{E}_{3}+\mathrm{i}_{3} \mathrm{R}_{1}=0$

16. 0.75 A
17. 1 A
18. 1.5 A
19. 0.5 A

Current Electricity - NCERT based PYQs

Contact Number: 9667591930 / 8527521718
55. The equivalent resistance between A and B for the mesh shown in the figure is:

1. 7.2Ω
2. 16Ω
3. 30Ω
4. 4.8Ω
5. The power dissipated in the circuit shown in the figure is 30 Watts. The value of R is:

6. A cell having an emf ε and internal resistance r is connected across a variable external resistance R. As the resistance R is increased, the plot of potential difference V across R is given by -
7.

2.

3.

4.

1. 15Ω
2. 10Ω
3. 30Ω
4. 20Ω

Current Electricity - NCERT based PYQs

Contact Number: 9667591930 / 8527521718
58. In the circuit shown in the figure, if the potential at point A is taken to be zero, the potential at point B is

1. +1 V
2. -1 V
3. +2 V
4. -2 V
5. A thermocouple of negligible resistance produces an e.m.f. of $40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ in the linear range of temperature. A galvanometer of resistance 10 ohm whose sensitivity is $1 \mu \mathrm{~A} /$ division, is employed with the thermocouple. The smallest value of temperature difference that can be detected by the system will be
6. $0.25^{\circ} \mathrm{C}$
7. $0.5^{\circ} \mathrm{C}$
8. $1^{\circ} \mathrm{C}$
9. $0.1^{\circ} \mathrm{C}$
10. Calculate the net resistance of the circuit between A and B :

11. $8 / 3 \Omega$
12. $14 / 3 \Omega$
13. $16 / 3 \Omega$
14. $22 / 3 \Omega$
15. Two batteries, one of emf 18 volts and internal resistance 2Ω and the other of emf 12 volt and internal resistance 1Ω, are connected as shown. The voltmeter V will record a reading of:

(1) 18 volt
(2) 30 volt
(3) 14 volt
(4) 15 volt
16. A 5-ampere fuse wire can withstand a maximum power of 1 watt in the circuit. The resistance of the fuse wire is:
(1) 5 ohm
(2) 0.04 ohm
(3) 0.2 ohm
(4) 0.4 ohm
17. 10^{5} coloumb charge liberated 1 gm silver (Ag). If now charge is doubled then the amount of liberated Ag will be
18. 1 gm
19. 2 gm
20. 3 gm
21. 4 gm
22. When a wire of uniform cross-section a, length 1 , and resistance R is bent into a complete circle, the resistance between any two of diametrically opposite points will be -
(1) $\mathrm{R} / 2$
(2) $\mathrm{R} / 4$
(3) $R / 8$
(4) 4R

Current Electricity - NCERT based PYQs

Contact Number: 9667591930 / 8527521718
65. For the network shown in the figure the value of the current i is -

1. $\frac{18 \mathrm{~V}}{5}$
2. $\frac{5 \mathrm{~V}}{9}$
3. $\frac{9 \mathrm{~V}}{35}$
4. $\frac{5 \mathrm{~V}}{18}$
5. A car battery of emf 12 V and internal resistance $5 \times$ $10^{-2} \Omega$, receives a current of 60 A from external source, then terminal voltage of battery is :
6. 12 V
7. 9 V
8. 15 V
9. 20 V
10. Two bulbs of ($40 \mathrm{~W}, 200 \mathrm{~V}$), and ($100 \mathrm{~W}, 200 \mathrm{~V}$). Then correct relation for their resistance :
11. $\mathrm{R}_{40}<\mathrm{R}_{100}$
12. $\mathrm{R}_{40}>\mathrm{R}_{100}$
13. $\mathrm{R}_{40}=\mathrm{R}_{100}$
14. No relation can be predicted
15. When three identical bulbs are connected in series, the consumed power is 10 W . If they are now connected in parallel then the consumed power will be :
16. 30 W
17. 90 W
18. $\frac{10}{3} W$
19. 270 W
20. According to the Faraday Law of electrolysis, the mass deposited at electrode proportional to :
21. $\mathrm{m} \propto \mathrm{I}^{2}$
22. $\mathrm{m} \propto \mathrm{Q}$
23. $\mathrm{m} \propto \mathrm{Q}^{2}$
24. 'm' does not depend on Q
25. In a hot wire ammeter due to the flowing of the current, the temperature of the wire is increased by $5^{\circ} \mathrm{C}$. If the value of current is doubled, then increases in temperature will be :
26. $15^{\circ} \mathrm{C}$
27. $20^{\circ} \mathrm{C}$
28. $25^{\circ} \mathrm{C}$
29. $30^{\circ} \mathrm{C}$
30. The potentiometer is best for measuring voltage, as :
31. It has a sensitive galvanometer
32. It has wire of high resistance
33. It measures p.d. like in closed circuit
34. It measures p.d. like in open circuit
35. When three identical bulbs of 60 watts and 200 -volt rating are connected in series to a 200 volt supply, the power drawn by them will be:
(1) 180 watt
(2) 10 watt
(3) 20 watt
(4) 60 watt

Current Electricity - NCERT based PYQs

Contact Number: 9667591930 / 8527521718
73. The electric resistance of a certain wire of iron is R. If its length and radius are doubled, then:
(1) The resistance will be halved and the specific resistance will remain unchanged
(2) The resistance will be halved and the specific resistance will be doubled
(3) The resistance and the specific resistance, will both remain unchanged
(4) The resistance will be doubled and the specific resistance will be halved
74. Resistances n, each of r ohm, when connected in parallel give an equivalent resistance of R ohm. If these resistances were connected in series, the combination would have a resistance in ohms, equal to
(1) $\frac{R}{n^{2}}$
(2) R / n
(3) nR
(4) $n^{2} R$
75. The current in 8Ω resistance is (See fig.)

1. 0.69 A
2. 0.92 A
3. 1.30 A
4. 1.6 A
5. If the power dissipated in 5Ω is 20 W then power dissipated in 4Ω is -

6. 4 W
7. 6 W
8. 10 W
9. 20 W
10. The value of R for which power in it is maximum

11. 3Ω
12. 6Ω
13. 12Ω
14. 9Ω
15. The terminal potential difference of a cell is greater than its emf when -
16. A battery of less emf is connected in its series
17. A battery of higher emf is connected in its series
18. A battery of higher emf is connected in its parallel
19. A battery of less emf is connected in its parallel
20. In India electricity is supplied for domestic use at 220 V . It is supplied at 110 V in USA. If the resistance of a 60 W bulb for use in India is R, The resistance of a 60 W bulb for use in USA will be :-
(1) 2 R
(2) $\mathrm{R} / 4$
(3) $R / 2$
(4) R

Current Electricity - NCERT based PYQs

80. A battery is charged at a potential of 15 V for 8 hours when the current flowing is 10A. The battery on discharge supplies a current of 5A for 15 hours. The mean terminal voltage during discharges is 14 V . The "Watt hour" efficiency of the battery is :-
(1) 80%
(2) 90%
(3) 87.5%
(4) 82.5%
81. Five equal resistances each of resistance R are connected as shown in the figure. A battery of V volts is connected between A and B . The current flowing in AFCEB will be:

(1) V / R
(2) $V / 2 R$
(3) $2 \mathrm{~V} / \mathrm{R}$
(4) $3 \mathrm{~V} / \mathrm{R}$
82. A 6 -volt battery is connected to the terminals of a three-metre long wire of uniform thickness and resistance of 100 ohms. The difference of potential between two points on the wire separated by a distance of 50 cm will be:
(1) 3 V
(2) 1 V
(3) 1.5 V
(4) 2 V
83. Specific resistance of a conductor increases with :
(1) Increase in temperature
(2) Increase in cross section area
(3) Increase in cross section and decrease in length
(4) Decrease in cross section area
84. For a cell, the terminal P.D. is 2.2 V when the circuit is open and reduces to 1.8 V when the cell is connected to the resistance of $\mathrm{R}=5 \Omega$. Determine internal resistance of cell (r) is then:
85. $\frac{10}{9} \Omega$
86. $\frac{9}{10} \Omega$
87. $\frac{11}{9} \Omega$
88. $\frac{5}{9} \Omega$
89. If specific resistance of a potentiometer wire is $10^{-7} \Omega m$ and current flow through it is 0.1 A , crosssectional area of wire is $10^{-6} \mathrm{~m}^{2}$ then potential gradient will be : -
90. $10^{-2} \mathrm{~V} / \mathrm{m}$
91. $10^{-4} \mathrm{~V} / \mathrm{m}$
92. $10^{-6} \mathrm{~V} / \mathrm{m}$
93. $10^{-8} \mathrm{~V} / \mathrm{m}$
94. The resistance of each arm of the wheat stone bridge is 10 ohm . A resistance of 10 ohm is connected in series with galvanometer then the equivalent resistance across the battery will be :
95. 10 ohm
96. 15 ohm
97. 20 ohm
98. 40 ohm

Current Electricity - NCERT based PYQs

87. Copper and silicon is cooled from 300 K to 60 K , the specific resistance: -
88. Decrease in copper but increase in silicon
89. Increase in copper but decrease in silicon
90. Increase in both
91. Decrease in both
92. Two 220 volt, 100 watt bulbs are connected first in series and then in parallel. Each time the combination is connected to a 220 volt a.c. supply line. The power drawn by the combination in each case respectively will be :
(1) 50 watt, 100 watt
(2) 100 watt, 50 watt
(3) 200 watt, 150 watt
(4) 50 watt, 200 watt
93. An electric kettle has two heating coils. When one of the coils is connected to an a.c. source, the water in the kettle boils in 10 minutes. When the other coil is used the water boils in 40 minutes. If both the coils are connected in parallel, the time taken by the same quantity of water to boil will be :
(1) 8 min
(2) 4 min
(3) 25 min
(4) 15 min
94. In a Wheatstone bridge all the four arms have equal resistance R. If the resistance of the galvanometer arm is also R , the equivalent resistance of the combination as seen by the battery is:
(1) $\mathrm{R} / 4$
(2) $\mathrm{R} / 2$
(3) R
(4) 2 R
95. Column- I gives certain physical terms associated with flow of current through a metallic conductor.

Column-II gives some mathematical relations involving electrical quantities.

Match Column-I and Column-II with appropriate relations.

Column-I

(A) Drift Velocity
(B) Electrical Resistivity
(C) Relaxation Period
(D) Current Density

Column -II

(P) $\frac{\mathrm{m}}{\mathrm{ne}^{2} \rho}$
(Q) $\mathrm{nev}_{\mathrm{d}}$
(R) $\frac{\mathrm{eE}}{\mathrm{m}} \tau$
(S) $\frac{\mathrm{E}}{\mathrm{J}}$

1. (A)-(R), (B)-(P), (C)-(S), (D)-(Q)
2. (A)-(R), (B)-(Q), (C)-(S), (D)-(P)
3. (A)-(R), (B)-(S), (C)-(P), (D)-(Q)
4. (A)-(R), (B)-(S), (C)-(Q), (D)-(P)
5. In a potentiometer circuit, a cell of EMF 1.5 V gives a balance point at 36 cm length of wire. If another cell of EMF 2.5 V replaces the first cell, then at what length of the wire, the balance point occurs?
6. 64 cm
7. 62 cm
8. 60 cm
9. 21.6 cm
10. The effective resistance of a parallel connection that consists of four wires of equal length, equal area of crosssection and same material is 0.25Ω. What will be the effective resistance if they are connected in series?
11. 1Ω
12. 4Ω
13. 0.25Ω
14. 0.5Ω
15. Three resistors having resistances $\mathrm{r}_{1}, \mathrm{r}_{2}$ and r_{3} are connected as shown in the given circuit. The ratio $\frac{i_{3}}{i_{1}}$ of currents in terms of resistances used in the circuit is:

16. $\frac{\mathrm{r}_{1}}{\mathrm{r}_{1}+\mathrm{r}_{2}}$
17. $\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}+\mathrm{r}_{3}}$
18. $\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}+\mathrm{r}_{3}}$
19. $\frac{\mathrm{r}_{2}}{\mathrm{r}_{2}+\mathrm{r}_{3}}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

Moving Charges \& Magnetism

(Expected Questions in NEET 2022: 2)

Subtopic Name	Nunber of
	Questions
Lorentz Force	25
Magnetic Field due to various cases	18
Current Carrying Loop: Force \& Torque	10
Moving Coil Galvanometer	10
Ampere Circuital Law	4
Magnetic Moment	4
Conversion to Ammeter \& Voltmeter	3
Force between Current Carrying Wires	2
Cyclotron	1

1. A long wire carrying a steady current is bent into a circular loop of one turn. The magnetic field at the centre of the loop is B. It is then bent into a circular coil of n turns. The magnetic field at the centre of this coil of n turns will be:
2. nB
3. $\mathrm{n}^{2} \mathrm{~B}$
4. 2 nB
5. $2 n^{2} B$
6. A bar magnet is hung by a thin cotton thread in a uniform horizontal magnetic field and is in the equilibrium state. The energy required to rotate it by 60° is W. Now the torque required to keep the magnet in this new position is:
7. $\frac{W}{\sqrt{3}}$
8. $\sqrt{3} W$
9. $\frac{\sqrt{3} W}{2}$
10. $\frac{2 W}{\sqrt{3}}$
11. An electron is moving in a circular path under the influence of a transverse magnetic field of $3.57 \times 10^{-2} \mathrm{~T}$. If the value of e / m is $1.76 \times 10^{11} \mathrm{C} / \mathrm{kg}$, the frequency of revolution of the electron is:
12. 1 GHz
13. 100 MHz
14. 62.8 MHz
15. 6.28 MHz
16. A 250 turn rectangular coil of length 2.1 cm and width 1.25 cm carries a current of $85 \mu \mathrm{~A}$ and subjected to the magnetic field of strength 0.85 T . Work done for rotating the coil by 180° against the torque is:
1.4.55 $\mu \mathrm{J}$
17. $2.3 \mu J$
3.1.15 μJ
18. $9.8 \mu J$
19.

An arrangement of three parallel straight wires placed perpendicular to plane of paper carrying same current 'I along the same direction is shown in fig. Magnitude of force per unit length on the middle wire ' B ' is given by:-

(a) $\frac{\mu_{o} i^{2}}{2 \pi \mathrm{~d}}$
(b) $\frac{2 \mu_{0} i^{2}}{\pi \mathrm{~d}}$
(c) $\frac{\sqrt{2} \mu_{o} i^{2}}{\pi d}$
(d) $\frac{\mu_{o} i^{2}}{\sqrt{2} \pi \mathrm{~d}}$
6. A metallic rod of mass per unit length $0.5 \mathrm{~kg} \mathrm{~m}^{-1}$ is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep it stationery is:
1.7 .14 A
2. 5.98 A
3. 14.76 A
4. 11.32 A
7. The current sensitivity of a moving coil galvanometer is $5 \mathrm{div} / \mathrm{mA}$ and its voltage sensitivity (angular deflection per unit voltage applied) is $20 \mathrm{div} / \mathrm{V}$. The resistance of the galvanometer is:

1. 40Ω
2. 25Ω
3. 250Ω
4. 500Ω
5. A square loop ABCD carrying a current i is placed near and coplanar with a long straight conductor XY carrying a current I, the net force on the loop will be:

6. $\frac{\mu_{\mathrm{o}} \mathrm{Ii}}{2 \pi}$
7. $\frac{2 \mu_{\mathrm{o}} \mathrm{ILL}}{3 \pi}$
8. $\frac{\mu_{\mathrm{o}} \mathrm{IIL}}{2 \pi}$
9. $\frac{2 \mu_{\mathrm{o}} \mathrm{Ii}}{3 \pi}$
10.

A long straight wire of radius a ' carries a steady current I. The current is uniformly distributed over its cross-section. The ratio of the magnetic fields B and B^{\prime} at radial distances $\frac{a}{2}$ and 2 a respectively, from the axis of the wire, is:

1. $\frac{1}{2}$
2. 1
3. 4
4. $\frac{1}{4}$
5. A proton and an alpha particle both enter a region of uniform magnetic field B , moving at right angles to field B. If the radius of circular orbits for both the particles is equal and the kinetic energy acquired by the proton is 1 MeV , the energy acquired by the alpha particle will be:
6. 4 MeV
7. 0.5 MeV
8. 1.5 MeV
9. 1 MeV
10. A rectangular coil of length 0.12 m and width 0.1 m having 50 turns of wire is suspended vertically in a uniform magnetic field of strength $0.2 \mathrm{~Wb} / \mathrm{m}^{2}$. The coil carries a current of 2 A . If the plane of the coil is inclined at an angle of 30° with the direction of the field, the torque required to keep the coil in stable equilibrium will be:
11. 0.15 Nm
12. 0.20 Nm
13. 0.24 Nm
14. 0.12 Nm
15.

A wire carrying current I has the shape as shown in the adjoining figure. Linear parts of the wire are very long and parallel to X -axis while the semicircular portion of radius R is lying in the $\mathrm{Y}-\mathrm{Z}$ plane. The magnetic field at point O is:

1. $\mathrm{B}=\frac{\mu_{\mathrm{o}} \mathrm{i}}{4 \pi \mathrm{R}}(\pi \hat{\mathrm{i}}+2 \widehat{\mathrm{k}})$
2. $B=-\frac{\mu_{o} \mathrm{i}}{4 \pi R}(\pi \hat{\dot{i}}-2 \widehat{k})$
3. $\mathrm{B}=-\frac{\mu_{0} \mathrm{i}}{4 \pi \mathrm{R}}(\pi \hat{\mathrm{i}}+2 \widehat{\mathrm{k}})$
4. $\mathrm{B}=\frac{\mu_{\mathrm{o}} \mathrm{i}}{4 \pi \mathrm{R}}(\pi \hat{\mathrm{i}}-2 \widehat{\mathrm{k}})$
5. An electron moving in a circular orbit of radius r makes n rotations per second. The magnetic field produced at the centre has a magnitude:
(1) $\mu_{0} n \mathrm{ne} / 2 \pi \mathrm{r}$
(2) zero
(3) $n^{2} e / r$
(4) $\mu_{0 n \mathrm{ne} / 2 \mathrm{r}}$
6. In an ammeter 0.2% of main current passes through the galvanometer. If resistance of galvanometer is G, the resistance of ammeter will be:
7. $\frac{1}{499} G$
8. $\frac{499}{500} G$
9. $\frac{1}{500} G$
10. $\frac{500}{499} G$
11. Two identical long conducting wires AOB and COD are placed at the right angle to each other, with one above the other such that ' O ' is the common point for the two. The wires carry I_{1} and I_{2} currents, respectively. Point ' P ' is lying at distance 'd' from 'O' along a direction perpendicular to the plane containing the wires. The magnetic field at the point ' P ' will be :
12. $\frac{\mu_{0}}{2 \pi \mathrm{~d}}\left(\frac{I_{1}}{I_{2}}\right)$
13. $\frac{\mu_{0}}{2 \pi \mathrm{~d}}\left(I_{1}+I_{2}\right)$
14. $\frac{\mu_{0}}{2 \pi \mathrm{~d}}\left(I_{1}^{2}+I_{2}^{2}\right)$
15. $\frac{\mu_{0}}{2 \pi \mathrm{~d}}\left(I_{1}^{2}+I_{2}^{2}\right)^{1 / 2}$
16.

A current loop in a magnetic field:

1. can be in equilibrium in one orientation.
2. can be in equilibrium in two orientations, both the equilibrium states are unstable.
3. can be in equilibrium in two orientations, one stable while the other is unstable.
4. experiences a torque whether the field is uniform or non-uniform in all orientations.
5.

When a proton is released from rest in a room, it starts with an initial acceleration a_{0} towards the east. When it is projected towards the north with a speed v_{0}, it moves with initial acceleration $3 \mathrm{a}_{0}$ towards east. The electric and magnetic fields in the room are -

1. $\frac{\mathrm{Ma}_{0}}{\mathrm{e}}$ west, $\frac{\mathrm{Ma}_{0}}{\mathrm{ev}_{0}} \mathrm{up}$
2. $\frac{\mathrm{Ma}_{0}}{\mathrm{e}}$ west, $\frac{2 \mathrm{Ma}_{0}}{\mathrm{ev}_{0}}$ down
3. $\frac{\mathrm{Ma}_{0}}{\mathrm{e}}$ east, $\frac{2 \mathrm{Ma}_{0}}{\mathrm{ev}_{0}} \mathrm{up}$
4. $\frac{\mathrm{Ma}_{0}}{\mathrm{e}}$ east, $\frac{3 \mathrm{Ma}_{0}}{\mathrm{ev}_{0}}$ down
5. Two similar coils of radius R are lying concentrically with their planes at right angles to each other. The currents flowing in them are I and 2I, respectively. The resultant magnetic field induction at the center will be
6. $\frac{\sqrt{5} \mu_{0} I}{2 R}$
7. $\frac{3 \mu_{0} I}{2 R}$
8. $\frac{\mu_{0} I}{2 R}$
9. $\frac{\mu_{0} I}{R}$
10. A millivoltmeter of 25 mV range is to be converted into an ammeter of 25 A range. The value (in ohm) of necessary shunt will be:
11. 0.001
12. 0.01
13. 1
14. 0.05
15. An alternating electric field of frequency ν, is applied across the dees (radius $=\mathrm{R}$) of a cyclotron that is being used to accelerate protons (mass $=\mathrm{m}$). The operating magnetic field B , used in the cyclotron and the kinetic energy (K) of the proton beam, produced by it, are given by:
16. $\mathrm{B}=\frac{\mathrm{m} \nu}{\mathrm{e}}$ and $\mathrm{K}=2 \mathrm{~m} \pi^{2} \nu^{2} \mathrm{R}^{2}$
17. $\mathrm{B}=\frac{2 \pi \mathrm{~m} \nu}{\mathrm{e}}$ and $\mathrm{K}=\mathrm{m}^{2} \pi \nu \mathrm{R}^{2}$
18. $\mathrm{B}=\frac{2 \pi \mathrm{~m} \nu}{\mathrm{e}}$ and $\mathrm{K}=2 \mathrm{~m} \pi^{2} \nu^{2} \mathrm{R}^{2}$
19. $\mathrm{B}=\frac{\mathrm{m} \nu}{\mathrm{e}}$ and $\mathrm{K}=\mathrm{m}^{2} \pi \nu \mathrm{R}^{2}$
20. A current-carrying closed loop in the form of a right isosceles triangle ABC is placed in a uniform magnetic field acting along with AB . If the magnetic force on the $\operatorname{arm} \mathrm{BC}$ is F , the force on the $\operatorname{arm} \mathrm{AC}$ is :

21. -F
22. F
23. 2 F
24. -2 F
25. A uniform electric field and a uniform magnetic field are acting in the same direction in a certain region. If an electron is projected in the region such that its velocity is pointed along the direction of fields, then the electron:
26. speed will decrease
27. speed will increase
28. will turn towards the left of the direction of motion
29. will turn towards tight of direction a motion
30. A beam of cathode rays is subjected to cross Electric (E) and magnetic fields(B). The fields are adjusted such that the beam is not deflected. The specific charge of the cathode rays is given by
(1) $\frac{B^{2}}{2 V E^{2}}$
(2) $\frac{2 V B^{2}}{E^{2}}$
(3) $\frac{2 V E^{2}}{B^{2}}$
(4) $\frac{E^{2}}{2 V B^{2}}$
(where V is the potential difference between cathode and anode)
31. A thin ring of radius R metre has a charge q coulomb uniformly spread on it. The ring rotates about its axis with a constant frequency of f revolution/s. The value of magnetic induction in Wbm^{-2} at the centre of the ring is
(a) $\frac{\mu_{0} \mathrm{qf}}{2 \pi \mathrm{R}}$
(b) $\frac{\mu_{0} \mathrm{q}}{2 \pi \mathrm{fR}}$
(c) $\frac{\mu_{0} \mathrm{q}}{2 \mathrm{fR}}$
(d) $\frac{\mu_{0} q f}{2 R}$
32. A galvanometer has a coil of resistance 100Ω and gives a full-scale deflection for 30 mA current. If it is to work as a voltmeter of 30 V range, the resistance required to be added will be:
33. 900Ω
34. 1800Ω
35. 500Ω
36. 1000Ω
37. A square current-carrying loop is suspended in a uniform magnetic field acting in the plane of the loop. If the force on one arm of the loop is $\overrightarrow{\mathrm{F}}$, the net force on the remaining three arms of the loop is:
38. $3 \overrightarrow{\mathrm{~F}}$
39. $-\overrightarrow{\mathrm{F}}$
40. $-3 \overrightarrow{\mathrm{~F}}$
41. $\overrightarrow{\mathrm{F}}$
42. Under the influence of a uniform magnetic field, a charged particle moves with constant speed v in a circle of radius R . The time period of rotation of the particle:
43. depends on v and not on R.
44. depends on R and not on v.
45. is independent of both v and R.
46. depends on both v and R.
47.

The magnetic force acting on a charged particle of charge $-2 \mu \mathrm{C}$ in a magnetic field of 2 T acting in the y -direction, when the particle velocity is $(2 \hat{i}+3 \hat{j}) \times 10^{6} \mathrm{~ms}^{-1}$ is:

1. 8 N in - z -direction
2. 4 N in the z -direction
3. 8 N in the y -direction
4. 8 N in the z -direction
5.

A galvanometer having a coil resistance of 60Ω shows full-scale deflection when a current of. 1.0 A passes through it. It can be converted into an ammeter to read currents up to 5.0 A by:

1. Putting in parallel resistance of 24Ω
2. Putting in series resistance of 15Ω
3. Putting in series resistance of 240Ω
4. Putting in parallel resistance of 15Ω
5. A closed-loop PQRS carrying a current is placed in a uniform magnetic field. If the magnetic forces on segments $P S, S R$, and $R Q$ are F_{1}, F_{2}, and F_{3} respectively and are in the plane of the paper and along the directions shown. The force on the segment QP is:

6. $\mathrm{F}_{3}-\mathrm{F}_{1}-\mathrm{F}_{2}$
7. $\sqrt{\left(\mathrm{F}_{3}-\mathrm{F}_{1}\right)^{2}+\mathrm{F}_{2}^{2}}$
8. $\sqrt{\left(\mathrm{F}_{3}-\mathrm{F}_{1}\right)^{2}-\mathrm{F}_{2}^{2}}$
9. $\mathrm{F}_{3}-\mathrm{F}_{1}+\mathrm{F}_{2}$
10.

A particle of mass m, charge Q, and kinetic energy T enters a transverse uniform magnetic field of induction \vec{B} . After 3 sec , the kinetic energy of the particle will be :
(a) 3 T
(b) 2 T
(c) T
(d) 4 T
32.

A galvanometer of resistance 50Ω is connected to a battery of 3 V along with a resistance of 2950Ω in series. A full-scale deflection of 30 divisions is obtained in the galvanometer. In order to reduce its deflection to 20 divisions, the resistance added in series should be:

1. 1050Ω
2. 1550Ω
3. 2050Ω
4. 1500Ω
5. The resistance of an ammeter is 13Ω and its scale is graduated for a current up to 100 A. After an additional shunt has been connected to this ammeter, it becomes possible to measure currents up to 750 A by this ammeter. The value of shunt resistance is:
6. 20Ω
7. 2Ω
8. 0.2Ω
9. $2 \mathrm{k} \Omega$
10. Under the influence of a uniform magnetic field a charged particle is moving in a circle of radius R with constant speed v. The time period of the motion:
11. depends on v and not on R.
12. depends on both R and v.
13. is independent of both R and v.
14. Depends on R and not on v.
15. A charged particle (charge q) is moving in a circle of radius R with uniform speed v . The associated magnetic moment μ is given by:
16. $\frac{\mathrm{qvR}}{2}$
17. $q v R^{2}$
18. $\frac{\mathrm{qvR}^{2}}{2}$
19. $q v R$
20. In a mass spectrometer used for measuring the masses of ions, the ions are initially accelerated by an electric potential V and then made to describe semi-circular paths of radius R using a magnetic field B . If V and B are kept constant, the ratio $\frac{\text { Charge on the ion }}{\text { mass of the ion }}$, will be proportional to:
21. $\frac{1}{R}$
22. $\frac{1}{R^{2}}$
23. R^{2}
24. R
25. A beam of electrons passes un-deflected through mutually perpendicular electric and magnetic fields. If the electric field is switched off, and the same magnetic field is maintained, the electrons move:
26. in an elliptical orbit.
27. in a circular orbit.
28. along a parabolic path.
29. along a straight line.
30. When a charged particle moving with velocity $\overrightarrow{\mathrm{v}}$ is subjected to a magnetic field of induction \vec{B}, the force on it is non-zero. This implies that:
31. angle between \vec{v} and \vec{B} is necessarily 90°.
32. angle $\overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{B}}$ between can have any value other than 90°.
33. angle between \vec{v} and \vec{B} have any value other than zero and 180°.
34. angle between $\overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{B}}$ is either zero or 180°.
35. Two circular coils 1 and 2 are made from the same wire but the radius of the $1^{\text {st }}$ coil is twice that of the $2^{\text {nd }}$ coil. What is the ratio of the potential difference applied across them so that the magnetic field at their centres is the same?
1.3
36. 4
3.6
37. 2
38. A cylindrical conductor of radius R is carrying a constant current. The plot of the magnitude of the magnetic field B with the distance d from the centre of the conductor is correctly represented by the figure:
39.

3.

4.

41. Ionized hydrogen atoms and α-particles with same momenta enters perpendicular to a constant magnetic field, B. The ratio of their radii of their paths $r_{H}: r_{\alpha}$ will be:

1. 1:4
2. $2: 1$
3. $1: 2$
4. $4: 1$
5. Two toroids 1 and 2 have total no. of turns 200 and 100 respectively with average radii 40 cm and 20 cm respectively. If they carry the same current i, the ratio of the magnetic fields along the two loops is:
6. $1: 1$
7. 4:1
8. $2: 1$
9. 1:2
10. A straight conductor carrying current I splits into two parts as shown in the figure. The radius of the circular loop is R . The total magnetic field at the centre P of the loop is,

11. zero
12. $\frac{3 \mu_{0} i}{32 R}$, inward
13. $\frac{3 \mu_{0} i}{32 R}$, outward
14. $\frac{\mu_{0} i}{2 R}$, inward
15. A long solenoid of 50 cm length having 100 turns carries a current of 2.5 A . The magnetic field at the centre of the solenoid is:
$\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1}\right)$
16. $3.4 \times 10^{-4} T$
17. $6.28 \times 10^{-5} T$
18. $3.14 \times 10^{-5} T$
19. $6.28 \times 10^{-4} T$
20. A wire of length L meter carrying a current of I ampere is bent in the form of a circle. Its magnetic moment is,
21. $\frac{\mathrm{IL}^{2}}{4} \mathrm{~A}-\mathrm{m}^{2}$
22. $\frac{\mathrm{I} \times \pi \mathrm{L}^{2}}{4} \mathrm{~A}-\mathrm{m}^{2}$
23. $\frac{2 \mathrm{IL}^{2}}{\pi} \mathrm{~A}-\mathrm{m}^{2}$
24. $\frac{\mathrm{LL}^{2}}{4 \pi} \mathrm{~A}-\mathrm{m}^{2}$
25. A proton carrying 1 MeV kinetic energy is moving in a circular path of radius R in uniform magnetic field. What should be the energy of an α-particle to describe a circle of the same radius in the same field?
26. 1 MeV
27. 0.5 MeV
28. 4 MeV
29. 2 MeV
30. A galvanometer of resistance, G, is shunted by a resistance S ohm. To keep the main current in the circuit unchanged the resistance to be put in series with the galvanometer is
31. $\frac{\mathrm{G}}{(\mathrm{S}+\mathrm{G})}$
32. $\frac{\mathrm{S}^{2}}{(\mathrm{~S}+\mathrm{G})}$
33. $\frac{\mathrm{SG}}{(\mathrm{S}+\mathrm{G})}$
34. $\frac{\mathrm{G}^{2}}{(\mathrm{~S}+\mathrm{G})}$
35. Charge q is uniformly spread on a thin ring of radius R . The ring rotates about its axis with a uniform frequency fHz . The magnitude of magnetic induction at the center of the ring is
36. $\frac{\mu_{0} \mathrm{qf}}{2 \pi \mathrm{R}}$
37. $\frac{\mu_{0} \mathrm{qf}}{2 \mathrm{R}}$
38. $\frac{\mu_{0} \mathrm{q}}{2 \mathrm{fR}}$
39. $\frac{\mu_{0} \mathrm{q}}{2 \pi \mathrm{fR}}$
40. A square loop, carrying a steady current I, is placed in a horizontal plane near a long straight conductor carrying a steady current I1 at a distance d from the conductor as shown in figure. The loop will experience :

41. a net attractive force towards the conductor
42. a net repulsive force away from the conductor 3. a net torque acting upward perpendicular to the horizontal plane
43. a net torque acting downward normal to the horizontal plane
44. A current loop consists of two identical semicircular parts each of radius R, one lying in the $x-y$ plane and the other in $x-z$ plane. If the current in the loop is i. The resultant magnetic field due to the two semicircular parts at their common centre is -
45. $\frac{\mu_{0} i}{2 R}$
46. $\frac{\mu_{0} i}{4 R}$
47. $\frac{\mu_{0} i}{\sqrt{2} R}$
48. $\frac{\mu_{0} i}{2 \sqrt{2} R}$
49. A closely wound solenoid of 2000 turns and area of cross-section $1.5 \times 10^{-4} \mathrm{~m}^{2}$
carries a current of 2.0 A . It is suspended through its centre and perpendicular to its length allowing it to turn in a horizontal plane in a uniform magnetic field 5×10^{-2} Tesla making an angle of 30° with the axis of the solenoid. The torque on the solenoid will be -
50. $1.5 \times 10^{-3} \mathrm{~N} . \mathrm{m}$
51. $1.5 \times 10^{-2} \mathrm{~N} . \mathrm{m}$
52. 3×10^{-2} N.m
53. 3×10^{-3} N.m
54. A particle having a mass of $10^{-2} \mathrm{~kg}$ carries a charge of $5 \times 10^{-8} \mathrm{C}$. The particle is given an initial horizoantal velocity of $10^{5} \mathrm{~ms}^{-1}$ in the presence of electric field \vec{E} and magnetic field \vec{B}. To keep the particle moving in a horizontal direction, it is necessary that -
(a) \vec{B} should be perpendicular to the direction of velocity and \vec{E} should be along the direction of velocity.
(b) Both \vec{B} and \vec{E} should be along the direction of velocity.
(c) Both \vec{B} and \vec{E} are mutually perpendicularand perpendicular to the direction of velocity
(d) \vec{B} should be along the direction of velocityand \vec{E} should be perpendicualr to the direction of velocity.

Which one of the following pairs of statements is possible $?$

1. (c) and (d)
2. (b) and (c)
3. (b) and (d)
4. (a) and (c)
5. A coil of one loop is made from a wire of length L and thereafter a coil of two loops is made from same wire, then the ratio of magnetic field at the centre of coils will be :
6. $1: 4$
7. $1: 1$
8. $1: 8$
9. $4: 1$
10. For adjoining fig., the magnetic field at point, ' P ' will be :

11. $\frac{\mu_{0}}{4 \pi} \odot$
12. $\frac{\mu_{0}}{\pi} \otimes$
13. $\frac{\mu_{0}}{2 \pi} \otimes$
14. $\frac{\mu_{0}}{2 \pi} \odot$
15. A charge having q / m equal to $10^{8} \mathrm{c} / \mathrm{kg}$ and with velocity $3 \times 10^{5} \mathrm{~m} / \mathrm{s}$ enters into a uniform magnetic field $\mathrm{B}=0.3$ tesla at an angle 30° with direction of field. Then radius of curvature will be :
1.0 .01 cm
16. 0.5 cm
3.1 cm
17. 2 cm
18. An electron moves in a circular orbit with a uniform speed v. It produces a magnetic field B at the centre of the circle. The radius of the circle is proportional to :
19. $\sqrt{\frac{\mathrm{v}}{\mathrm{B}}}$
20. $\frac{\mathrm{v}}{\mathrm{B}}$
21. $\frac{B}{v}$
22. $\sqrt{\frac{B}{v}}$
23. A very long straight wire carries a current I. At the instant when a charge $+Q$ at point P has velocity \vec{v}, as shown, the force on the charge is

(1) Along ox
(2) Opposite to oy
(3) Along oy
(4) Opposite to ox
24. Resistance of a Galvanometer coil is 8Ω and 2Ω shunt resistance is connected with it. If main current is 1 A then the current flow through 2Ω resistance will be:
25. 0.2 A
26. 0.8 A
27. 0.1 A
28. 0.4 A
29. A coil in the shape of an equilateral triangle of side 1 is suspended between the pole pieces of a permanent magnet such that $\overrightarrow{\mathrm{B}}$ is in the plane of the coil. If due to a current i in the triangle a torque τ acts on it, the side 1 of the triangle is:
30. $\frac{2}{\sqrt{3}}\left(\frac{\tau}{\mathrm{Bi}}\right)$
31. $\frac{1}{\sqrt{3}} \frac{\tau}{\mathrm{Bi}}$
32. $2\left(\frac{\tau}{\sqrt{3} \mathrm{Bi}}\right)^{\frac{1}{2}}$
33. $\frac{2}{\sqrt{3}}\left(\frac{\tau}{\mathrm{Bi}}\right)^{\frac{1}{2}}$
34. Two long parallel wires are at a distance of 1 m . If both of them carry one ampere of current in same direction, then the force of attraction on unit length of the wires will be :
35. $2 \times 10^{-7} \mathrm{~N} / \mathrm{m}$
36. $4 \times 10^{-7} \mathrm{~N} / \mathrm{m}$
$3.8 \times 10^{-7} \mathrm{~N} / \mathrm{m}$
37. $10^{-7} \mathrm{~N} / \mathrm{m}$
38. A galvanometer acting as a voltmeter will have:
(1) high resistance in series with its coil
(2) low resistance in parallel with its coil
(3) low resistance in series with its coil
(4) high resistance in parallel with its coil
39. A galvanometer of 50 -ohm resistance has 25 divisions. A current of 4×10^{-4} ampere gives a deflection of one division. To convert this galvanometer into a voltmeter having a range of 25 volts, it should be connected with a resistance of:
(1) 245Ω as a shunt
(2) 2550Ω in series
(3) 2450Ω in series
(4) 2500Ω as a shunt
40. Two identically charged particles A and B initially at rest, are accelerated by a common potential difference V . They enters into a transverse uniform magnetic field B . They describe a circular path of radii r_{1} and r_{2} respectively then their mass ratio is :
41. $\left(\frac{r_{1}}{r_{2}}\right)^{2}$
42. $\left(\frac{r_{2}}{r_{1}}\right)^{2}$
43. $\left(\frac{r_{1}}{r_{2}}\right)$
44. $\left(\frac{r_{2}}{r_{1}}\right)$
45. To convert a galvanometer into a voltmeter one should connect a : -
(1) High resistance in series with galvanometer
(2) Low resistance in series with galvanometer
(3) High resistance in parallel with galvanometer
(4) Low resistance in parallel with galvanometer
46. A current carrying coil ($\mathrm{I}=5 \mathrm{~A}, \mathrm{R}=10 \mathrm{~cm}$.) having 50 number of turns find field at its centre-
47. 1.57 mT
48. 3.14 mT
49. 1 mT
50. 2 mT
51. The magnetic field of given length of wire for single turn coil at its centre is 'B' then its value for two turns coil for the same wire is :-
52. $\frac{B}{4}$
53. $\frac{B}{2}$
54. 4 B
55. 2B
56. A charge ' q ' moves in a region where electric field and magnetic field both exist, then force on it is : -
57. $q(\overrightarrow{\mathrm{~V}} \times \overrightarrow{\mathrm{B}})$
58. $q \overrightarrow{\mathrm{E}}+q(\overrightarrow{\mathrm{~V}} \times \overrightarrow{\mathrm{B}})$
59. $q \overrightarrow{\mathrm{E}}+q(\overrightarrow{\mathrm{~B}} \times \overrightarrow{\mathrm{V}})$
60. $q \vec{B}+q(\vec{E} \times \vec{V})$
61. An electron having mass ' m ' and kinetic energy E enter in uniform magnetic field B perpendicularly, then its frequency will be:
62. $\frac{e E}{q V B}$
63. $\frac{2 \pi \mathrm{~m}}{e B}$
64. $\frac{e B}{2 \pi \mathrm{~m}}$
65. $\frac{2 m}{e B E}$
66. In Thomson mass spectrograph $\vec{E} \perp \vec{B}$ then the velocity of the undeflected electron beam will be :
67. $\frac{\mid \overrightarrow{E \mid}}{\mid \overrightarrow{B \mid}}$
68. $\vec{E} \times \vec{B}$
69. $\frac{\mid \overrightarrow{B \mid}}{\mid \overrightarrow{E \mid}}$
70. $\frac{E^{2}}{B^{2}}$
71. Tangent galvanometer is used to measure :-
72. Potential difference
73. Current
74. Resistance
75. In measuring charge
76. If number of turn, area and current through it is given by n , A and i respectively then its magnetic moment will be :-
77. niA
78. $n^{2} i A$
79. $n i A^{2}$
80. $\frac{n i}{\sqrt{\bar{A}}}$
81. A long solenoid carrying a current produces a magnetic field B along its axis. If the current is doubled and the number of turns per cm is halved, the new value of the magnetic field is -
(1) $B / 2$
(2) B
(3) 2 B
(4) 4B
82. A charged particle moves through a magnetic field in a direction perpendicular to it. Then the
(1) Speed of the particle remains unchanged
(2) Direction of the particle remains unchanged
(3) Acceleration remains unchanged
(4) Velocity remains unchanged
83. A thick current-carrying cable of radius 'R' carries current 'I' uniformly distributed across its cross-section. The variation of magnetic field $B(r)$ due to the cable with the distance ' r ' from the axis of the cable is represented by:

84.

75. An infinitely long straight conductor carries a current of 5 A as shown. An electron is moving with a speed of $10^{5} \mathrm{~m} / \mathrm{s}$ parallel to the conductor. The perpendicular distance between the electron and the conductor is 20 cm at an instant. Calculate the magnitude of the force experienced by the electron at that instant.

Electron $\mathrm{v}=10^{5} \mathrm{~m} / \mathrm{s}$

1. $4 \pi \times 10^{-20} \mathrm{~N}$
2. $8 \times 10^{-20} \mathrm{~N}$
$3.4 \times 10^{-20} \mathrm{~N}$
3. $8 \pi \times 10^{-20} \mathrm{~N}$
4. A uniform conducting wire of length 12 a and resistance ' R ' is wound up as a current carrying coil in the shape of,
(i) an equilateral triangle of side 'a'
(ii) a square of side 'a'

The magnetic dipole moments of the coil in each case respectively are:

1. $3 \mathrm{Ia}^{2}$ and $4 \mathrm{Ia}^{2}$
2. $4 \mathrm{Ia}^{2}$ and $3 \mathrm{Ia}^{2}$
3. $\sqrt{3} \mathrm{Ia}^{2}$ and $3 \mathrm{Ia}^{2}$
4. $3 \mathrm{Ia}^{2}$ and Ia^{2}
5. In the product

$$
\begin{aligned}
\vec{F} & =q(\vec{v} \times \vec{B}) \\
& =q \vec{v} \times(B \hat{i}+B \hat{j}+B \widehat{k})
\end{aligned}
$$

For $q=1$ and $\vec{v}=2 \hat{i}+4 \hat{j}+6 \widehat{k}$ and

$$
\overrightarrow{\mathrm{F}}=4 \hat{\mathrm{i}}-20 \hat{\mathrm{j}}+12 \widehat{\mathrm{k}}
$$

What will be the complete expression for $\overrightarrow{\mathrm{B}}$?

1. $8 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}-6 \widehat{\mathrm{k}}$
2. $6 \hat{i}+6 \hat{j}-8 \widehat{k}$
3. $-8 \hat{\mathbf{i}}-8 \hat{\mathbf{j}}-6 \widehat{\mathbf{k}}$
4. $-6 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}-8 \widehat{\mathrm{k}}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

Magnetism \& Matter
(Expected Questions in NEET 2022: 1)

Subtopic Name	Number of Questions
Magnetic materials	10
Bar Magnet	$\mathbf{7}$
Earth's Magnetism	5
Curie's Law and Hysteresis	4
Analogy between Magnetostatics	2
Magnetization \& Magnetic Intensity	1

Magnetism \& Matter - NCERT based PYQs

1. If θ_{1} and θ_{2} be the apparent angles of dip observed in two vertical planes at right angles to each other, then the true angle of $\operatorname{dip} \theta$ is given by:-
2. $\tan ^{2} \theta=\tan ^{2} \theta_{1}+\tan ^{2} \theta_{2}$
3. $\cot ^{2} \theta=\cot ^{2} \theta_{1}-\cot ^{2} \theta_{2}$
4. $\tan ^{2} \theta=\tan ^{2} \theta_{1}+\tan ^{2} \theta_{2}$
5. $\cot ^{2} \theta=\cot ^{2} \theta_{1}+\cot ^{2} \theta_{2}$
6. A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The work required to do this comes from
7. the current source
8. the magnetic field
9. the lattice structure of the material of the rod
10. the induced electric field due to the changing magnetic field.
11.

The magnetic susceptibility is negative for:

1. Paramagnetic material only
2. Ferromagnetic material only
3. Paramagnetic and ferromagnetic materials
4. Diamagnetic material only
5. Following figures show the arrangement of bar magnets in different configurations. Each magnet has magnetic dipole. Which configuration has highest net magnetic dipole moment?
(a)

(b)

N	S
S	N

(c)

(d)

1. a
2. b
3. c
4. d
5.

A bar magnet of length ' l ' and magnetic dipole moment ' M ' is bent in the form of an arc as shown in figure. The new magnetic dipole moment will be:

1. $3 \mathrm{M} / \pi$
2. $2 \mathrm{M} / 1 \pi$
3. $\mathrm{M} / 2$
4. M

Magnetism \& Matter - NCERT based PYQs

6. A compass needle which is allowed to move in a horizontal plane is taken to a geomagnetic pole. It
7. will become rigid showing no movement
8. will stay in any position
9. will stay in north-south direction only
10. will stay in east-west direction only
11.

There are four light-weight-rod samples $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ separately suspended by threads. A bar magnet is slowly brought near each sample and the following observations are noted:
(i) A is feebly repelled.
(ii) B is feebly attracted.
(iii) C is strongly attracted.
(iv) D remains unaffected .

Which one of the following is true?

1. C is of a diamagnetic material.
2. D is of a ferromagnetic material.
3. A is of a non-magnetic material.
4. B is of a paramagnetic material.
5. A vibration magnetometer placed in a magnetic meridian has a small bar magnet. The magnet executes oscillations with a time period of 2 s in earth's horizontal magnetic field of $24 \mu \mathrm{~T}$. When a horizontal field of $18 \mu \mathrm{~T}$ is produced opposite to the earth's field by placing a current-carrying wire, the new time period of the magnet will be
6. Electromagnets are made of soft iron because soft iron has:
7. low retentivity and high coercive force
8. high retentivity and high coercive force
9. low retentivity and low coercive force
10. high retentivity and low coercive force
11. If a diamagnetic substance is brought near the north or the south pole of a bar magnet, it is:
12. Repelled by both the poles
13. Repelled by the north pole and attracted by the south pole
14. Attracted by the north pole and repelled by the south pole
15. Attracted by both the poles
16.

A bar magnet having a magnetic moment of $2 \times 10^{4} \mathrm{JT}^{-}$ 1 is free to rotate in a horizontal plane. A horizontal magnetic field $\mathrm{B}=6 \times 10^{-4} \mathrm{~T}$ exists in the space. The work done in taking the magnet slowly from a direction parallel to the field to a direction 60° from the field is

1. 0.6 J
2. 12 J
3. 6 J
4. 2 J
5. 1 s
6. 2 s
7. 3 s
8. 4 s

Magnetism \& Matter - NCERT based PYQs

12.

Curie temperature is the temperature above which:

1. Ferromagnetic material becomes paramagnetic material.
2. Paramagnetic material becomes diamagnetic material.
3. Paramagnetic material becomes ferromagnetic material.
4. Ferromagnetic material becomes diamagnetic material.
5. Nickel shows the ferromagnetic property at room temperature. If the temperature is increased beyond Curie temperature, then it will show:
6. paramagnetism
7. anti-ferromagnetism
8. no magnetic property
9. diamagnetism
10. Above Curie temperature:
11. a ferromagnetic substance becomes paramagnetic.
12. a paramagnetic substance becomes diamagnetic.
13. a diamagnetic substance becomes paramagnetic.
14. a paramagnetic substance becomes ferromagnetic.
15. At point A on the earth's surface, the angle of dip is, $\delta=+25^{\circ}$. At a point B on the earth's surface, the angle of dip is, $\delta=-25^{\circ}$. We can interpret that:
16. A and B are both located in the southern hemisphere.
17. A and B are both located in the northern hemisphere.
18. A is located in the southern hemisphere and B is located in the northern hemisphere.
19. A is located in the northern hemisphere and B is located in the southern hemisphere.
20. The relations amongst the three elements of Earth's magnetic field, namely horizontal component H , vertical component V and dip angle δ is: ($B_{E}=$ total magnetic field)
21. $\mathrm{V}=B_{E} \tan \delta, \mathrm{H}=B_{E}$
22. $\mathrm{V}=B_{E} \sin \delta, \mathrm{H}=B_{E} \cos \delta$
23. $\mathrm{V}=B_{E} \cos \delta, \mathrm{H}=B_{E} \sin \delta$
24. $\mathrm{V}=B_{E}, \mathrm{H}=B_{E} \tan \delta$
25. An iron rod of susceptibility 599 is subjected to a magnetising field of $1200 \mathrm{~A} \mathrm{~m}^{-1}$. The permeability of the material of the rod is:
$\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1}\right)$
26. $8.0 \times 10^{-5} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1}$
27. $2.4 \pi \times 10^{-5} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1}$
28. $2.4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1}$
29. $2.4 \pi \times 10^{-4} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1}$
30. A magnetic needle suspended parallel to a magnetic field requires $\sqrt{3} \mathrm{~J}$ of work to turn it through 60°. The torque needed to maintain the needle in this position will be:
31. 3 J
32. $\sqrt{3} J$
33. $\frac{3}{2} J$
34. $2 \sqrt{3} J$
35. A short bar magnet of magnet moment 0.4 JT^{-1} is placed in a uniform magnetic field of
0.16 T. The magnet is in stable equilibrium when the potential energy is :
36. 0.064 J
37. -0.064 J
38. Zero
39. -0.082 J

Magnetism \& Matter - NCERT based PYQs

20. The magnetic moment of a diamagnetic atom is
21. 1
22. between zero and one
23. equal to zero
24. much greater than one
25. Two identical bar magnets are fixed with their centres at a distance d apart. A stationary charge Q is placed at P in between the gap of the two magnets at distance D from the centre O as shown in the figure -

The force on the charge Q is in-

1. direction along OP
2. direction along PQ
3. direction perpendicular to the plane of paper
4. zero
5. For protecting a magnetic needle it should be placed
6. In iron box
7. In wooden box
8. In metallic box
9. None of these
10. If the magnetic dipole moment of an atom of diamagnetic material, paramagnetic material and ferromagnetic material are denoted by $\mu_{\mathrm{d}}, \mu_{\mathrm{p}}$, and μ_{f} respectively, then-
(1) $\mu_{\mathrm{p}}=0$ and $\mu_{\mathrm{f}} \neq 0$
(2) $\mu_{d} \neq 0$ and $\mu_{p}=0$
(3) $\mu_{\mathrm{d}} \neq 0$ and $\mu_{\mathrm{f}} \neq 0$
(4) $\mu_{d}=0$ and $\mu_{p} \neq 0$
11. For a vibration magnetometer, the time period of the suspended bar magnet can be reduced by:
12. Moving it towards the south pole
13. Moving it towards the north pole
14. Moving it towards the equator
15. Anyone of them
16. Two bar magnets having same geometry with magnetic moments M and 2 M , are firstly placed in such a way that their similer poles are same side then its time period of osccilation is T_{1}. Now the polarity of one of the magnet is reversed then time period of oscilation is T_{2}, then : -
17. $\mathrm{T}_{1}<\mathrm{T}_{2}$
18. $\mathrm{T}_{1}=\mathrm{T}_{2}$
19. $\mathrm{T}_{1}>\mathrm{T}_{2}$
20. $\mathrm{T}_{2}=\infty$
21. Among which the magnetic susceptibility does not depend on the temperature:
22. Dia-magnetism
23. Paramagnetism
24. Ferro-magnetism
25. Ferrite

Magnetism \& Matter - NCERT based PYQs

27. A bar magnet is oscillating in the Earth's magnetic field with a period T. What happens to this period and motion if this mass is quadrupled -
(1) Motion remains S.H. with time period $=T / 2$
(2) Motion remains S.H. with time period $=2 \mathrm{~T}$
(3) Motion remains S.H. with time period $=4 \mathrm{~T}$
(4) Motion remains S.H. with time and period remains nearly constant
28. According to Curie's law, the magnetic susceptibility of a substance at an absolute temperature T is proportional to:
(1) $1 / \mathrm{T}$
(2) T
(3) $1 / T^{2}$
(4) T^{2}
29. Diamagnetic material in a magnetic field moves:
(1) from stronger to the weaker parts of the field
(2) from weaker to the stronger parts of the field
(3) perpendicular to the field
(4) in none of the above directions

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Electromagnetic Induction

 (Expected Questions in NEET 2022: 2)| Subtopic Name | Number of
 Questions |
| :--- | :---: |
| Faraday's Law \& Lenz | 11 |
| Law | $\mathbf{7}$ |
| Self - Inductance | $\mathbf{6}$ |
| Motional emf | $\mathbf{4}$ |
| Magnetic Flux | $\mathbf{3}$ |
| Mutual Inductance | $\mathbf{1}$ |
| Eddy Current | |

1. The magnetic potential energy stored in a certain inductor is 25 mJ , when the current in the inductor is 60 mA . This inductor is of inductance :
2. 0.138 H
3. 138.88 H
4. 1.389 H
5. 13.89 H
6. A long solenoid of diameter 0.1 m has 2×10^{4} turns per meter. At the center of the solenoid, a coil of 100 turns and radius 0.01 m is placed with its axis coinciding with solenoid axis. The current in the solenoid reduces at a constant rate to 0 A from 4 A in 0.05 s . If the resistance of the coil is $10 \pi^{2} \Omega$. The total charge flowing through the coil during this time is:-
7. $16 \mu \mathrm{C}$
8. $32 \mu \mathrm{C}$
9. $16 \pi \mu C$
10. $32 \pi \mu C$
11. A uniform magnetic field is restricted within a region of radius r. The magnetic field changes with time at a rate $\frac{d B}{d t}$. Loop 1 of radius $R>r$ encloses the region r and loop 2 of radius R is outside the region of the magnetic field as shown in the figure. Then, the emf generated is:

4.

A long solenoid has 1000 turns. When a current of 4 A flows through it, the magnetic flux linked with each turn of the solenoid is $4 \times 10^{-3} \mathrm{~Wb}$. The self-inductance of the solenoid is:

1. 3 H
2. 2 H
3. 1 H
4. 4 H
5. An electron moves on a straight-line path XY as shown. The abcd is a coil adjacent to the path of electrons. What will be the direction of current if any, induced in the coil?

6. abcd
7. adcb
8. The current will reverse its direction as the electron goes past the coil
9. No current included
10. Zero in loop 1 and zero loop 2
11. $-\frac{\mathrm{dB}}{\mathrm{dt}} \pi \mathrm{r}^{2}$ in loop 1 and zero in loop 2
12. $-\frac{\mathrm{dB}}{\mathrm{dt}} \pi \mathrm{R}^{2}$ in loop 1 and zero in loop 2
13. Zero in loop 1 and not defined in loop 2

6.

A conducting square frame of side 'a' and a long straight wire carrying current I are located in the same plane as shown in the figure. The frame moves to the right with a constant velocity ' v '. The emf induced in the frame will be proportional to:

1. $\frac{1}{x^{2}}$
2. $\frac{1}{(2 x-a)^{2}}$
3. $\frac{1}{(2 x+a)^{2}}$
4. $\frac{1}{(2 x-a)(2 x+a)}$
5. A thin semicircular conducting the ring (PQR) of radius ' r ' is falling with its plane vertical in a horizontal magnetic field B, as shown in figure. The potential difference developed across the ring when its speed is v is:

1. Zero

2. $B v \pi \mathrm{r}^{2} / 2$ and P is at the higher potential
3. $\pi \mathrm{rBv}$ and R is at the higher potential
4. 2 BvR and R is at the higher potential

8.

A coil of self-inductance L is connected in series with a bulb B and an AC source. The brightness of the bulb decreases when :

1. number of turns in the coil is reduced.
2. a capacitance of reactance $X_{C}=X_{L}$ is included in the same circuit
3. an iron rod is inserted in the coil
4. frequency of the AC source is decreased
5.

A wire loop is rotated in a magnetic field. The frequency of change of direction of the induced e.m.f. is:

1. twice per revolution.
2. four times per revolution.
3. six times per revolution.

4 . once per revolution.
10. A coil of resistance 400Ω is placed in a magnetic field. If the magnetic flux $\phi(\mathrm{Wb})$ linked with the coil varies with time $\mathrm{t}(\mathrm{sec})$ as $\phi=50 t^{2}+4$.
The current in the coil at $t=2 \mathrm{~s}$ is:

1. 0.5 A
2. 0.1 A
3. 2 A
4. 1 A
5. The current (I) in the inductance is varying with time according to the plot shown in the figure.

Which one of the following is the correct variation of voltage with time in the coil?
1.

3.

4.

4.
13. A conducting circular loop is placed in a uniform magnetic field, $\mathrm{B}=0.025 \mathrm{~T}$ with its plane perpendicular to the loop. The radius of the loop is made to shrink at a constant rate of $1 \mathrm{mms}^{-1}$. The induced emf when the radius is 2 cm is:

1. $2 \pi \mu \mathrm{~V}$
2. $\pi \mu \mathrm{V}$
3. $\frac{\pi}{2} \mu V$
4. $2 \mu \mathrm{~V}$
5. A conducting circular loop is placed in a uniform magnetic field 0.04 T with its plane perpendicular to the magnetic field. The radius of the loop starts shrinking at rate of $2 \mathrm{~mm} / \mathrm{s}$. The induced emf in the loop when the radius is 2 cm is:
6. $3.2 \pi \mu \mathrm{~V}$
7. $4.8 \pi \mu \mathrm{~V}$
8. $0.8 \pi \mu \mathrm{~V}$
9. $1.6 \pi \mu \mathrm{~V}$
10. A rectangular, a square, a circular and an elliptical loop, all in the ($\mathrm{x}-\mathrm{y}$) plane, are moving out of a uniform magnetic field with a constant velocity, $\vec{v}=v \hat{i}$. The magnetic field is directed along the negative z -axis direction. The induced emf, during the passage of these loops out of the field region, will not remain constant for:
11. the rectangular, circular and elliptical loops.
12. the circular and the elliptical loops.
13. only the elliptical loop.
14. any of the four loops.
15.

A long solenoid has 500 turns. When a current of 2 A is passed through it, the resulting magnetic flux linked with each turn of the solenoid is $4 \times 10^{-3} \mathrm{~Wb}$. The selfinductance of the solenoid is:

1. 2.5 V
2. 2.0 H
3. 1.0 H
4. 4.0 H

17.

A circular disc of radius 0.2 m is placed in a uniform magnetic field of induction $\frac{1}{\pi}\left(\frac{W b}{m^{2}}\right)$ in such a way that its axis makes an angle of 60° with \vec{B}. The magnetic flux linked with the disc is:

1. 0.02 Wb
2. 0.06 Wb
3. 0.08 Wb
4. 0.01 Wb
5. The primary and secondary coils of a transformer have 50 and 1500 turns respectively. If the magnetic flux ϕ linked with the primary coil is given by $\phi=\phi_{0}+4 t$, where ϕ is in weber, t is time in second and ϕ_{0} is a constant, the output voltage across the secondary coil is:
6. 90 V
7. 120 V
8. 220 V
9. 30 V
10. Two coils of self-inductance 2 mH and 8 mH are placed so close together that the effective flux in one coil is completely linked with the other. The mutual inductance between these coils is:
11. 10 mH
12. 6 mH
13. 4 mH
14. 16 mH
15. In which of the following devices, the eddy current effect is not used?
16. Electric heater
17. Induction furnace
18. Magnetic braking in train
19. Electromagnet
20. A 800 turn coil of effective area $0.05 m^{2}$ is kept perpendicular to a magnetic field $5 \times 10^{-5} T$. When the plane of the coil is rotated by 90° around any of its coplanar axis in 0.1 s , the emf induced in the coil will be:
21. 0.02 V
22. 2 V
23. 0.2 V
24. $2 \times 10^{-3} V$
25. A cycle wheel of radius 0.5 m is rotated with a constant angular velocity of $10 \mathrm{rad} / \mathrm{s}$ in a region of a magnetic field of 0.1 T which is perpendicular to the plane of the wheel. The EMF generated between its centre and the rim is:
26. 0.25 V
27. The magnetic flux linked with a coil (in Wb) is given by the equation $\phi=5 \mathrm{t}^{2}+3 \mathrm{t}+60$.
The magnitude of induced emf in the coil at $t=4 \mathrm{~s}$ will be:
28. 33 V
29. 43 V
30. 108 V
31. 10 V
32. A wheel with 20 metallic spokes, each 1 m long, is rotated with a speed of 120 rpm in a plane perpendicular to a magnetic field of 0.4 G . The induced emf between the axle and rim of the wheel will be, ($1 \mathrm{G}=10^{-4} \mathrm{~T}$)
33. $2.51 \times 10^{-4} V$
34. $2.51 \times 10^{-5} V$
35. $4.0 \times 10^{-5} \mathrm{~V}$
36. 2.51 V
37. In a coil of resistance 10Ω, the induced current develpoed by changing magnetic flux through it, is shown in figure as a function of time. The magnitude of change in flux through the coil in Weber is -

38. 2
39. 6
40. 4
41. 8
42. 0.125 V
43. 0.5 V
44. zero
45. Two coils have a mutual inductance 0.005 H . The current changes in first coil according to equation $I=I_{0} \sin \omega \mathrm{t}$ where $I_{0}=2 \mathrm{~A}$ and
$\omega=100 \pi \mathrm{rad} / \mathrm{sec}$. The maximum value of emf in second coil is :
46. 4π
47. 3π
48. 2π
49. π
50. As a result of a change in the magnetic flux linked to the closed-loop shown in the figure, an e.m.f., V volt is induced in the loop. The work done (joules) in taking a charge Q coulomb once along the loop is:

(1) QV
(2) $Q V / 2$
(3) 2 QV
(4) Zero
51. Initially plane of coil is parallel to the uniform magnetic field B . In time $\Delta \mathrm{t}$ it makes to perpendicular to the magnetic field, then charge flows in $\Delta \mathrm{t}$ depends on this time as -

1. $\propto \Delta t$

2. $\propto \frac{1}{\Delta t}$
3. $\propto(\Delta t)^{0}$
4. $\propto(\Delta t)^{2}$
5. For an inductor coil, $\mathrm{L}=0.04 \mathrm{H}$, then work done by a source to establish a current of 5 A in it is:
6. 0.5 J
7. 1.00 J
8. 100 J
9. 20 J
10. The magnetic flux through a circuit of resistance R changes by an amount $\Delta \phi$ in a time $\Delta \mathrm{t}$. Then the total quantity of electric charges Q that passes any point in the circuit during the time $\Delta \mathrm{t}$ is represented by :-
(1) $\mathrm{Q}=\frac{\Delta \phi}{\mathrm{R}}$
(2) $\mathrm{Q}=\frac{\Delta \phi}{\Delta \mathrm{t}}$
(3) $\mathrm{Q}=\mathrm{R} \cdot \frac{\Delta \phi}{\Delta \mathrm{t}}$
(4) $\mathrm{Q}=\frac{1}{\mathrm{R}} \cdot \frac{\Delta \phi}{\Delta \mathrm{t}}$
11. For a coil having $\mathrm{L}=2 \mathrm{mH}$, current flow through it is $\mathrm{I}=\mathrm{t}^{2} \mathrm{e}^{-\mathrm{t}}$, then the time at which emf becomes zero :-
12. 2 s
13. 1 s
14. 4 s
15. 3 s
16. Two conducting circular loops of radii R_{1} and R_{2} are placed in the same plane with their centres coinciding. If $R_{1} \gg R_{2}$, the mutual inductance M between them will be directly proportional to:
17. $\frac{\mathrm{R}_{1}^{2}}{\mathrm{R}_{2}}$
18. $\frac{\mathrm{R}_{2}^{2}}{\mathrm{R}_{1}}$
19. $\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}$
20. $\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

Alternating Current

(Expected Questions in NEET 2022: 1)

Subtopic Name	Number of Questions
Different Types of AC Circuits	19
Power factor	6
Transformer	6
RMS \& Average Values	5
LC Oscillations	2
AC Generator	1

1. Which of the following combinations should be 5
selected for better tuning of an L-C-R circuit used for A small-signal voltage $\mathrm{V}(\mathrm{t})=\mathrm{V}_{0} \sin \omega \mathrm{t}$ is applied across an communication?
(1) $R=20 \Omega, L=1.5 H, C=35 \mu F$
(2) $R=25 \Omega, L=2.5 H, C=45 \mu F$
(3) $R=15 \Omega, L=3.5 H, C=30 \mu F$
(4) $R=25 \Omega, L=1.5 H, C=45 \mu F$
2. The potential differences across the resistance, capacitance and inductance are $80 \mathrm{~V}, 40 \mathrm{~V}$ and 100 V respectively in an L-C-R circuit. The power factor of this circuit is:
3. 0.4
4. 0.5
5. 0.8
6. 1.0
7. A 100Ω resistance and a capacitor of 100Ω reactance are connected in series across a 220 V source. When the capacitor is 50% charged, the peak value of the displacement current is:
8. 2.2 A
9. 11 A
10. 4.4 A
11. $11 \sqrt{2} \mathrm{~A}$
12. An inductor 20 mH , a capacitor $100 \mu \mathrm{~F}$, and a resistor 50Ω are connected in series across a source of emf, $\mathrm{V}=$ $10 \sin 314 \mathrm{t}$. The power loss in the circuit is:
13. 0.79 W
14. 0.43 W
15. 2.74 W
16. 1.13 W

Alternating Current - NCERT based PYQs

8.

A resistance ' R ' draws power ' P ' when connected to an AC source. If an inductance is now placed in series with the resistance, such that the impedance of the circuit becomes ' Z ' the power drawn will be
3.

$$
P\left(\frac{R}{Z}\right)
$$

4. P

$$
P\left(\frac{R}{Z}\right)^{2}
$$

2. $P \sqrt{\frac{R}{Z}}$
3. A transformer has an efficiency of 90% is working on 200 V and 3 kW power supply. If the current in the secondary coil is 6 A the voltage across the secondary coil and the current in the primary coil respectively are:
4. $300 \mathrm{~V}, 15 \mathrm{~A}$
5. $450 \mathrm{~V}, 15 \mathrm{~A}$
6. $450 \mathrm{~V}, 13.5 \mathrm{~A}$
7. $600 \mathrm{~V}, 15 \mathrm{~A}$
8. In an electrical circuit R, L, C, and an $A C$ voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage and the current in the circuit is $\tan ^{-1} \sqrt{3}$. If instead, C is removed from the circuit, the phase difference is again $\tan ^{-1} \sqrt{3}$. The power factor of the circuit is:
9. $1 / 2$
10. $1 / \sqrt{2}$
11. 1
12. $\sqrt{3} / 2$
13.

In an $A C$ circuit an alternating voltage $e=200 \sqrt{2} \sin 100 t$ volt is connected to a capacitor of capacity $1 \mu F$. The RMS value of the current in the circuit is:

1. 100 mA
2. 200 mA
3. 20 mA
4. 10 mA
5. An AC voltage is applied to a resistance R and an inductor L in series. If R and the inductive reactance are both equal to 3Ω, the phase difference between the applied voltage and the current in the circuit is:
6. $\frac{\pi}{4}$
7. $\frac{\pi}{2}$
8. zero
9. $\frac{\pi}{6}$
10. In the given circuit, the reading of voltmeter V_{1} and V_{2} are 300 V each. The reading of the voltmeter V_{3} and ammeter A are respectively:

11. $150 \mathrm{~V}, 2.2 \mathrm{~A}$
12. $220 \mathrm{~V}, 2.2 \mathrm{~A}$
13. $220 \mathrm{~V}, 2.0 \mathrm{~A}$
14. $100 \mathrm{~V}, 2.0 \mathrm{~A}$
15. A 220 V input is supplied to a transformer. The output circuit draws a current of 2.0 A at 440 V . If the efficiency of the transformer is 80%, the current drawn by the primary windings of the transformer is:
16. 3.6 A
17. 2.8 A
18. 2.5 A
19. 5.0 A
20.

Power dissipated in an L-C-R series circuit connected to an $A C$ source of emf E is:

2.
$\frac{\varepsilon^{2} \sqrt{R^{2}+\left(L \omega-\frac{1}{C}\right)^{2}}}{R}$
$\frac{\varepsilon^{2}\left[R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}\right]}{R}$
4. $\frac{\varepsilon^{2} R}{\sqrt{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}}$
4. $\frac{\varepsilon^{2} R}{\sqrt{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}}$
16. In an AC circuit, the emf (e) and the current (I) at any instant are given respectively by
$\mathrm{e}=\mathrm{E}_{0} \sin \omega \mathrm{t}$
$\mathrm{I}=\mathrm{I}_{0} \sin (\omega \mathrm{t}-\phi)$
The average power in the circuit over one cycle of AC is:

1. $\frac{\mathrm{E}_{\mathrm{o}} \mathrm{I}_{\mathrm{o}}}{2}$
2. $\frac{\mathrm{E}_{\mathrm{o}} \mathrm{I}_{\mathrm{o}}}{2} \sin \phi$
3. $\frac{\mathrm{E}_{\mathrm{o}} \mathrm{I}_{\mathrm{o}}}{2} \cos \phi$
4. $\mathrm{E}_{\mathrm{o}} \mathrm{I}_{\mathrm{o}}$
5. What is the value of inductance L for which the current is a maximum in a series LCR circuit with $\mathrm{C}=10$ $\mu \mathrm{F}$ and $\omega=1000 \mathrm{~s}^{-1}$?
6. 100 mH
7. 1 mH
8. cannot be calculated unless R is known
9. 10 mH
10. A transformer is used to light a 100 W and 110 V lamp from a 220 V mains. If the main current is 0.5 A , the efficiency of the transformer is approximately :
11. 30%
12. 50%
13. 90%
14. 10%
15. A transistor-oscillator using a resonant circuit with an inductance L (of negligible resistance) and a capacitance C has a frequency f . If L is doubled and C is changed to $4 C$, the frequency will be:
16. $\mathrm{f} / 4$
17. 8 f
18. $f / 2 \sqrt{2}$
19. $\mathrm{f} / 2$
20. The core of a transformer is laminated because :
21. energy losses due to eddy currents may be minimized
22. the weight of the transformer may be reduced
23. rusting of the core may be prevented
24. ratio of voltage in primary and secondary may be increased
25. A coil of inductive reactance 31Ω has a resistance of 8Ω. It is placed in series with a condenser of capacitive reactance 25Ω. The combination is connected to an a.c. source of 110 V . The power factor of the circuit is:
26. 0.56
27. 0.64
28. 0.80
29. 0.33
30. The variation of EMF with time for four types of generators is shown in the figures. Which amongst them can be called AC?

(a)

(b)

(c)

(d)
31. (a) and (d)
32. (a), (b), (c), (d)
33. (a) and (b)
34. only (a)
35. A circuit when connected to an AC source of 12 V gives a current of 0.2 A . The same circuit when connected to a DC source of 12 V , gives a current of 0.4 A . The circuit is:
36. series LR
37. series RC
38. series LC
39. series LCR
40. A $40 \mu \mathrm{~F}$ capacitor is connected to a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply. The RMS value of the current in the circuit is, nearly:
41. 2.05 A
42. 2.5 A
43. 25.1 A
44. 1.7 A
45. A series LCR circuit is connected to an ac voltage source. When L is removed from the circuit, the phase difference between current and voltage is $\frac{\pi}{3}$. If instead C is removed from the circuit, the phase difference is again $\frac{\pi}{3}$ between current and voltage. The power factor of the circuit is:
46. 0.5
47. 1.0
48. -1.0
49. Zero
50. A light bulb and an inductor coil are connected to an ac source through a key as shown in the figure below. The key is closed and after some time an iron rod is inserted into the interior of the inductor. The glow of the light bulb:

51. decreases
52. remains unchanged
53. will fluctuate
54. increases
55. The instantaneous values of alternating current and voltages in a circuit are given as $i=\frac{1}{\sqrt{2}} \sin (100 \pi t)$ ampere
$e=\frac{1}{\sqrt{2}} \sin (100 \pi t+\pi / 3)$ volt
The average power in Watts consumed in the circuit is :
56. $\frac{\sqrt{ } 3}{4}$
57. $\frac{1}{2}$
58. $\frac{1}{8}$
59. $\frac{1}{4}$
60. The r.m.s. value of potential difference V shown in the figure is :

61. $\mathrm{V}_{0} / \sqrt{3}$
62. V_{0}
63. $\mathrm{V}_{0} / \sqrt{2}$
64. $\mathrm{V}_{0} / 2$
65. A coil has resistance 30 ohm and inductive reactance 20 Ohm at 50 Hz frequency. If an ac source, of 200 volts, 100 Hz , is connected across the coil, the current in the coil will be
66. 2.0 A
67. 4.0 A
68. 8.0 A
69. $\frac{20}{\sqrt{13}} \mathrm{~A}$
70. A condenser of capicity C is charged to a potential difference of V_{1}. The plates of the
condenser are then connected to an ideal inductor of inductance L. The current through the inductor when the potential difference across the condenser reduces to V_{2} is -
71. $\frac{C\left(V_{1}^{2}-V_{2}^{2}\right)}{L}$
72. $\frac{C\left(V_{1}^{2}+V_{2}^{2}\right)}{L}$
73. $\left(\frac{C\left(V_{1}^{2}-V_{2}^{2}\right)}{L}\right)^{1 / 2}$
74. $\left(\frac{C\left(V_{1}-V_{2}\right)^{2}}{L}\right)^{1 / 2}$
75. The value of quality factor is:
76. $\frac{\omega L}{R}$
77. $\frac{\omega}{R C}$
78. $\sqrt{L C}$
79. L / R
80. In a circuit L, C and R are connected in series with an alternating voltage source of frequency f . The current leads the voltage by 45°. The value of C is:
81. $\frac{1}{2 \pi f(2 \pi f \mathrm{~L}-\mathrm{R})}$
82. $\frac{1}{2 \pi f(2 \pi f \mathrm{~L}+\mathrm{R})}$
83. $\frac{1}{\pi f(2 \pi f L-R)}$
84. $\frac{1}{\pi f(2 \pi f \mathrm{~L}+\mathrm{R})}$
85. Turn ratio of a step-up transformer is $1: 25$. If current in load coil is 2 A , then the current in primary coil will be :
86. 25 A
87. 50 A
88. 0.25 A
89. 0.5 A
90. A coil of 40 -henry inductance is connected in series with a resistance of 8 ohms and the combination is joined to the terminals of a 2 -volt battery. The time constant of the circuit is:
(1) $1 / 5$ seconds
(2) 40 seconds
(3) 20 seconds
(4) 5 seconds
91. For a series LCR circuit the power loss at resonance is : -
92. $\frac{\mathrm{V}^{2}}{\left[\omega \mathrm{~L}-\frac{1}{\omega \mathrm{C}}\right]}$
93. $I^{2} \mathrm{~L} \omega$
94. $I^{2} R$
95. $\frac{\mathrm{V}^{2}}{\mathrm{C} \omega}$
96. A capacitor of capacity C has reactance X. If capacitance and frequency become double, then reactance will be:
97. 4 X
98. $\frac{X}{2}$
99. $\frac{X}{4}$
100. 2 X
101. An inductor of inductance L , a capacitor of capacitance C and a resistor of resistance ' R ' are connected in series to an ac source of potential difference ' V ' volts as shown in fig.

Potential difference across L, C and R is $40 \mathrm{~V}, 10 \mathrm{~V}$ and 40 V , respectively. The amplitude of the current flowing through LCR series circuit is $10 \sqrt{2} A$. The impedance of the circuit:

1. 4Ω
2. 5Ω
3. $4 \sqrt{2} \Omega$
4. $5 / \sqrt{2} \Omega$
5. A step down transformer connected to an ac mains supply of 220 V is made to operate at $11 \mathrm{~V}, 44 \mathrm{~W}$ lamp. Ignoring power losses in the transformer, what is the current in the primary circuit?
6. 2 A
7. 4 A
8. 0.2 A
9. 0.4 A
10. A series LCR circuit containing 5.0 H inductor, $80 \mu \mathrm{~F}$ capacitor and 40Ω resistor is connected to 230 V variable frequency ac source. The angular frequencies of the source at which power transferred to the circuit is half the power at the resonant angular frequency are likely to be:
$1.46 \mathrm{rad} / \mathrm{s}$ and $54 \mathrm{rad} / \mathrm{s}$
11. $42 \mathrm{rad} / \mathrm{s}$ and $58 \mathrm{rad} / \mathrm{s}$
12. $25 \mathrm{rad} / \mathrm{s}$ and $75 \mathrm{rad} / \mathrm{s}$
13. $50 \mathrm{rad} / \mathrm{s}$ and $25 \mathrm{rad} / \mathrm{s}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Electromagnetic Waves
(Expected Questions in NEET 2022: 1)

Subtopic Name	Number of Questions
Properties of EM Waves	20
Electromagnetic Spectrum	9
Problem with Ampere's Law	2

Electromagnetics Waves - NCERT based PYQs

Contact Number: 9667591930 / 8527521718

1. An EM wave is propagating in a medium with a velocity $\overrightarrow{\mathrm{V}}=\mathrm{V} \hat{\mathrm{i}}$. The instantaneous oscillating electric field of this EM wave is along the $+y$ axis. Then the direction of the oscillating magnetic field of the EM wave will be along:
2. -z-direction
3. +z direction
4. -y -direction
5. +y direction
6. In an electromagnetic wave in free space, the root mean square value of the electric field is $\mathrm{E}_{\mathrm{rms}}=6 \mathrm{~V} / \mathrm{m}$. The peak value of the magnetic field is:-
7. $2.83 \times 10^{-8} T$
8. $0.70 \times 10^{-8} T$
9. $4.23 \times 10^{-8} T$
10. $1.41 \times 10^{-8} T$
11. Light with an energy flux of $25 \times 10^{4} \mathrm{Wm}^{-2}$ falls on a perfectly reflecting surface at normal incidence. If the surface area is $15 \mathrm{~cm}^{2}$, the average force exerted on the surface is :

$$
\begin{aligned}
& \text { 1. } 1.25 \times 10^{-6} N \\
& \text { 2. } 2.50 \times 10^{-6} N \\
& \text { 3. } 1.20 \times 10^{-6} N \\
& \text { 4. } 3.0 \times 10^{-6} N
\end{aligned}
$$

6.

The condition under which a microwave oven heats up a food item containing water molecules most efficiently is :

1. The frequency of the microwaves has no relation with the natural frequency of water molecules.
2. Microwaves are heatwaves, so always produce heating.
3. Infra-red waves produce heating in a microwave oven.
4. The frequency of the microwaves must match the resonant frequency of the water molecules.
5. Out of the following options which one can be used to produce a propagating electromagnetic wave?
6. A stationary charge
7. A charge-less particle
8. An accelerating charge
9. A charge moving at constant velocity
10. The energy of the EM waves is of the order of 15 KeV . To which part of the spectrum does it belong?
11. X-rays
12. Infrared rays
13. Ultraviolet rays
14. γ-rays
15. The electric field associates with an electromagnetic wave in vacuum is given by $\mathrm{E}=\hat{\mathrm{i}} 40$ cos $\left(\mathrm{kz}-6 \times 10^{8} \mathrm{t}\right)$, where E, z and t are in volt $/ \mathrm{m}$, meter and second respectively. The value of wave vector k is
16. $2 \mathrm{~m}^{-1}$
17. $0.5 \mathrm{~m}^{-1}$
18. $6 \mathrm{~m}^{-1}$
19. $3 \mathrm{~m}^{-1}$
20. The electric and the magnetic fields, associated with an electromagnetic wave, propagating along the +z -axis, can be represented by:
21. $\left[\mathrm{E}=\mathrm{E}_{0} \widehat{\mathrm{k}}, \mathrm{B}=\mathrm{B}_{0} \hat{\mathrm{i}}\right]$
22. $\left[E=E_{0} \hat{\mathrm{j}}, B=B_{0} \hat{\mathrm{j}}\right]$
23. $\left[\mathrm{E}=\mathrm{E}_{0} \hat{\mathrm{j}}, \mathrm{B}=\mathrm{B}_{0} \widehat{\mathrm{k}}\right]$
24. $\left[\mathrm{E}=\mathrm{E}_{0} \hat{\mathrm{i}}, \mathrm{B}=\mathrm{B}_{0} \hat{\mathrm{j}}\right]$
25.

The decreasing order of wavelength of infrared microwave, ultraviolet and gamma rays is

1. gamma rays, ultraviolet, infrared, microwaves
2. microwaves, gamma rays, infrared, ultraviolet
3. infrared, microwave, ultraviolet, gamma rays
4. microwave, infrared, ultraviolet, gamma rays
5. Which of the following statement is false for the properties of electromagnetic waves?
6. Both electric and magnetic field vectors attain the maxima and minima at the same place and same time.
7. The energy in the electromagnetic wave is divided equally between electric and magnetic vectors.
8. Both electric and magnetic field vectors are parallel to each other and perpendicular to the direction of propagation of the wave.
9. These waves do not require any material medium for propagation.
10.

The electric field part of an electromagnetic wave in a medium is represented by
$\mathrm{E}_{\mathrm{x}}=0$;
$\mathrm{E}_{\mathrm{y}}=2.5 \frac{\mathrm{~N}}{\mathrm{C}} \cos \left[\left(2 \pi \times 10^{6} \frac{\mathrm{rad}}{\mathrm{m}}\right) t-\left(\pi \times 10^{-2} \frac{\mathrm{rad}}{\mathrm{s}}\right) x\right]$
$E_{S}=0$. The wave is

1. Moving along y-direction with frequency $21 \pi \times 10^{6} \mathrm{~Hz}$ and wavelength 200 m .
2. Moving along x-direction with frequency $10^{6} \mathrm{~Hz}$ and wavelength 100 m
3. Moving along x-direction with frequency $10^{6} \mathrm{~Hz}$ and wavelength 200 m
4. Moving along x-direction with frequency $10^{6} \mathrm{~Hz}$ and wavelength 800 m
5. The velocity of electromagnetic radiation in a medium of permittivity ε_{0} and permeability μ_{0} is given by:
6. $\sqrt{\frac{\varepsilon_{0}}{\mu_{o}}}$
7. $\sqrt{\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}}}$
8. $\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$
9. $\sqrt{\frac{\mu_{o}}{\varepsilon_{o}}}$
10. The electric and magnetic field of an electromagnetic wave are :
11. in phase and parallel to each other
12. in opposite phase and perpendicular to each other
13. in opposite phase and parallel to each other
14. in phase and perpendicular to each other
15. Which colour of the light has the longest wavelength?
16. violet
17. red
18. blue
19. green
20. A parallel plate capacitor of capacitance $20 \mu \mathrm{~F}$ is being charged by a voltage source whose potential is changing at the rate of $3 \mathrm{~V} / \mathrm{s}$. The conduction current through the connecting wires, and the displacement current through the plates of the capacitor, would be, respectively:
21. zero, zero
22. zero, $60 \mu \mathrm{~A}$
23. $60 \mu \mathrm{~A}, 60 \mu \mathrm{~A}$
24. $60 \mu \mathrm{~A}$, zero
25. For a transparent medium relative permeability and permittivity, μ_{r} and ε_{r} are 1.0 and 1.44 respectively. The velocity of light in this medium would be:
26. $2.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$2.3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
27. $2.08 \times 10^{8} \mathrm{~m} / \mathrm{s}$
28. $4.32 \times 10^{8} \mathrm{~m} / \mathrm{s}$
29. The ratio of contributions made by the electric field and magnetic field components to the intensity of an electromagnetic wave is: $(c=$ speed of electromagnetic waves)
30. $1: 1$
31. $1: \mathrm{c}$
32. $1: c^{2}$
33. c: 1
34. Light with an average flux of $20 \mathrm{~W} / \mathrm{cm}^{2}$ falls on a non-reflecting surface at normal incidence having surface area $20 \mathrm{~cm}^{2}$. The energy received by the surface during time span of 1 minute is :
(1) $12 \times 10^{3} J$
(2) $24 \times 10^{3} J$
(3) $48 \times 10^{3} J$
(4) $10 \times 10^{3} \mathrm{~J}$
35. The E.M wave with the shortest wavelength among the following is:
36. Ultraviolet rays
37. X-rays
38. Gamma-rays
39. Microwaves
40. The magnetic field in a plane electromagnetic wave is given by:
$B_{Y}=2 \times 10^{-7} \sin \left(\pi \times 10^{3} x+3 \pi \times 10^{11} t\right) T$
Calculate the wavelength.
41. $\pi \times 10^{3} \mathrm{~m}$
42. $2 \times 10^{-3} m$
43. $2 \times 10^{3} \mathrm{~m}$
44. $\pi \times 10^{-3} \mathrm{~m}$
45. The ratio of amplitude of magnetic field to the amplitude of electric field for an electromagnetic wave propagating in vacuum is equal to -
46. reciprocal of speed of light in vacuum
47. the ratio of magnetic permeability to the electric susceptiblity of vaccum
48. unity
49. the speed of light in vacuum
50. The electric field of an electromagnetic wave in free space is given by $\vec{E}=10 \cos \left(10^{7} t+k x\right) \hat{j} V / m$, where t and x are in seconds and metres respectively. It can be inferred that -
(a) The wavelength λ is 188.4 m
(b) The wave number k is $0.33 \mathrm{rad} / \mathrm{m}$
(c) The wave amplitude is $10 \mathrm{~V} / \mathrm{m}$
(d) The wave is propagating along $+x$ direction

Which one of the following pairs of statements is correct?

1. (a) and (b)
2. (b) and (c)
3. (a) and (c)
4. (c) and (d)
5. The frequency order for γ - rays (b), X - rays (a), UV - rays (c) :
6. $b>a>c$
7. $a>b>c$
8. $c>b>a$
9. $a>c>b$
10. If $\lambda_{\mathrm{v}}, \lambda_{\mathrm{x}}$ and λ_{m} represent the wavelengths of visible light, x-rays and microwaves respectively, then:
11. $\lambda_{\mathrm{m}}>\lambda_{\mathrm{x}}>\lambda_{\mathrm{v}}$
12. $\lambda_{v}>\lambda_{m}>\lambda_{x}$
13. $\lambda_{v}>\lambda_{x}>\lambda_{m}$
14. $\lambda_{\mathrm{m}}>\lambda_{\mathrm{v}}>\lambda_{\mathrm{x}}$
15. Which is having minimum wavelength :-
(1) X-rays
(2) Ultra violet rays
(3) γ-rays
(4) Cosmic rays
16. What is the cause of "Green house effect" : -
(1) Infra-red rays
(2) Ultra violet rays
(3) X-rays
(4) Radio waves
17. The frequency of an E.M. waves is 10 MHz then its wavelength is:
18. 30 m
19. 300 m
20. 3 m
21. None of the above
22. The velocity of electromagnetic wave is parallel to :-
23. $\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{E}}$
24. $\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}}$
25. $\overrightarrow{\mathrm{E}}$
26. \vec{B}
27. Biological importance of Ozone layer is : -
(1) It stops ultraviolet rays
(2) Ozone layer reduces green house effect
(3) Ozone layer reflects radio waves
(4) Ozone layer controls $\mathrm{O}_{2} / \mathrm{H}_{2}$ ratio in atmosphere
28. For a plane electromagnetic wave propagating in the x-direction, which one of the following combinations gives the correct possible directions for the electric field (E) and magnetic field (B) respectively?
29. $\hat{\mathrm{j}}+\widehat{\mathrm{k}},-\hat{\mathrm{j}}-\widehat{\mathrm{k}}$
30. $-\hat{\mathrm{j}}+\widehat{\mathrm{k}},-\hat{\mathrm{j}}+\hat{\mathrm{k}}$
31. $\hat{j}+\widehat{k}, \hat{j}+\widehat{k}$
32. $-\hat{\mathrm{j}}+\widehat{\mathrm{k}},-\hat{\mathrm{j}}-\widehat{\mathrm{k}}$
33. A capacitor of capacitance ' C ' is connected across an ac source of voltage V, given by
$\mathrm{V}=\mathrm{V}_{0} \sin \omega \mathrm{t}$
The displacement current between the plates of the capacitor would then be given by:
34. $I_{d}=\frac{V_{0}}{\omega \mathrm{C}} \sin \omega \mathrm{t}$
35. $\mathrm{I}_{\mathrm{d}}=\mathrm{V}_{0} \omega \mathrm{C} \sin \omega \mathrm{t}$
36. $\mathrm{I}_{\mathrm{d}}=\mathrm{V}_{0} \omega \mathrm{C} \cos \omega \mathrm{t}$
37. $\mathrm{I}_{\mathrm{d}}=\frac{\mathrm{V}_{0}}{\omega \mathrm{C}} \cos \omega \mathrm{t}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

course

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Ray Optics \& Optical Instruments

(Expected Questions in NEET 2022: 4)

Subtopic Name	Number of Questions
Lenses	17
Prisms	13
Total Internal Reflection	11
Refraction at Plane Surface	6
Lensmakers' Formula	5
Reflection at Spherical Surface	5
Telescope	4
Reflection at Plane Surface	3
Simple \& Compound Microscope	3
Human Eye	2

1. The ratio of resolving powers of an optical microscope for two wavelengths $\lambda_{1}=4000 \stackrel{0}{A}$ and $\lambda_{2}=6000 \stackrel{0}{A}$ is:
2. $9: 4$
3. 3:2
4. $16: 81$
5. $8: 27$
6. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30°. One of the two refracting surfaces of the prism is made a mirror inwards, by a silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the silvered surface) if the angle of incidence on the prism is:
7. 60°
8. 45°
9. 30°
10. Zero
11. An object is placed at a distance of 40 cm from a concave mirror of a focal length of 15 cm . If the object is displaced through a distance of 20 cm towards the mirror, the displacement of the image will be:
12. 30 cm away from the mirror
13. 36 cm away from the mirror
14. 30 cm towards the mirror
15. 36 cm towards the mirror
16. A beam of light from a source L is incident normally on a plane mirror fixed at a certain distance x from the source. The beam is reflected back as a spot on a scale placed just above the source L . When the mirror is rotated through a small angle θ, the spot of the light is found to move through a distance y on the scale. The angle θ is given by:-
17. $\frac{y}{x}$
18. $\frac{x}{2 y}$
19. $\frac{x}{y}$
20. $\frac{y}{2 x}$
21. A thin prism having refracting angle 10^{0} is made of glass of refractive index 1.42. This prism is combined with another thin prism of a glass of refractive index 1.7. This combination produces dispersion without deviation. The refracting angle of the second prism should be:-
22. 6^{o}
23. 8^{o}
24. 10°
25. 4^{o}
26. Two identical glass ($\mu_{g}=3 / 2$) equiconvex lenses of focal length f each are kept in contact. The space between the two lenses is filled with water ($\mu_{w}=4 / 3$). The focal length of the combination is :
27. $\mathrm{f} / 3$
28. f
29. $\frac{4 f}{3}$
30. $\frac{3 \mathrm{f}}{4}$
31. An air bubble in a glass slab with refractive index 1.5 (near-normal incidence) is 5 cm deep when viewed from one surface and 3 cm deep when viewed from the opposite face. The thickness (in cm) of the slab is :
32. 8
33. 10
34. 12
35. 16
36. A person can see clearly objects only when they lie between 50 cm and 400 cm from his eyes. In order to increase the maximum distance of distinct vision to infinity, the type and power of the correcting lens, the person has to use, will be
37. convex, +2.25 diopter
38. concave, -0.25 diopter
39. concave -0.2 diopter
40. convex, +0.5 diopter
41. An astronomical refracting telescope will have large angular magnification and high angular resolution when it has an objective lens of:-
42. small focal length and large diameter
43. large focal length and small diameter
44. large focal length and large diameter
45. small focal length and small diameter
46. An astronomical telescope has an objective and eyepiece of focal lengths 40 cm and 4 cm respectively. To view an object 200 cm away from the objective, the lenses must be separated by a distance :
47. 46.0 cm
48. 50.0 cm
3.54 .0 cm
4.37 .3 cm
49. Match the corresponding entries of Column 1 with Column 2. [Where m is the magnification produced by the mirror]
Column 1 Column 2
A. $\mathrm{m}=-2$ I. Convex mirror
B. $\mathrm{m}=-1 / 2$ II. Concave mirror
C. $\mathrm{m}=+2 \quad$ III. Real Image
D. $\mathrm{m}=+1 / 2$ IV. Virtual Image

	A	B	C	D
(1)	I \& III	I \& IV	I \& II	III \& IV
(2)	I \& IV	II \& III	II \& IV	II \& III
(3)	III \& IV	II \& IV	II \& III	I \& IV
(4)	II \& III	II \& III	II \& IV	I \& IV

12.

The angle of incidence for a ray of light at a refracting surface of a prism is 45°. The angle of prism is 60°. If the ray suffers minimum deviation through the prism, the angle of minimum deviation and refractive index of the material of the prism respectively, are

1. $45^{\circ}, \sqrt{2}$
2. $30^{\circ}, \sqrt{2}$
3. $30^{\circ}, \frac{1}{\sqrt{2}}$
4. $45^{\circ}, \frac{1}{\sqrt{2}}$
5. In an astronomical telescope in normal adjustment, a straight line of length L is drawn on inside part of the objective lens. The eye-piece forms a real image of this line. The length of this image is I. The magnification of the telescope is :
6. $\frac{L}{I}+1$
7. $\frac{L}{I}-1$
8. $\frac{L+1}{I-1}$
9. $\frac{L}{I}$
10. A beam of light consisting of red, green, and blue colors is incident on a right-angled prism. The refractive index of the material of the prism for the red, green, and blue wavelengths is $1.39,1.44$, and 1.47 respectively.

The prism will :

1. separate the blue color part from the red and green color
2. separate all the three colors from one another
3. Not separate the three colors at all
4. Separate the red color part from the green and blue colors

15.

Two identical thin plano-convex glass lenses (refractive index $=1.5$) each having radius of curvature of 20 cm are placed with their convex surfaces in contact at the centre. The intervening space is filled with the oil of refractive index 1.7. The focal length of the combination is:

1. -20 cm
2. -25 cm
3. -50 cm
4. 50 cm

16.

The refracting angle of a prism is A , and refractive index of the material of the prism is $\cot (\mathrm{A} / 2)$. The angle of minimum deviation is :

1. $180^{\circ}-3 \mathrm{~A}$
2. $180^{\circ}-2 \mathrm{~A}$
3. $90^{\circ}-\mathrm{A}$
4. $180^{\circ}+2 \mathrm{~A}$
5. If the focal length of the objective lens is increased then magnifying power of:
6. microscope will increase but that of the telescope decrease.
7. microscope and telescope both will increase.
8. microscope and telescope both will decrease.
9. microscope will decrease but that of the telescope will increase.
10. The angle of a prism is ' A '. One of its refracting surfaces is silvered. Light rays falling at an angle of incidence 2 A on the first surface returns back through the same path after suffering reflection at the silvered surface. The refractive index μ, of the prism, is :

> 1. $2 \sin \mathrm{~A}$
> 2. $2 \cos \mathrm{~A}$
> 3. $\frac{1}{2} \cos \mathrm{~A}$
4. $\tan \mathrm{A}$

19.

A plano-convex lens fits exactly into a plano concave lens. Their plane surfaces are parallel to each other. If lenses are made of different materials of refractive indices μ_{1} and μ_{2} and R is the radius of curvature of the curved surface of the lenses, then the focal length of the combination is:

1. $\frac{\mathrm{R}}{2\left(\mu_{1}-\mu_{2}\right)}$
2. $\frac{\mathrm{R}}{\left(\mu_{1}-\mu_{2}\right)}$
3. $\frac{2 \mathrm{R}}{\left(\mu_{2}-\mu_{1}\right)}$
4. $\frac{\mathrm{R}}{2\left(\mu_{1}+\mu_{2}\right)}$
5.

For a normal eye, the cornea of the eye provides a converging power of 40 D and the least converging power of the eye lens behind the cornea is 20 D . Using this information, the distance between the retina and the cornea-eye lens can be estimated to be:

1. 2.5 cm
2. 1.67 cm
3. 1.5 cm
4. 5 cm
5. When a biconvex lens of glass having a refractive index of 1.47 is dipped in a liquid, it acts as a plane sheet of glass. The liquid must have a refractive index:
6. equal to that of glass.
7. less than one.
8. greater than that of glass.
9. less than that of glass.
10. A ray of light is incident at an angle of incidence, i, on one face of a prism of angle A (assumed to be small) and emerges normally from the opposite face. If the refractive index of the prism is μ, the angle of incidence i , is nearly equal to
11. $\mu \mathrm{A}$
12. $\frac{\mu A}{2}$
13. A / μ
14. $A / 2 \mu$
15. A concave mirror of the focal length f_{1} is placed at a distance of d from a convex lens of focal length f_{2}. A beam of light coming from infinity and falling on this convex lens-concave mirror combination returns to infinity. The distance d must be equal :
16. $f_{1}+f_{2}$
17. $-f_{1}+f_{2}$
18. $2 f_{1}+f_{2}$
19. $-2 f_{1}+f_{2}$
20. The magnifying power of a telescope is 9 . When it is adjusted for parallel rays the distance between the objective and eyepiece is 20 cm . The focal length of lenses is :
21. $10 \mathrm{~cm}, 10 \mathrm{~cm}$
22. $15 \mathrm{~cm}, 5 \mathrm{~cm}$
$3.18 \mathrm{~cm}, 2 \mathrm{~cm}$
23. $11 \mathrm{~cm}, 9 \mathrm{~cm}$
24.

A biconvex lens $(\mu=1.5)$ has a radius of curvature of magnitude 20 cm . Which one of the following options describes best the image formed of an object of height 2 cm placed 30 cm from the lens?

1. Virtual, upright, height $=0.5 \mathrm{~cm}$
2. Real, inverted, height $=4 \mathrm{~cm}$
3. Real, inverted, height $=1 \mathrm{~cm}$
4. Virtual, upright, height $=1 \mathrm{~cm}$
5.

Which of the following is not due to total internal reflection?

1. Difference between apparent and real depth of the pond
2. Mirage on hot summer days
3. Brilliance of the diamond
4. Working of optical fibre
5. A ray of light travelling in a transparent medium of refractive index μ falls on a surface separating the medium from the air at an angle of incidence of 45°. For which of the following value of μ, the ray can undergo total internal reflection?
6. $\mu=1.33$
7. $\mu=1.40$
8. $\mu=1.50$
9. $\mu=1.25$

Ray Optics - NCERT based PYQs

Contact Number: 9667591930 / 8527521718
28. A lens having focal length f and aperture of diameter d forms an image of intensity I. Aperture of diameter $\frac{d}{2}$ in central region of lens is covered by a black paper. The focal length of lens and intensity of image now will be respectively:

1. f and $\frac{1}{4}$
2. $\frac{3 f}{4}$ and $\frac{I}{2}$
3. f and $\frac{3 I}{4}$
4. $\frac{f}{2}$ and $\frac{I}{2}$
5. Two thin lenses of focal lengths f_{1} and f_{2} are in contact and coaxial. The power of the combination is :
6. $\sqrt{\frac{\mathrm{f}_{1}}{\mathrm{f}_{2}}}$
7. $\sqrt{\frac{f_{2}}{f_{1}}}$
8. $\frac{f_{1}+f_{2}}{f_{1} f_{2}}$
9. None of the above
10. A boy is trying to start a fire by focusing sunlight on a piece of paper using an equiconvex lens of focal length 10 cm . The diameter of the sun is $1.39 \times 10^{9} \mathrm{~m}$ and its mean distance from the earth is $1.5 \times 10^{11} \mathrm{~m}$. What is the diameter of the sun's image on the paper?
11. $9.2 \times 10^{-4} \mathrm{~m}$
12. $6.5 \times 10^{4} \mathrm{~m}$
13. $6.5 \times 10^{-5} \mathrm{~m}$
14. $12.4 \times 10^{-4} \mathrm{~m}$
15.

A small coin is resting on the bottom of a beaker filled with a liquid. A ray of light from the coin travels upto the surface of the liquid and moves along its surface (see figure).

How fast is the light traveling in the liquid?

1. $1.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$
2. $2.4 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$3.3 .0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
3. $1.2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
4. The frequency of a light wave in a material is $2 \times 10^{14} \mathrm{~Hz}$ and wavelength is $5000 \AA$. The refractive index of material will be:
5. 1.40
6. 1.50
7. 3.00
8. 1.33
9. A microscope is focussed on a mark on a piece of paper and then a slab of a glass of thickness 3 cm and refractive index 1.5 is placed over the mark. How should the microscope be moved to get the mark in focus again?
1.1 cm upward
10. 4.5 cm downward
11. 1 cm downward
12. 2 cm upward

Ray Optics - NCERT based PYQs

Contact Number: 9667591930 / 8527521718
34. A convex lens and a concave lens, each having the same focal length of 25 cm , are put in contact to form a combination of lenses. The power in dioptres of the combination is:

1. 25
2. 50
3. infinite
4. zero
5. Pick the wrong statement in the context with a rainbow.
6. Rainbow is a combined effect of dispersion, refraction, and reflection of sunlight.
7. When the light rays undergo two internal reflections in a water drop, a secondary rainbow is formed.
8. The order of colours is reversed in the secondary rainbow.
9. An observer can see a rainbow when his front is towards the sun.
10. In total internal reflection when the angle of incidence is equal to the critical angle for the pair of media in contact, what will be angle of refraction?
1.90°
11. 180°
12. 0°
13. equal to angle of incidence
14. Two similar thin equi-convex lenses, of focal length f each, are kept coaxially in contact with each other such that the focal length of the combination is F_{1}. When the space between the two lenses is filled with glycerin which has the same refractive index as that of glass $(\mu=1.5)$, then the equivalent focal length is F_{2}. The ratio $F_{1}: F_{2}$ will be:
15. $3: 4$
16. 2: 1
17. 1:2
18. $2: 3$
19. A biconvex lens has power P. It is cut into two symmetrical halves by a plane containing the principal axis. The power of one part will be :
20. 0
21. $\frac{P}{2}$
22. $\frac{P}{4}$
23. P
24. A double convex lens has a focal length of 25 cm . The radius of curvature of one of the surfaces is double of the other. Find the radii if the refractive index of the material of the lens is 1.5 .
25. $100 \mathrm{~cm}, 50 \mathrm{~cm}$
26. $25 \mathrm{~cm}, 50 \mathrm{~cm}$
$3.18 .75 \mathrm{~cm}, 37.5 \mathrm{~cm}$
27. $50 \mathrm{~cm}, 100 \mathrm{~cm}$

Ray Optics - NCERT based PYQs

Contact Number: 9667591930 / 8527521718
40. A ray is incident at an angle of incidence i on one surface of a small angle prism (with angle of prism A) and emerges normally from the opposite surface. If the refractive index of the material of the prism is μ, then the angle of incidence is nearly equal to :

1. $\frac{2 A}{\mu}$
2. μA
3. $\frac{\mu A}{2}$
4. $\frac{A}{2 \mu}$
5. A plane-convex lens of unknown material and unknown focal length is given. With the help of a spherometer, we can measure the:
6. focal length of the lens.
7. radius of curvature of the curved surface.
8. aperture of the lens.
9. refractive index of the material.
10. An object is placed on the principal axis of a concave mirror at a distance of 1.5 f (f is the focal length). The image will be at:
11. $-3 f$
12. 1.5 f
13. -1.5 f
14. 3 f
15. If the critical angle for total internal reflection from a medium to vacuum is 45°, the velocity of light in the medium is,
16. $1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
17. $\frac{3}{\sqrt{2}} \times 10^{8} \mathrm{~m} / \mathrm{s}$
18. $\sqrt{2} \times 10^{8} \mathrm{~m} / \mathrm{s}$
19. $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
20. The power of a biconvex lens is 10 dioptre and the radius of curvature of each surface is 10 cm . Then the refractive index of the material of the lens is,
21. $\frac{4}{3}$
22. $\frac{9}{8}$
23. $\frac{5}{3}$
24. $\frac{3}{2}$
25. For the angle of minimum deviation of a prism to be equal to its refracting angle, the prism must be made of a material whose refractive index -
26. lies between 2 and $\sqrt{2}$
27. is less than 1
28. is greater than 2
29. lies between $\sqrt{2}$ and 1
30. A rod of length 10 cm lies along the principal axis of concave mirror of focal length 10 cm in such a way that its end closer to the pole is 20 cm away from the mirror. The length of the image is -
31. 15 cm
32. 2.5 cm
33. 5 cm
34. 10 cm
35. A thin prism of angle 15° made of glass of refractive index $\mu_{1}=1.5$ is combined with another prism of glass of refractive index $\mu_{2}=1.75$. The combination of the prism produced dispersion without deviation.
The angle of the second prism should be :
36. 5°
37. 7°
38. 10°
39. 12°
40. A converging beam of rays is incident on a diverging lens. Having passed through the lens the rays intersect at a point 15 cm from the lens on the opposite side. If the lens is removed the point where the rays meet will move 5 cm closer to the lens. The focal length of the lens is :
41. 5 cm
42. -10 cm
43. 20 cm
44. -30 cm
45. The speed of light in media M_{1} and M_{2} is 1.5×10^{8} m / s and $2.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ respectively. A ray of light enters from medium M_{1} to M_{2} at an incidence angle i. If the ray suffers total internal reflection the value of i is -
46. Equal to or less than $\sin ^{-1}\left(\frac{3}{5}\right)$
47. Equal to or greater than $\sin ^{-1}\left(\frac{3}{4}\right)$
48. less than $\sin ^{-1}\left(\frac{2}{3}\right)$
49. Equal to $\sin ^{-1}\left(\frac{2}{3}\right)$
50. A ray of light is incident on a 60° prism at the minimum deviation position. The angle of refraction at the first face (i.e. incident face) of the prism is-
51. 30°
52. 45°
53. 60°
54. Zero
55. Rainbow is formed due to :
56. Scattering \& refraction
57. Total internal reflection \& dispersion
58. Reflection only
59. Diffraction and dispersion
60. For a plane convex lenx $(\mu=1.5)$ has radius of curvature 10 cm . It is silvered on its plane surface. Find focal length after silvering :
61. 10 cm
62. 20 cm
63. 15 cm
64. 25 cm
65. Light enters at an angle of incidence in a transparent rod of refractive index n . For what value of the refractive index of the material of the rod, the light once entered into it will not leave it through its lateral face whatsoever be the value of angle of incidence :
66. $n>\sqrt{2}$
67. 1.0
68. 1.3
69. 1.4
70. A tall man of height 6 feet, wants to see his full image. Then required minimum length of the mirror will be :
71. 12 feet
72. 3 feet
73. 6 feet
74. Any length
75. A bubble in glass slab $(\mu=1.5)$ when viewed from one side appears at 5 cm and 2 cm from other side, then thickness of slab is :
1.3 .75 cm
76. 3 cm
77. 10.5 cm
78. 2.5 cm

Ray Optics - NCERT based PYQs

Contact Number: 9667591930 / 8527521718
56. A beam of light composed of red and green rays is incident obliquely at a point on the face of a rectangular glass slab. When coming out on the opposite parallel face, the red and green rays emerge from :-
(1) Two points propagating in two different parallel directions
(2) One point propagating in two different directions through slab
(3) One point propagating in the same direction through slab
(4) Two points propagating in two different non parallel directions
57. The refractive index of the material of a prism is $\sqrt{2}$ and its refracting angle is 30°. One of the refracting surfaces of the prism is made a mirror inwards. A beam of monochromatic light entering the prism from the other face will retrace its path after reflection from the mirrored surface if its angle of incidence on the prism is:
(1) 60°
(2) 0°
(3) 30°
(4) 45°
58. For the given incident ray as shown in the figure, the condition of total internal reflection of this ray, the minimum refractive index of the prism will be:

1. $\frac{\sqrt{3}+1}{2}$
2. $\frac{\sqrt{2}+1}{2}$
3. $\sqrt{\frac{3}{2}}$
4. $\sqrt{\frac{7}{6}}$
5. For a prism its refractive index is $\cot \mathrm{A} / 2$, then the minimum angle of deviation is:
6. $180-\mathrm{A}$
7. $180-2 \mathrm{~A}$
8. $90-\mathrm{A}$
9. $\mathrm{A} / 2$
10. A bulb is located on a wall. Its image is to be obtained on a parallel wall with the help of a convex lens. If the distance between parallel walls is ' d ' then the required focal length of the lens placed in between the walls is:
(1) Only $\frac{d}{4}$
(2) Only $\frac{d}{2}$
(3) More than $\frac{d}{4}$ but less than $\frac{d}{2}$
(4) Less than or equal to $\frac{d}{4}$

Ray Optics - NCERT based PYQs

Contact Number: 9667591930 / 8527521718
61. In compound microscope the magnification is 95 , and the distance of object from objective lens $1 / 3.8 \mathrm{~cm}$ and focal length of objective is $1 / 4 \mathrm{~cm}$. What is the magnification of eye pieces when final image is formed at least distance of
distinct vision :

1. 5
2. 10
3. 100
4. None
5. A disc is placed on a surface of pond which has refractive index $\frac{5}{3}$. A source of light is placed 4 m below the surface of liquid. The minimum
radius of disc will be so light is not coming out
6. ∞
7. 3 m
8. 6 m
9. 4 m
10. A ray of light travelling in the air has wavelength λ, frequency n , velocity v and intensity I. If this ray enters into water then these parameters are $\lambda^{\prime}, \mathrm{n}^{\prime}, \mathrm{v}^{\prime}$ and I^{\prime} respectively. Which relation is correct?
11. $\lambda=\lambda^{\prime}$
12. $\mathrm{n}=\mathrm{n}^{\prime}$
13. $\mathrm{v}=\mathrm{v}^{\prime}$
14. $\mathrm{I}=\mathrm{I}^{\prime}$
15. Optical fibre are based on : -
16. Total internal relfection
17. Less scattering
18. Refraction
19. Less absorbtion coefficient
20. A convex lens is dipped in a liquid whose refractive index is equal to the refractive index of the lens. Then its focal length will:
(1) Become zero
(2) Become infinite
(3) Become small, but non-zero
(4) Remain unchanged
21. A equiconvex lens is cut into two halves along (i) $X O X '$ and (ii) YOY' as shown in the figure. Let $f, \mathrm{f}^{\prime} \mathrm{f}^{\prime \prime}$ be the focal lengths of the complete lens, of each half in case (i), and of each half in case (ii), respectively

Choose the correct statement from the following-
(1) $f^{\prime}=f, f^{\prime \prime}=2 f$
(2) $f^{\prime}=2 f, f^{\prime \prime}=f$
(3) $f^{\prime}=f, f^{\prime \prime}=f$
(4) $f^{\prime}=2 f, f^{\prime \prime}=2 f$
67. Find the value of the angle of emergence from the prism. The refractive index of the glass is $\sqrt{3}$.

1. 45°
2. 90°
3. 60°
4. 30°

Ray Optics - NCERT based PYQs

Contact Number: 9667591930 / 8527521718
68. A convex lens 'A' of focal length 20 cm and a concave lens 'B' of focal length 5 cm are kept along the same axis with a distance 'd' between them. If a parallel beam of light falling on 'A' leaves 'B' as a parallel beam, then the distance 'd ' in cm will be:

1. 50
2. 30
3. 25
4. 15
5. A lens of large focal length and large aperture is best suited as an objective of an astronomical telescope since:
6. a large aperture contributes to the quality and visibility of the images.
7. a large area of the objective ensures better lightgathering power.
8. a large aperture provides a better resolution.
9. all of the above.
10. A point object is placed at a distance of 60 cm from a convex lens of focal length 30 cm . If a plane mirror were put perpendicular to the principal axis of the lens and at a distance of 40 cm from it, the final image would be formed at a distance of:

11. 30 cm from the plane mirror, it would be a virtual image.
12. 20 cm from the plane mirror, it would be a virtual image.
3.20 cm from the lens, it would be a real image.
4.30 cm from the lens, it would be a real image.

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

course

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Wave Optics
 (Expected Questions in NEET 2022: 2)

Subtopic Name	Number of Questions
Young's Double Slit	$\mathbf{1 0}$
Experiment	$\mathbf{9}$
Diffraction	$\mathbf{5}$
Resolving Power of Optical	$\mathbf{3}$
Devices	$\mathbf{3}$
Polarization of Light	
Superposition Principle	

1.

Young's double-slit experiment is first performed in air and then in a medium other than air. It is found that the $8^{\text {th }}$ bright fringe in the medium lies where the $5^{\text {th }}$ dark fringe lies in the air. The refractive index of the medium is nearly:

1. 1.59
2. 1.69
3. 1.78
4. 1.25
5. Two polaroids P_{1} and P_{2} are placed with their axis perpendicular to each other. Unpolarised light of intensity I_{0} is incident on P_{1}. A third polaroid P_{3} is kept in between P_{1} and P_{2} such that its axis makes an angle 45° with that of P_{1}. The intensity of transmitted light through P_{2} is:-
6. $\frac{I_{0}}{4}$
7. $\frac{I_{0}}{8}$
8. $\frac{I_{0}}{16}$
9. $\frac{I_{0}}{2}$
10. The interference pattern is obtained with two coherent light sources of intensity ratio n . In the interference pattern, the ratio $\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\text {min }}}$ will be
11. $\frac{\sqrt{n}}{n+1}$
12. $\frac{2 \sqrt{n}}{n+1}$
13. $\frac{\sqrt{n}}{(n+1)^{2}}$
14. $\frac{2 \sqrt{n}}{(n+1)^{2}}$
15. A linear aperture whose width is 0.02 cm is placed immediately in front of a lens of focal length 60 cm . The aperture is illuminated normally by a parallel beam of wavelength $5 \times 10^{-5} \mathrm{~cm}$. The distance of the first dark band of the diffraction pattern from the center of the screen is :
16. 0.10 cm
17. 0.25 cm
18. 0.20 cm
19. 0.15 cm
20. Unpolarised light is incident from the air on a plane surface of a material of refractive index ' μ '. At a particular angle of incidence ' i ', it is found that the reflected and refracted rays are perpendicular to each other. Which of the following options is correct for this situation?
21. The reflected light is polarised with its electric vector parallel to the plane of incidence.
22. The reflected light is polarised with its electric vector perpendicular to the plane of incidence.
23. $\mathrm{i}=\sin ^{-1}\left(\frac{1}{\mu}\right)$
24. $i=\tan ^{-1}\left(\frac{1}{\mu}\right)$
25. In Young's double-slit experiment, the separation d between the slits is 2 mm , the wavelength λ of the light used is $5896 \AA$ and distance D between the screen and slits is 100 cm . It is found that the angular width of the fringes is 0.20°. To increase the fringe angular width to 0.21° (with same λ and D) the separation between the slits needs to be changed to:-
1.1 .8 mm
26. 1.9 mm
3.2 .1 mm
3.1 .7 mm
27.

The intensity at the maximum in a Young's double-slit experiment is I_{0}. Distance between two slits is $\mathrm{d}=5 \lambda$, where λ is the wavelength of light used in the experiment. What will be the intensity in front of one of the slits on the screen placed at a distance $\mathrm{D}=10 \mathrm{~d}$?

1. $\frac{I_{0}}{4}$
2. $\frac{3}{4} I_{0}$
3. $\frac{I_{0}}{2}$
4. I_{0}
5. In a diffraction pattern due to a single slit of width a, the first minimum is observed at an angle 30° when light of wavelength $5000 \stackrel{0}{A}$ is incident on the slit. The first secondary maximum is observed at an angle of
6. $\sin ^{-1}\left(\frac{2}{3}\right)$
7. $\sin ^{-1}\left(\frac{1}{2}\right)$
8. $\sin ^{-1}\left(\frac{3}{4}\right)$
9. $\sin ^{-1}\left(\frac{1}{4}\right)$
10. Two slits in young's experiment have widths in the ratio $1: 25$. The ratio of intensity at the maxima and minima in the interference pattern $\frac{I_{\max }}{I_{\min }}$ is
11. $\frac{9}{4}$
12. $\frac{121}{49}$
13. $\frac{49}{121}$
14. $\frac{4}{9}$
15. At the first minimum adjacent to the central maximum of a single slit diffraction pattern, the phase difference between the Huygen's wavelet from the edge of the slit and the wavelet from the midpoint of the slit is:
16. $\frac{\pi}{4}$ radian
17. $\frac{\pi}{2}$ radian
18. π radian
19. $\frac{\pi}{8}$ radian
20.

For a parallel beam of monochromatic light of wavelength ' λ ', diffraction is produced by a single slit whose width ' a ' is much greater than the wavelength of the light. If ' D ' is the distance of the screen from the slit, the width of the central maxima will be

1. $\frac{2 \mathrm{D} \lambda}{\mathrm{a}}$
2. $\frac{\mathrm{D} \lambda}{\mathrm{a}}$
3. $\frac{\mathrm{Da}}{\lambda}$
4. $\frac{2 \mathrm{Da}}{\lambda}$
5.

In a double-slit experiment, the two slits are 1 mm apart and the screen is placed 1 m away. Monochromatic light of wavelength 500 nm is used. What will be the width of each slit for obtaining ten maxima of double-slit within the central maxima of a single-slit pattern?

1. 0.2 mm
2. 0.1 mm
3. 0.5 mm
4. 0.02 mm
5. A beam of light of $\lambda=600 \mathrm{~nm}$ from a distant source falls on a single slit 1 mm wide and the resulting diffraction pattern is observed on a screen 2 m away. The distance between the first dark fringes on either side of the central bright fringe is :
6. 1.2 cm
7. 1.2 mm
8. 2.4 cm
9. 2.4 mm
10. In Young's double-slit experiment, the intensity of light at a point on the screen where the path difference is λ is K, (λ being the wavelength of light used). The intensity at a point where the path difference is $\lambda / 4$ will be :
11. K
12. $\mathrm{K} / 4$
13. $K / 2$
14. zero
15. In Young's double slit experiment, the slits are 2 mm apart and are illuminated by photons of two wavelength $\lambda_{1}=12000 \AA$ and $\lambda_{2}=10000 \AA$. At what minimum distance from the common central bright fringe on the screen 2 m from the slit will a bright fringe from one interference pattern coincide with a bright fringe from the other?
1.6 mm
16. 4 mm
3.3 mm
17. 8 mm
18.

A parallel beam of fast-moving electrons is incident normally on a narrow slit. A fluorescent screen is placed at a large distance from the slit. If the speed of the electrons is increased, which of the following statements is correct?

1. The angular width of the central maximum of the diffraction pattern will increase.
2. The angular width of the central maximum will decrease.
3. The angular width of the central maximum will be unaffected.
4. A diffraction pattern is not observed on the screen in the case of electrons.
5. Two periodic waves of intensities I_{1} and I_{2} pass through a region at the same time in the same direction. The sum of the maximum and minimum intensities is
6. $2\left(\mathrm{l}_{1}+\mathrm{l}_{2}\right)$
7. $\left(\sqrt{\mathrm{I}}_{1}+\sqrt{\mathrm{I}}_{2}\right)^{2}$
8. $\left(\sqrt{\mathrm{I}}_{1}-\sqrt{\mathrm{l}}_{2}\right)^{2}$
9. $2\left(\sqrt{\mathrm{I}}_{1}-\sqrt{\mathrm{l}}_{2}\right)$
10. A major breakthrough in the studies of cells came with the development of an electron microscope. This is because:
11. the resolution power of the electron microscope is much higher than that of the light microscope.
12. the resolving power of the electron microscope is 200350 nm compared to $0.1-0.2 \mathrm{~nm}$ for the light microscope.
13. electron beam can pass through thick materials, whereas light microscopy requires thin sections.
14. the electron microscope is more powerful than the light microscope as it uses a beam of electrons that has a wavelength much longer than that of photons.
15. In a double-slit experiment, when the light of wavelength 400 nm was used, the angular width of the first minima formed on a screen placed 1 m away, was found to be 0.2°. What will be the angular width of the first minima, if the entire experimental apparatus is immersed in water? $\left(\mu_{\text {water }}=4 / 3\right)$
16. 0.1°
17. 0.266°
18. 0.15°
19. 0.05°
20. In Young's double-slit experiment, if there is no initial phase difference between the light from the two slits, a point on the screen corresponding to the fifth minimum has path difference :
21. $5 \frac{\lambda}{2}$
22. $10 \frac{\lambda}{2}$
23. $9 \frac{\lambda}{2}$
24. $11 \frac{\lambda}{2}$
25. The angular width of the central maximum in the Fraunhofer diffraction for $\lambda=6000 \stackrel{\circ}{A}$ is θ_{0}. When the same slit is illuminated by another monochromatic light, the angular width decreases by 30%. The wavelength of this light is:
26. $1800 \stackrel{o}{A}$
27. $4200 \stackrel{o}{A}$
28. $420 \stackrel{o}{A}$
29. $6000 \stackrel{o}{A}$
30. Assume that light of wavelength 600 nm is coming from a star. The limit of resolution of telescope whose objective has a diameter of 2 m is :
$1.1 .83 \times 10^{-7} \mathrm{rad}$
31. $7.32 \times 10^{-7} \mathrm{rad}$
32. $6.00 \times 10^{-7} \mathrm{rad}$
33. $3.66 \times 10^{-7} \mathrm{rad}$
34. In Young's double-slit experiment, if the separation between coherent sources is halved and the distance of the screen from the coherent sources is doubled, then the fringe width becomes:
35. half
36. four times
37. one-fourth
38. double
39. The Brewster's angle for an interface should be:
(1) $30^{\circ}<$ i $_{b}<45^{\circ}$
(2) $45^{\circ}<\mathrm{i}_{\mathrm{b}}<90^{\circ}$
(3) $i_{b}=90^{\circ}$
(4) $0^{\circ}<\mathrm{i}_{\mathrm{b}}<30^{\circ}$
40. Two coherent sources of light interfere and produce fringe pattern on a screen. For the central maximum, the phase difference between the two waves will be:
41. zero
42. π
43. $3 \pi / 2$
44. $\pi / 2$
45. The angular resolution of a 10 cm diameter telescope at a wavelength of $5000 \AA$ is of the order of:
(1) $10^{-4} \mathrm{rad}$
(2) $10^{-6} \mathrm{rad}$
(3) $10^{6} \mathrm{rad}$
(4) $10^{-2} \mathrm{rad}$
46. For the diffraction from a crystal with $\lambda=1 \AA$ and Bragg's angle $\theta=60^{\circ}$, then for the second-order diffraction, 'd' will be :
47. $1.15 \AA$
48. $0.75 \AA$
49. $0.55 \AA$
50. $2.1 \AA$
51. A telescope has an objective lens of 10 cm diameter and is situated at a distance of one kilometre from two objects. The minimum distance between these two objects, which can be resolved by the telescope, when the mean wavelength of light is $5000 \AA$, is of the order of:
(1) 5 m
(2) 5 mm
(3) 5 cm
(4) 0.5 m
52. The interplaner distance in a crystal is $2.8 \times 10^{-8} \mathrm{~m}$. The value of maximum wavelength which can be diffracted :-
$1.2 .8 \times 10^{-8} \mathrm{~m}$
$2.5 .6 \times 10^{-8} \mathrm{~m}$
$3.1 .4 \times 10^{-8} \mathrm{~m}$
$4.7 .6 \times 10^{-8} \mathrm{~m}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

29. Diameter of human eye lens is 2 mm . What will be the minimum distance between two points to resolve them, which are situated at a distance of 50 meter from eye. The wavelength of light is $5000 \AA$: -
(1) 2.32 m
(2) 4.28 mm
(3) 1.52 cm
(4) 12.48 cm

Dual Nature of Radiations

\& Matter

(Expected Questions in NEET 2022: 2)

Subtopic Name	Number of Questions
Einstein's Photoelectric	22
Equation	20
De-broglie Wavelength	16
Photoelectric Effect:	
Experiment	7
Electron Emission	2
Particle Nature of Light	1
Davisson \& Germer Experiment	

1. Photons with energy 5 eV are incident on a cathode C in a photoelectric cell. The maximum energy of emitted photoelectrons is 2 eV . When photons of energy 6 eV are incident on C , no photoelectrons will reach the anode A , if the stopping potential of A relative to C is :
2. +3 V
3. +4 V
4. -1 V
5. -3 V
6. The photoelectric threshold wavelength of silver is $3250 \times 10^{-10} \mathrm{~m}$. The velocity of the electron ejected from a silver surface by the ultraviolet light of wavelength 2536 $\times 10^{-10} \mathrm{~m}$ is:
$\left(\right.$ Given $\mathrm{h}=4.14 \times 10^{-15} \mathrm{eVs}$ and $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$)
$(1) \approx 0.6 \times 10^{6} \mathrm{~ms}^{-1}$
$(2) \approx 61 \times 10^{3} \mathrm{~ms}^{-1}$
$(3) \approx 0.3 \times 10^{6} \mathrm{~ms}^{-1}$
$(4) \approx 0.3 \times 10^{5} \mathrm{~ms}^{-1}$
7. An electron of mass m with an initial velocity $\vec{v}=\mathrm{v}_{0} \hat{i}\left(\mathrm{v}_{0}>0\right)$ enters in an electric field $\overrightarrow{\mathrm{E}}=-E_{0} \hat{i}\left(\mathrm{E}_{\mathrm{o}}=\right.$ constant $\left.>0\right)$ at $\mathrm{t}=0$. If λ_{0}, is its deBroglie wavelength initially, then its de-Broglie wavelength at time t is:-
8. $\frac{\lambda_{0}}{\left(1+\frac{\mathrm{eE}_{0}}{\mathrm{mv}_{0}} \mathrm{t}\right)}$
9. $\lambda_{0}\left(1+\frac{\mathrm{eE}_{0}}{\mathrm{mv}_{0}} \mathrm{t}\right)$
10. $\lambda_{0} \mathrm{t}$
11. λ_{0}
12. When light of frequency $2 \nu_{\mathrm{o}}$ (where ν_{o} is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is v_{1}. When the frequency of the incident radiation is increased to $5 \nu_{0}$, the maximum velocity of electrons emitted from the same plate is v_{2}. The ratio of v_{1} to v_{2} is
13. $1: 2$
14. 1: 4
15. $4: 1$
16. 2: 1
17.

When a metallic surface is illuminated with radiation of wavelength λ, the stopping potential is V. If the same surface is illuminated with radiation of wavelength 2λ, the stopping potential is $\frac{V}{4}$. The threshold wavelength for the metallic surface is

1. 5λ
2. $\frac{5}{2} \lambda$
3. 3λ
4. 4λ
5. An electron of mass m and a photon have same energy E. The ratio of de-Broglie wavelengths associated with them is (c is the velocity of light) :
6. $\left(\frac{\mathrm{E}}{2 \mathrm{~m}}\right)^{\frac{1}{2}}$
7. $\mathrm{c}(2 \mathrm{mE})^{\frac{1}{2}}$
8. $\frac{1}{\mathrm{c}}\left(\frac{2 m}{E}\right)^{\frac{1}{2}}$
9. $\frac{1}{\mathrm{c}}\left(\frac{\mathrm{E}}{2 \mathrm{~m}}\right)^{\frac{1}{2}}$
10. A photoelectric surface is illuminated successively by the monochromatic light of wavelength λ and $\frac{\lambda}{2}$. If the maximum kinetic energy of the emitted photoelectrons in the second case is 3 times that in the first case, the work function of the surface of the mineral is :
[$\mathrm{h}=\mathrm{Plank}$'s constant, $\mathrm{c}=$ speed of light]
11. $\frac{h c}{2 \lambda}$
12. $\frac{h c}{\lambda}$
13. $\frac{2 h c}{\lambda}$
14. $\frac{h c}{3 \lambda}$
15. Light of wavelength 500 nm is incident on metal with work function 2.28 eV . The de-Broglie wavelength of the emitted electron is :
16. $<2.8 \times 10^{-10} m$
17. $<2.8 \times 10^{-9} m$
18. $\geq 2.8 \times 10^{-9} \mathrm{~m}$
19. $\leq 2.8 \times 10^{-12} m$
20.

Radiation of energy 'E' falls normally on a perfectly reflecting surface. The momentum transferred to the surface is $(\mathrm{c}=$ velocity of light) :

1. $\frac{\mathrm{E}}{\mathrm{c}}$
2. $\frac{2 \mathrm{E}}{\mathrm{c}}$
3. $\frac{2 \mathrm{E}}{\mathrm{c}^{2}}$
4. $\frac{\mathrm{E}}{\mathrm{c}^{2}}$
5.

A certain metallic surface is illuminated with monochromatic light of wavelength λ.The stopping potential for photoelectric current for this light is $3 \mathrm{~V}_{0}$. If the same surface is illuminated with light of wavelength 2 λ, the stopping potential is V_{0}. The threshold wavelength for this surface for the photoelectric effect is

1. 6λ
2. 4λ
3. $\frac{\lambda}{4}$
4. $\frac{\lambda}{6}$
5.

Which of the following figures represent the variation of the particle momentum and the associated de-Broglie wavelength?
1.

2.

3.

12. When the energy of the incident radiation is increased by 20%, the kinetic energy of the photoelectrons emitted from a metal surface increased from emitted 0.5 eV to 0.8 eV . The work function of the metal is :

1. 0.65 eV
2. 1.0 eV
3. 1.3 eV
4. 1.5 eV
5. If the kinetic energy of the particle is increased to 16 times its previous value, the percentage change in the deBroglie wavelength of the particle is:
6. 25
7. 75
8. 60
9. 50
10. For photoelectric emission from certain metal, the cut off frequency is ν. If radiation of frequency 2ν impinges on the metal plate the maximum possible velocity of the emitted electron will be (m is the electron mass) :
11. $\sqrt{\mathrm{h} \nu / \mathrm{m}}$
12. $\sqrt{2 \mathrm{~h} \nu / \mathrm{m}}$
13. $2 \sqrt{\mathrm{~h} \nu / \mathrm{m}}$
14. $\sqrt{\mathrm{h} \nu /(2 \mathrm{~m})}$
15. A 200 W sodium street lamp emits yellow light of wavelength $0.6 \mu \mathrm{~m}$. Assuming it to be 25% efficient in converting electrical energy to light, the number of photons of yellow light it emits per second is
$1.1 .5 \times 10^{20}$
16. 6×10^{18}
17. 62×10^{20}
18. 3×10^{19}
19. An α-particle moves in a circular path of radius 0.83 cm in the presence of a magnetic field of $0.25 \mathrm{~Wb} / \mathrm{m}^{2}$. The de-Broglie wavelength associated with the particle will be :
20. $1 \stackrel{\circ}{\mathrm{~A}}$
21. $0.1{ }^{\circ}{ }^{\circ}$
22. 10 A
23. 0.01 A
24. In the Davisson and Germer experiment, the velocity of electrons emitted from the electron gun can be increased by
25. increasing the filament current
26. decreasing the filament current
27. decreasing the potential difference between the anode and filament
28. increasing the potential difference between the anode and filament
29.

The wavelength λ_{e} of an electron and λ_{P} of a photon of same energy E are related by :

1. $\lambda_{\mathrm{P}} \propto \lambda_{\mathrm{e}}$
2. $\lambda_{\mathrm{P}} \propto \sqrt{\lambda_{e}}$
3. $\lambda_{\mathrm{P}} \propto \frac{1}{\sqrt{\lambda_{e}}}$
4. $\lambda_{P} \propto \lambda_{e}{ }^{2}$
5. A radioactive nucleus of mass M emits a photon of frequency ν and the nucleus will recoil. The recoil energy will be
6. $\frac{\mathrm{h}^{2} \nu^{2}}{2 \mathrm{Mc}^{2}}$
7. zero
8. $\frac{\mathrm{h} \nu}{\mathrm{c} \sqrt{2 \mathrm{M}}}$
9. $\frac{\mathrm{c} \sqrt{2 \mathrm{M}}}{\mathrm{h} \nu}$
10.

In the photoelectric emission process from a metal of work function 1.8 eV , the kinetic energy of most energetic elections is 0.5 eV . The corresponding stopping potential is:

1. 1.3 V
2. 0.5 V
3. 2.3 V
4. 1.8 V
5.

Light of two different frequencies whose photons have energies 1 eV and 2.5 eV respectively illuminate a metallic surface whose work function is 0.5 eV successively. Ratio of maximum speeds of emitted electrons will be

1. $1: 2$
2. $1: 1$
3. $1: 5$
4. $1: 4$
5.

Electrons used in an electron microscope are accelerated by a voltage of 25 kV . If the voltage is increased to 100 kV , then the de-Broglie wavelength associated with the electrons would

1. decrease by 2 times
2. decrease by 4 times
3. increase by 4 times
4. increase by 2 times
5.

A source S_{1} is producing, 10^{15} photons per sec of 0 wavelength 5000 A . Another source S_{2} is producing 1.02×10^{15} photons per second of wavelength 5100 A . Then, (power of $\left.S_{2}\right) /\left(\right.$ power of S_{1}) is equal to

1. 1.00
2. 1.02
3. 1.04
4. 0.98
5. The potential difference that must be applied to stop the fastest photoelectrons emitted by a nickel surface, having work function 5.01 eV , when ultraviolet light of 200 nm falls on it, must be
6. 2.4 V
7. -1.2 V
8. -2.4 V
9. 1.2 V
10.

Monochromatic light of wavelength 667 nm is produced by a helium-neon laser. The power emitted is 9 mW . The number of photons arriving per second on the average at a target irradiated by this beam is
1.9×10^{17}
2. 3×10^{16}
3. 9×10^{15}
4. 3×10^{19}

26.

The figure shows a plot of photocurrent versus anode potential for a photosensitive surface for three different radiations. Which one of the following is a correct statement?

Photo Current

Anode
Potential

1. Curves a and b represent incident radiations of different frequencies and different intensities
2. Curves a and b represent incident radiations of the same frequency but of different intensities
3. Curves b and c represent incident radiations of different frequencies and different intensities
4. Curves b and c represent incident radiations of same frequency having the same intensity
5.

The number of photoelectrons emitted for the light of a frequency ν (higher than the threshold frequency ν_{0}) is proportional to

1. $\nu-\nu_{0}$
2. threshold frequency $\left(\nu_{0}\right)$
3. intensity of light
4. frequency of light (ν)
5.

The work function of a surface of a photosensitive material is 6.2 eV . The wavelength of the incident radiation for which the stopping potential is 5 V lies in the

1. ultraviolet region
2. visible region
3. infrared region
4. X-ray region
5.

In the phenomenon of electric discharge through gases at low pressure, the colored glow in the tube appears as a result of

1. excitation of electrons in the atoms
2. collision between the atoms of the gas
3. collisions between the charged particles emitted from the cathode and the atoms of the gas
4. collision between different electrons of the atoms of the gas
5. A particle of mass 1 mg has the same wavelength as an electron moving with a velocity of $3 \times 10^{6} \mathrm{~ms}^{-1}$. The velocity of the particle is :
$\left(\right.$ Mass of electron $\left.=9.1 \times 10^{-31} \mathrm{~kg}\right)$
6. $2.7 \times 10^{-18} \mathrm{~ms}^{-1}$
7. $9 \times 10^{-2} \mathrm{~ms}^{-1}$
8. $3 \times 10^{-31} \mathrm{~ms}^{-1}$
9. $2.7 \times 10^{-21} \mathrm{~ms}^{-1}$
10. A 5 W source emits monochromatic light of wavelength $5000 \AA$. When placed 0.5 m away, it liberates photoelectrons from a photosensitive metallic surface. When the source is moved to a distance of 1.0 m , the number of photoelectrons liberated, will be reduced by a factor of:
11. 4
12. 8
13. 16
14. 2
15. Monochromatic light of frequency $6.0 \times 10^{14} \mathrm{~Hz}$ is produced by a laser. The power emitted is $2 \times 10^{-3} \mathrm{~W}$. The number of photons emitted, on the average, by the source per second is :
1.5×10^{15}
2.5×10^{16}
3.5×10^{17}
4.5×10^{14}
16. A photo-cell employs photoelectric effect to convert:
17. change in the frequency of light into a change in electric voltage.
18. change in the intensity of illumination into a change in photoelectric current.
19. change in the intensity of illumination into a change in the work function of the photocathode.
20. change in the frequency of light into a change in the electric current.
21. When photons of energy $h \nu$ fall on an aluminium plate (of work function E_{0}), photoelectrons of maximum kinetic energy K are ejected. If the frequency of the radiation is doubled, the maximum kinetic energy of the ejected photoelectrons will be :
22. $K+E_{0}$
23. 2 K
24. K
25. $\mathrm{K}+\mathrm{h} \nu$
26. The momentum of a photon of energy 1 MeV in kg m / s, will be :
27. 0.33×10^{6}
28. 7×10^{-24}
29. 10^{-22}
30. 5×10^{-22}
31. The de-Broglie wavelength of a neutron in thermal equilibrium with heavy water at a temperature T (kelvin) and mass m, is:
32. $\frac{\mathrm{h}}{\sqrt{\mathrm{mkT}}}$
33. $\frac{\mathrm{h}}{\sqrt{3 \mathrm{mkT}}}$
34. $\frac{2 \mathrm{~h}}{\sqrt{3 \mathrm{mkT}}}$
35. $\frac{2 \mathrm{~h}}{\sqrt{\mathrm{mkT}}}$
36. An electron is accelerated through a potential difference of $10,000 \mathrm{~V}$. Its de-Broglie wavelength is, (nearly) : $\left(m_{e}=9 \times 10^{-31} \mathrm{~kg}\right)$
37. 12.2 nm
$2.12 .2 \times 10^{-13} \mathrm{~m}$
38. $12.2 \times 10^{-12} \mathrm{~m}$
39. $12.2 \times 10^{-14} \mathrm{~m}$
40. The work function of the photosensitive material is 4.0 eV . The longest wavelength of light that can cause photoelectric emission from the substance is (approximately):
41. 3100 nm
42. 966 nm
3.31 nm
43. 310 nm
44. A proton and an α-particle are accelerated from rest to the same energy. The de-Broglie wavelength λ_{p} and λ_{α} are in the ratio:
45. $2: 1$
46. 1:1
47. $\sqrt{2}: 1$
48. $4: 1$
49. Light of frequency 1.5 times the threshold frequency is incident on a photosensitive material. What will be the photoelectric current if the frequency is halved and intensity is doubled?
(1) four times
(2) one-fourth
(3) zero
(4) doubled
50. An electron is accelerated from rest through a potential difference of V volt. If the de Broglie wavelength of electron is $1.227 \times 10^{-2} \mathrm{~nm}$, the potential difference is:
51. $10^{2} \mathrm{~V}$
52. $10^{3} \mathrm{~V}$
53. $10^{4} \mathrm{~V}$
54. $10^{5} \mathrm{~V}$
55. The de-Broglie wavelength of an electron moving with the kinetic energy of 144 eV is nearly equal to:
56. $102 \times 10^{-3} \mathrm{~nm}$
57. $102 \times 10^{-4} \mathrm{~nm}$
58. $102 \times 10^{-5} \mathrm{~nm}$
59. $102 \times 10^{-2} \mathrm{~nm}$
60. The wave nature of electrons was experimentally verified by,
61. de-Broglie
62. Hertz
63. Einstein
64. Davisson and Germer
65. Two radiations of photons energies 1 eV and 2.5 eV , successively illuminate a photosensitive metallic surface of work function 0.5 eV . The ratio of the maximum speeds of the emitted electrons is -
66. $1: 2$
67. $1: 1$
68. $1: 5$
69. $1: 4$
70. If the momentum of an electron is changed by P, then the de-Broglie wavelength associated with it changes by 0.5%. The initial momentum of electron will be-
71. 400 P
72. $\frac{P}{200}$
73. 100 P
74. 200 P

Dual Nature of Radiations \& Matter - NCERT based

46. The threshold frequency for a photosensitive metal is $3.3 \times 10^{14} \mathrm{~Hz}$. If light of frequency $8.2 \times 10^{14} \mathrm{~Hz}$ is incident on this metal, the cutoff voltage for the photoelectric emission is nearly:
(1) 1 V
(2) 2 V
(3) 3 V
(4) 5 V
47. When monochromatic radiation of intenisty I falls on a metal surface, the number of
photoelectron and their maximum kinetic energy are N and T respectively. If the intensity of radiation is 2 I , the number of emitted electrons and their maximum kinetic energy are respectively-
48. 2 N and T
49. 2 N and 2 T
50. N and T
51. N and 2 T
52. By photo-electric effect, Einstein proved :
53. $\mathrm{E}=\mathrm{hv}$
54. $K E=\frac{1}{2} m v^{2}$
55. $E=m c^{2}$
56. $E=\frac{-R h c^{2}}{n^{2}}$
57. If the light of wavelength λ is incident on the metal surface, the ejected fastest electron has speed v. If the wavelength is changed to $\frac{3 \lambda}{4}$, the speed of the fastest emitted electron will be :
58. smaller than $\sqrt{\frac{4}{3} v}$
59. greater than $\sqrt{\frac{4}{3} v}$
60. 2 v
61. Zero
62. The work functions for metals A, B and C are respectively $1.92 \mathrm{eV}, 2.0 \mathrm{eV}$ and 5 eV . According to Einstein's equation, the metals which will emit photo electrons for a radiation of wavelength $4100 \AA$ is/are-
(1) None
(2) A only
(3) A and B only
(4) All the three metals
63. Work function of a metal surface is $\varphi=1.5 \mathrm{eV}$. If a light of wavelength $5000 \AA$ falls on it then the maximum K.E. of ejected electron will be -
(1) 1.2 eV
(2) 0.98 eV
(3) 0.45 eV
(4) 0 eV
64. A photosensitive metallic surface has a work function of $\mathrm{h} v_{0}$. If photons of energy $2 \mathrm{~h} v_{0}$ fall on this surface, the electrons come out with a maximum velocity of 4×10^{6} m / s. When the photon energy is increased to $5 \mathrm{~h} \nu_{0}$, then the maximum velocity of photoelectrons will be
(1) $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$
(2) $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(3) $8 \times 10^{5} \mathrm{~m} / \mathrm{s}$
(4) $8 \times 10^{6} \mathrm{~m} / \mathrm{s}$
65. According to Einstein's photoelectric equation, the graph between the kinetic energy of photoelectrons ejected and the frequency of incident radiation is :-
(1)

(2)

(3)

(4)
66. A light of amplitude A and wavelength λ is incident on a metallic surface, then saturation current flows is proportional to (assume cut off wave length $=\lambda_{0}$) -
67. A^{2}, if $\lambda>\lambda_{0}$
68. A^{2}, if $\lambda<\lambda_{0}$
69. A, if $\lambda>\lambda_{0}$
70. A, if $\lambda<\lambda_{0}$
71. Light of wavelength $3000 \AA$ in Photoelectric effect gives electron of max. K.E. 0.5 eV . If wavelength change to $2000 \AA$ then max. K.E. of emitted electrons will be :
(1) Less than 0.5 eV
(2) 0.5 eV
(3) Greater than 0.5 eV
(4) PEE does not occurs
72. The K.E. of electron and photon is same, then the relation between their de-Broglie wavelength is :
73. $\lambda_{p h}<\lambda_{e}$
74. $\lambda_{p h}=\lambda_{e}$
75. $\lambda_{p h}>\lambda_{e}$
76. $\lambda_{p h}=2 \lambda_{e}$
77. The total energy of an electron is 3.555 MeV , then its Kinetic energy is :
78. 3.545 MeV
79. 3.045 MeV
80. 3.5 MeV
81. None
82. The current conduction in a discharge tube is due to -
83. Electrons only
84. +ve ions and -ve ions
85. -ve ions and electrons
86. +ve ions, and electrons

Dual Nature of Radiations \& Matter - NCERT based

59. The value of Planck's constant is : -
$1.6 .63 \times 10^{-34} \mathrm{~J} / \mathrm{s}$
60. $6.63 \times 10^{-34} \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
61. $6.63 \times 10^{-34} \mathrm{~kg}-\mathrm{m}^{2}$
62. $6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}^{-1}$
63. If particles are moving with the same velocity, then De-Broglie wavelength is maximum for
(1) Proton
(2) α-particle
(3) Neutron
(4) β-particle
64. When ultraviolet rays incident on a metal plate then the photoelectric effect does not occur, it occurs by the incidence of:
(1) Infrared rays
(2) X-rays
(3) Radio wave
(4) Lightwave
65. Which of the following is not the property of cathode rays:
(1) It produces a heating effect
(2) It does not deflect in the electric field
(3) It casts a shadow
(4) It produces fluorescence
66. Which one among shows the particle nature of light?
67. P.E.E.
68. Interference
69. Refraction
70. Polirazation
71. A photo-cell is illuminated by a source of light, which is placed at a distance d from the cell. If the distance become $\mathrm{d} / 2$, then number of electrons emited per second will be : -
72. Remain same
73. Four times
74. Two times
75. One-fourth
76. A photoelectric cell is illuminated by a point source of light 1 m away. When the source is shifted to 2 m then -
(1) each emitted electron carries one quarter of the initial energy
(2) number of electrons emitted is half the initial number
(3) each emitted electron carries half the initial energy
(4) number of electrons emitted is a quarter of the initial number
77. J.J. Thomson's cathode-ray tube experiment demonstrated that-
(1) cathode rays are streams of negatively charged ions
(2) all the mass of an atom is essentially in the nucleus
(3) the e / m of electrons is much greater than the e / m of protons
(4) the e/m ratio of the cathode ray particles changes when a different gas is placed in the discharge tube
78. The number of photons per second on an average emitted by the source of monochromatic light of wavelength 600 nm , when it delivers the power of 3.3×10^{-3} watt will be: $\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}\right)$
79. 10^{16}
80. 10^{15}
81. 10^{18}
82. 10^{17}
83. An electromagnetic wave of wavelength ${ }^{\prime} \lambda$ ' is incident on a photosensitive surface of negligible work function. If ' m ' is mass of photoelectron emitted from the surface has de-Broglie wavelength λ_{d}, then:
84. $\lambda=\left(\frac{2 \mathrm{mc}}{\mathrm{h}}\right) \lambda_{\mathrm{d}}{ }^{2}$
85. $\lambda=\left(\frac{2 \mathrm{~h}}{\mathrm{mc}}\right) \lambda_{\mathrm{d}}{ }^{2}$
86. $\lambda=\left(\frac{2 \mathrm{~m}}{\mathrm{hc}}\right) \lambda_{\mathrm{d}}{ }^{2}$
87. $\lambda_{\mathrm{d}}=\left(\frac{2 \mathrm{mc}}{\mathrm{h}}\right) \lambda^{2}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

course

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Atoms
(Expected Questions in NEET 2022: 2)

Subtopic Name	Number of Questions
Bohr's Model of Atom	25
Various Atomic Models	9
Spectral Series	8
X-Ray	2

1. Electrons of mass m with de- Broglie wavelength λ fall on the target in an X-ray tube. The cut-off wavelength $\left(\lambda_{\mathrm{o}}\right)$ of the emitted X-ray is :
2. $\lambda_{0}=\frac{2 \mathrm{mc} \lambda^{2}}{\mathrm{~h}}$
3. $\lambda_{0}=\frac{2 \mathrm{~h}}{\mathrm{mc}}$
4. $\lambda_{0}=\frac{2 \mathrm{~m}^{2} \mathrm{c}^{2} \lambda^{2}}{\mathrm{~h}^{2}}$
5. $\lambda_{0}=\lambda$
6.

Given, the value of Rydberg constant is $10^{7} \mathrm{~m}^{-1}$, the wave number of the last line of the Balmer series in hydrogen spectrum will be:

1. $0.5 \times 10^{7} \mathrm{~m}^{-1}$
2. $0.25 \times 10^{7} \mathrm{~m}^{-1}$
3. $2.5 \times 10^{7} \mathrm{~m}^{-1}$
4. $0.025 \times 10^{4} \mathrm{~m}^{-1}$
5. If an electron in a hydrogen atom jumps from the 3rd orbit to the 2 nd orbit, it emits a photon of wavelength λ. When it jumps from the 4 th orbit to the 3 rd orbit, the corresponding wavelength of the photon will be
6. $\frac{16}{25} \lambda$
7. $\frac{9}{16} \lambda$
8. $\frac{20}{7} \lambda$
9. $\frac{20}{13} \lambda$
10. The ratio of wavelengths of the last line of Balmer series and the last line of Lyman series is:-
1.1
11. 4
12. 0.5
13. 2
14. The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom is:
15. $1: 1$
16. 1:-1
17. $2:-1$
18. 1:-2
19. $\frac{27}{5}$
20. $\frac{5}{27}$

6.

When an α - particle of mass moving with velocity v bombards on a heavy nucleus of charge Ze, its distance of closest approach from the nucleus depends on m as:

1. $\frac{1}{\sqrt{\mathrm{~m}}}$
2. $\frac{1}{\mathrm{~m}^{2}}$
3. m
4. $\frac{1}{\mathrm{~m}}$
5. In the spectrum of hydrogen, the ratio of the longest wavelength in the Lyman series to the longest wavelength in the Balmer series is:
6. $\frac{4}{9}$
7. $\frac{9}{4}$
8. Consider $3^{\text {rd }}$ orbit of He^{+}(Helium), using nonrelativistic approach, the speed of electron in this orbit will be (given $\mathrm{Z}=2$ and h (Planck's constant) $=6.6 \times 10^{-}$ 34 J -s)
9. $2.92 \times 10^{6} \mathrm{~m} / \mathrm{s}$
10. $1.46 \times 10^{6} \mathrm{~m} / \mathrm{s}$
11. $0.73 \times 10^{6} \mathrm{~m} / \mathrm{s}$
12. $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
13. The hydrogen gas with its atoms in the ground state is excited by monochromatic radiation of $\lambda=975 \AA$. The number of spectral lines in the resulting spectrum emitted will be :
14. 3
15. 2
16. 6
17. 10
18. Ratio of longest wave lengths corresponding to Lyman and Blamer series in hydrogen spectrum is :
19. $3 / 23$
20. 7/29
21. $9 / 31$
22. $5 / 27$
23. Electron in hydrogen atom first jumps from third excited state to second excited state and then from second excited to the first excited state. The ratio of the wavelengths $\lambda_{1}: \lambda_{2}$ emitted in the two cases is
24. $7 / 5$
25. $20 / 7$
26. $27 / 5$
27. $27 / 20$
28. An electron of a stationary hydrogen atom passes from the fifth energy level to the ground level. The velocity that the atom acquired as a result of photon emission will be (m is the mass of hydrogen atom, R is Rydberg constant and h is Plank's constant)
29. $\frac{24 m}{25 h R}$
30. $\frac{25 h R}{24 m}$
31. $\frac{25 m}{24 h R}$
32. $\frac{24 h R}{25 m}$
33. Monochromatic radiation emitted when electron on hydrogen atom jumps from first excited to the ground state irradiates a photosensitive material. The stopping potential is measured to be 3.57 V . The threshold frequency of the material is
34. $4 \times 10^{15} \mathrm{~Hz}$
35. $5 \times 10^{15} \mathrm{~Hz}$
36. $1.6 \times 10^{15} \mathrm{~Hz}$
37. $2.5 \times 10^{15} \mathrm{~Hz}$
38.

The wavelength of the first line of Lyman series for hydrogen atom is equal to that of the second line of Balmer series for a hydrogen like ion. The atomic number Z of hydrogen like ion is

1. 4
2. 1
3. 2
4. 3
5. The energy of a hydrogen atom in the ground state is -13.6 eV . The energy of a He^{+}ion in the first excited state will be-
6. -13.6 eV
7. -27.2 eV
8. -54.4 eV
9. -6.8 eV
10. An alpha nucleus of energy $\frac{1}{2} m v^{2}$ bombards a heavy nuclear target of charge Ze . Then the distance of closest approach for the alpha nucleus will be proportional to:
11. $\frac{1}{Z e}$
12. v^{2}
13. $\frac{1}{m}$
14. $\frac{1}{v^{4}}$
15.

In a Rutherford scattering experiment, when a projectile of charge Z_{1} and mass M_{1} approaches a target nucleus of charge Z_{2} and mass M_{2}, the distance of the closest approach is r_{0}. The energy of the projectile is

1. Directly proportional to $\mathrm{M}_{1} \times \mathrm{M}_{2}$
2. Directly proportional to $\mathrm{Z}_{1} \mathrm{Z}_{2}$
3. Inversely proportional to Z_{1}
4. Directly proportional to mass M_{1}
5.

The ionization energy of the electron in the hydrogen atom in its ground state is 13.6 eV . The atoms are excited to higher energy levels to emit radiations of 6 wavelengths. Maximum wavelength of emitted radiation corresponds to the transition between :

1. $\mathrm{n}=3$ to $\mathrm{n}=2$ states
2. $\mathrm{n}=3$ to $\mathrm{n}=1$ states
3. $\mathrm{n}=2$ to $\mathrm{n}=1$ states
4. $n=4$ to $n=3$ states
5.

The ground state energy of hydrogen atom is -13.6 eV . When its electron is in the first excited state, its excitation energy is-

1. 3.4 eV
2. 6.8 eV
3. 10.2 eV
4. zero
5. If the nucleus ${ }_{13}^{27} \mathrm{Al}$ has a nuclear radius of about 3.6 fermi, then ${ }_{52}^{125} \mathrm{Te}$ would have its radius approximately as:
6. 6.0 fermi
7. 9.6 fermi
8. 12.0 fermi
9. 4.8 fermi
10. The total energy of electron in the ground state of hydrogen atom is -13.6 eV . The kinetic energy of an electron in the first excited state is:
11. 3.4 eV
12. 6.8 eV
13. 13.6 eV
14. 1.7 eV
15. The ionization potential of the hydrogen atom is 13.6 V. Hydrogen atoms in the ground state are excited by monochromatic radiation of photon energy 12.1 eV . According to Bohr's theory, the spectral lines emitted by hydrogen will be:
16. two
17. three
18. four
19. one
20. In a discharge tube ionization of enclosed gas is produced due to collisions between:
21. positive ions and neutral atoms/molecules
22. negative electrons and neutral atoms/molecules
23. photons and neutral atoms/molecules
24. neutral gas atoms/molecules
25. The radius of Germanium (Ge) nuclide is measured to be twice the radius of ${ }_{4}^{9} \mathrm{Be}$. The number of nucleons in Ge are:
1.73
26. 74
27. 75
28. 72
29. The total energy of an electron in an atom in an orbit is -3.4 eV . Its kinetic and potential energies are, respectively:
30. $3.4 \mathrm{eV}, 3.4 \mathrm{eV}$
31. $-3.4 \mathrm{eV},-3.4 \mathrm{eV}$
32. $-3.4 \mathrm{eV},-6.8 \mathrm{eV}$
33. $3.4 \mathrm{eV},-6.8 \mathrm{eV}$
34. α-particle consists of:
35. 2 protons only
36. 2 protons and 2 neutrons only

3, 2 electrons, 2 protons, and 2 neutrons
4. 2 electrons and 4 protons only
27. The radius of the first permitted Bohr orbit for the electron in a hydrogen atom equals $0.5 \stackrel{\circ}{A}$ and its ground state energy equals -13.6 eV . If the electron in the hydrogen atom is replaced by muon (μ^{-}) [charge same as electron and mass $207 m_{e}$], the first Bohr radius and ground state energy will be- $\left(m_{e}\right.$ represents mass of electron)

1. $0.53 \times 10^{-13} \mathrm{~m},-3.6 \mathrm{eV}$
$2.25 .6 \times 10^{-13} \mathrm{~m},-2.8 \mathrm{eV}$
2. $2.56 \times 10^{-13} \mathrm{~m},-2.8 \mathrm{keV}$
3. $2.56 \times 10^{-13} \mathrm{~m},-13.6 \mathrm{eV}$
4. For which one of the following Bohr model is not valid?
5. Singly ionised helium atom $\left(\mathrm{He}^{+}\right)$
6. Deuteron atom
7. Singly ionised neon atom $\left(N e^{+}\right)$
8. Hydrogen atom
9. The total energy of an electron in the $n^{t h}$ stationary orbit of the hydrogen atom can be obtained by:
10. $E_{n}=\frac{13.6}{n^{2}} e V$
11. $E_{n}=-\frac{13.6}{n^{2}} e V$
12. $E_{n}=-\frac{1.36}{n^{2}} e V$
13. $E_{n}=-13.6 \times n^{2} e V$
14. The transition from the state $\mathrm{n}=3$ to $\mathrm{n}=1$ in a hydrogen like atom results in ultraviolet radiation. Infrared radiation will be obtained in the transition from -
15. $3 \rightarrow 2$
16. $4 \rightarrow 2$
17. $4 \rightarrow 3$
18. $2 \rightarrow 1$
19. An electron in the hydrogen atom jumps from excited state n to the ground state. The wavelength so emitted illuminates a photosensitive material having work function 2.75 eV . If the stopping potential of the photoelectron is 10 V , then the value of n is :
20. 2
21. 3
22. 4
23. 5
24. Out of the following which one is not a possible energy for a photon to be emitted by hydrogen atom according to Bohr's atomic model?
25. 0.65 eV
26. 1.9 eV
27. 11.1 eV
28. 13.6 eV
29. The electrons in the hydrogen atom jumps from excited state $(\mathrm{n}=3)$ to its ground state $(\mathrm{n}=1)$ and the photons thus emitted irradiate a photosensitive matieral. If the work function of the material is 5.1 eV , the stopping potential is estimated to be (the energy of the electron in nth state $\left.E_{n}=-\frac{13.6}{n^{2}} e V\right)$ -
30. 12.1 V
31. 17.2 V
32. 7 V
33. 5.1 V
34. Maximum frequency of emission is obtained for the transition :
35. $\mathrm{n}=2$ to $\mathrm{n}=1$
36. $\mathrm{n}=6$ to $\mathrm{n}=2$
37. $\mathrm{n}=1$ to $\mathrm{n}=2$
38. $n=2$ to $n=6$
39. The total energy of an electron in the first excited state of a hydrogen atom is about -3.4 eV . Its kinetic energy in this state is-
(1) -6.8 eV
(2) 3.4 eV
(3) 6.8 eV
(4) -3.4 eV
40. Energy levels A, B and C of a certain atom correspond to increasing values of energy i.e. $\mathrm{E}_{\mathrm{A}}<\mathrm{E}_{\mathrm{B}}<\mathrm{E}_{\mathrm{C}}$. If λ_{1}, λ_{2} and λ_{3} are wavelengths of radiations corresponding to transitions C to B, B to A and C to A respectively, which of the following relations is correct?
41. $\lambda_{3}=\lambda_{1}+\lambda_{2}$
42. $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$
43. $\lambda_{3}^{2}=\lambda_{1}^{2}+\lambda_{2}^{2}$
44. $\lambda_{3}=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}$
45. In the Bohr model of H -atom, an electron (e) is revolving around a proton (p) with velocity v , if r is the radius of orbit and m is mass and ε_{0} is vacuum permittivity, the value of v is :
46. $\frac{e}{\sqrt{ } 4 \pi \mathrm{~m} \varepsilon_{0} \mathrm{r}}$
47. $\frac{2 e}{\sqrt{\pi \mathrm{~m} \varepsilon_{0} \mathrm{r}}}$
48. $\frac{e}{\sqrt{\pi \mathrm{~m} \varepsilon_{0} \mathrm{r}}}$
49. $\frac{e}{4 \pi \mathrm{~m} \varepsilon_{0} r}$
50. When an electron transitions from $n=4$ to $n=2$, then emitted line in spectrum will be :
51. First line of Lyman series
52. Second line of Balmer series
53. First line of Paschen series
54. Second line of Paschen series
55. Energy E of a hydrogen atom with principal quantum number n is given by $E=\frac{-13.6}{n^{2}} e V$. The energy of a photon ejected when the electron jumps from $n=3$ state to $\mathrm{n}=2$ state of hydrogen is approximately:
(1) 0.85 eV
(2) 3.4 eV
(3) 1.9 eV
(4) 1.5 eV
56. The Bohr model of atoms:
(1) Uses Einstein's photoelectric equation
(2) Predicts continuous emission spectra for atoms
(3) Predicts the same emission spectra for all types of atoms
(4) Assumes that the angular momentum of electrons is quantized
57. An electron is moving around the nucleus of a hydrogen atom in a circular orbit of radius r. The coulomb force $\overrightarrow{\mathrm{F}}$ between the two is -
58. $\mathrm{K} \frac{\mathrm{e}^{2}}{\mathrm{r}^{2}} \hat{\mathrm{r}}$
59. $-\mathrm{K} \frac{\mathrm{e}^{2}}{\mathrm{r}^{3}} \hat{\mathrm{r}}$
60. $\mathrm{K} \frac{\mathrm{e}^{2}}{\mathrm{r}^{3}} \overrightarrow{\mathrm{r}}$
61. $-\mathrm{K} \frac{\mathrm{e}^{2}}{\mathrm{r}^{3}} \overrightarrow{\mathrm{r}}$

Where $\left(\mathrm{K}=\frac{1}{4 \pi \varepsilon_{\mathrm{o}}}\right)$
42. The energy of hydrogen atom in $n^{t h}$ orbit is E_{n}, then the energy in $n^{\text {th }}$ orbit of singly ionised helium atom will be:

1. $4 E_{n}$
2. $E_{n} / 4$
3. $2 E_{n}$
4. $E_{n} / 2$
5. The volume occupied by an atom is greater than the volume of the nucleus by a factor of about
(1) 10
(2) 10^{5}
(3) 10^{10}
(4) 10^{15}
6. In which of the following systems will be radius of the first orbit $(\mathrm{n}=1)$ be minimum -
(1) Doubly ionized lithium
(2) Singly ionized helium
(3) Deuterium atom
(4) Hydrogen atom

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there
CLICK HERE to get
FREE ACCESS for 3
days of ANY NEETprep

course

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Nuclei
(Expected Questions in NEET 2022: 2)

Subtopic Name	Number of Questions
Radioactivity	25
Types of Decay	18
Nuclear Binding Energy	17
Nuclear Reactor	7
Mass-Energy Equivalent	3

1. Radioactive material 'A' has decay constant ' $8 \lambda^{\prime}$ ' and material ' B ' has a decay constant ' λ '. Initially, they have the same number of nuclei. After what time the ratio of the number of nuclei of material ' A ' to that of ' B ' will be $\frac{1}{\mathrm{e}}$?
2. $\frac{1}{7 \lambda}$
3. $\frac{1}{8 \lambda}$
4. $\frac{1}{9 \lambda}$
5. $\frac{1}{\lambda}$
6. The half-life of a radioactive substance is 30 minutes. The time (in minutes) taken between 40% decay and 85% decay of the same radioactive substance is:
7. 15
8. 30
9. 45
10. 60
11. For radioactive material, the half-life is 10 minutes. If initially, there are 600 number of nuclei, the time taken (in minutes) for the disintegration of 450 nuclei is :
12. 20
13. 10
14. 30
15. 15
16. A nucleus of uranium decays at rest into nuclei of thorium and helium. Then,
17. The nucleus helium has more kinetic energy than the thorium nucleus
18. The helium nucleus has less momentum than the thorium nucleus
19. The helium nucleus has more momentum than the thorium nucleus
20. The helium nucleus has less kinetic energy than the thorium nucleus
21. If the radius of Al nucleus is taken to be R_{Al}, then the radius of Te_{53}^{125} nucleus is near.
22. $\left(\frac{53}{13}\right)^{\frac{1}{3}} \mathrm{R}_{\mathrm{Al}}$
23. $\frac{5}{3} \mathrm{R}_{\mathrm{Al}}$
24. $\frac{3}{5} \mathrm{R}_{\mathrm{Al}}$
25. $\left(\frac{13}{53}\right) \mathrm{R}_{\mathrm{Al}}$
26. The Binding energy per nucleon of ${ }_{3} L i^{7}$ and ${ }_{2} H e^{4}$ nucleon are 5.60 MeV and 7.06 MeV , respectively. In the nuclear reaction ${ }_{3} L i^{7}+{ }_{1} H^{1} \rightarrow_{2} H e^{4}+{ }_{2} H e^{4}+Q$, the value of energy Q released is:
27. 19.6 MeV
28. -2.4 MeV
29. 8.4 MeV
30. 17.3 MeV
31. A radioisotope ' X ' with a half-life 1.4×10^{9} years decays to ' Y ' which is stable. A sample of the rock from a cave was found to contain ' X ' and ' Y ' in the ratio 1:7. The age of the rock is :
32. 1.96×10^{9} years
33. 3.92×10^{9} years
34. 4.20×10^{9} years
35. 8.40×10^{9} years

8.

A certain mass of Hydrogen is changed to Helium by the process of fusion. The Mass defect in the fusion reaction is 0.02866 u . The energy liberated per u (unified mass) is : (given $1 \mathrm{u}=931 \mathrm{MeV}$)

1. 26.7 MeV
2. 6.675 MeV
3. 13.35 MeV
4. 2.67 MeV
5.

The half-life of a radioactive isotope ' X ' is 20 years. It decays to another element ' Y ' which is stable. The two elements ' X ' and ' Y ' were found to be in the ratio $1: 7$ in a sample of a given rock. The age of the rock is estimated to be:

1. 60 years
2. 80 years
3. 100 years
4. 40 years
5. If the nuclear radius of ${ }^{27} \mathrm{Al}$ is 3.6 Fermi, the approximate nuclear radius of ${ }^{64} \mathrm{Cu}$ in Fermi is:
6. 2.4
7. 1.2
8. 4.8
9. 3.6
10. A mixture consists of two radioactive materials A_{1} and A_{2} with half-lives of 20 s and 10 s respectively. Initially, the mixture has 40 g of A_{1} and 160 g of A_{2}. The amount of the two in the mixture will become equal after:
1.60 s
11. 80 s
12. 20 s
13. 40 s
14. The power obtained in a reactor using U^{235} disintegration is 1000 kW . The mass decay of U^{235} per hour is approximately equal to:
15. $20 \mu \mathrm{~g}$
16. $40 \mu \mathrm{~g}$
17. $1 \mu \mathrm{~g}$
18. $10 \mu \mathrm{~g}$
19. The half-life of a radioactive element X is 50 yrs . It decays to another element Y which is stable. The two elements X and Y were found to be in the ratio of $1: 15$ in a sample of a given rock. The age of the rock was estimated to be:
20. 200 yr
21. 250 yr
22. 100 yr
23. 150 yr
24.

Fusion reaction takes place at high temperature because:

1. atoms get ionized at high temperature
2. kinetic energy is high enough to overcome the Coulomb repulsion between nuclei
3. molecules break up at high temperature
4. nuclei break up at high temperature
5. A nucleus ${ }_{\mathrm{n}}^{\mathrm{m}} \mathrm{X}$ emits one α-particle and two β^{-} particles. The resulting nucleus is:
6. ${ }^{m}-6 \mathrm{n} \mathrm{Z}$
7. ${ }^{m-4} \mathrm{X}$
8. ${ }_{\mathrm{n}-2}^{\mathrm{m}-4} \mathrm{Y}$
9. ${ }_{\mathrm{n}-4}^{\mathrm{m}-6} \mathrm{Z}$
10. The mass of a ${ }_{3}^{7} \mathrm{Li}$ nucleus is 0.042 u less than the sum of the masses of all its nucleons. The binding energy per nucleon of the ${ }_{3}^{7} \mathrm{Li}$ nucleus is near:
11. 4.6 MeV
12. 5.6 MeV
13. 3.9 MeV
14. 23 MeV
15. The activity of a radioactive sample is measured as N_{0} counts per minute at $\mathrm{t}=0$ and N_{0} /e counts per minute at $t=5 \mathrm{~min}$. The time (in minute) at which the activity reduces to half its value is:
16. $\log _{e}\left(\frac{2}{5}\right)$
17. $\frac{5}{\log _{e}(2)}$
18. $5 \log _{10} 2$
19. $5 \log _{e} 2$
20.

In the nuclear decay given below:
${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow \underset{\mathrm{Z}+1}{\mathrm{~A}} \mathrm{Y} \rightarrow{ }_{\mathrm{Z}-1}^{\mathrm{A}-4} \mathrm{~B} \rightarrow{ }_{\mathrm{Z}-1}^{\mathrm{A}-4} \mathrm{~B}$
the particles emitted in the sequence are:

1. β, α, γ
2. γ, β, α
3. β, γ, α
4. α, β, γ

19.

The number of beta particles emitted by a radioactive substance is twice the number of alpha particles emitted by it. The resulting daughter is an:

1. isobar of parent
2. Isomer of parent
3. Isotone of parent
4. Isotope of parent
5.

Two radioactive materials X_{1} and X_{2} have decay constants 5^{λ} and ${ }^{\lambda}$ respectively. If initially they have the same number of nuclei, then the ratio of the number of nuclei of
X_{1} to that of X_{2} will be ${ }^{\frac{1}{e}}$ after a time

1. λ
2. $\frac{1}{2} \lambda$
3. $\frac{1}{4} \lambda$
4. $\frac{\mathrm{e}}{\lambda}$
5. If $M(A, Z), M_{p}$, and M_{n} denote the masses of the nucleus ${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}$, proton, and neutron respectively in units of u $\left(1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c}^{2}\right)$ and BE represents its binding energy in MeV , then:
6. $\mathrm{M}(\mathrm{A}, \mathrm{Z})=\mathrm{ZM}_{\mathrm{p}}+(\mathrm{A}-\mathrm{Z}) \mathrm{M}_{\mathrm{n}}-\mathrm{BE} / \mathrm{c}^{2}$
7. $\mathrm{M}(\mathrm{A}, \mathrm{Z})=\mathrm{ZM}_{\mathrm{p}}+(\mathrm{A}-\mathrm{Z}) \mathrm{M}_{\mathrm{n}}+\mathrm{BE}$
8. $\mathrm{M}(\mathrm{A}, \mathrm{Z})=\mathrm{ZM}_{\mathrm{p}}+(\mathrm{A}-\mathrm{Z}) \mathrm{M}_{\mathrm{n}}-\mathrm{BE}$
9. $\mathrm{M}(\mathrm{A}, \mathrm{Z})=\mathrm{ZM}_{\mathrm{p}}+(\mathrm{A}-\mathrm{Z}) \mathrm{M}_{\mathrm{n}}+\mathrm{BE} / \mathrm{c}^{2}$
10.

Two nuclei have their mass numbers in the ratio of $1: 3$. The ratio of their nuclear densities would be

1. $1: 3$
2. $3: 1$
3. $(3)^{1 / 3}: 1$
4. $1: 1$
5. In radioactive decay process, the negatively charged emitted β-particles are:
6. the electrons present inside the nucleus
7. the electrons produced as a result of the decay of neutrons inside the nucleus
8. the electrons produced as a result of collisions between atoms
9. the electrons orbiting around the nucleus
10. A nucleus ${ }_{Z} X^{A}$ has mass represented by $M(A, Z)$. If M_{p} and M_{n} denote the mass of proton and neutron respectively and BE the binding energy, then :
11. $B E=\left[M(A, Z)-Z M_{p}-(A-Z) M_{n}\right] c^{2}$
12. $B E=\left[Z M_{p}+(A-Z) M_{n}-M(A, Z)\right] c^{2}$
13. $B E=\left[Z M_{p}+A M_{n}-M-(A, Z)\right] c^{2}$
14. $B E=M(A, Z)-Z M_{p}-(A-Z) M_{n}$
15. Two radioactive substances A and B have decay constants 5λ and λ respectively. At $t=0$ they have the same number of nuclei. The ratio of the number of nuclei of A to those of B will be $\frac{1}{e^{2}}$ after a time interval:
16. $\frac{1}{4 \lambda}$
17. 4λ
18. 2λ
19. $\frac{1}{2 \lambda}$
20. The binding energy of deuteron is 2.2 MeV and that of ${ }_{2} \mathrm{He}^{4}$ is 28 MeV . If two deuterons are fused to form one ${ }_{2} \mathrm{He}^{4}$ then the energy released is:
21. 25.8 MeV
22. 23.6 MeV
23. 19.2 MeV
24. 30.2 MeV
25. In a radioactive material, the activity at time t_{1} is R_{1} and at a later time t_{2}, it is R_{2}. If the decay constant of the material is λ, then:
26. $R_{1}=R_{2} e^{\lambda\left(t_{1}+t_{2}\right)}$
27. $R_{1}=R_{2} e^{-\lambda\left(t_{1}-t_{2}\right)}$
28. $R_{1}=R_{2}\left(t_{1}-t_{2}\right)$
29. $R_{1}=R_{2}$
30. The rate of radioactive disintegration at an instant for a radioactive sample of half-life 2.2×10^{9} s is $10^{10} s^{-1}$. The number of radioactive atoms in that sample at that instant is:
$1.3 .7 \times 10^{20}$
31. 3.17×10^{17}
32. 3.17×10^{18}
33. 3.17×10^{19}
34. The energy equivalent of 0.5 g of a substance is :
$1.4 .5 \times 10^{13} \mathrm{~J}$
$2.1 .5 \times 10^{13} J$
35. $0.5 \times 10^{13} \mathrm{~J}$
36. $4.5 \times 10^{16} J$
37. When a uranium isotope ${ }_{92}^{235} U$ is bombarded with a neutron, it generates ${ }_{36}^{89} K r$, three neutrons and :
(1) ${ }_{40}^{91} Z r$
(2) ${ }_{36}^{101} K r$
(3) ${ }_{36}^{103} K r$
(4) ${ }_{56}^{144} B a$
38. What happens to the mass number and the atomic number of an element when it emits $\gamma-$ radiation?
39. Mass number decreases by four and atomic number decreases by two.
40. Mass number and atomic number remain unchanged.
41. Mass number remains unchanged while atomic number decreases by one.
42. Mass number increases by four and the atomic number increases by two.
43. The half-life of a radioactive sample undergoing $\alpha-$ decay is $1.4 \times 10^{17} \mathrm{sec}$. If the number of nuclei in the sample is 2.0×10^{21}, the activity of the sample is nearly equal to:
44. $10^{4} B q$
45. $10^{5} B q$
46. $10^{6} B q$
47. $10^{3} B q$
48. The half of a radioactive nucleus is 50 days. The time interval $\left(t_{2}-t_{1}\right)$ between the time t_{2} when $\frac{2}{3}$ of it has decayed and the time t_{1} when $\frac{1}{3}$ of it had decayed is -
49. 50 days
50. 60 days
51. 15 days
52. 30 days
53. Two radioactive nuclei P and Q , in a given sample decay into a stable nucleus R. At time $t=0$, number of P species are $4 N_{0}$ and that of Q are N_{0}. Half-life of P (for conversion to R) is 1 minute where as that of Q is 2 minutes. Initially there are no nuclei of R present in the sample. When number of nuclei of P and Q are equal, the number of nuclei of R present in the sample would be :
54. $2 \mathrm{~N}_{0}$
55. $3 \mathrm{~N}_{0}$
56. $\frac{9 \mathrm{~N}_{0}}{2}$
57. $\frac{5 \mathrm{~N}_{0}}{2}$
58. The binding energy per nucleon in deutorium and helium nuclei are 1.1 MeV and 7.0 MeV , respectively. When two deuterium neclei fuse to form a helium nucleus the energy released in the fusion is -
59. 2.2 MeV
60. 28.0 MeV
61. 30.2 MeV
62. 23.6 MeV
63. The decay constant of a radio isotope is λ. If A_{1} and A2 are its activities at times t_{1} and t_{2} respectively, the number of nuclei which have decayed during the time $\left(\mathrm{t}_{1}\right.$ $\left.-t_{2}\right)$ -
64. $\mathrm{A}_{1}-\mathrm{A}_{2}$
65. $\left(\mathrm{A}_{1}-\mathrm{A}_{2}\right) / \lambda$
66. $\lambda\left(\mathrm{A}_{1}-\mathrm{A}_{2}\right)$
67. $\mathrm{A}_{1} \mathrm{t}_{1}-\mathrm{A}_{2} \mathrm{t}_{2}$
68. For the given reaction, the particle X is :
$6^{C^{11}} \rightarrow 5^{B^{11}}+\beta^{+}+X$
69. Neutron
70. Anti neutrino
71. Neutrino
72. Proton
73. Half life period of two elements are 40 minute and 20 minute respectively, then after 80 minute ratio of the remaining nuclei will be (Initially both have equal active nuclei):
74. $4: 1$
75. $1: 2$
76. $8: 1$
77. $16: 1$
78. The relation between λ and $\mathrm{T}_{1 / 2}$ is : $\left(\mathrm{T}_{1 / 2}=\right.$ half life, λ \rightarrow decay constant)
79. $T_{1 / 2}=\frac{\ln 2}{\lambda}$
80. $T_{1 / 2} \ln 2=\lambda$
81. $T_{1 / 2}=\frac{1}{\lambda}$
82. $\left(\lambda+T_{1 / 2}\right)=\frac{\ln }{2}$
83. In the reaction ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}$. If the binding energies of ${ }_{1}^{2} \mathrm{H},{ }_{1}^{3} \mathrm{H}$ and ${ }_{2}^{4} \mathrm{He}$ are respectively a, b and c (in MeV), then the energy (in MeV) released in this reaction is:
(1) $a+b+c$
(2) $c+a-b$
(3) $c-a-b$
(4) $a+b-c$
84. Fission of nuclei is possible because of the binding energy per nucleon in them:
(1) decreases with the mass number at low mass numbers
(2) increases with the mass number at low mass numbers
(3) decreases with the mass number at high mass numbers
(4) increases with the mass number at high mass numbers
85. Nuclear - fission is best explained by :
86. Liquid droplet theory
87. Yukawa π-meson theory
88. Independent particle model of the nucleus
89. Proton-proton cycle
90. For the nuclear reaction :
${ }_{92} U_{235}+{ }_{0} n_{1} \rightarrow{ }_{56} B a^{144}+\ldots \ldots . .+3_{0} n^{1}$
91. ${ }_{26} K r^{89}$
92. ${ }_{36} K r^{89}$
93. ${ }_{26} S r^{90}$
94. $38 S r^{89}$
95. ${ }_{n} X_{m}$ emitted one α and 2β particles, then it will become :
96. ${ }_{n} X_{m-4}$
97. ${ }_{n-1} X_{m-1}$
98. ${ }_{n} Z_{m-4}$
99. None
100. When $\mathrm{X} \rightarrow N_{7}^{14}+2 \beta^{-}$then number of neutron will be in X :
101. 3
102. 5
103. 7

49
46. If in a nuclear fusion process the masses of the fusing nuclei be m_{1} and m_{2} and the mass of the resultant nucleus be m_{3}, then
(1) $m_{3}=\left|m_{1}-m_{2}\right|$
(2) $\mathrm{m}_{3}<\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)$
(3) $m_{3}>\left(m_{1}+m_{2}\right)$
(4) $m_{3}=m_{1}+m_{2}$
47. A nucleus represented by the symbol ${ }_{Z}^{A} X$ has :-
(1) Z protons and $\mathrm{A}-\mathrm{Z}$ neutrons
(2) Z protons and A neutrons
(3) A protons and $\mathrm{Z}-\mathrm{A}$ neutrons
(4) Z neutrons and $\mathrm{A}-\mathrm{Z}$ protons
48. The half-life of radium is about 1600 years. Of 100 g of radium existing now, 25 g will remain undecayed after:
(1) 6400 years
(2) 2400 years
(3) 3200 years
(4) 4800 years
49. M_{P} denotes the mass of a proton and M_{n} that of a neutron. A given nucleus, of binding energy B, contains Z protons and N neutrons. The mass $\mathrm{M}(\mathrm{N}, \mathrm{Z})$ of the nucleus is given by (c is the velocity of light)
(1) $M(N, Z)=N M_{n}+Z M_{P}+B c^{2}$
(2) $M(N, Z)=N M_{n}+Z M_{P}-B / c^{2}$
(3) $M(N, Z)=N M_{n}+Z M_{P}+B / c^{2}$
(4) $M(N, Z)=N M_{n}+Z M_{P}-B c^{2}$
50. A radioactive element emitted one α and one β particle, then the mass number of the daughter element
(1) Decreased by 4
(2) Increased by 4
(3) Decreased by 2
(4) Increased by 2
51. The half-life of a radionuclide is 77 days then its decay constant is:

1. $0.003 /$ day
2. $0.006 /$ day
3. $0.009 /$ day
4. $0.012 /$ day
5. Which of the following are suitable for the fusion process :-
(1) Light nuclei
(2) heavy nuclei
(3) Element must be lying in the middle of the periodic table
(4) Middle elements, which are lying on binding energy curve
6. A sample of radioactive element containing 4×10^{16} active nuclei. Half life of element is 10 days, then number of decayed nuclei after 30 days : -
7. 0.5×10^{16}
8. 2×10^{16}
9. 3.5×10^{16}
4.1×10^{16}
10. A deuteron is bombarded on ${ }_{8} \mathrm{O}^{16}$ nucleus then α particle is emitted then product nucleus is -
(1) ${ }_{7} \mathrm{~N}^{13}$
(2) ${ }_{5} \mathrm{~B}^{10}$
(3) ${ }_{4} \mathrm{Be}^{9}$
(4) ${ }_{7} \mathrm{~N}^{14}$
11. Which rays contain $(+\mathrm{ve})$ charged particle : -
12. α-rays
13. β-rays
14. γ-rays
15. X-rays
16. $X(n, \alpha){ }_{3}^{7} L i$, then X will be:
17. ${ }_{5}^{10} B$
18. ${ }_{5}^{9} B$
19. ${ }_{4}^{11} B e$
20. ${ }_{2}^{4} \mathrm{He}$
21. The half-life of a radioactive element is 12.5 Hour and its quantity is 256 gm . After how much time its quantity will remain 1 gm :
22. 50 Hrs
23. 100 Hrs
24. 150 Hrs
25. 200 Hrs
26. M_{n} and M_{P} represet the mass of neutron and proton respectively. An element having mass M has N neutron and Z-protons, then the correct relation will be :-
27. $M<\left\{N . M_{n}+Z . M_{P}\right\}$
28. $M>\left\{N . M_{n}+Z . M_{P}\right\}$
29. $M=\left\{N . M_{n}+Z . M_{P}\right\}$
30. $M=N\left\{M_{n}+M_{P}\right\}$
31. Energy is released in nuclear fission is due to
32. Some mass is converted into energy
33. Total binding energy of fragments is more than the B.E. of parental element
34. Total B.E. of fragments is less than the B.E. of parental element
35. Total B.E. of fragments is equals to the B.E. of parental element
36. A human body required the 0.01 Curie activity of radioactive substance after 24 hours. Half-life of radioactive is 6 hours. Then maximum activity of radioactive substance that can be injected will be: -
37. 0.08
38. 0.04
39. 0.16
40. 0.32
41. Solar energy is mainly caused due to :
(1) burning of hydrogen in the oxygen
(2) fission of uranium present in the sun
(3) fusion of protons during synthesis of heavier elements
(4) gravitational contraction
42. A sample of radioactive element has a mass of 10 gm at an instant $t=0$. The approximate mass of this element in the sample after two mean lives is:
(1) 1.35 gm
(2) 2.50 gm
(3) 3.70 gm
(4) 6.30 gm
43. Which of the following ray are not electromagnetic waves?
(1) X-rays
(2) γ-rays
(3) β-rays
(4) Heat rays
44. The mass of proton is 1.0073 u and that of neutron is $1.0087 \mathrm{u}(\mathrm{u}=$ atomic mass unit). The binding energy of
${ }_{2}^{4} \mathrm{He}$ is (Given : helium nucleus mass $\approx 4.0015 \mathrm{u}$)
(1) 0.0305 J
(2) 0.0305 erg
(3) 28.4 MeV
(4) 0.061 u
45. The mass number of a nucleus is
(1) always less than its atomic number
(2) always more than its atomic number
(3) sometimes equal to its atomic number
(4) sometimes less than and sometimes more than its atomic number
46. A nuclear reaction given by
${ }_{\mathrm{Z}} \mathrm{X}^{\mathrm{A}} \rightarrow_{\mathrm{Z}+1} \mathrm{Y}^{\mathrm{A}}+{ }_{-1} \mathrm{e}^{0}+\overline{\mathrm{v}}$ represents
(1) β-decay
(2) γ-decay
(3) fusion
(4) fission
47. If a ${ }_{a}^{b} X$ species emits firstly a positron, then two α and two β and at last one α is also after initially it finally converts into stable ${ }_{d}^{c} Y$ species so correct relation will be :

-

1. $\mathrm{c}=\mathrm{b}-12, \mathrm{~d}=\mathrm{a}-5$
2. $\mathrm{a}=\mathrm{c}-8, \mathrm{~d}=\mathrm{b}-1$
3. $a=c-6, d=b-0$
4. $\mathrm{a}=\mathrm{c}-4, \mathrm{a}=\mathrm{b}-2$
5. A nucleus with mass number 240 breaks into fragments each of mass number 120, the binding energy per nucleon of unfragmented nuclei is 7.6 MeV while that of fragments is 8.5 MeV . The total gain in the Binding Energy in the process is:
6. 804 MeV
7. 216 MeV
8. 0.9 MeV
9. 9.4 MeV
10. A radioactive nucleus ${ }_{Z}^{A} X$ undergoes spontaneous decay in the sequence ${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow_{\mathrm{z}-1} \mathrm{~B} \rightarrow_{\mathrm{z}-3} \mathrm{C} \rightarrow_{\mathrm{z}-2} \mathrm{D}$, where Z is the atomic number of element X . The possible decay particles in the sequence are :
11. $\beta^{+}, \alpha, \beta^{-}$
12. $\beta^{-}, \alpha, \beta^{+}$
13. $\alpha, \beta^{-}, \beta^{+}$
14. $\alpha, \beta^{+}, \beta^{-}$
15. The half-life of a radioactive nuclide is 100 hours. The fraction of original activity that will remain after 150 hours would be:
16. $\frac{2}{3}$
17. $\frac{2}{3 \sqrt{2}}$
18. $1 / 2$
19. $\frac{1}{2 \sqrt{2}}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there
CLICK HERE to get
FREE ACCESS for 3
days of ANY NEETprep
course

Semiconductor Electronics

(Expected Questions in NEET 2022: 4)

Subtopic Name	Number of Questions
Logic gates	28
PN junction	24
Applications of Transistor	13
Transistor	9
Types of Semiconductors	8
Applications of PN junction	7
Energy Band theory	7
Rectifier	2

1. In the combination of the following gates, the output Y can be written in terms of inputs A and B as:

2. $\overline{\mathrm{A} . \mathrm{B}}$
3. A. $\overline{\mathrm{B}}+\mathrm{B} . \overline{\mathrm{A}}$
4. $\overline{\mathrm{A} . \mathrm{B}}+\mathrm{A} . \mathrm{B}$
5. $\overline{\mathrm{A}+\mathrm{B}}$
6.

In the circuit shown in the figure, the input voltage V_{i} is $20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0$, and $\mathrm{V}_{\mathrm{CE}}=0$. The values of $\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}$ and β are given by:

1. $\mathrm{I}_{\mathrm{B}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{c}}=10 \mathrm{~mA}, \beta=250$
2. $\mathrm{I}_{\mathrm{B}}=25 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{c}}=5 \mathrm{~mA}, \beta=200$
3. $\mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{c}}=5 \mathrm{~mA}, \beta=250$
4. $\mathrm{I}_{\mathrm{B}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{c}}=5 \mathrm{~mA}, \beta=125$
5. In a common-emitter transistor amplifier, the audio signal voltage across the collector is 3 V . The resistance of the collector is $3 \mathrm{k} \Omega$. If current gain is 100 and the base resistance is $2 \mathrm{k} \Omega$, the voltage and power gain of the amplifier is:
6. 15 and 200
7. 150 and 15000
8. 20 and 2000
9. 200 and 1000
10. In a p-n junction diode, the change in temperature due to heating:
11. affects only reverse resistance.
12. affects only forward bias.
13. does not affect the resistance of the p-n junction.
14. affects the overall V-I characteristics of a p-n junction.
15. The given electrical network is equivalent to:

16. OR gate
17. NOR gate
18. NOT gate
19. AND gate
20. Which one of the following represents the forward bias diode?

21.

3.

4.

7. For the CE transistor amplifier, the audio signal voltage across the collector resistance of $2 \mathrm{k} \Omega$ is 4 V . If the current amplification factor of the transistor is 100 and the base resistance is $1 \mathrm{k} \Omega$, then the input signal voltage is:

1. 10 mV
2. 20 mV
3. 30 mV
4. 15 mV
5.

To get output 1 for the following circuit, the correct choice for the input is:

1. $\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=0$
2. $\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=0$
3. $\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=1$
4. $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=0$
5. Consider the junction diode as an ideal. The value of current flowing through AB is:

An n-p-n transistor is connected in the common-emitter configuration in a given amplifier. A load resistance of 800Ω is connected in the collector circuit and the voltage drop across it is 0.8 V . If the current amplification factor is 0.96 and the input resistance of the circuits is 192Ω, the voltage gain and the power gain of the amplifier will

1. $10^{-2} \mathrm{~A}$
2. $10^{-1} \mathrm{~A}$
3. $10^{-3} \mathrm{~A}$
4. 0 A
5. respectively be:
6. $3.69,3.84$
7. 4, 4
8. $4,3.69$
9. $4,3.84$
10. 0,1
11. 0,0
12. 1,0
13. 1,1
14. What is the output Y in the following circuit, when all the three inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are first 0 and then 1 ?

15.

In the given figure, a diode D is connected to an external resistance $\mathrm{R}=100 \Omega$ and an e.m.f. of 3.5 V . If the barrier potential developed across the diode is 0.5 V , the current in the circuit will be:

1. 30 mA
2. 40 mA
3. 20 mA
4. 35 mA
5. The input signal given to a CE amplifier having a voltage gain of 150 is $\mathrm{V}_{\mathrm{i}}=2 \cos \left[15 \mathrm{t}+\frac{\pi}{3}\right]$. The corresponding output signal will be:
6. $30 \cos \left[15 \mathrm{t}+\frac{\pi}{3}\right]$
7. $75 \cos \left[15 \mathrm{t}+\frac{2 \pi}{3}\right]$
8. $2 \cos \left[15 t+\frac{5 \pi}{3}\right]$
9. $300 \cos \left[15 t+\frac{4 \pi}{3}\right]$
10.

If in a p-n junction, a square input signal of 10 V is applied as shown,

then the output across R_{L} will be:
1.

2.

3.

4.

16.

Which logic gate is represented by the following combination of logic gates?

1. OR
2. NAND
3. AND
4. NOR

Semiconductor Electronics - NCERT based PYQs

17. The given graph represents the V-I characteristic for a semiconductor device.

Which of the following statement is correct?

1. It is a V-I characteristic for the solar cell where point A represents open-circuit voltage and point B short circuit current.
2. It is for a solar cell and points A and B represent opencircuit voltage and current, respectively.
3. It is for a photodiode and points A and B represent open-circuit voltage and current respectively.
4. It is for a LED and points A and B represent open circuit voltage and short circuit current, respectively.
5. The barrier potential of a p-n junction depends on:
(a) type of semiconductor material
(b) amount of doping
(c) temperature

Which one of the following is correct?

1. (a) and (b) only
2. (b) only
3. (b) and (c) only
4. (a),(b) and (c)
5.

In an n-type semiconductor, which of the following statement is true?

1. Electrons are minority carriers and pentavalent atoms are dopants.
2. Holes are minority carriers and pentavalent atoms are dopants.
3. Holes are the majority carriers and trivalent atoms are dopants.
4. Electrons are majority carriers and trivalent atoms are dopants.
5.

In a common emitter (CE) amplifier having a voltage gain G, the transistor used has trans conductance 0.03 mho and current gain 25 . If the above transistor is replaced with another one with trans conductance 0.02 mho and current gain 20, the voltage gain will be:

1. 1.5 G
2. $\frac{1}{3} \mathrm{G}$
3. $\frac{5}{4} \mathrm{G}$
4. $\frac{2}{3} \mathrm{G}$
5.

The output (X) of the logic circuit shown in figure will be:

1. $\mathrm{X}=\overline{\mathrm{A} \cdot \mathrm{B}}$
2. $X=A . B$
3. $\mathrm{X}=\overline{\mathrm{A}+\mathrm{B}}$
4. $\mathrm{X}=\overline{\overline{\mathrm{A}}} \cdot \overline{\overline{\mathrm{B}}}$
5.

Two ideal diodes are connected to a battery as shown in the circuit. The current supplied by the battery is:

1. 0.75 A
2. zero
3. 0.25 A
4. 0.5 A
5. In a CE transistor amplifier, the audio signal voltage across the resistance of $2 \mathrm{k} \Omega$ is 2 V . If the base resistance is $1 \mathrm{k} \Omega$ and the current amplification of the transistor is 100 , the input signal voltage is:
6. 0.1 V
7. 1.0 V
8. 1 mV
9. 10 mV
10. C and Si both have the same lattice structure, having 4 bonding electrons in each. However, C is an insulator whereas Si is an intrinsic semiconductor. This is because:
11. in the case of C , the valence band is not completely filled at absolute zero temperature.
12. in the case of C , the conduction band is partly filled even at absolutely zero temperature.
13. the four bonding electrons in the case of C lie in the second orbit, whereas in the case of Si , they lie in the third.
14. the four bonding electrons in the case of C lie in the third orbit, whereas for Si, they lie in the fourth orbit.
15. Transfer characteristic [output voltage $\left(\mathrm{V}_{\mathrm{o}}\right)$ vs input voltage $\left(\mathrm{V}_{\mathrm{i}}\right)$] for a base biased transistor in CE configurations as shown in the figure. For using the transistor as a switch, it is used:

16. In region III
17. Both in the region (I) and (III)
18. In region II
19. In region I
20.

The figure shows a logic circuit with two inputs A and B and the output C . The voltage waveforms across A, B, and C are as given. The logic circuit gate is:

1. OR gate
2. NOR gate
3. AND gate
4. NAND gate
5. Symbolic representation of four gates is shown as:
(i)

(ii)

(iii)

(iv)

Pick out which ones are for AND, NAND, and NOT gates, respectively.

1. (i), (iv), and (iii)
2. (ii), (iii), and (iv)
3. (ii), (iv), and (iii)
4. (ii), (iv), and (i)
5.

If a small amount of antimony is added to germanium crystal:

1. the antimony becomes an acceptor atom.
2. there will be more free electrons than holes in the semiconductor.
3. its resistance is increased.
4. it becomes a p-type semiconductor.
5.

In a forward biasing of the p-n junction:

1. the positive terminal of the battery is connected to the p-side and the depletion region becomes thick.
2. the negative terminal of the battery is connected to the n -side and the depletion region becomes thin.
3. the positive terminal of the battery is connected to the n -side and the depletion region become thin.
4. the negative terminal of the battery is connected to the p -side and the depletion region becomes thick.
5. Which one of the following statements is false?
6. Pure Si doped with trivalent impurities gives a p-type semiconductor.
7. The majority of carriers in an n-type semiconductor are holes.
8. The minority carriers in a p-type semiconductor are electrons.
9. The resistance of intrinsic semiconductors decreases with an increase in temperature.
10. The device that can act as a complete electronic circuit is:
11. Junction diode
12. Integrated circuit
13. Junction transistor
14. Zener diode
15. A common emitter amplifier has a voltage gain of 50 , an input impedance of 100Ω and an output impedance of 200Ω. The power gain of the amplifier is:
16. 500
17. 1000
18. 1250
19. 50
20. To get an output $\mathrm{Y}=1$ from the circuit shown below, the input must be:

21. $\mathrm{A}=0 \mathrm{~B}=1 \mathrm{C}=0$
22. $A=0 B=0 C=1$
23. $\mathrm{A}=1 \mathrm{~B}=0 \mathrm{C}=1$
24. $A=1 B=0 C=0$
25.

A $p-n$ photodiode is fabricated from a semiconductor with a band-gap of 2.5 eV . It can detect a signal of wavelength:

1. $6000 \AA$
2. 4000 nm
3. 6000 nm
4. $4000 \AA$
5. The symbolic representation of four logic gates:
(1)

(111)
(iv)

The logic symbols for OR, NOT and NAND gates are respectively:

1. (iii), (iv), (ii)
2. (iv), (i), (iii)
3. (iv), (ii), (i)
4. (i), (iii), (iv)
5.

A transistor is operated in common-emitter configuration at $\mathrm{V}_{\mathrm{c}}=2$ volt such that a change in the base current from $100 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$ produces a change in the collector current from 5 mA to 10 mA . The current gain is:

1. 75
2. 100
3. 150
4. 50
5. The voltage gain of an amplifier with 9% negative feedback is 10 . Find the voltage gain without feedback will be:
6. 90
7. 10
8. 1.25
9. 100
10. A p-n photodiode is made of a material with a bandgap of 2.0 eV . The minimum frequency of the radiation that can be absorbed by the material is nearly:
11. $10 \times 10^{14} \mathrm{~Hz}$
12. $5 \times 10^{14} \mathrm{~Hz}$
13. $1 \times 10^{14} \mathrm{~Hz}$
14. $20 \times 10^{14} \mathrm{~Hz}$
15.

The circuit is equivalent to:

40.

In the following circuit, the output Y for all possible inputs A and B is expressed by the truth table:

1. A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

2. A B Y
$\begin{array}{lll}0 & 0 & 1\end{array}$
$\begin{array}{lll}0 & 1 & 1\end{array}$
101
110
3. A B Y
$\begin{array}{lll}0 & 0 & 1\end{array}$
$0 \quad 1 \quad 0$
100
111
4. A B Y
$0 \quad 0 \quad 0$
$\begin{array}{lll}0 & 1\end{array}$
$1 \quad 0 \quad 1$
111
5. AND gate
6. NAND gate
7. NOR gate
8. OR gate
9.

In the energy band diagram of a material shown below, the open circles and filled circles denote holes and electrons respectively. The material is a/an:

1. p-type semiconductor
2. insulator
3. metal
4. n-type semiconductor
5. A transistor is operated in a common emitter configuration at constant collector voltage $\mathrm{V}_{\mathrm{c}}=1.5 \mathrm{~V}$ such that a change in the base current from $100 \mu \mathrm{~A}$ to 150 $\mu \mathrm{A}$ produces a change in the collector current from 5 mA to 10 mA . The current gain (β) is:
1.67
6. 75
7. 100
8. 50
9. Which of the following is an example of forward biasing?
10.

2.

3.

44. The following figure shows a logic gate circuit with two inputs A and B and the output C. The voltage waveforms of A, B, and C are as shown below:

45. For a p-type semiconductor, which of the following statements is true?

1. Electrons are the majority carriers and pentavalent atoms are the dopants.
2. Electrons are the majority carriers and trivalent atoms are the dopants.
3. Holes are the majority carriers and trivalent atoms are the dopants.
4. Holes are the majority carriers and pentavalent atoms are the dopants.
5.

47. An LED is constructed from a p-n junction diode using GaAsP. The energy gap is 1.9 eV . The wavelength of the light emitted will be equal to:

1. $10.4 \times 10^{-26} \mathrm{~m}$
2. 654 nm
3. 654 m
4. $654 \times 10^{-11} m$
5. The circuit diagram shown here corresponds to the logic gate:

6. NOR
7. AND
8. OR
9. NAND

The correct Boolean operation represented by the circuit diagram drawn is :

1. NOR
2. AND
3. OR
4. NAND
5. For the logic circuit shown, the truth table is:

6. A B Y

000
011
101
111
2. A B Y

001
011
101
110
3. A B Y

001
010
100
110
4. A B Y

000
010
100
111
50. The increase in the width of the depletion region in a $\mathrm{p}-\mathrm{n}$ junction diode is due to :

1. reverse bias only
2. both forward bias and reverse bias
3. increase in forwarding current
4. forward bias only
5. The solids which have the negative temperature coefficient of resistance are:
6. insulators only
7. semiconductors only
8. insulators and semiconductors
9. metals
10. For transistor action, which of the following statements is correct?
11. Base, emitter, and collector regions should have the same size
12. Both emitter junction, as well as the collector junction, are forward biased
13. The base region must be very thin and lightly doped
14. Base, emitter, and collector regions should have the same doping concentrations
15. Out of the following which one is a forward-biased diode?
(1)

(2) 2 V
(3) $\xrightarrow{-2 \mathrm{~V}}$
(4)

16. An n-p-n transistor is connected in a common emitter configuration (see figure) in which collector voltage drop across load resistance (800Ω) connected to the collector circuit is 0.8 V . The collector current is :

17. 2 mA
18. 0.1 mA
19. 1 mA
20. 0.2 mA
21. Which of the following gate is called universal gate?
22. OR gate
23. AND gate
24. NAND gate
25. NOT gate
26. An intrinsic semiconductor is converted into an n-type extrinsic semiconductor by doping it with:
27. Phosphorous
28. Aluminium
29. Silver
30. Germanium
31. To get output $\mathrm{Y}=1$ in given circuit which of the following input will be correct -

	A	B	C
1.	1	0	1
2	1	1	0
3.	0	1	0
4.	1	0	0

58. The input resistance of a silicon transistor is 100Ω. Base current is changed by $40 \mu \mathrm{~A}$ which results in a change in collector current by 2 mA . This transistor is used as a common emitter amplifier with a load resistance of $4 \mathrm{~K} \Omega$. The voltage gain of the amplifier is-
59. 3000
60. 4000
61. 1000
62. 2000
63. A Zener diode, having breakdown voltage equal to 15 V , is used in a voltage regulator circuit shown in figure. The current through the diode is :

64. 5 mA
65. 10 mA
3.15 mA
66. 20 mA
67. In the following figure, the diodes which are forward biased are :
(a) +5 V

(b)

(c)

(d)
68. (a), (b) and (d)
69. (c) only
70. (c) and (a)
71. (b) and (d)
72. Pure Si at 500 K has equal number of electron $\left(\mathrm{n}_{\mathrm{e}}\right)$ and hole $\left(\mathrm{n}_{\mathrm{h}}\right)$ concentrations of $1.5 \times 10^{16} \mathrm{~m}^{-3}$. Doping by indium increases n_{h} to $4.5 \times 10^{22} \mathrm{~m}^{-3}$. The doped semiconductor is of :
73. P-type having electron concentrations $n_{e}=5 \times 10^{9} \mathrm{~m}^{-3}$
74. n-type with electron concentrations $n_{e}=5 \times 10^{22} \mathrm{~m}^{-3}$
75. P-type with electron concentrations $\mathrm{n}_{\mathrm{e}}=2.5 \times 10^{10} \mathrm{~m}^{-3}$
76. n-type with electron concentrations $\mathrm{n}_{\mathrm{e}}=2.5 \times 10^{23} \mathrm{~m}^{-3}$
77. For transistor action -
(a) Base, emitter and collector regions should have similar sizae and doping concentrations.
(b) The base region must be very thin and lightly doped.
(c) The emitter-base junction is forward biased and basecollector junction is reverse biased.
(d) Both the emitter-base junctions as well as the base collector juction are forward biased.

Which one of the following pairs of statements is correct?

1. (a), (b)
2. (b), (c)
3. (c), (d)
4. (d), (a)
5. The following figure shows a logic gate citrcuit with two inputs A and B the output Y. The voltage waveforms of A, B and Y are as given-

The logic gate is:

1. OR gate
2. AND gate
3. NAND gate
4. NOR gate
5. Following table is for which logic gate:

Input Output

A B C
$0 \quad 0$
1
$\begin{array}{lll}0 & 1 & 1\end{array}$
$1 \quad 0 \quad 1$
$1 \quad 1 \quad 0$

1. AND
2. OR
3. NAND
4. NOT
5. Following logic gate is :

6. AND
7. NAND
8. EX-OR
9. OR
10. Zener diode is used for:-
(1) Rectification
(2) Stabilisation
(3) Amplification
(4) Producing oscillations in an oscillator
11. From the following diode circuit, which diode is in forward biased condition :
(1)

(2)

(3)

(4)

12. Given Truth table is correct for :

A	B	Y
1	1	1
1	0	0
0	1	0
0	0	0

1. NAND
2. AND
3. NOR
4. OR
5. Choose the only false statement from the following:
(1) The resistivity of a semiconductor increases with an increase in temperature.
(2) Substances with an energy gap of the order of 10 eV are insulators.
(3) In conductors, the valence and conduction bands may overlap.
(4) The conductivity of a semiconductor increases with increases in temperature.
6. Carbon, Silicon and Germanium atoms have four valence electrons each. Their valence and conduction bands are separated by energy band gaps represented by $\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{C}},\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}$ and $\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Ge}}$ respectively. Which one of the following relationships is true in their case?
7. $\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{C}}<\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Ge}}$
8. $\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{C}}>\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}$
9. $\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{C}}=\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}$
10. $\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{C}}<\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}$
11. Application of a forward bias to a p-n junction:
(1) widens the depletion zone.
(2) increases the number of donors on the n side.
(3) increases the potential difference across the depletion zone.
(4) increases the electric field in the depletion zone.
12. The correct relation for α, β for a transistor :
13. $\beta=\frac{1-\alpha}{\alpha}$
14. $\beta=\frac{\alpha}{1-\alpha}$
15. $\alpha=\frac{\beta-1}{\beta}$
16. $\alpha \beta=1$
17. The cause of potential barrier in a $\mathrm{P}-\mathrm{N}$ junction diode is :
18. Concentration of positive and negative ions near the junction
19. Concentration of positive charges near the junction
20. Depletion of negative charges near the junction
21. Increment in concentration of holes and electrons near the junction
22. Common emitter circuit is used as amplifier, its current gain is 50 . If input resistance is $1 \mathrm{k} \Omega$ and input voltage is 5 volt then output current will be :
23. 250 mA
24. 30 mA
25. 50 mA
26. 100 mA
27. Of the diodes shown in the following diagrams, which one of the diode is reverse biased?
28.

2.

77. The truth table for the following network is :

1.

A B Y
$0 \quad 0 \quad 0$
010
100
111
2.

A B Y
$0 \quad 0 \quad 0$
$\begin{array}{lll}0 & 1\end{array}$
$1 \quad 0 \quad 1$
110
3.

A B Y
$\begin{array}{lll}0 & 0 & 1\end{array}$
010
100
111
4. None of the above
80. In semiconductors at room temperature:
(1) The valence band is completely filled and the conduction band is partially filled
(2) The valence band is completely filled
(3) The conduction band is completely empty
(4) The valence band is partially empty and the conduction band is partially filled
81. The peak voltage in the output of a half wave diode rectifier fed with a sinusoidal signal without filter is 10 V . The d. c. component of the output voltage is :-
(1) $\frac{10}{\pi} \mathrm{~V}$
(2) 10 V
(3) $\frac{20}{\pi} \mathrm{~V}$
(4) $\frac{10}{\sqrt{2}} \mathrm{~V}$
82. In a $\mathrm{p}-\mathrm{n}$ junction photocell, the value of the photo electromotive force produced by monochromatic light is proportional to:
(1) The intensity of the light falling on the cell
(2) The frequency of the light falling on the cell
(3) The voltage applied at the $\mathrm{p}-\mathrm{n}$ junction
(4) The barrier voltage at the $\mathrm{p}-\mathrm{n}$ junction
83. The output of the OR gate is 1 :
(1) If either or both inputs are 1
(2) Only if both inputs are 1
(3) If either input is zero
(4) If both inputs are zero
79. Depletion layer has (for an unbiased PN junction) -

1. Electrons
2. Holes
3. Static ions
4. Neutral atoms
5. For a transistor $\frac{I_{C}}{I_{\mathrm{E}}}=0.96$, then current gain for common emitter configuration :-
(1) 12
(2) 6
(3) 48
(4) 24
6. In a PN junction : -
(1) High potential at N side and low potential at P side
(2) High potential at P side and low potential at N side
(3) P and N both are at same potential
(4) Undetermined
7. The given truth table is for which logic gate :-

A	B	Y
1	1	0
0	1	1
1	0	1
0	0	1

(1) NAND
(2) XOR
(3) NOR
(4) OR
87. For the given circuit of P-N junction diode which is correct:-

(1) In F.B. the voltage across R is V
(2) In R.B. the voltage across R is V
(3) In F.B. the voltage across R is 2 V
(4) In R.B. the voltage across R is 2 V
88. Following truth table represent which logic gate -
A

1

0
1
1
$1 \quad 0 \quad 1$

0

1. XOR
2. NOT
3. NAND
4. AND
5. The current (I) in the circuit will be:

6. $\frac{5}{40} A$
7. $\frac{5}{50} A$
8. $\frac{5}{10} A$
9. $\frac{5}{20} A$
10. For a common emmiter circuit if $\frac{I_{C}}{I_{E}}=0.98$ then current gain for common emitter circuit will be:-
11. 49
12. 98
13. 4.9
14. 25.5
15. Reverse bias applied to a junction diode
(1) Lowers the potential barrier
(2) raises the potential barrier
(3) increases the majority carrier current
(4) increases the minority carrier current
16. A n-p-n transistor conducts when
(1) both collector and emitter are positive with respect to the base
(2) collector is positive and emitter is negative with respect to the base
(3) collector is positive and emitter is at same potential as the base
(4) both collector and emitter are negative with respect to the base
17. If a full wave rectifier circuit is operating from 50 Hz mains, the fundamental frequency in the ripple will be :
(1) 25 Hz
(2) 50 Hz
(3) 70.7 Hz
(4) 100 Hz
18. Barrier potential of a p-n junction diode does not depend on -
(1) diode design
(2) temperature
(3) forward bias
(4) doping density
19. Following diagram performs the logic function of :

(1) AND gate
(2) NAND gate
(3) OR gate
(4) XOR gate
20. The electron concentration in an n-type semiconductor is the same as hole concentration in a p-type semiconductor. An external field (electric) is applied across each of them. Compare the currents in them.
21. Current in n-type $>$ current in p-type.
22. No current will flow in p-type, current will only flow in n-type.
23. Current in n-type = current in p-type.
24. Current in p-type $>$ current in n-type.

Semiconductor Electronics - NCERT based PYQs

97. Consider the following statements (A) and (B) and identify the correct answer.
A. A zener diode is connected in reverse bias when used as a voltage regulator.
B. The potential barrier of p-n junction lies between 0.2 V to 0.3 V .
98. (A) is correct and (B) is incorrect.
99. (A) is incorrect and (B) is correct.
100. (A) and (B) both are correct.
101. (A) and (B) both are incorrect.
102. For the given circuit, the input digital signals are applied at the terminals A, B and C . What would be the output at the terminal y ?

103.

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there
CLICK HERE to get
FREE ACCESS for 3
days of ANY NEETprep
course

U•neetprep
 Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Some Basic Concepts of Chemistry

 (Expected Questions in NEET 2022: 2)| Subtopic Name | Number of |
| :--- | :---: |
| | Questions |
| Concentration Based Problem | 13 |
| Moles, Atoms \& Electrons | 13 |
| Equation Based Problem | $\mathbf{6}$ |
| Limiting Reagent | 6 |
| Empirical \& Molecular Formula | $\mathbf{4}$ |
| Equivalent Concept | $\mathbf{1}$ |
| Introduction | $\mathbf{1}$ |

1. Suppose the elements X and Y combine to form two compounds XY_{2} and $\mathrm{X}_{3} \mathrm{Y}_{2}$. When 0.1 moles of $X Y_{2}$ weighs 10 g and 0.05 mole of $X_{3} Y_{2}$ weighs 9 g , the atomic weight of X and Y are respectively-
2. 40,30
3. 60,40
4. 20,30
5. 30,20
6. Among the following the temperature dependent parameter is -
7. Molarity
8. Mole fraction
9. Weight percentage
10. Molality
11.

The number of water molecules is maximum in-

1. 18 mL of water
2. 0.18 g of water
3. 0.00224 L of water vapours at 1 atm and 273 K
4. $10^{-3} \mathrm{~mol}$ of water
5. If Avogadro number N_{A}, is changed from $6.022 \times 10^{23} \mathrm{~mol}^{-1}$ to $6.022 \times 10^{20} \mathrm{~mol}^{-1}$ this would change -
6. The definition of mass in units of grams
7. The mass of one mole of carbon
8. The ration of chemical species to each other in a balanced equation
9. The ratio of elements to each other in a compound
10. 20.0 g of a magnesium carbonate sample decomposes on heating to give carbon dioxide and 8.0 g magnesium oxide. The percentage purity of magnesium carbonate in the sample is -
(Atomic weight of $\mathrm{Mg}=24$)
1.75
11. 96
12. 60
13. 84
14. What is the mass of precipitate formed when 50 mL of 16.9% solution of AgNO_{3} is mixed with 50 mL of 5.8%
NaCl solution? $(\mathrm{Ag}=107.8, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Na}=23, \mathrm{Cl}=$ 35.5)
15. 28 g
2.3 .5 g
3.7 g
16. 14 g
17. What is the mole fraction of the solute in a 1.00 m aqueous solution?
18. 0.177
19. 0.1770
20. 0.0534
21. 0.0177
22. The number of water molecules is maximum in
23. 18 molecules of water
24. 1.8 g of water
25. 18 g of water
26. 18 moles of water
27. A mixture of gases contains H_{2} and O_{2} gases in the ratio of $1: 4(\mathrm{w} / \mathrm{w})$. The molar ratio of the two gases in the mixture will be -
28. 1:4
29. $4: 1$
30. $16: 1$
31. $2: 1$
32. When 22.4 litres of $\mathrm{H}_{2}(\mathrm{~g})$ is mixed with 11.2 litres of $\mathrm{Cl}_{2}(\mathrm{~g})$, each at STP , the moles of $\mathrm{HCl}(\mathrm{g})$ formed is equal to :
33. 1 mol of $\mathrm{HCl}(\mathrm{g})$
34. 2 mol of $\mathrm{HCl}(\mathrm{g})$
35. 0.5 mol of $\mathrm{HCl}(\mathrm{g})$
36. 1.5 mol of $\mathrm{HCl}(\mathrm{g})$
37. 1.0 g of magnesium is burnt with $0.56 \mathrm{~g} \mathrm{O}_{2}$ in a closed vessel. Which reaction is left in excess and how much? (At, wt. $\mathrm{Mg}=24 ; \mathrm{O}=16$)
38. $\mathrm{Mg}, 0.16 \mathrm{~g}$
39. $O_{2}, 0.16 \mathrm{~g}$
40. $\mathrm{Mg}, 0.44 \mathrm{~g}$
41. $O_{2}, 0.28 \mathrm{~g}$
42.

The weight of $70 \% \quad \mathrm{HNO}_{3}$ concentrated nitric acid solution should be used to prepare 250 mL of $2.0 \mathrm{M} \mathrm{HNO}_{3}$ is -

1. 90.0 g conc. HNO_{3}
2. 70.0 g conc. HNO_{3}
3. 54.0 g conc. HNO_{3}
4. 45.0 g conc. HNO_{3}
5.

6.02×10^{20} molecules of urea are present in 100 mL of its solution. The concentration of solution is:

1. 0.01 M
2. 0.001 M
3. 0.1 M
4. 0.02 M
5. Mole fraction of solute in a 1.00 molal aqueous solution is
6. 0.0177
7. 0.0344
8. 1.770
9. 0.1770
10. 25.3 g of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is dissolved in enough water to make 250 mL of solution. If sodium carbonate dissociates completely, the molar concentration of sodium ion, Na^{+}and carbonate ion, CO_{3}^{2-} are respectively -
(molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \mathrm{~g} \mathrm{~mol}^{-1}$)
11. 0.955 M and 1.910 M
12. 1.910 M and 0.955 M
13. 1.90 M and 1.910 M
14. 0.477 M and 0.477 M
15. The number of atoms in 0.1 mole of a triatomic gas is $\left(\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)$
16. 6.026×10^{22}
17. 1.806×10^{23}
18. 3.600×10^{23}
19. 1.800×10^{22}
20. 10 g of hydrogen and 64 of oxygen were filled in a steel vessel and exploded. Amount of water produced in this reaction will be
21. 2 mol
2.3 mol
3.4 mol
22. 1 mol
23. Volume occupied by one molecule of water (density $=$ $1 \mathrm{~g} \mathrm{~cm}^{-3}$) is
24. $9.0 \times 10^{-23} \mathrm{~cm}^{3}$
25. $6.023 \times 10^{-23} \mathrm{~cm}^{3}$
26. $3.0 \times 10^{-23} \mathrm{~cm}^{3}$
27. $5.5 \times 10^{-23} \mathrm{~cm}^{3}$
28. The volume of oxygen gas $\left(\mathrm{O}_{2}\right)$ measured at $0^{0} \mathrm{C}$ and 1 atm, needed to burn completely 1 L of propane gas $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ measured under the same conditions is
29. 7 L
30. 6 L
31. 5 L
32. 10 L
33.

The moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl is -

1. 0.044
2. 0.333
3. 0.011
4. 0.029
5. Concentrated aqueous sulphuric acid is 98% $\mathrm{H}_{2} \mathrm{SO}_{4}$ by mass and has a density of $1.80 \mathrm{~g} \mathrm{~mL}^{-1}$, volume of acid required to make one litre of 0.1 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution is-
6. 11.10 mL
7. 16.65 mL
8. 22.20 mL
9. 5.55 mL
10. The number of moles of hydrogen molecules required to produce 20 moles of ammonia through Haber's process is -
11. 40 mol
12. 10 mol
13. 20 mol
14. 30 mol
15. The density of 2 M aqueous solution of NaOH is 1.28 $\mathrm{g} / \mathrm{cm}^{3}$. The molality of the solution is -
[molecular mass of $\mathrm{NaOH}=40 \mathrm{gmol}^{-1}$]
16. 1.20 m
17. 1.56 m
18. 1.67 m
19. 1.32 m
20. The maximum number of atoms is present in the following -
(1) 1 g of $\mathrm{Mg}_{(\mathrm{s})}$
(2) 1 g of $\mathrm{O}_{2}(\mathrm{~g})$
(3) 1 g of $\mathrm{Li}_{\text {(s) }}$
(4) 1 g of $\mathrm{Ag}_{(\mathrm{s})}$
21. Which has the maximum number of molecules among the following?
22. $64 \mathrm{~g} \mathrm{SO}_{2}$
23. $44 \mathrm{~g} \mathrm{CO}_{2}$
24. $48 \mathrm{~g} \mathrm{O}_{3}$
25. $8 \mathrm{~g} \mathrm{H}_{2}$
26. Percentage of $\mathrm{C}, \mathrm{H} \& \mathrm{~N}$ are given as follows :
$\mathrm{C}=40 \% \mathrm{H}=13.33 \% \mathrm{~N}=46.67 \%$
The empirical formula will be :
27. $\mathrm{CH}_{2} \mathrm{~N}$
28. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}$
29. $\mathrm{CH}_{4} \mathrm{~N}$
30. $\mathrm{CH}_{3} \mathrm{~N}$
31. The mole fraction of the solute in one molal aqueous solution is :-
(1) 0.027
(2) 0.036
(3) 0.018
(4) 0.009
32. The mass of carbon anode consumed (giving only carbondioxide) in the production of 270 kg of aluminium metal from bauxite by the Hall process is :-
(1) 90 kg
(2) 540 kg
(3) 180 kg
(4) 270 kg
(Atomic mass : $\mathrm{Al}=27$)
33. The number of moles of KMnO_{4} reduced by one mole of KI in alkaline medium is :-
(1) One
(2) Two
(3) Five
(4) One fifth
34. Number of significant figures in the following numbers are :
(I) 161 cm
(II) 0.0161
(III) 1.61
(1) $3,3,3$
(2) $3,4,3$
(3) $3,2,3$
(4) $3,4,4$
35. In the Haemoglobin (Molecular wt $=67200$) iron found 0.33% (by weight). The number of iron atom will be in its one molecule :
36. 1
37. 2
38. 3
39. 4
40. $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{NO}$

When one mole ammonia and one mole oxygen taken :

1. Oxygen is completely consumed
2. Ammonia is completely consumed
3. Both (1) and (2) are correct
4. No one is correct
5. A mole ratio of H_{2} and O_{2} gas is 8 . The ratio of weight is-
6. $1: 1$
7. $2: 1$
8. $4: 1$
9. $1: 2$
10. A compound contain C, H and O . If $\mathrm{C}=40 \%$ and $\mathrm{H}=$ 6.67% and rest is oxygen then empirical formula of compound will be :
11. $\mathrm{CH}_{2} \mathrm{O}$
12. $\mathrm{CH}_{4} \mathrm{O}$
13. $\mathrm{CH}_{4} \mathrm{O}_{2}$
14. CHO
15. The maximum number of molecules is present in:-
(1) 5 L of N_{2} gas at STP
(2) 0.5 g of H_{2} gas
(3) 10 g of O_{2} gas
(4) 15 L of H_{2} gas at STP
16. What is false for mole fraction :
17. $\mathrm{x}<1$
18. $-2 \leq x \leq 2$
19. $0 \leq x \leq 1$
20. Always non-negative
21. Volume of CO_{2} obtained by the complete decomposition of $9.85 \mathrm{gm} . \mathrm{BaCO}_{3}$ is :
22. 2.24 lit.
23. 1.12 lit.
24. 0.84 lit.
25. 0.56 lit
26. 1 M and 2.5 litre NaOH solution mixed with another 0.5 M and 3 litre NaOH solution. Molarity of the resultant solution is :-
27. 0.80 M
28. 1.0 M
29. 0.73 M
30. 0.50 M
31. Which has maximum number of molecules :-
(1) $7 \mathrm{gm} \mathrm{N}_{2}$
(2) $2 \mathrm{gm} \mathrm{H}_{2}$
(3) $16 \mathrm{gm} \mathrm{NO}_{2}$
(4) $16 \mathrm{gm} \mathrm{O}_{2}$
32. The percentage of C, H and N in an organic compound are $40 \%, 13.3 \%$ and 46.7% respectively, The empirical formula of the compound is :
(1) $\mathrm{C}_{3} \mathrm{H}_{13} \mathrm{~N}_{3}$
(2) $\mathrm{CH}_{2} \mathrm{~N}$
(3) $\mathrm{CH}_{4} \mathrm{~N}$
(4) $\mathrm{CH}_{6} \mathrm{~N}$
33. Molarity of liquid HCl if density of liq. HCl is 1.17 gm/cc :-
34. 36.5
35. 18.25
36. 32.05
37. 42.10
38. Sp. vol. of cylinderical virus particle is
$6.02 \times 10^{-2} c c / g m$. Whose radius and length are $7 \AA \&$ $10 \AA$ respectively. If $N_{A}=6.02 \times 10^{23}$. Find mol. wt. of virus : -
39. $15.4 \mathrm{~kg} / \mathrm{mol}$
$2.1 .54 \times 10^{4} \mathrm{~kg} / \mathrm{mol}$
40. $3.08 \times 10^{4} \mathrm{~kg} / \mathrm{mol}$
41. $3.08 \times 10^{3} \mathrm{~kg} / \mathrm{mol}$
42. In Haber process 30 litres of dihydrogen and 30 litres of dinitrogen were taken for reaction which yielded only 50% of the expected product. What will be the composition of gaseous mixture under the above condition in the end :
(1) 20 litres ammonia, 20 litres nitrogen, 20 litres hydrogen
(2) 10 litres ammonia, 25 litres nitrogen, 15 litres hydrogen
(3) 20 litres ammonia, 10 litres nitrogen, 30 litres hydrogen
(4) 20 litres ammonia, 25 litres nitrogen, 15 litres hydrogen
43. An organic compound contains 80% (by wt.) carbon and the remaining percentage of hydrogen. The right option for the empirical formula of this compound is:
[Atomic wt. of C is $12, \mathrm{H}$ is 1]
44. CH_{3}
45. CH_{4}
46. CH
47. CH_{2}

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep course

U. neetprep Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Structure of Atom
(Expected Questions in NEET 2022: 1)

Subtopic Name	Number of
	Questions
Quantum Numbers \& Schrodinger Wave Equation	$\mathbf{9}$
AuFBAU Principle	$\mathbf{6}$
Bohr's Theory	$\mathbf{6}$
Heisenberg Uncertainty Principle	$\mathbf{4}$
Hydrogen Spectra	$\mathbf{3}$
Planck's Theory	$\mathbf{3}$
De Broglie Equation	$\mathbf{2}$
Nodal Plane	$\mathbf{2}$
Number of Electron, Proton \& Neutron	$\mathbf{2}$
Shell/Subshell	$\mathbf{2}$
EMT Radiation	$\mathbf{1}$
Introduction of Atomic Structure	$\mathbf{1}$
Pauli's Exclusion Principle \& Hund's Rule	$\mathbf{1}$
Photo Electric Effect	$\mathbf{1}$

1. The element $\mathrm{Z}=114$ has been discovered recently.

It will belong to which of the following family/group and electronic configuration?

1. Carbon family $[R n] 5 f^{14} 6 d^{10} 7 s^{2} 7 p^{2}$
2. Oxygen family $[R n] 5 f^{14} 6 d^{10} 7 s^{2} 7 p^{4}$
3. Nitrogen family $[R n] 5 f^{14} 6 d^{10} 7 s^{2} 7 p^{6}$
4. $H a \log$ en family $[R n] 5 f^{14} 6 d^{10} 7 s^{2} 7 p^{5}$
5. How many electrons can fit in the subshell for which n
$=3$ and $l=1$?
6. 2
7. 6
8. 10
9. 14
10. The wrong statement among the following is-
11. The uncertainty principle is $\Delta x \cdot \Delta p \geq \frac{h}{4 \pi}$
12. Half-filled and fully filled orbitals have greater stability due to greater exchange energy,
greater symmetry, and a more balanced arrangement.
13. The energy of the 2 s orbital is less than the energy of the 2 p orbital in the case of hydrogen-like atoms.
14. De-Broglie's wavelength is given by $\lambda=\frac{h}{m v}$, where $\mathrm{m}=$ mass of the particle, $\mathrm{v}=$ group velocity of the particle.
15. A pairs of d-orbitals having electron density along the axes is-
16. $d_{z^{2}}, d_{x z}$
17. $d_{x z}, d_{z y}$
18. $d_{z^{2}}, d_{x^{2}-y^{2}}$
19. $d_{x y}, d_{x^{2}-y^{2}}$
20.

The Incorrect statement among the following is-

1. Total orbital angular momentum of an electron in 's' orbital is equal to zero.
2. An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbers.
3. The electronic configuration of N atom is

4. The value of m for $d_{z^{2}}$ is zero.
5.

Two electrons occupying the same orbital are distinguished by.

1. Magnetic quantum number
2. Azimuthal quantum number
3. Spin quantum number
4. Principal quantum number
5. Which is the correct order of increasing energy of the listed orbital's in the atom of titanium?
6. 3 s 4 s 3 p 3 d
7. 4 s 3 s 3 p 3 d
8. $3 \mathrm{~s} 3 \mathrm{p} \mathrm{3d} 4 \mathrm{~s}$
9. 3 s 3 p 4 s 3 d
10. What is the maximum number of orbitals that can be identified with the following quantum number
$\mathrm{n}=3, l=1, \mathrm{~m}=0$
11. 1
12. 2
13. 3
14. 4
15. Calculate the energy in corresponding to light of wavelength 45 nm :
(Planck's constant $\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}$: speed of light $\mathrm{c}=3$ $\times 10^{8} \mathrm{~ms}^{-1}$)
16. 6.67×10^{15}
17. 6.67×10^{11}
18. 4.42×10^{-15}
19. 4.42×10^{-18}
20.

The value of Planck's constant is $6.63 \times 10^{-34} \mathrm{Js}$. The speed of light is $3 \times 10^{17} \mathrm{~nm} \mathrm{~s}^{-1}$. Which value is closest to the wavelength in nanometer of a quantum of light with frequency of $6 \times 10^{15} \mathrm{~s}^{-1}$?

1. 25
2. 50
3. 75
4. 10
5.

What is the maximum numbers of electrons that can be associated with the following set of quantum numbers?
$\mathrm{n}=3, \mathrm{l}=1$ and $\mathrm{m}=-1$.

1. 6
2. 4
3. 2
4. 10
5.

Based on equation $\mathrm{E}=-2.178 \times 10^{-18} \mathrm{~J}, \frac{\mathrm{Z}^{2}}{\mathrm{n}^{2}}$ certain conclusions are written. Which of them is not correct?

1. Larger the value of n , the larger is the orbit radius.
2. Equation can be used to calculate the change in energy when the electron changes orbit.
3. For $\mathrm{n}=1$, the electron has a more negative energy than it does for $\mathrm{n}=6$ which mean that the electron is more loosely bound in the smallest allowed orbit.
4. The negative sign in equation simply means that the energy of electron bound to the nucleus is lower than it would be if the electrons were at the infinite distance from the nucleus.
5. Maximum number of electrons in a sub shell with $1=3$ and $n=4$ is
6. 14
7. 16
8. 10
9. 12
10. The correct set of four quantum numbers for the valence electron of rubidium atom $(Z=37)$ is -
11. $5,1,1,+\frac{1}{2}$
12. $6,0,0,+\frac{1}{2}$
13. $5,0,0,+\frac{1}{2}$
14. $5,1,0,+\frac{1}{2}$
15.

The total number of atomic orbitals in fourth energy level of an atom is

1. 16
2. 32
3. 4
4. 8
5. The energies E_{1} and E_{2} of two radiations are 25 eV and 50 eV respectively. The relation between their wavelenghs i.e., λ_{1} and λ_{2} will be
6. $\lambda_{1}=2 \lambda_{2}$
7. $\lambda_{1}=4 \lambda_{2}$
8. $\lambda_{1}=\frac{1}{2} \lambda_{2}$
9. $\lambda_{1}=\lambda_{2}$
10. If $\mathrm{n}=6$, the correct sequence for filling of electrons will be-
11. $\mathrm{ns} \rightarrow(\mathrm{n}-1) \mathrm{d} \rightarrow(\mathrm{n}-2) \mathrm{f} \rightarrow \mathrm{np}$
12. $\mathrm{ns}-(\mathrm{n}-2) \mathrm{f} \rightarrow \mathrm{np} \rightarrow(\mathrm{n}-1) \mathrm{d}$
13. $\mathrm{ns}-\mathrm{np} \rightarrow(\mathrm{n}-1) \mathrm{d} \rightarrow(\mathrm{n}-2) \mathrm{f}$
14. $\mathrm{ns} \rightarrow(\mathrm{n}-2) \mathrm{f} \rightarrow(\mathrm{n}-1) \mathrm{d} \rightarrow \mathrm{np}$
15. The rule used to determine the maximum number of electrons in a subshell of an atom is-
16. $41+2$
17. $21+1$
18. 41-2
19. $2 n^{2}$
20. The incorrect set of quantum number among the following is -
21. $\mathrm{n}=4, \mathrm{l}=0, \mathrm{~m}=0, \mathrm{~s}=-1 / 2$
22. $\mathrm{n}=5, \mathrm{l}=3, \mathrm{~m}=0, \mathrm{~s}=+1 / 2$
23. $\mathrm{n}=3, \mathrm{l}=2, \mathrm{~m}=-3, \mathrm{~s}=-1 / 2$
24. $\mathrm{n}=3, \mathrm{l}=2, \mathrm{~m}=2, \mathrm{~s}=-1 / 2$
25. If uncertainty in position and momentum are equal, then uncertainty in velocity is
26. $\frac{1}{2 \mathrm{~m}} \sqrt{\frac{\mathrm{~h}}{\pi}}$
27. $\sqrt{\frac{h}{2 \pi}}$
28. $\frac{1}{\mathrm{~m}} \sqrt{\frac{\mathrm{~h}}{\pi}}$
29. $\sqrt{\frac{h}{\pi}}$
30.

The measurement of the electron position is associated with uncertainty in momentum, which is equal to $1 \times 10^{-}$ $18 \mathrm{~g} \mathrm{~cm} \mathrm{~s}^{-1}$. The uncertainty in electron velocity will be (mass of an electron is $9 \times 10^{-28} \mathrm{~g}$)-

1. $2 \times 10^{9} \mathrm{~cm} \mathrm{~s}^{-1}$
2. $1 \times 10^{9} \mathrm{~cm} \mathrm{~s}^{-1}$
3. $1 \times 10^{5} \mathrm{cms}^{-1}$
4. $1 \times 10^{11} \mathrm{~cm} \mathrm{~s}^{-1}$
5.

Consider the following sets of quantum numbers:

	n	I	m	s
(i)	3	0	0	$+1 / 2$
(ii)	2	2	1	$+1 / 2$
(iii)	4	3	-2	$-1 / 2$
(iv)	1	0	-1	$-1 / 2$
(v)	3	2	3	$+1 / 2$

Which of the following sets of quantum number is not possible?

1. ii, iii and iv
2. i, ii, iii and iv
3. ii, iv and v
4. i and iii
5. An element, X has the following isotopic composition :
${ }^{200}$ X: 90%
${ }^{199}$ X: 8.0%
${ }^{202}$ X: 2.0%
The weighted average atomic mass of the naturallyoccurring element X is closest to:
6. 200 amu
7. 201 amu
8. 202 amu
9. 199 amu
10. The mass of electron is $9.11 \times 10^{-31} \mathrm{~kg}$,planck's constant is $6.626 \times 10^{-34} \mathrm{Js}$, the uncertainty involved in the measurement of velocity within a distance of $0.1 \AA$ is :
11. $5.79 \times 10^{6} \mathrm{~ms}^{-1}$
12. $5.79 \times 10^{7} \mathrm{~ms}^{-1}$
13. $5.79 \times 10^{8} \mathrm{~ms}^{-1}$
14. $5.79 \times 10^{5} \mathrm{~ms}^{-1}$
15. The orientation of an atomic orbital is governed by:
16. azimuthal quantum number
17. spin quantum number
18. magnetic quantum number
19. principal quantum number
20. $4 \mathrm{~d}, 5 \mathrm{p}, 5 \mathrm{f}$ and 6 p orbitals are arranged in the order of decreasing energy. The correct option is:
21. $5 f>6 p>4 d>5 p$
22. $5 f>6 p>5 p>4 d$
23. $6 p>5 f>5 p>4 d$
24. $6 p>5 f>4 d>5 p$
25. Which of the following series of transitions in the spectrum of hydrogen atom falls in visible region?
26. Brackett series
27. Lyman series
28. Balmer series
29. Paschen series
30. Orbital having 3 angular node and 3 total nodes is:
(1) 5 p
(2) 3 d
(3) 4 f
(4) 6 d
31. The number of protons, neutrons and electrons in ${ }_{71}^{175} \mathrm{Lu}$, respectively, are:
32. 104,71 and 71
33. 71,71 and 104
34. 175,104 and 71
35. 71,104 and 71
36. The number of angular nodes and radial nodes in 3 s orbital are
37. 0 and 2 , respectively
38. 1 and 0 , respectively
39. 3 and 0 , respectively
40. 0 and 1 , respectively
41. According to the Bohr Theory, which of the following transitions in the hydrogen atom will
give rise to the least energetic photon?
42. $n=5$ to $n=3$
43. $n=6$ to $n=1$
44. $n=5$ to $n=4$
45. $n=6$ to $n=5$
46. A 0.66 kg ball is moving with a speed of $100 \mathrm{~m} / \mathrm{s}$. The associated wavelength will be
$\left(h=6.6 \times 10^{-34} J s\right)$
47. $6.6 \times 10^{-34} \mathrm{~m}$
48. $1.0 \times 10^{-35} \mathrm{~m}$
49. $1.0 \times 10^{-32} \mathrm{~m}$
50. $6.6 \times 10^{-32} \mathrm{~m}$
51. The nuclei of which one of the following pairs of nuclei are isotones :
52. ${ }_{34} \mathrm{Se}^{74},{ }_{31} \mathrm{Ga}^{71}$
53. ${ }_{38} \mathrm{Sr}^{84}{ }_{, 38} \mathrm{Sr}^{86}$
54. ${ }_{42} \mathrm{Mo}^{92},{ }_{40} \mathrm{Zr}^{92}$
55. ${ }_{20} \mathrm{Ca}^{40}{ }_{16} \mathrm{~S}^{32}$
56. The energy value is $E=3.03 \times 10^{-19}$ Joules, ($\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J} \times$ sec., $\mathrm{C}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$). The value of the corresponding wavelength is
1.65 .3 nm
57. 6.53 nm
3.3 .4 nm
58. 653 nm
59. The energy of the second Bohr orbit of the hydrogen atom is $-328 \mathrm{~kJ} \mathrm{~mol}^{-1}$; hence the energy of the fourth Bohr orbit would be:-
(1) $-1312 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $-82 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3) $-41 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4) $-164 \mathrm{~kJ} \mathrm{~mol}^{-1}$
60. Which of the following molecule is not paramagnetic :
61. $C u^{++}$
62. $F e^{2+}$
63. Cl^{-}
64. None of the above
65. The radius of hydrogen shell is $0.53 \AA$, then in first excited state radius of shell will be :
66. $2.12 \AA$
67. $1.06 \AA$
68. $8.5 \AA$
69. $4.24 \AA$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.
38. Uncertainity in position of a e^{-}and He is similar. If uncertainity in momentum of e^{-}is 32×10^{5}, then uncertainity in momentum of He will be :
1.32×10^{5}
2.16×10^{5}
3. 8×10^{5}
4. None of the above
39. Ionization energy of second orbit of $L i^{+2}$ will be :

1. 122.4 eV
2. 40.8 eV
3. 30.6 eV
4. 13.6 eV
5. The frequency of radiation emitted when the electron falls from $\mathrm{n}=4$ to $\mathrm{n}=1$ in a hydrogen atom will be (Given ionization energy of $\mathrm{H}=2.18 \times 10^{-18} \mathrm{~J}^{\text {atom }}{ }^{-1}$ and $\mathrm{h}=6.625 \times 10^{-34} \mathrm{Js}$):
6. $1.03 \times 10^{15} \mathrm{~s}^{-1}$
7. $3.08 \times 10^{15} \mathrm{~s}^{-1}$
8. $2.00 \times 10^{15} \mathrm{~s}^{-1}$
9. $1.54 \times 10^{15} \mathrm{~s}^{-1}$
10. The value of Planck's constant is $6.63 \times 10^{-34} \mathrm{Js}$. The velocity of light is $3.0 \times 10^{8} \mathrm{~ms}^{-1}$. The closest value to the wavelength in nanometers of a quantum of light with a frequency of $8 \times 10^{15} \mathrm{~s}^{-1}$ is-
1.2×10^{-25}
2.5×10^{-18}
11. 4×10^{1}
12. 3×10^{7}
13. Number of orbitals indicated by following set of quantum, numbers, $\mathrm{n}=3,1=2, \mathrm{~m}=+2$ is-
14. 1
15. 2
16. 3
17. 4
18. A particular station of All India Radio, New Delhi, broadcasts on a frequency of $1,368 \mathrm{kHz}$ (kilohertz). The wavelength of the electromagnetic radiation emitted by the transmitter is : [speed of light, $\mathrm{c}=3.0 \times 10^{8} \mathrm{~ms}^{-1}$]
19. 2192 m
20. 21.92 cm
3.219 .3 m
21. 219.2 m Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Classification of Elements \& Periodicity in

Properties

(Expected Questions in NEET 2022: 1)

Subtopic Name	Number of Questions
lonization Energy (IE)	11
Atomic Size	8
Electron Affinity (EA)	4
Electronic Configuration	4
 Periodicity	1

1.

Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$ the simplest formula for this compound is :

1. $\mathrm{Mg}_{2} \mathrm{X}_{3}$
2. MgX_{2}
3. $\mathrm{Mg}_{2} \mathrm{X}$
4. $\mathrm{Mg}_{3} \mathrm{X}_{2}$
5.

In which of the following options the order of arrangement does not agree with the variation of property indicated against it?

1. $\mathrm{B}<\mathrm{C}<\mathrm{N}<\mathrm{O}$ (increasing first ionisation enthalpy)
2. $\mathrm{I}<\mathrm{Br}<\mathrm{F}<\mathrm{Cl}$ (increasing electron gain enthalpy)
3. $\mathrm{Li}<\mathrm{Na}<\mathrm{K}<\mathrm{Rb}$ (increasing metallic radius)
4. $\mathrm{Al}^{3+}<\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{F}^{-}$(increasing ionic size)
5. The formation of the oxide ion $\mathrm{O}^{2-}(\mathrm{g})$, from oxygen atom requires first an exothermic and then an endothermic step as shown below,
$\mathrm{O}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{O}^{-} ; \Delta_{\mathrm{f}} \mathrm{H}^{0}=-141 \mathrm{KJ} \mathrm{mol}^{-1}$
$\mathrm{O}^{-}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{O}^{2-}(\mathrm{g}) ; \Delta_{\mathrm{f}} \mathrm{H}^{0}=+780 \mathrm{KJ} \mathrm{mol}^{-1}$
Thus, process of formation of O^{2-} in gas phase is unfavorable even though O^{2-} is isoelectronic with neon. It is due to the fact that:
6. Electron repulsion outweighs the stability gained by achieving noble gas configuration .
7. O^{-}ion has comparatively smaller size than oxygen atom.
8. Oxygen is more electronegative.
9. Addition of electron in oxygen result in large size of the ion.
10.

The species Ar, K^{+}and Ca^{2+} contain the same number of electrons. In which order do their radii increase?

1. $\mathrm{Ar}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}$
2. $\mathrm{Ca}^{2+}<\mathrm{Ar}<\mathrm{K}^{+}$
3. $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Ar}$
4. $\mathrm{K}^{+}<\mathrm{Ar}<\mathrm{Ca}^{2+}$
5. Which of the following orders of ionic radii is correctly represented?
6. $H^{-}>H^{+}>H$
7. $N a^{+}>\mathrm{F}^{-}>\mathrm{O}^{2-}$
8. $\mathrm{F}^{-}>\mathrm{O}^{2-}>\mathrm{Na}^{+}$
9. $\mathrm{N}^{3-}>\mathrm{Mg}^{2+}>A l^{3+}$
10. Be^{2+} is isoelectronic with which of the following ions?
11. H^{+}
12. $L i^{+}$
13. $N a^{+}$
14. $M g^{2+}$
15. The correct order of the decreasing ionic radii among the following isoelectronic species is:
16. $\mathrm{Ca}^{2+}>\mathrm{K}^{+}>\mathrm{S}^{2-}>\mathrm{Cl}^{-}$
17. $\mathrm{Cl}^{-}>\mathrm{S}^{2-}>\mathrm{Ca}^{2+}>\mathrm{K}^{+}$
18. $\mathrm{S}^{2-}>\mathrm{Cl}^{-}>\mathrm{K}^{+}>\mathrm{Ca}^{2+}$
19. $\mathrm{K}^{+}>\mathrm{Ca}^{2+}>\mathrm{Cl}^{-}>\mathrm{S}^{2-}$
20. Which of the following represents the correct order of increasing electron Affinity for the elements, O, S, F and Cl ?
21. $\mathrm{Cl}<\mathrm{F}<\mathrm{O}<\mathrm{S}$
22. $\mathrm{O}<\mathrm{S}<\mathrm{F}<\mathrm{Cl}$
23. $\mathrm{F}<\mathrm{S}<\mathrm{O}<\mathrm{Cl}$
24. $\mathrm{S}<\mathrm{O}<\mathrm{Cl}<\mathrm{F}$
25. Amongst the elements with following electronic configurations, which one of them may have the highest ionisation energy?
26. $[N e] 3 s^{2} 3 p^{3}$
27. $[N e] 3 s^{2} 3 p^{2}$
28. $[A r] 3 d^{10} 4 s^{2} 4 p^{3}$
29. $[N e] 3 s^{2} 3 p^{1}$
30.

The correct order of decreasing second ionization enthalpy of $\mathrm{Ti}(22), \mathrm{V}(23), \mathrm{Cr}(24)$ and $\mathrm{Mn}(25)$ is

1. $\mathrm{Cr}>\mathrm{Mn}>\mathrm{V}>\mathrm{Ti}$
2. $\mathrm{V}>\mathrm{Mn}>\mathrm{Cr}>\mathrm{Ti}$
3. $\mathrm{Mn}>\mathrm{Cr}>\mathrm{Ti}>\mathrm{V}$
4. $\mathrm{Ti}>\mathrm{V}>\mathrm{Cr}>\mathrm{Mn}$
5.

Which one of the following arrangements does not give the correct picture of the trends indicated against it?

1. $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$: Oxidising power
2. $\mathrm{F}<\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$: Electron gain enthalpy
3. $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$: Bond dissociation energy
4. $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$: Electronegativity
5. Among the following, the most characteristic oxidation states for lead and tin are respectively.
6. $+4,+2$
7. $+2,+4$
8. $+4,+4$
9. $+2,+2$
10. Among the following electronic configuration, an atom has the lowest ionisation enthalpy is-
11. $1 s^{2} 2 s^{2} 2 p^{5}$
12. $1 s^{2} 2 s^{2} 2 p^{3}$
13. $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{1}$
14. $1 s^{2} 2 s^{2} 2 p^{6}$
15. Identify the correct order of the size of the following :
16. $C a^{2+}<K^{+}<A r<S^{2-}<C l^{-}$
17. $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Ar}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}$
18. $\mathrm{Ar}<\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}$
19. $\mathrm{Ca}^{2+}<\mathrm{Ar}^{+}<\mathrm{K}^{+}<\mathrm{Cl}^{-}<S^{2-}$
20. Which one of the following orders is not in accordance with the property stated against?
21. $F_{2}>C l_{2}>B r_{2}>I_{2}$: Oxidi $\sin g$ power
22.

$H l>H B r>H C l>H F: A c i d i c$ property in water
3. $F_{2}>C l_{2}>B r_{2}>I_{2}$: Electronegativity
4. $F_{2}>C l_{2}>B r_{2}>I_{2}:$ Bond dissociation energy
16. For the second period elements the correct increasing order of first ionisation enthalpy is:

1. $\mathrm{Li}<\mathrm{Be}<\mathrm{B}<\mathrm{C}<\mathrm{O}<\mathrm{N}<\mathrm{F}<\mathrm{Ne}$
2. $\mathrm{Li}<\mathrm{Be}<\mathrm{B}<\mathrm{C}<\mathrm{N}<\mathrm{O}<\mathrm{F}<\mathrm{Ne}$
3. $\mathrm{Li}<\mathrm{B}<\mathrm{Be}<\mathrm{C}<\mathrm{O}<\mathrm{N}<\mathrm{F}<\mathrm{Ne}$
4. $\mathrm{Li}<\mathrm{B}<\mathrm{Be}<\mathrm{C}<\mathrm{N}<\mathrm{O}<\mathrm{F}<\mathrm{Ne}$
5. Identify the incorrect match.

Name IUPAC Official Name
a. Unnilunium (i) Mendelevium
b. Unniltrium
(ii) Lawrecium
c. Unnilhexium
(iii) Seaborgium
d. Unununnium (iv) Darmstadtium

1. (b), (ii)
2. (c), (iii)
3. (d), (iv)
4. (a), (i)
5. Match the element in column I with that in column II.

Column-I
Column-II
(a) Copper
(i) Non-metal
(b) Fluorine
(ii) Transition metal
(c) Silicon
(iii) Lanthanoid
(d) Cerium
(iv) Metalloid

Identify the correct match :

1. (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
2. (a)-(ii), (b)-(i),
(c)-(iv), (d)-(iii)
3. (a)-(iv), (b)-(iii),
(c)-(i), (d)-(ii)
4. (a)-(i), (b)-(ii),
(c)-(iii), (d)-(iv)
5. Among the elements $\mathrm{Ca}, \mathrm{Mg}, \mathrm{P}$ and Cl , the order of increasing atomic radii is -
6. $\mathrm{Cl}<\mathrm{P}<\mathrm{Mg}<\mathrm{Ca}$
7. $\mathrm{P}<\mathrm{Cl}<\mathrm{Ca}<\mathrm{Mg}$
8. $\mathrm{Ca}<\mathrm{Mg}<\mathrm{P}<\mathrm{Cl}$
9. $\mathrm{Mg}<\mathrm{Ca}<\mathrm{Cl}<\mathrm{P}$
10. What is the value of electron gain enthalpy of Na^{+}if IE_{1} of $\mathrm{Na}=5.1 \mathrm{eV}$?
11. +10.2 eV
12. -5.1 eV
13. -10.2 eV
14. +2.55 eV
15. Which one of the following arrangements represents the correct order of electron gain enthalpy (with negative sign) of the given atomic species :-
(1) $\mathrm{F}<\mathrm{Cl}<\mathrm{O}<$ S
(2) $\mathrm{S}<\mathrm{O}<\mathrm{Cl}<$ F
(3) O $<$ S $<$ F $<$ Cl
(4) $\mathrm{Cl}<\mathrm{F}<\mathrm{S}<\mathrm{O}$
16. In which of the following molecule,the internuclear distance will be maximum :
17. CsI
18. CsF
19. LiF
20. LiI
21. The first ionization potential of Be and B will be-
22. 8.8 and 8.8
23. 6.6 and 6.6
24. 6.6 and 8.8
25. 8.8. and 6.6
26. An electronic configuration that has maximum difference between II and III ionization potential is - :
27. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
28. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
29. $1 s^{2} 2 s^{2} 2 p^{6}$
30. $1 s^{2} 2 s^{2} 2 p^{5}$
31. Ionic radii are:-
32. Inversely proportional to the square of effective nuclear charge.
33. Directly proportional to the effective nuclear charge.
34. Directly proportional to the square of effective nuclear charge.
35. Inversely proportional to the effective nuclear charge.
36. Incorrect order among the following is :-
37. $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}-$ Acidic
38. $\mathrm{Li}<\mathrm{Be}<\mathrm{B}<\mathrm{C}-\mathrm{I}^{\mathrm{st}}$ I.P.
39. $\mathrm{Al}_{2} \mathrm{O}_{3}<\mathrm{MgO}<\mathrm{Na}_{2} \mathrm{O}<\mathrm{K}_{2} \mathrm{O}$ - Basic
40. $\mathrm{Li}^{+}<\mathrm{Na}^{+}<\mathrm{K}^{+}<\mathrm{Cs}^{+}$- Ionic radius
41. An atom has electronic configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3} 4 s^{2}$, you will place it in which group :
42. Fifth
43. Fifteenth
44. Second
45. Third
46. Correct order of $I^{s t} \mathrm{IP}$ among following elements Be , $\mathrm{B}, \mathrm{C}, \mathrm{N}, \mathrm{O}$ is :-
47. $\mathrm{B}<\mathrm{Be}<\mathrm{C}<\mathrm{O}<\mathrm{N}$
48. $\mathrm{B}<\mathrm{Be}<\mathrm{C}<\mathrm{N}<\mathrm{O}$
49. $\mathrm{Be}<\mathrm{B}<\mathrm{C}<\mathrm{N}<\mathrm{O}$
50. $\mathrm{Be}<\mathrm{B}<\mathrm{C}<\mathrm{O}<\mathrm{N}$
51. The ions $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$ and Al^{3+} are isoelectronic. Their ionic radii show :
(1) A significant increase from O^{2-} to Al^{3+}
(2) A significant decrease from O^{2-} to Al^{3+}
(3) An increase from O^{2-} to F^{-}and then decrease from Na^{+}to Al^{3+}
(4) An decrease from O^{2-} to F^{-}and then increase from Na^{+}to Al^{3+}

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to

Q neetprep Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Chemical Bonding \& Molecular

Structure

(Expected Questions in NEET 2022: 3)

Subtopic Nane	27
Hybridisation	22
M.O.T	10
Octate, Isoelectronic Species ,Lewis Structure \& Formal Charge	9
Polarity	8
Types of Chemical Bond	7
V.S.E.P.R / V.B.T	4
Covalent Bond	3
Acidic, Basic Character \& Fajan's Rule	3
Resonance \& Nature of Compounds	1
van der Waal Force \& Hydrogen Bonding	2

1. The species, having bond angles of 120° is :
2. $S F_{6}$
3. NCl_{3}
4. $B C l_{3}$
5. PH_{3}
6. The hybridisations of atomic orbitals of nitrogen in $\mathrm{NO}^{+}, \mathrm{NO}_{3}^{-}$and NH_{3} respectively are
7. $\mathrm{sp}, \mathrm{sp}^{3}$ and sp^{2}
8. $\mathrm{sp}^{2}, \mathrm{sp}^{3}$ and sp
9. $\mathrm{sp}, \mathrm{sp}^{2}$ and sp^{3}
10. $\mathrm{sp}^{2}, \mathrm{sp}$ and sp^{3}
11. Which of the following pairs of ions is isoelectronic and isostructural?
12. $\mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
13. $\mathrm{CIO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
14. $\mathrm{SO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
15. $\mathrm{CIO}_{2}^{-}, \mathrm{SO}_{3}^{2-}$
16. The correct shape and hybridization for XeF_{4} are
17. octahedral, $\mathrm{sp}^{3} \mathrm{~d}^{2}$
18. trigonal bipyramidal, $\mathrm{sp}^{3} \mathrm{~d}^{3}$
19. planar triangle, $\mathrm{sp}^{3} \mathrm{~d}^{3}$
20. square planar, $s p^{3} d^{2}$
21.

Among $\mathrm{CaH}_{2}, \mathrm{BeH}_{2}, \mathrm{BaH}_{2}$ the order of ionic character is

1. $\mathrm{BeH}_{2}<\mathrm{CaH}_{2}<\mathrm{BaH}_{2}$
2. $\mathrm{CaH}_{2}<\mathrm{BeH}_{2}<\mathrm{BaH}_{2}$
3. $\mathrm{BeH}_{2}<\mathrm{BaH}_{2}<\mathrm{CaH}_{2}$
4. $\mathrm{BaH}_{2}<\mathrm{BeH}_{2}<\mathrm{CaH}_{2}$
5.

Consider the following species:
$\mathrm{CN}^{+}, ~ \mathrm{CN}^{-}, ~ \mathrm{NO}$ and CN
Which one of these will have the highest bond order?

1. NO
2. CN^{-}
3. CN^{+}
4. CN
5.

Predict the correct order among the following.

1. lone pair-lone pair $>$ bond pair-bond pair $>$ lone pairbond pair
2. bond pair-bond pair> lone pair-bond pair>lone pair-lone pair
3. lone pair-bond pair $>$ bond pair-bond pair $>$ lone pairlone pair
4. lone pair-lone pair> lone pair-bond pair>bond pair-bond pair
5.

The pair of electron in the given carbanion, $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}^{-}$, is present in which orbitals?

1. sp^{3}
2. sp^{2}
3. sp
4. 2 p
5.

Consider the molecules $\mathrm{CH}_{4}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. Which of the given statements is false?

1. The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ is larger than the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in CH_{4}
2. The H-C-H bond angle in CH_{4} is larger than the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in NH_{3}
3. The $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in CH_{4}, the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in NH_{3} and the $\mathrm{H}-0-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ are all greater than 90°
4. The H-O-H bond angle in $\mathrm{H}_{2} \mathrm{O}$ is smaller than the $\mathrm{H}-\mathrm{N}-$ H bond angle in NH_{3}
5. Decreasing order of stability of $\mathrm{O}_{2}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}^{+}$and O_{2}^{2-} is :
6. $O_{2}^{+}>O_{2}>O_{2}^{-}>O_{2}^{2-}$
7. $O_{2}^{2-}>O_{2}^{-}>O_{2}>O_{2}^{+}$
8. $\mathrm{O}_{2}>\mathrm{O}_{2}^{+}>\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{-}$
9. $O_{2}^{-}>O_{2}^{2-}>O_{2}^{+}>O_{2}$
10.

Which of the following species contains equal number of σ and π bonds?

1. HCO_{3}^{-}
2. XeO_{4}
3. $(\mathrm{CN})_{2}$
4. $\mathrm{CH}_{2}(\mathrm{CN})_{2}$
5.

The correct order of bond order in the following species is

1. $\mathrm{O}_{2}^{2+}>\mathrm{O}_{2}^{+}>\mathrm{O}_{2}^{-}$
2. $\mathrm{O}_{2}^{2+}<\mathrm{O}_{2}^{-}<\mathrm{O}_{2}^{+}$
3. $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}^{-}<\mathrm{O}_{2}^{2+}$
4. $\mathrm{O}_{2}^{-}<\mathrm{O}_{2}^{+}>\mathrm{O}_{2}^{2+}$
5.

Which of the following pairs of ions are isoelectronic and isostructural?

1. $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}$
2. $\mathrm{ClO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
3. $\mathrm{SO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
4. $\mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}^{2-}$
5.

Which of the following options represents the correct bond order?

1. $\mathrm{O}_{2}^{-}>\mathrm{O}_{2}<\mathrm{O}_{2}^{+}$
2. $\mathrm{O}_{2}^{-}<\mathrm{O}_{2}>\mathrm{O}_{2}^{+}$
3. $\mathrm{O}_{2}^{-}<\mathrm{O}_{2}<\mathrm{O}_{2}^{+}$
4. $\mathrm{O}_{2}^{-}>\mathrm{O}_{2}>\mathrm{O}_{2}^{+}$
5. A molecule among the following having maximum dipole moment is -
6. CO_{2}
7. CH_{4}
8. NH_{3}
9. $N F_{3}$
10. Which one of the following species has plane triangular shape?
11. $N_{3}{ }^{-}$
12. NO_{3}^{-}
13. $\mathrm{NO}_{2}{ }^{-}$
14. CO_{2}
15.

An electron-deficient compound among the following is -

1. $\left(\mathrm{SiH}_{3}\right)_{2}$
2. $\left(\mathrm{BH}_{3}\right)_{2}$
3. PH_{3}
4. $\left(\mathrm{CH}_{3}\right)_{2}$
5.

Maximum bond angle at nitrogen is present in which of the following?

1. NO_{2}
2. $\mathrm{NO}_{2}{ }^{-}$
3. $\mathrm{NO}_{2}{ }^{+}$
4. $\mathrm{NO}_{3}{ }^{-}$
5.

Which one of the following molecules contains no π bond?

1. $\mathrm{H}_{2} \mathrm{O}$
2. SO_{2}
3. NO_{2}
4. CO_{2}

Chemical Bonding and Molecular Structure - NCERT based PYQs

20.

A polar molecule among the following is -

1. SF_{4}
2. SiF_{4}
3. XeF_{4}
4. BF_{3}
5.

A paramagnetic molecule among the following is -

1. O_{2}^{-}
2. CN^{-}
3. NO^{+}
4. CO
5.

XeF_{2} is isostructural with:

1. ICl_{2}^{-}
2. SbCl_{3}
3. BaCl_{2}
4. TeF_{2}
5.

Dipole-induced dipole interactions are present in which of the following pairs:

1. Cl_{2} and CCl_{4}
2. HCl and He atoms
3. SiF_{4} and He atoms
4. $\mathrm{H}_{2} \mathrm{O}$ and alcohol
5. Isostructural pair among the following is-
6. BCl_{3} and BrCl_{3}
7. NH_{3} and NO_{3}^{-}
8. NF_{3} and BF_{3}
9. BF_{4}^{-}and NH_{4}^{+}
10. Bond order of 1.5 is shown by :
11. O_{2}^{+}
12. O_{2}^{-}
13. O_{2}^{2-}
14. O_{2}
15. Identify the wrong statement among the following.
16. Amongst isoelectronic species, smaller the positive charge on the cation, smaller is the ionic radius
17. Amongst isoelectronic species, greater the negative charge on the anion, larger is ionic radius
18. Atomic radius of the elements encreases as one move down the first group of the Periodic Table
19. Atomic radius of the elements decreases as one move across from left to right in the 2 nd period of the Periodic Table
20. Which of the following species contains three bond pairs and one lone pair around the central atom?
21. $\mathrm{H}_{2} \mathrm{O}$
22. $B F_{3}$
23. $\mathrm{NH}^{-}{ }_{2}$
24. PCl_{3}
25. The pair of species with the same bond order is
26. O_{2}^{2-}, B_{2}
27. $\mathrm{O}_{2}^{+}, \mathrm{NO}^{+}$
28. NO, CO
29. N_{2}, O_{2}
30. Which of the two ions from the list given below have the geometry that is explained by the same hybridisation of orbitals, $\mathrm{NO}_{2}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{NH}_{2}^{-}, \mathrm{NH}_{4}^{-}, \mathrm{SCN}^{-}$?
31. NH_{4}^{-}and NO_{3}^{-}
32. SCN^{-}and NH_{2}^{-}
33. NO_{2}^{-}and NH_{2}^{-}
34. NO_{2}^{-}and NO_{3}^{-}
35. Which of the following has the minimum bond length?
36. O_{2}^{-}
37. O_{2}^{2-}
38. O_{2}
39. O_{2}^{+}
40. Which one of the following bonds produces a solid that reflects light in the visible region and whose electrical conductivity decreases with temperature and has a high melting point?
41. Metallic bonding
42. Van der Waals' bonding
43. Ionic bonding
44. Covalent bonding
45. In which of the following pairs of molecules/ions, the central atoms have sp^{2} hybridization?
46. NO_{2}^{-}and NH_{3}
47. BF_{3} and NO_{2}^{-}
48. NH_{2}^{-}and $\mathrm{H}_{2} \mathrm{O}$
49. $B F_{3}$ and NH_{2}^{-}

Chemical Bonding and Molecular Structure - NCERT based PYQs

33. A molecule/ion among the following species that does not exist under normal conditions is -
34. $B e_{2}^{+}$
35. $B e_{2}$
36. B_{2}
37. $L i_{2}$
38. In which one of the following species the central atom has the type of hybridization which is not the same as that present in the other three ?
39. SF_{4}
40. I_{3}^{-}
41. SbCl_{5}^{2-}
42. PCl_{5}
43. According to the MO theory, which of the following lists ranks the nitrogen species in terms of increasing bond order?
44. $N_{2}^{-}<N_{2}<N_{2}^{2-}$
45. $N_{2}^{2-}<N_{2}^{-}<N_{2}$
46. $N_{2}<N_{2}^{2-}<N_{2}^{-}$
47. $N_{2}^{-}<N_{2}^{2-}<N_{2}$
48.

The state of hybridisation of $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{5}$ and C_{6} of the hydrocarbon

is in the following sequence

1. $s p, s p^{3}, s p^{2}$ and $s p^{3}$
2. $s p^{3}, s p^{2}, s p^{2}$ and $s p$
3. $s p, s p^{2}, s p^{2}$ and $s p^{3}$
4. $s p, s p^{2}, s p^{3}$ and $s p 2$
5.

In which of the following molecules/ions $\mathrm{BF}_{3}, \mathrm{NO}_{2}^{-}$,
NH_{2}^{-}, and $\mathrm{H}_{2} \mathrm{O}$, the central atom is sp^{2} hybridized?

1. NO_{2}^{-}and NH_{2}^{-}
2. NH_{2}^{-}and $\mathrm{H}_{2} \mathrm{O}$
3. NO_{2}^{-}and $\mathrm{H}_{2} \mathrm{O}$
4. BF_{3} and NO_{2}^{-}
5. What is the dominant intermolecular force or bond that must be overcome in converting liquid $\mathrm{CH}_{3} \mathrm{OH}$ to a gas?
6. Hydrogen bonding
7. Dipole-dipole interaction
8. Covalent bonds
9. London dispersion force
10.

The angular shape of ozone molecule $\left(\mathrm{O}_{3}\right)$ consists of

1. 1 sigma and 2 pi bonds
2. 2 sigma and 2 pi bonds
3. 1 sigma and 1 pi bonds
4. 2 sigma and 1 pi bonds
5. Four diatomic species are listed below in different sequences. Which of these presents the correct order of their increasing bond order?
6. $\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}$
7. $\mathrm{NO}<\mathrm{C}_{2}^{2-}<\mathrm{O}_{2}^{-}<\mathrm{He}_{2}^{+}$
8. $\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}<\mathrm{NO}<\mathrm{O}_{2}^{-}$
9. $\mathrm{He}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-}$
10. The correct order of C-O bond length among CO , $\mathrm{CO}_{3}^{2-}, \mathrm{CO}_{2}$ is :
11. $\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}$
12. $\mathrm{CO}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}$
13. $\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}<\mathrm{CO}$
14. $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}$
15. In which of the following pairs, the two species are iso-structural?
16. $S F_{4}$ and $X e F_{4}$
17. SO_{3}^{2-} and NO_{3}^{-}
18. $B F_{3}$ and NF_{3}
19. BrO_{3}^{-}and XeO_{3}
20. In which of the following molecules are all the bonds not equal?
21. ClF_{3}
22. $B F_{3}$
23. $A l F_{3}$
24. $N F_{3}$
25. Which of the following species has a linear shape?
26. NO_{2}^{-}
27. SO_{2}
28. NO_{2}^{+}
29. O_{3}

Chemical Bonding and Molecular Structure - NCERT based PYQs

45. Which of the following is the most basic oxide?
46. $\mathrm{Al}_{2} \mathrm{O}_{3}$
47. $\mathrm{Sb}_{2} \mathrm{O}_{3}$
48. $\mathrm{Bi}_{2} \mathrm{O}_{3}$
49. SeO_{2}
50. Which of the following is not a correct statement?
51. The electron deficient molecules can act as Lewis acids.
52. The canonical structures have no real existance.
53. Every AB_{5} molecule does in fact have square pyramidal structure.
54. Multiple bonds are always shorter than corresponding single bonds.
55. Which of the following is not isostructural with SiCl_{4} ?
56. $S C l_{4}$
57. SO_{4}^{2-}
58. PO_{4}^{3-}
59. NH_{4}^{+}
60. A diatomic molecular among the following species has only π bonds according to Molecular Orbital Theory is -
61. Be_{2}
62. O_{2}
63. N_{2}
64. C_{2}
65. The number of sigma (σ) and pi (π) bonds in pent-2-en-4-yne is:
66. 13σ bonds and no π bond
67. 10σ bonds and 3π bonds
68. 8σ bonds and 5π bonds
69. 11σ bonds and 2π bonds
70. Match the oxide given in column I with its property given column II

Column I
(i) $\mathrm{Na}_{2} \mathrm{O}$
(ii) $\mathrm{Al}_{2} \mathrm{O}_{3}$
a) Neutral
(iii) $\mathrm{N}_{2} \mathrm{O}$
b) Basic
(iv) $\mathrm{Cl}_{2} \mathrm{O}_{7}$
(d) Amphoteric

Column II

Which of the following options has all correct pairs?

1. (i)-(b), (ii)-(a), (iii)-(d), (iv)-(c)
2. (i)-(c), (ii)-(b), (iii)-(a), (iv)-(d)
3. (i)-(a), (ii)-(d), (iii)-(b), (iv)-(c)
4. (i)-(b),(ii)-(d), (iii)-(a), (iv)-(c)
5. A paramagnetic compound among the following is -
6. N_{2}
7. H_{2}
8. Li_{2}
9. O_{2}
10. Which of the following is the correct order of dipole moment?
11. $\mathrm{NH}_{3}<\mathrm{BF}_{3}<\mathrm{NF}_{3}<\mathrm{H}_{2} \mathrm{O}$
12. $\mathrm{BF}_{3}<\mathrm{NF}_{3}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
13. $\mathrm{BF}_{3}<\mathrm{NH}_{3}<\mathrm{NF}_{3}<\mathrm{H}_{2} \mathrm{O}$
14. $\mathrm{H}_{2} \mathrm{O}<\mathrm{NF}_{3}<\mathrm{NH}_{3}<\mathrm{BF}_{3}$
15. Which of the following set of molecules will have zero dipole moment?
16. Boron trifluoride, hydrogen fluoride, carbon dioxide, 1 3-dichlorobenzene
17. Nitrogen trifluoride, beryllium difluoride, water, 13 dichlorobenzene
18. Boron trifluoride, beryllium difluoride, carbon dioxide, 14-dichlorobenzene
19. Ammonia, beryllium difluoride, water, 1, 4dichlorobenzene
20. Match the following :

Oxide Nature
(a) CO (i) Basic
(b) BaO
(ii) Neutral
(c) $\mathrm{Al}_{2} \mathrm{O}_{3}$
(iii) Acidic
(d) $\mathrm{Cl}_{2} \mathrm{O}_{7}$
(iv) Amphoteric

Which of the following is the correct option?
a b c d

1. (ii) (i) (iv) (iii)
2. (iii) (iv) (i) (ii)
3. (iv) (iii) (ii) (i)
4. (i) (ii) (iii) (iv)
5. A molecule that can not exist-
6. Li_{2}
7. C_{2}
8. O_{2}
9. He_{2}
10. Among the compounds shown below which one revealed a linear structure?
11. NO_{2}
12. HOCl
13. O_{3}
14. $\mathrm{N}_{2} \mathrm{O}$

Chemical Bonding and Molecular Structure - NCERT based PYQs

57. Match the coordination number and type of hybridization with the distribution of hybrid orbitals in space based on Valence bond theory.

Coordination number and type of hybridisation	Distribution of hybrid orbitals in space
(a) $4, \mathrm{sp}^{3}$	(i) Trigonal bipyramidal
(b) $4, \mathrm{dsp}^{2}$	(ii) Octahedral
(c) $5, \mathrm{sp}^{3} \mathrm{~d}$	(iii) Tetrahedral
(d) $6, \mathrm{~d}^{2} \mathrm{sp}^{3}$	(iv) Square planar

Select the correct option:

1. (a)-(ii)
(b)-(iii)
(c)-(iv)
(d)-(i)
2. (a)-(iii) (b)-(iv) (c)-(i) (d)-(ii)
3. (a)-(iv) (b)-(i) (c)-(ii) (d)-(iii)
4. (a)-(iii) (b)-(i) (c)-(iv) (d)-(ii)
5. Identify the wrongly matched pair.

Molecule	Shape or geometry of the molecule
a. PCl_{5}	Trigonal
b. SF_{6}	Octahedral
c. BeCl_{2}	Linear
d. NH_{3}	Trigonal pyramidal

1. b
2. c
3. d
4. a
5. During change of O_{2} to O_{2}^{-}ion, the electron adds on which one of the following orbitals ?
6. π orbital
7. σ^{*} orbital
8. σ orbital
9. π^{*} orbital
10. Four diatomic species are listed below. Identify the correct order in which the bond order is increasing in them
11. $\mathrm{O}_{2}{ }^{-}<\mathrm{NO}<\mathrm{C}_{2}{ }^{2-}<\mathrm{He}_{2}{ }^{+}$
12. $\mathrm{C}_{2}{ }^{2-}<\mathrm{He}_{2}{ }^{+}<\mathrm{O}_{2}{ }^{-}<\mathrm{NO}$
13. $\mathrm{He}_{2}{ }^{+}<\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}{ }^{2-}$
14. $\mathrm{NO}<\mathrm{O}_{2}^{-}<\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}{ }^{+}$
15. The pairs of species of oxygen and their magnetic behaviors are given below. Which of the following represent the correct description?
16. $\mathrm{O}, \mathrm{O}_{2}^{2-}$ - Both paramagnetic
17. $\mathrm{O}_{2}^{-}, \mathrm{O}_{2}^{2-}$ - Both diamagnetic
18. $\mathrm{O}^{+}, \mathrm{O}_{2}^{2-}$ - Both paramagnetic
19. $\mathrm{O}_{2}^{+}, \mathrm{O}_{2}$ - Both paramagnetic
20. Some of the properties of the two species, NO_{3}^{-}and $\mathrm{H}_{3} \mathrm{O}^{+}$are described below. Which one of them is correct?
21. Isostructural with same hybridization for the central atom.
22. Isostructural with different hybridization for the central atom.
23. Similar in hybridization for the central atom with different structures.
24. Dissimilar in hybridization for the central atom with different structures.
25. In which of the following molecules the central atom does not have sp^{3} hybridization?
26. SF_{4}
27. $B F_{4}^{-}$
28. NH_{4}^{+}
29. CH_{4}
30. The most preferred structure with the lowest energy for SO_{3} is :

31.
32.

3.

4.
65. Among the following, the compound that is electron deficient is-

1. BaCl_{2}
2. BCl_{3}
3. CCl_{4}
4. PCl_{5}
5. $\mathrm{d} \pi-\mathrm{p} \pi$ bond is present in :
6. CO_{3}^{2-}
7. PO_{4}^{-3}
8. NO_{3}^{-}
9. NO_{2}^{-}
10. The compound that form linear polymer due to H bond is :
11. $\mathrm{H}_{2} \mathrm{O}$
12. NH_{3}
13. HBr
14. HCl
15. The number of antibonding electron pair present in O_{2}^{2-} is :
16. 4
17. 3
18. 2
19. 1
20. The correct order of dissociation energy of N_{2} and $\mathrm{N}_{2}{ }^{+}$ is-
21. $\mathrm{N}_{2}>\mathrm{N}_{2}{ }^{+}$
22. $\mathrm{N}_{2}=\mathrm{N}_{2}{ }^{+}$
23. $\mathrm{N}_{2}^{+}>\mathrm{N}_{2}$
24. None of the above
25. Isoelectronic species are:
26. $\mathrm{CO}, \mathrm{CN}^{-}, \mathrm{NO}^{+}, \mathrm{C}_{2}{ }^{2-}$
27. $\mathrm{CO}^{-}, \mathrm{CN}, \mathrm{NO}, \mathrm{C}_{2}^{-}$
28. $\mathrm{CO}^{+}, \mathrm{CN}^{+}, \mathrm{NO}^{-}, \mathrm{C}_{2}$
29. $\mathrm{CO}, \mathrm{CN}, \mathrm{NO}, \mathrm{C}_{2}$
30. Which of the following molecules has trigonal planar geometry ;
(1) NH_{3}
(2) BF_{3}
(3) PCl_{3}
(4) IF_{3}
31. Which of the following would have a permanent dipole moment -
(1) BF_{3}
(2) SF_{4}
(3) SiF_{4}
(4) XeF_{4}
32. The correct sequence of increasing covalent character is represented by -
33. $\mathrm{BeCl}_{2}<\mathrm{NaCl}<\mathrm{LiCl}$
34. $\mathrm{NaCl}<\mathrm{LiCl}<\mathrm{BeCl}_{2}$
35. $\mathrm{BeCl}_{2}<\mathrm{LiCl}<\mathrm{NaCl}$
36. $\mathrm{LiCl}<\mathrm{NaCl}<\mathrm{BeCl}_{2}$
37. Which of the following is the electron deficient molecule -
(1) $\mathrm{C}_{2} \mathrm{H}_{6}$
(2) SiH_{4}
(3) PH_{3}
(4) $\mathrm{B}_{2} \mathrm{H}_{6}$
38. Species that does not exhibits paramagnetism is :
39. $\mathrm{N}_{2}{ }^{+}$
40. O_{2}^{-}
41. CO
42. NO
43. In PO_{4}^{-3} formal charge on every oxygen atom and P O bond order respectively are :
44. -0.75 and 1.25
45. -0.5 and 2
46. 1 and 1.5
47. -0.75 and 2
48. Among the following, the pair in which the two species are not isostructural is :-
49. IO_{3}^{-}and XeO_{3}
50. BH_{4}^{-}and NH_{4}^{+}
51. PF_{6}^{-}and SF_{6}
52. SiF_{4} and SF_{4}
53. Increasing order of bond length is :
54. $\mathrm{NO}^{-}<\mathrm{NO}<\mathrm{NO}^{+}<\mathrm{O}_{2}^{-}$
55. $\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{NO}^{-}<\mathrm{NO}^{+}$
56. $\mathrm{O}_{2}^{-}<\mathrm{NO}^{-}<\mathrm{NO}<\mathrm{NO}^{+}$
57. $\mathrm{NO}^{+}<\mathrm{NO}<\mathrm{NO}^{-}<\mathrm{O}_{2}^{-}$

Chemical Bonding and Molecular Structure - NCERT based PYQs

79. $\mathrm{H}_{2} \mathrm{O}$ is dipolar, whereas BeF_{2} is not. It is because:-
80. $\mathrm{H}_{2} \mathrm{O}$ involves hydrogen bonding whereas BeF_{2} is a discrete molecule.
81. $\mathrm{H}_{2} \mathrm{O}$ is linear and BeF_{2} is angular.
82. $\mathrm{H}_{2} \mathrm{O}$ is angular and BeF_{2} is linear.
83. The electronegativity of F is greater than that of O
84. In a regular octahedral molecule, MX_{6} the number of $\mathrm{X}-\mathrm{M}-\mathrm{X}$ bonds at 180° is :-
(1) Two
(2) Six
(3) Four
(4) Three
85. In BrF_{3} molecule, the lone pairs occupy equatorial positions to minimize :-
(1) Bond pair - bond pair repulsion only
(2) Lone pair - lone pair repulsion and lone pair- bond pair repulsion
(3) Lone pair-lone pair repulsion only
(4) Lone pair-bond pair repulsion ony
86. The dipole moment of compound AB is 10.92 D and that of compound CD is 12.45 D . The bond length AB is $2.72 \mathrm{~A}^{\mathrm{o}}$ and that of CD is $2.56 \mathrm{~A}^{\mathrm{o}}$ then for these compound true statement is :
87. More ionic nature in AB
88. More ionic nature in $C D$
89. Equal in both
90. Cannot be predicted
91. Among the following iso-electronic species is :-
92. $\mathrm{CO}_{2}, \mathrm{NO}_{2}$
93. $\mathrm{NO}_{2}^{-}, \mathrm{CO}_{2}$
94. $\mathrm{CN}^{-}, \mathrm{CO}$
95. $\mathrm{SO}_{2}, \mathrm{CO}_{2}$
96. $\mathrm{p}_{\pi}-\mathrm{d}_{\pi}$ bonding is present in :
97. NO_{3}^{-}
98. $\mathrm{SO}_{3}{ }^{-2}$
99. $\mathrm{BO}_{3}{ }^{-3}$
100. CO_{3}^{-2}
101. In $\mathrm{NO}_{3}{ }^{-}$ion, the number of bond pair and lone pair of electrons on nitrogen atom are respectively:
102. 2, 2
103. 3, 1
104. 1,3
105. 4,0
106.

Incorrect statement about peptide bond is :-

1. $\mathrm{C}-\mathrm{N}$ bond length in proteins is longer than usual bond length of N-bond.
2. Spectroscopic analysis show planar structure of $-C-N H-$ group
||
O
3. $\mathrm{C}-\mathrm{N}$ bond length in proteins is smaller than usual bond length of $\mathrm{C}-\mathrm{N}$ bond.
4. None of the above.
5. Which of the following two species in the pair are isostructural :-
6. $X e F_{2}, I F_{2}^{-}$
7. $\mathrm{NH}_{3}, B F_{3}$
8. $\mathrm{CO}_{3}^{-2}, \mathrm{SO}_{3}^{-2}$
9. $P C l_{5}, I C I_{5}$
10. Bond angle is maximum in :
11. NH_{3}
12. NH_{4}^{+}
13. PCl_{3}
14. SCl_{2}
15. The incorrect statements among the following for sigma- and pi- bonds formed between two carbon atoms is-
16. Sigma-bond is stronger than a pi-bond
17. Bond energies of sigma- and pi-bonds are of the order of $264 \mathrm{KJ} / \mathrm{mol}$ and $347 \mathrm{KJ} / \mathrm{mol}$, respectively
18. Free rotation of atoms about a sigma bond is allowed but not in the case of a pi-bond
19. Sigma-bond determines the direction between carbon atoms but a pi-bond has no primary effect in this regard
20. Main axis of a diatomic molecule is z , molecular orbtial p_{x} and p_{y} overlaps to form, which of the following orbital : -
21. π molecular orbtial
22. σ molecular orbital
23. δ molecular orbtial
24. No bond will form
25. BF_{3} is planar and electron deficient compound. Hybridization and number of electrons around the central atom, respectively are:
26. sp^{2} and 6
27. sp^{2} and 8
28. sp^{3} and 4
29. sp^{3} and 6
30. Match List - I with List - II

	List - I		List - II
(a)	PCl_{5}	(i)	Square pyramidal
(b)	SF_{6}	(ii)	Trigonal planar
(c)	BrF_{5}	(iii)	Octahedral
(d)	BF_{3}	(iv)	Trigonal bipyramida

Choose the correct answer from the options given below

1. (a) - (iii), (b) - (i), (c) - (iv), (d) - (ii)
2. (a) - (iv), (b) - (iii), (c) - (ii), (d) - (i)
3. (a) - (iv), (b) - (iii), (c) - (i), (d) - (ii)
4. (a) - (ii), (b) - (iii), (c) - (iv), (d) - (i)
5. From the following pairs of ions which one is not an iso-electronic pair?
6. $\mathrm{Mn}^{2+}, \mathrm{Fe}^{3+}$
7. $\mathrm{Fe}^{2+}, \mathrm{Mn}^{2+}$
8. $\mathrm{O}^{2-}, \mathrm{F}^{-}$
9. $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}$
10. The non-polar nature molecule among the following is-
11. SbCl_{5}
12. NO_{2}
13. POCl_{3}
14. $\mathrm{CH}_{2} \mathrm{O}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

 course
Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

States of Matter

(Expected Questions in NEET 2022: 1)

Subser	
Gas Laws	
Ideal Gas Law	
Kinetic Theory of Gas	
van der Waal's Correction	
Compressibility Factor	
Dalton's Law	$\mathbf{3}$

1. Given van der Waals constant "a" for $\mathrm{NH}_{3}, \mathrm{H}_{2}$ and CO_{2} are respectively $4.17,0.244,1.36$ and 3.59 , which one of the following gases is most easily liquefied?
2. NH_{3}
3. H_{2}
4. O_{2}
5. CO_{2}
6.

The correction factor 'a' to the ideal gas equation corresponds to

1. density of the gas molecules
2. volume of the gas molecules
3. electric field present between the gas molecules
4. forces of attraction between the gas molecules
5. A gas such as carbon monoxide would be most likely to obey the ideal gas law at
6. High temperature and low pressures
7. Low temperature and high pressures
8. High temperature and high pressures
9. Low temperature and low pressures
10. Equal masses of $\mathrm{H}_{2}, \mathrm{O}_{2}$ and methane have been taken in a container of volume V at temperature $27{ }^{\circ} \mathrm{C}$ in identical conditions. The ratio of the volumes of gases $\mathrm{H}_{2}: \mathrm{O}_{2}$: methane would be -
11. $8: 16: 1$
12. $16: 8: 1$
13. 16:1:2
14. 8:1:2
15.

Maximum deviation from ideal gas is expected from :

1. $\mathrm{N}_{2}(\mathrm{~g})$
2. $\mathrm{CH}_{4}(\mathrm{~g})$
3. $\mathrm{NH}_{3}(\mathrm{~g})$
4. $\mathrm{H}_{2}(\mathrm{~g})$
5.

A gaseous mixture was prepared by taking equal moles of CO and N_{2}. If the total pressure of the mixture was found 1 atmosphere, the partial pressure of the nitrogen $\left(\mathrm{N}_{2}\right)$ in the mixture is

1. 0.8 atm
2. 0.9 atm
3. 1 atm
4. 0.5 atm
5.

If a gas expands at constant temperature, it indicates that

1. Kinetic energy of molecules decreases
2. Pressure of the gas increases
3. Kinetic energy of molecules remains the same
4. Number of the molecules of gas increases
5. A gas at 350 K and 15 bar has molar volume 20 percent smaller than that for an ideal gas under the same conditions. The correct option about the gas and its compressibility factor (Z) is:
6. $\mathrm{Z}<1$ and repulsive forces are dominant
7. $\mathrm{Z}>1$ and attractive forces are dominant
8. $\mathrm{Z}>1$ and repulsive forces are dominant
9. $\mathrm{Z}<1$ and attractive forces are dominant
10. In water-saturated air, the mole fraction of water vapor is 0.02 . If the total pressure of the saturated air is 1.2 atm , the partial pressure of dry air is-
11. 1.17 atm
12. 1.76 atm
13. 1.27 atm
14. 0.98 atm
15. The volume occupied by 1.8 g of water vapour at 374 ${ }^{\circ} \mathrm{C}$ and 1 bar pressure will be -
[Use $\mathrm{R}=0.083$ bar $\mathrm{LK}^{-1} \mathrm{~mol}^{-1}$]
16. 96.66 L
17. 55.87 L
18. 3.10 L
19. 5.31 L
20. A mixture of N_{2} and Ar gases in a cylinder contains 7 g of N_{2} and 8 g of Ar. If the total pressure of the mixture of the gases in the cylinder is 27 bar, the partial pressure of N_{2} is:
[Use atomic masses (in $\mathrm{g} \mathrm{mol}^{-1}$): $\mathrm{N}=14, \mathrm{Ar}=40$]
(1) 12 bar
(2) 15 bar
(3) 18 bar
(4) 9 bar
21. The minimum pressure required to compress $600 \mathrm{dm}^{3}$ of a gas at 1 bar to $150 \mathrm{dm}^{3}$ at $40^{\circ} \mathrm{C}$ is
22. 4.0 bar
23. 0.2 bar
24. 1.0 bar
25. 2.5 bar
26. A bubble of air is underwater at a temperature $15^{\circ} \mathrm{C}$ and the pressure 1.5 bar . If the bubble rises to the surface where the temperature is $25^{\circ} \mathrm{C}$ and the pressure is 1.0 bar , what will happen to the volume of the bubble?
27. Volume will become greater by a factor of 2.5
28. Volume will become greater by a factor of 1.6
29. Volume will become greater by a factor of 1.1
30. Volume will become smaller by a factor of 0.70
31. The pressure exerted by 6.0 g of methane gas in a 0.03 m^{3} vessel at $129^{\circ} \mathrm{C}$ is
(Atomic masses : $\mathrm{C}=12.01, \mathrm{H}=1.01$ and $\mathrm{R}=8.314 \mathrm{JK}^{-}$ ${ }^{1} \mathrm{~mol}^{-1}$)
32. 13409 Pa
33. 41648 Pa
34. 31684 Pa
35. 215216 Pa
36. For real gases van der Waals equation is written as
$\left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T$
Where 'a' and ' b ' are van der Waals constants.
Two sets of gases are :
(I) $\mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{H}_{2}$ and $\mathrm{He} \quad$ (II) $\mathrm{CH}_{4}, \mathrm{O}_{2}$ and H_{2}

The gases given in set-I in increasing order of ' b ' and gases given in set-II in decreasing order of ' a ', are arranged below. Select the correct order from the following :

1. (I) $\mathrm{O}_{2}<\mathrm{He}<\mathrm{H}_{2}<\mathrm{CO}_{2}(\mathrm{II}) \mathrm{H}_{2}>\mathrm{O}_{2}>\mathrm{CH}_{4}$
2. (I) $\mathrm{H}_{2}<\mathrm{He}<\mathrm{O}_{2}<\mathrm{CO}_{2}$ (II) $\mathrm{CH}_{4}>\mathrm{O}_{2}>\mathrm{H}_{2}$
3. (I) $\mathrm{H}_{2}<\mathrm{O}_{2}<\mathrm{He}<\mathrm{CO}_{2}$ (II) $\mathrm{O}_{2}>\mathrm{CH}_{4}>\mathrm{H}_{2}$
4. (I$) \mathrm{He}<\mathrm{H}_{2}<\mathrm{CO}_{2}<\mathrm{O}_{2}$ (II) $\mathrm{CH}_{4}>\mathrm{H}_{2}>\mathrm{O}_{2}$
5. Average molar kinetic energy of CO and N_{2} at same temperature is :
6. $\mathrm{KE}_{1}=\mathrm{KE}_{2}$
7. $\mathrm{KE}_{1}>\mathrm{KE}_{2}$
8. $\mathrm{KE}_{1}<\mathrm{KE}_{2}$
9. Can't say anything. Both volumes are not given
10. 400 ml gas at 500 torrs and 666.6 ml gas at 600 torrs taken in a container of 3 liters than the total pressure of a mixture is
11. 200 torr
12. 400 torr
13. 600 torr
14. 50 torr
15. Van der Waal's real gas acts as an ideal gas, under which conditions: -
16. High temperature, Low pressure
17. Low temperature, High pressure
18. High temperature, High pressure
19. Low temperature, Low pressure
20. Choose the correct option for graphical representation of Boyle's law, which shows a graph of pressure vs. volume of a gas at different temperatures :

21.

2.

3.

4.
20. Choose the correct option for the total pressure (in atm.) in a mixture of $4 \mathrm{~g} \mathrm{O}_{2}$ and $2 \mathrm{~g} \mathrm{H}_{2}$ confined in a total volume of one litre at $0^{\circ} \mathrm{C}$ is :

1. 25.18
2. 26.02
3. 2.518
4. 2.602

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

 course
neetprep
 Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Thermodynamics

(Expected Questions in NEET 2022: 2)

Subtopic Name	Number of
	Questions
Gibbs Energy Change	19
Thermochemistry	13
Enthalpy \& Internal energy	12
Spontaneity \& Entropy	11
First Law of Thermodynamics	8
2nd \& 3rd Law of Thermodynamics	5
Cp \& Cv	1
Thermodynamics' Properties and process	1

1. For a sample of perfect gas when its pressure is changed isothermally from P_{i} to P_{f}, the entropy change is given by
2. $\Delta \mathrm{s}=\mathrm{nR}$ In $\left(\frac{\mathrm{p}_{\mathrm{f}}}{\mathrm{p}_{\mathrm{i}}}\right)$
3. $\Delta \mathrm{s}=\mathrm{nR} \operatorname{In}\left(\frac{\mathrm{p}_{\mathrm{i}}}{\mathrm{p}_{\mathrm{f}}}\right)$
4. $\Delta \mathrm{s}=\mathrm{nRT}$ In $\left(\frac{\mathrm{p}_{\mathrm{f}}}{\mathrm{p}_{\mathrm{i}}}\right)$
5. $\Delta s=R T \operatorname{In}\left(\frac{p_{i}}{p_{f}}\right)$
6.

For a given reaction,
$\Delta H=35.5 \mathrm{KJmol}^{-1}$ and $\Delta S=83.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
.The reaction is spontaneous at: (Assume that ΔH and
ΔS do not vary with temperature)

1. $\mathrm{T}>425 \mathrm{~K}$
2. All temperatures
3. $\mathrm{T}>298 \mathrm{~K}$
4. $\mathrm{T}<425 \mathrm{~K}$
5. A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50 L . The change in internal energy U of the gas in joules will be:
6. -500 J
7. -505 J
8. -506 J
9. -508 J
10. The bond dissociation energies of X_{2}, Y_{2} and XY are in the ratio of $1: 0.5: 1 . \Delta \mathrm{H}$ for the formation of XY is $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond dissociation energy of X_{2} will be
11. $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
12. $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
13. $800 \mathrm{~kJ} \mathrm{~mol}^{-1}$
14. $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
15.

The correct thermodynamic conditions for the spontaneous reaction at all temperatures is

1. $\Delta \mathrm{H}>\mathrm{O}$ and $\Delta \mathrm{S}<0$
2. $\Delta \mathrm{H}<\mathrm{O}$ and $\Delta \mathrm{S}>0$
3. $\Delta \mathrm{H}<\mathrm{O}$ and $\Delta \mathrm{S}<0$
4. $\Delta \mathrm{H}>0$ and $\Delta \mathrm{S}=0$
5. The heat of combustion of carbon to CO_{2} is -393.5 $\mathrm{KJ} / \mathrm{mol}$. The heat changed upon the formation of 35.2 g of CO_{2} from carbon and oxygen gas is -
6. -315 KJ
7. +315 KJ
8. -630 KJ
9. +630 KJ
10. Which of the following statement is correct for a reversible process in a state of equilibrium?
11. $\Delta \mathrm{G}=-2.30 \mathrm{RT} \log \mathrm{K}$
12. $\Delta \mathrm{G}=2.30 \mathrm{RT} \log \mathrm{K}$
13. $\Delta \mathrm{G}^{\mathrm{o}}=-2.30 \mathrm{RT} \log \mathrm{K}$
14. $\Delta \mathrm{G}^{\mathrm{o}}=2.30 \mathrm{RT} \log \mathrm{K}$
15. Given the Gibbs free energy change, $\Delta \mathrm{G}^{\circ}=+63.3 \mathrm{~kJ}$, for the following reaction,
$\mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq})$
$\mathrm{K}_{\text {sp }}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ in water at $25^{\circ} \mathrm{C}$ is $\left(\mathrm{R}=8.314 \mathrm{JK}^{-}\right.$
${ }^{1} \mathrm{~mol}^{-1}$)
16. 3.2×10^{26}
17. 8.0×10^{-12}
18. 2.9×10^{-3}
19. 7.9×10^{-2}
20. Which of the following statements is correct for the spontaneous adsorption of a gas?
21. $\Delta \mathrm{S}$ is negative and therefore, $\Delta \mathrm{H}$ should be highly positive
22. $\Delta \mathrm{S}$ is negative and therefore, $\Delta \mathrm{H}$ should be highly negative
23. $\Delta \mathrm{S}$ is positive and therefore, $\Delta \mathrm{H}$ should be negative
24. $\Delta \mathrm{S}$ is positive and therefore, $\Delta \mathrm{H}$ should also be highly positive
25. For the reaction :
$\mathrm{X}_{2} \mathrm{O}_{4}(\mathrm{l}) \rightarrow 2 \mathrm{XO}_{2}(\mathrm{~g})$
$\Delta \mathrm{U}=2.1 \mathrm{kcal}, \Delta \mathrm{S}=20 \mathrm{cal} \mathrm{K}^{-1}$ at 300 K
The value of $\Delta \mathrm{G}$ is -
1.2 .7 kcal
26. -2.7 kcal
3.9 .3 kcal
27. -9.3 kcal
28. In which of the following reactions, standard reaction entropy changes $\left(\Delta S^{0}\right)$ is positive and standard Gibb's energy change $\left(\Delta G^{0}\right)$ decreases sharply with increasing temperature?
29. C (graphite $)+\frac{1}{2} O_{2}(g) \rightarrow C O(g)$
30. $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
31. $M g(s)+\frac{1}{2} O_{2}(g) \rightarrow M g O(s)$
32. $\frac{1}{2} C($ graphite $)+\frac{1}{2} O_{2}(g) \rightarrow \frac{1}{2} C O_{2}(g)$
33. The enthalpy of fusion of water is $1.435 \mathrm{kcal} / \mathrm{mol}$. The molar entropy change for the melting of ice at $0^{\circ} \mathrm{C}$ is
34. $10.52 \mathrm{cal} /(\mathrm{mol} \mathrm{K})$
35. $21.04 \mathrm{cal} /(\mathrm{mol} \mathrm{K})$
36. $5.260 \mathrm{cal} /(\mathrm{mol} \mathrm{K})$
37. $0.526 \mathrm{cal} /(\mathrm{mol} \mathrm{K})$
38. Standard enthalpy of vaporization $\Delta_{\text {vap }} \mathrm{H}^{0}$ for water at $100^{0} \mathrm{C}$ is $40.66 \mathrm{Kj} \mathrm{mol}^{-1}$. The internal energy of vaporization of water at $100^{0} \mathrm{C}\left(\mathrm{in} \mathrm{kJ} \mathrm{mol}{ }^{-1}\right)$ is
(Assume water vapour to behave like an ideal gas).
39. +37.56
40. -43.76
41. +43.76
42. +40.66
43. Which of the following is correct option for free expansion of an ideal gas under adiabatic condition?
44. $\mathrm{q} \neq 0, \Delta \mathrm{~T}=0, \mathrm{~W}=0$
45. $\mathrm{q}=0, \Delta \mathrm{~T}=0, \mathrm{~W}=0$
46. $\mathrm{q}=0, \Delta \mathrm{~T}<0, \mathrm{~W} \neq 0$
47. $\mathrm{q}=0, \Delta \mathrm{~T} \neq 0, \mathrm{~W}=0$
48. The given reaction is
$4 \mathrm{H}(\mathrm{g}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})$ is -869.6 kJ
The enthalpy change for the reaction is -869.6 kJ . The dissociation energy of the $\mathrm{H}-\mathrm{H}$ bond is -
49. -869.6 kJ
50. +434.8 kJ
51. +217.4 kJ
52. -434.8 kJ
53. From the following bond energies :
$\mathrm{H}-\mathrm{H}$ bond energy: $431.37 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{C}=\mathrm{C}$ bond energy: $606.10 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C-C bond energy: $336.49 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C-H bond energy: $410.50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy for the reaction,

will be
54. $1523.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
55. $-243.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
56. $-120.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$4.553 .0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
57. The values of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ for the reaction, $\mathrm{C}_{(\text {graphite })}{ }^{+}$ $\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$ are 170 kJ and $170 \mathrm{JK}^{-1}$, respectively.
This reaction will be spontaneous at
58. 710 K
59. 910 K
60. 1110 K
61. 510 K
62.

Which of the following are not state functions?
(I) $q+W$
(II) q
(III) W
(IV) H - TS

1. (I) and (IV)
2. (II), (III) and (IV)
3. (I), (II) and (III)
4. (II) and (III)
5.

For the gas phase reaction,
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
which of the following conditions are correct?

1. $\Delta \mathrm{H}=0$ and $\Delta \mathrm{S}<0$
2. $\Delta \mathrm{H}>0$ and $\Delta \mathrm{S}>0$
3. $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}<0$
4. $\Delta \mathrm{H}>0$ and $\Delta \mathrm{S}<0$
5.

Standard free energies of formation(in $\mathrm{kJ} / \mathrm{mol}$) at 298 K are -237.2, -394.4 and -8.2 for $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \mathrm{CO}_{2}(\mathrm{~g})$ and pentane (g), respectively. The value of $\mathrm{E}_{\text {cell }}$ for the pentane-oxygen fuel cell is

1. 1.968 V
2. 2.0968 V
3. 1.0968 V
4. 0.0968 V

22.

Bond dissociation enthalpy of $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are 434, 242 and $431 \mathrm{~kJ} \mathrm{~mol}{ }^{1}$ respectively. Enthalpy of formation of HCl is

1. $93 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2. $-245 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3. $-93 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4. $245 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5. Consider the following reactions:
(i) $\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q)=\mathrm{H}_{2} \mathrm{O}(l)$
$\Delta H=-x_{1} \mathrm{kJmol}^{-1}$
(ii) $\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g)=\mathrm{H}_{2} \mathrm{O}(l)$
$\Delta H=-x_{2} \mathrm{kJmol}^{-1}$
(iii) $\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)=\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
$\Delta H=-x_{3} \mathrm{kJmol}^{-1}$
(iv) $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 / 2 \mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta H=-x_{4} \mathrm{kJmol}^{-1}$
Enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}(i)$ is :
6. $-x_{3} k J \mathrm{~mol}^{-1}$
7. $-x_{4} k J \mathrm{~mol}^{-1}$
8. $-x_{1} k J \mathrm{~mol}^{-1}$
9. $-x_{2} k J \mathrm{~mol}^{-1}$
10. Given that the bond energy of $\mathrm{H}-\mathrm{H}$ and $\mathrm{Cl}-\mathrm{Cl}$ is 430 $\mathrm{kJ} \mathrm{mol}^{-1}$ and $240 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively and ΔH_{f} for HCl is $-90 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Bond enthalpy of HCl is :
11. $290 \mathrm{~kJ} \mathrm{~mol}^{-1}$
12. $380 \mathrm{~kJ} \mathrm{~mol}^{-1}$
13. $425 \mathrm{~kJ} \mathrm{~mol}^{-1}$
14. $245 \mathrm{~kJ} \mathrm{~mol}^{-1}$
15.

Which of the following statements, about the advantage of roasting of sulphide ore before reduction is not true?

1. Carbon and hydrogen suitable reducing agents for metal sulphides
2. The $\Delta_{f} G^{0}$ of the sulphide is greater than those for $C S_{2}$ and $\mathrm{H}_{2} \mathrm{~S}$
3. the $\Delta_{f} G^{0}$ is negative for roasting of sulphur ore to oxide.
4. Roasting of the sulphide to the oxide is thermodynamically feasible
5. Identify the correct statement for change of Gibbs energy for a system $\left(\Delta G_{\text {system }}\right)$ at constant temperature and pressure:
6. If $\Delta G_{\text {system }}>0$, the process is spontaneous
7. If $\Delta G_{\text {system }}=0$, the system has attained equilibrium
8. If $\Delta G_{\text {system }}=0$, the system is still moving in a particular direction.
9. If $\Delta G_{\text {system }}<0$, the process is not spontaneous
10. Assume each reaction is carried out in an open container. For which reaction will $\Delta \mathrm{H}=\Delta E$?
11. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$
12. $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
13. $\mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
14. $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
15. The enthalpy and entropy change for the reaction: $\mathrm{Br}_{2}(l)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{BrCl}(g)$, are $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $105 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. The temperature at which the reaction will be in equilibrium is:
16. 285.7 K
17. 273 K
18. 450 K
19. 300 K
20. The enthalpy of combustion of H_{2}, cyclohexene $\left(\mathrm{C}_{6} \mathrm{H}_{10}\right)$ and cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ are $-241,-3800$ and -3920 kJ per mol respectively. Heat of hydrogenation of cyclohexene is :
21. -121 kJ per mol
22. +121 kJ per mol
23. +242 kJ per mol
24. -242 kJ per mol
25. Under isothermal condition, a gas at 300 K expands from 0.1 L to 0.25 L against a constant external pressure of 2 bar. The work done by the gas is: [Given that 1 L bar=100 J]
26. 30 J
27. -30 J
28. 5 kJ
29. 25 J
30. In which case change in entropy is negative?
31. $2 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})$
32. Evaporation of water
33. Expansion of a gas at a constant temperature
34. Sublimation of solid to gas
35. An ideal gas expands isothermally from $10^{-3} \mathrm{~m}^{3}$ to $10^{-2} \mathrm{~m}^{3}$ at 300 K against a constant pressure of $10^{5} \mathrm{Nm}^{-2}$. The work done by the gas is:
36. +270 kJ
37. -900 J
38. +900 kJ
39. -900 kJ
40. Reversible expansion of an ideal gas under isothermal and adiabatic conditions are as shown in the figure:

$\mathrm{AB} \rightarrow$ Isothermal expansion
AC \rightarrow Adiabatic expansion
Which of the following options is not correct?
41. $\Delta S_{\text {isothermal }}>\Delta S_{\text {adiabatic }}$
42. $T_{A}=T_{B}$
43. $W_{\text {isothermal }}>W_{\text {adiabatic }}$
44. $T_{C}>T_{A}$
45. Hydrolysis of sucrose is given by the following reaction
Sucrose $+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$ Glucose + Fructose
If the equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)$ is 2×10^{13} at 300 K , the value of $\Delta_{r} G^{\ominus}$ at the same temperature will be:
46. $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)$
47. $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(3 \times 10^{13}\right)$
48. $-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(4 \times 10^{13}\right)$
49. $-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)$
50. For the reaction, $2 \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})$, the correct option is:
51. $\Delta_{\mathrm{r}} \mathrm{H}>0$ and $\Delta_{\mathrm{r}} \mathrm{S}<0$
52. $\Delta_{\mathrm{r}} \mathrm{H}<0$ and $\Delta_{\mathrm{r}} \mathrm{S}>0$
53. $\Delta_{\mathrm{r}} \mathrm{H}<0$ and $\Delta_{\mathrm{r}} \mathrm{S}<0$
54. $\Delta_{\mathrm{r}} \mathrm{H}>0$ and $\Delta_{\mathrm{r}} \mathrm{S}>0$
55. The correct option for free expansion of an ideal gas under adiabatic condition is:
56. $q=0, \Delta T<0$ and $w>0$
57. $q<0, \Delta T=0$ and $w=0$
58. $q>0, \Delta T>0$ and $w>0$
59. $q=0, \Delta T=0$ and $w=0$
60. If for a certain reaction $\Delta_{r} H$ is $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 450 K , the value of $\Delta_{r} S$ (in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$) for which the same reaction will be spontaneous at the same temperature is
(1) 70
(2) -33
(3) 33
(4) -70
61. At standard conditions, if the change in the enthalpy for the following reaction is $-109 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HBr}_{(\mathrm{g})}$
Given that bond energy of H_{2} and Br_{2} is $435 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $192 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively, what is the bond energy (in kJ mol^{-1}) of HBr ?
62. 368
63. 736
64. 518
65. 259
66. Consider the following processes :
$\Delta \mathrm{H}(\mathrm{kJ} / \mathrm{mol})$
$1 / 2 \mathrm{~A} \rightarrow \mathrm{~B} \quad+150$
$3 \mathrm{~B} \rightarrow 2 \mathrm{C}+\mathrm{D} \quad-125$
$\mathrm{E}+\mathrm{A} \rightarrow 2 \mathrm{D} \quad+350$
For $\mathrm{B}+\mathrm{D} \rightarrow \mathrm{E}+2 \mathrm{C}, \Delta \mathrm{H}$ will be-
67. $325 \mathrm{~kJ} / \mathrm{mol}$
68. $525 \mathrm{~kJ} / \mathrm{mol}$
69. $-175 \mathrm{~kJ} . \mathrm{mol}$
70. $-325 \mathrm{~kJ} / \mathrm{mol}$
71. For vaporization of water at 1 atmospheric pressure, the values of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are $40.63 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $108.8 \mathrm{JK}^{-}$ ${ }^{1} \mathrm{~mol}^{-1}$, respectively. The temperature when Gibbs energy change $(\Delta \mathrm{G})$ for this transformation will be zero, is -
72. 393.4 K
73. 373.4 K
74. 293.4 K
75. 273.4 K
76. Three moles of an ideal gas expanded spontaneously into vaccum. The work done will be
77. 3 Joules
78. 9 Joules
79. Zero
80. Infinite
81. The following two reactions are known
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(g) ;$
$\Delta H=-26.88 k J$
$\mathrm{FeO}(s)+\mathrm{CO}(g) \rightarrow \mathrm{Fe}(s)+\mathrm{CO}_{2}(g) ;$
$\Delta H=-16.5 k J$
The value of $\Delta \mathrm{H}$ for the following reaction
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{FeO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$ is
82. -43.3 kJ
83. -10.3 kJ
84. +6.2 kJ
85. +10.3 kJ
86. Match List - I (Equations) with List - II (Type of processes) and select the correct option.
List -I
List - II

Equation
Type of processes
(a) $K_{p}>Q$
(b) $\Delta \mathrm{G}^{\circ}<\mathrm{RT} \ln \mathrm{Q}$
(c) $K_{p}=Q$
(i) Non spontaneous
(ii) Equilibrium
(iii) Spontaneous and
endothermic
(d) $\mathrm{T}>\frac{\Delta H}{\Delta S}$

Options :
(a) (b) (c) (d)
(1) (iii) (iv) (ii) (i)
(2) (iv) (i) (ii) (iii)
(3) (ii) (i) (iv) (iii)
(4) (i) (ii) (iii) (iv)
44. A reaction occurs spontaneously if -
(1) $\mathrm{T} \Delta \mathrm{S}>\Delta \mathrm{H}$ and $\Delta \mathrm{H}$ is +ve and $\Delta \mathrm{S}$ are -ve
(2) $\mathrm{T} \Delta \mathrm{S}=\Delta \mathrm{H}$ and both $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are +ve
(3) $\mathrm{T} \Delta \mathrm{S}<\Delta \mathrm{H}$ and both $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are +ve
(4) $\mathrm{T} \Delta \mathrm{S}>\Delta \mathrm{H}$ and both $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are $+v e$
45. Which of the following pairs of a chemical reaction is certain to result in a spontaneous reaction -
(1) Endothermic and decreasing disorder
(2) Exothermic and increasing disorder
(3) Endothermic and increasing disorder
(4) Exothermic and decreasing disorder
46. Identify the correct statement regarding entropy:

1. At absolute zero of temperature, the entropy of all crystalline substances is
taken to be zero
2. At absolute zero of temperature, the entropy of a perfectly crystalline substance is +ve
3. At absolute zero of temperature, entropy of a perfectly crystalline substance is taken to be zero
4. At $0^{\circ} C$, the entropy of a perfectly crystalline substance is taken to be zero
5. One mole of an ideal gas at 300 K is expanded isothermally from an initial volume of 1 litre to 10 litres. The $\Delta \mathrm{E}$ for this process is $\left(\mathrm{R}=2 \mathrm{cal} . \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$:
6. 1381.1 cal .
7. Zero
8. 163.7 cal .
9. 9 lit. atm
10. If the bond energies of $\mathrm{H}-\mathrm{H}, \mathrm{Br}-\mathrm{Br}$, and $\mathrm{H}-\mathrm{Br}$ are 433, 192, and $364 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively the $\Delta \mathrm{H}^{\circ}$ for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$ is-
(1) +103 kJ
(2) +261 kJ
(3) -103 kJ
(4) -261 kJ
11. What is true for a cyclic process :
a. $\mathrm{W}=0$
b. $\Delta \mathrm{E}=0$
c. $\Delta \mathrm{H}=0$
d. $\Delta \mathrm{E} \neq 0$
12. a, b
13. b, c
14. c, d
15. a, d
16. A system is expanded under adiabatic process :
17. Temperature increase
18. $\Delta \mathrm{E}$ decreases
19. $\Delta \mathrm{E}$ increases
20. None of the above
21. Which of the following is true for a reaction in which all the reactant \& product are liquids :
22. $\Delta \mathrm{H}=\Delta \mathrm{E}$
23. $\Delta \mathrm{H}=\Delta \mathrm{W}$
24. $\Delta \mathrm{H}>\Delta \mathrm{E}$
25. None of the above
26. Considering entropy (S) as a thermodynamic parameter, the criterion for the spontaneity of any process is :-
27. $\Delta S_{\text {system }}-\Delta S_{\text {surrounding }}>0$
28. $\Delta \mathrm{S}_{\text {system }}>0$ only
29. $\Delta \mathrm{S}_{\text {surroundings }}>\mathrm{O}$ only
30. $\Delta S_{\text {system }}+\Delta S_{\text {surrounding }}>0$
31. Standard enthalpy and standard entropy changes for the oxidation of ammonia at 298 K are $-382.64 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-145.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. Standard Gibbs energy change for the same reaction at 298 K is :-
(1) $-339.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $-439.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3) $-523.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4) $-221.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
32. The work done during the expansion of a gas from a volume of $4 \mathrm{dm}^{3}$ to $6 \mathrm{dm}^{3}$ against a constant external pressure of 3 atm is :-
(1) -608 J
(2) +304 J
(3) -304 J
(4) -6 J
33.

$2 Z n+O_{2} \rightarrow 2 Z n O \quad \Delta G^{\circ}=-616 J$
$2 Z n+S_{2} \rightarrow 2 Z n S \quad \Delta G^{\circ}=-293 J$
$S_{2}+2 O_{2} \rightarrow 2 \mathrm{SO}_{2} \quad \Delta G^{\circ}=-408 J$
ΔG° for the following reaction is:
$2 \mathrm{ZnS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}$

1. -731 J
2. -1317 J
3. -501 J
4. +731 J
5. At $27^{\circ} \mathrm{C}$ latent heat of fusion of a compound is 2930 $\mathrm{J} / \mathrm{mol}$. Entropy change is :
6. $9.77 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
7. $10.77 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
8. $9.07 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
9. $0.977 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
10. For the reaction $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+$ $3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ which one is true :
11. $\Delta \mathrm{H}=\Delta \mathrm{E}-\mathrm{RT}$
12. $\Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{RT}$
13. $\Delta \mathrm{H}=\Delta \mathrm{E}+2 \mathrm{RT}$
14. $\Delta \mathrm{H}=\Delta \mathrm{E}-2 \mathrm{RT}$
15. Unit of entropy is :-
(1) $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(2) $\mathrm{J} \mathrm{mol}^{-1}$
(3) $\mathrm{J}^{-1} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(4) $\mathrm{JK} \mathrm{mol}^{-1}$
16. In a closed insulated container a liquid is stirred with a paddle to increase the temperature. Correct option regarding this among the following is :-
(1) $\Delta \mathrm{E}=\mathrm{W} \neq 0, \mathrm{q}=0$
(2) $\Delta \mathrm{E}=\mathrm{W}=\mathrm{q} \neq 0$
(3) $\Delta \mathrm{E}=0, \mathrm{~W}=\mathrm{q} \neq 0$
(4) $\mathrm{W}=0, \Delta \mathrm{E}=\mathrm{q} \neq 0$
17. Heat of combustion $\Delta \mathrm{H}^{\mathrm{o}}$ for $\mathrm{C}(\mathrm{s}), \mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{CH}_{4}(\mathrm{~g})$ are $-94,-68$ and $-213 \mathrm{Kcal} / \mathrm{mol}$. then $\Delta \mathrm{H}^{\circ}$ for $\mathrm{C}(\mathrm{s})+$ $2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$ is :-
(1) -17 Kcal
(2) -111 Kcal
(3) -170 Kcal
(4) -85 Kcal
18. For the given reaction
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$, the heat of formations of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are $-188 \mathrm{~kJ} / \mathrm{mol} \&-286 \mathrm{KJ} / \mathrm{mol}$ respectively. The change in the enthalpy of the reaction will be-
19. $-196 \mathrm{~kJ} / \mathrm{mol}$
20. $+196 \mathrm{~kJ} / \mathrm{mol}$
21. $+948 \mathrm{~kJ} / \mathrm{mol}$
22. $-948 \mathrm{~kJ} / \mathrm{mol}$
23. When 1 mol gas is heated at constant volume ,temp is raised from 298 to 308 K . Heat supplied to the gas is 500 J. Then correct statement among the following is :-
24. $\mathrm{q}=\mathrm{w}=500 \mathrm{~J}, \Delta \mathrm{U}=0$
25. $\mathrm{q}=\Delta \mathrm{U}=500 \mathrm{~J}, \mathrm{w}=0$
26. $\mathrm{q}=\mathrm{w}=500 \mathrm{~J}, \Delta \mathrm{U}=0$
27. $\Delta \mathrm{U}=0, \mathrm{q}=\mathrm{w}=-500 \mathrm{~J}$
28. Enthalpy of $\mathrm{CH}_{4}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}$ is negative. If enthalpy of combustion of CH_{4} and $\mathrm{CH}_{3} \mathrm{OH}$ and x and y respectively. Then which relation is correct : -
29. $x>y$
30. $x<y$
31. $x=y$
32. $x \geq y$
33. For the reaction :
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at constant temperature, $\Delta \mathrm{H}-\Delta \mathrm{E}$ is-
34. + RT
35. -3 RT
36. + 3RT
37. - RT
38. What is the entropy change (in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$) when one mole of ice is converted into water at $0^{\circ} \mathrm{C}$? (The enthalpy change for the conversion of ice to liquid water is 6.0 KJ mol^{-1} at $0^{\circ} \mathrm{C}$)
(1) 20.13
(2) 2.013
(3) 2.198
(4) 21.98
39. Formation of a solution from two components can be considered as :
(i) Pure solvent \rightarrow separated solvent molecules, $\Delta \mathrm{H}_{1}$
(ii) Pure solute \rightarrow separated solute molecules, $\Delta \mathrm{H}_{2}$
(iii) Separated solvent and solute molecules \rightarrow solution, $\Delta \mathrm{H}_{3}$
Solution so formed will be ideal if :-
(1) $\Delta \mathrm{H}_{\text {Soln }}=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}$
(2) $\Delta \mathrm{H}_{\text {Soln }}=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{3}$
(3) $\Delta \mathrm{H}_{\text {Soln }}=\Delta \mathrm{H}_{1}-\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{3}$
(4) $\Delta \mathrm{H}_{\text {Soln }}=\Delta \mathrm{H}_{3}-\Delta \mathrm{H}_{1}-\Delta \mathrm{H}_{2}$
40. For which one of the following equations is $\Delta \mathrm{H}^{\circ}$ react equal to $\Delta \mathrm{H}^{\circ}$ for the product :
(1) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$
(2) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{l})+2 \mathrm{HCl}(\mathrm{g})$
(3) $\mathrm{Xe}(\mathrm{g})+2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{XeF}_{4}(\mathrm{~g})$
(4) $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
41. The molar heat capacity of water at constant pressure, C, is $75 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. When 1.0 kJ of heat is supplied to 100 g of water which is free to expand, the increase in temperature of water is :
(1) 1.2 K
(2) 2.4 K
(3) 4.8 K
(4) 6.6 K
42. Which one among the following is the correct option for right relationship between C_{p} and C_{V} for one mole of ideal gas?
43. $\mathrm{C}_{\mathrm{P}}=\mathrm{RC}_{\mathrm{V}}$
44. $\mathrm{C}_{\mathrm{V}}=\mathrm{RC}_{\mathrm{P}}$
45. $\mathrm{C}_{\mathrm{P}}+\mathrm{C}_{\mathrm{V}}=\mathrm{R}$
46. $C_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=\mathrm{R}$
47. For irreversible expansion of an ideal gas under isothermal condition, the correct option is :
48. $\Delta \mathrm{U}=0, \Delta \mathrm{~S}_{\text {total }} \neq 0$
49. $\Delta \mathrm{U} \neq 0, \Delta \mathrm{~S}_{\text {total }}=0$
50. $\Delta \mathrm{U}=0, \Delta \mathrm{~S}_{\text {total }}=0$
51. $\Delta \mathrm{U} \neq 0, \Delta \mathrm{~S}_{\text {total }} \neq 0$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE

Equilibrium (Expected Questions in NEET 2022: 3)

		22
		15
Kp, Kc \& Factors Affecting them		14
Solubility Product	$\mathbf{1 3}$	
Acids \& Bases - Definitions \& Classification	$\mathbf{9}$	
pH calculation	$\mathbf{5}$	
Buffer	$\mathbf{3}$	
Salt Hydrolysis \& Titration	$\mathbf{3}$	
lonisation Constant of Acid, Base \&Salt	$\mathbf{1}$	
Le Chatelier's principle		
Introduction To Equilibrium		

1. The equilibrium constant of the following are:
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftarrows 2 \mathrm{NH}_{3} \quad \mathrm{~K}_{1}$
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftarrows 2 \mathrm{NO} \quad \mathrm{K}_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} \quad \mathrm{K}_{3}$
The equilibrium constant (K) of the reaction:
$2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \stackrel{\mathrm{~K}}{\rightleftarrows} 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$
2. $\mathrm{K}_{2} \mathrm{~K}_{3}^{3} / \mathrm{K}_{1}$
3. $\mathrm{K}_{2} \mathrm{~K}_{3} / \mathrm{K}_{1}$
4. $\mathrm{K}_{2}^{3} \mathrm{~K}_{3} / \mathrm{K}_{1}$
5. $\mathrm{K}_{1} \mathrm{~K}_{3}^{3} / \mathrm{K}_{2}$
6.

The concentration of the Ag^{+}ions in a saturated solution of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is $2.2 \times 10^{-4} \mathrm{~mol} L^{-1}$. The solubility product of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is

1. 2.66×10^{-12}
2. 4.5×10^{-11}
3.5. 3×10^{-12}
3. 2.42×10^{-8}
4. The solubility of $\mathrm{AgCl}(\mathrm{s})$ with solubility product 1.6 x 10^{-10} in 0.1 M NaCl solution would be
5. $1.26 \times 10^{-5} \mathrm{M}$
6. $1.6 \times 10^{-9} \mathrm{M}$
7. $1.6 \times 10^{-11} \mathrm{M}$
8. zero
9. Boric acid is an acid because its molecule
10. contains replaceable H^{+}ion
11. gives up a proton
12. accepts OH^{-}from water releasing proton into the solution
13. combines with proton from water molecules
14. which of the following fluoro-compounds is most likely to behave as a Lewis base?
15. BF_{3}
16. PF_{3}
17. CF_{4}
18. SiF_{4}
19.

A 20 litre container at 400 K contains $\mathrm{CO}_{2}(\mathrm{~g})$ at pressure 0.4 atm and an excess of SrO (neglect the volume of solid $\mathrm{SrO})$. The volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of CO_{2} attains its maximum value, will be:
Given
that
$\mathrm{SrCO}_{3}(s) \leftrightharpoons \mathrm{SrO}(s)+\mathrm{CO}_{2}(g), \mathrm{kp}=1.6 \mathrm{~atm}$

1. 10 litre
2. 2 litre
3. 4 litre
4. 5 litre
5.

Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations :
A) $60 m L \frac{M}{10} \mathrm{HCI}+40 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
B) $55 m L \frac{M}{10} \mathrm{HCI}+45 m L \frac{M}{10} \mathrm{NaOH}$
C) $75 m L \frac{M}{5} H C I+25 m L \frac{M}{5} \mathrm{NaOH}$
D) $100 m L \frac{M}{10} H C I+100 m L \frac{M}{10} \mathrm{NaOH}$
pH of which one of them will be equal to 1 ?

1. B
2. A
3. D
4. C
5. The solubility of BaSO_{4} in water is $2.42 \times 10^{-3} \mathrm{~g} /$ litre at 298 K . The value of the solubility product will be(Molar mass of $\mathrm{BaSO}_{4}=233 \mathrm{gmol}^{-1}$)
6. $1.08 \times 10^{-10} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
7. $1.08 \times 10^{-12} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
8. $1.08 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
9. $1.08 \times 10^{-8} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
10.

Which one of the following conditions will favour maximum formation of the product in the reaction,
$A_{2}(g)+B_{2}(g) \leftrightharpoons X_{2}(g) \Delta_{r} H=-X k J ?$

1. Low temperature and high pressure
2. Low temperature and low pressure
3. High temperature and high pressure
4. High temperature and low pressure
5.

Among the following the correct order of acidity is

1. $\mathrm{HClO}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$
2. $\mathrm{HClO}_{2}<\mathrm{HClO}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$
3. $\mathrm{HClO}_{4}<\mathrm{HClO}_{2}<\mathrm{HClO}<\mathrm{HClO}_{3}$
4. $\mathrm{HClO}_{3}<\mathrm{HClO}_{4}<\mathrm{HClO}_{2}<\mathrm{HClO}$
5.

MY and NY_{3}, two nearly insoluble salts, have the same $\mathrm{K}_{\text {sp }}$ values of 6.2×10^{-13} at room temperature. The true statement regarding to MY and NY_{3} is-

1. The molar solubility of MY in water is less than that of NY_{3}.
2. The salts MY and NY_{3} are more soluble in 0.5 M KY than in pure water
3. The addition of the salt of KY to a solution of MY and NY_{3} will have no effect on their solubilities
4. The molar solubilities of MY and NY_{3} in water are identical.
5. When equal volumes of 0.1 M NaOH and 0.01 M HCl are mixed, then the pH of the resulting solution is-
6. 12.65
7. 2.0
8. 7.0
9. 1.04
10. Acidic buffer cannot be formed by following combination -
11. HClO_{4} and NaClO_{4}
12. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$
13. $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$
14. $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{Na}_{3} \mathrm{PO}_{4}$
15. If the equilibrium constant for $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}(\mathrm{g})$ is K , the equilibrium constant for
$\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{NO}(\mathrm{g})$ will be,
16. $K^{\frac{1}{2}}$
17. $\frac{1}{2} K$
18. K
19. K^{2}
20. Aqueous solution of which of the following compounds is the best conductor of electric current?
21. Acetic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
22. Hydrochloric acid, HCl
23. Ammonia, NH_{3}
24. Fructose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
25.

If the value of an equilibrium constant for a particular reaction is 1.6×10^{12}, then at equilibrium the system will contain-

1. All reactants
2. Mostly reactants
3. Mostly products
4. Similar amounts of reactants and products
5.

The K_{SP} of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}, \mathrm{AgCl}, \mathrm{AgBr}$ and Agl are respectively, $1.1 \times 10^{-12}, 1.8 \times 10^{-10}, 5.0 \times 10^{-13}, 8.3 \times 10^{-}$ 17. Which one of the following salts will precipitate last if AgNO_{3} solution is added to the solution containing equal moles of $\mathrm{NaCl}, \mathrm{NaBr}, \mathrm{Nal}$, and $\mathrm{Na}_{2} \mathrm{CrO}_{4}$?

1. Agl
2. AgCl
3. AgBr
4. $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
5. Which of the following salts will give highest pH in water?
6. KCl
7. NaCl
8. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
9. CuSO_{4}
10.

For the reversible reaction :
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+$ heat
The equilibrium shifts in forward direction -

1. by increasing the concentration of $\mathrm{NH}_{3}(\mathrm{~g})$
2. by decreasing the pressure
3. by decreasing the concentration of $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$
4. by increasing pressure and decreasing temperature
5.

Which of these is least likely to act as Lewis base?

1. F^{-}
2. BF_{3}
3. PF_{3}
4. CO
5.

Among the following compound, the strongest acid is-

1. HClO_{3}
2. HClO_{4}
3. $\mathrm{H}_{2} \mathrm{SO}_{3}$
4. $\mathrm{H}_{2} \mathrm{SO}_{4}$
5. pH of a saturated solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 12 . The value of solubility product $\mathrm{K}_{\text {sp }}$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ is
6. 3.3×10^{-7}
7. 5.0×10^{-7}
8. 4.0×10^{-6}
9. 5.0×10^{-6}
10. Equimolar solutions of the following substances were prepared separately. Which one of these will record the highest pH value?
11. $B a C l_{2}$
12. AlCl_{3}
13. LiCl
14. $B e C l_{2}$
15. Buffer solutions have constant acidity and alkalinity because
16. These give unionized acid or base on reaction with added acid or alkali
17. Acids and alkalies in these solutions are shielded from attack by other ions
18. They have large excess of H^{+}or OH^{-}ions
19. The have fixed value of pH
20.

A buffer solution is prepared in which the concentration of NH_{3} is 0.30 M and the concentration of NH_{4}^{+}is 0.20 M . if the equilibrium constant, K_{b} for NH 3 equals 1.8×10^{-5},what is the pH of this solution?
$(\log 2.7=0.43)$

1. 9.43
2. 11.72
3. 8.73
4. 9.08
5. The value of $\Delta \mathrm{H}$ for the reaction is less than zero. Formation of $X_{2}(g)+4 Y_{2}(g) \leftrightharpoons 2 X Y_{4}(g)$ will be favoured at
6. Low pressure and low temperature
7. High temperature and low pressure
8. High pressure and low temperature
9. High temperature and high pressure
10. For the reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NO}(\mathrm{g})$ the equilibrium constant is K_{1}. The equilibrium constant is K_{2} for the reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
The value of K for the reaction given below is-
$\mathrm{NO}_{2}(\mathrm{~g}) \leftrightharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
11. $\frac{1}{4}\left(4 \mathrm{~K}_{1} \mathrm{~K}_{2}\right)$
12. $\left[\frac{1}{\mathrm{~K}_{1} \mathrm{~K}_{2}}\right]^{1 / 2}$
13. $\frac{1}{\left(\mathrm{~K}_{1} \mathrm{~K}_{2}\right)}$
14. $\frac{1}{\left(2 \mathrm{~K}_{1} \mathrm{~K}_{2}\right)}$
15. pH of a saturated solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 12 , the value of its K_{sp} will be -
16. $4.00 \times 10^{-6} M^{3}$
17. $4.00 \times 10^{-7} M^{3}$
18. $5.00 \times 10^{-6} M^{3}$
19. $5.00 \times 10^{-7} M^{3}$
20. What is $\left[\mathrm{H}^{+}\right]$in $\mathrm{mol} / \mathrm{L}$ of a solution that is 0.20 M in $\mathrm{CH}_{3} \mathrm{COONa}$ and 0.10 M in $\mathrm{CH}_{3} \mathrm{COOH} ?(\mathrm{~K}$ a for $\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}$)
21. 3.5×10^{-4}
22. 1.1×10^{-5}
23. 1.8×10^{-5}
24. 9.0×10^{-6}
25. The equilibrium reaction that does not have an equal K_{c} and K_{p} value-
26. $2 \mathrm{NO}(g) \rightleftharpoons \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)$
27. $\mathrm{SO}_{2}(g)+\mathrm{NO}_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g)+\mathrm{NO}(g)$
28. $H_{2}(g)+I_{2}(g) \rightleftharpoons 2 H I(g)$
29. $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}_{2}(g)$
30.

The ionization constant of ammonium hydroxide is 1.77 x 10^{-5} at 298 K. Hydrolysis constant of ammonium Chloride is

1. 5.65×10^{-10}
2. 6.50×10^{-12}
3. 5.65×10^{-13}
4. 5.65×10^{-12}
5. What is the $\left[\mathrm{OH}^{-}\right]$in the final solution prepared by mixing 20.0 mL of 0.050 M HCl with 30.0 mL of 0.10 M $\mathrm{Ba}(\mathrm{OH})_{2}$?
6. 0.10 M
7. 0.40 M
8. 0.0050 M
9. 0.12 M
10. In a buffer solution containing equal concentration of B^{-}and HB , the K_{b} for B^{-}is 10^{-10}. The pH of buffer solution is-
11. 10
12. 7
3.6
13. 4
14. Which of the following molecular hydrides acts as a Lewis acid?
15. NH_{3}
16. $\mathrm{H}_{2} \mathrm{O}$
17. $B_{2} H_{6}$
18. CH_{4}
19. The tendency of $\mathrm{BF}_{3}, \mathrm{BCl}_{3}$ and BBr_{3} to behave as Lewis acid decreases in the sequence
20. $B C l_{3}>B F_{3}>B B r_{3}$
21. $B B r_{3}>B C l_{3}>B F_{3}$
22. $B B r_{3}>B F_{3}>B C l_{3}$
23. $B F_{3}>B C l_{3}>B B r_{3}$
24.

Which of the following molecules acts as a Lewis acid?

1. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~B}$
2. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$
3. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$
4. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
5.

The dissociation constants for acetic acid and HCN at 25 ${ }^{\circ} \mathrm{C}$ are 1.5×10^{-5} and 4.5×10^{-10}, respectively. The equilibrium constant for the equilibrium,
$\mathrm{CN}^{-}+\mathrm{CH}_{3} \mathrm{COOH}^{\rightleftarrows} \mathrm{HCN}+\mathrm{CH}_{3} \mathrm{CoO}^{-}$
would be

1. 3.0×10^{5}
2. 3.0×10^{-5}
3. 3.0×10^{-4}
4. 3.0×10^{4}
5. Equal volumes of three acid solutions of $\mathrm{pH} 3,4$ and 5 are mixed in a vessel. What will be the H^{+}ion concentration in the mixture?
6. $1.11 \times 10^{-4} \mathrm{M}$
7. $3.7 \times 10^{-4} \mathrm{M}$
8. $3.7 \times 10^{-3} \mathrm{M}$
9. $1.11 \times 10^{-3} \mathrm{M}$
10.

The dissociation equilibrium of a gas $A B_{2}$ can be represented as

$$
2 A B_{2}(g) \leftrightharpoons 2 A B(g)+B_{2}(g)
$$

The degree of dissociation is ' x ' and is small compared to 1. The expression relating the degree of dissociation (x) with equilibrium constant K_{P} and total pressure p is

1. $(2 \mathrm{KP} / \mathrm{p})$
2. $(2 \mathrm{Kp} / \mathrm{p})^{1 / 3}$
3. $(2 \mathrm{KP} / \mathrm{p})^{1 / 2}$
4. $(\mathrm{KP} / \mathrm{P})$
5.

The value of $K_{P 1}$ and $K_{p 2}$ for the reactions
$X \leftrightharpoons Y+Z \ldots \ldots(i)$
and $A \leftrightharpoons 2 B \ldots \ldots(i i)$
are in ratio of $9: 1$. If degree of dissociation of X and. A be equal, then total pressure at equilibrium(i) and (ii) are in the ratio

1. $3: 1$
2. $1: 9$
3. $36: 1$
4. $1: 1$
5. The value of equilibrium constant of the reaction $\mathrm{HI}(\mathrm{g}) \leftrightharpoons \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}$ is 8.0. The equilibrium constant of the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{HI}(\mathrm{g})$ will be-
6. $\frac{1}{16}$
7. $\frac{1}{64}$
8. 16
9. $\frac{1}{8}$
10. The pOH of a solution at $25^{\circ} \mathrm{C}$ that contains $1 \times 10^{-}$
${ }^{10} \mathrm{M}$ of hydronium ions is-
11. 7.00
12. 4.00
13. 9.00
14. 1.00
15. A weak acid, $H A$, has a K_{a} of 1.00×10^{-5}. If 0.100 mole of this acid is dissolved in one litre of water, the percentage of acid dissociated at equilibrium is closest to :
16. 99.0%
17. 1%
18. 99.9%
19. 0.100%

44.

The following equilibrium constants are given :
$\mathrm{N}_{2}+3 \mathrm{H}_{2}=2 \mathrm{NH}_{3} ; K_{1}$
$\mathrm{N}_{2}+\mathrm{O}_{2}=2 \mathrm{NO} ; K_{2}$
$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O} ; K_{3}$
The equilibrium constant for the oxidation of NH_{3} by oxygen to give NO is:

1. $K_{2} K_{3}^{3} / K_{1}$
2. $K_{2} K_{3}^{2} / K_{1}$
3. $K_{2}^{2} K_{3} / K_{1}$
4. $K_{1} K_{2} / K_{3}$
5. Ionic species having the greatest proton affinity to form stable compound is -
6. $H S^{-}$
7. NH_{2}^{-}
8. F^{-}
9. l^{-}
10. Which one of the following orders correctly represents the increasing acid strengths of the given acids?
11. $\mathrm{HOCl}<\mathrm{HOClO}<\mathrm{HOClO}_{2}<\mathrm{HOClO}_{3}$
12. $\mathrm{HOClO}<\mathrm{HOCl}<\mathrm{HOClO}_{3}<\mathrm{HOClO}_{2}$
13. $\mathrm{HOClO} \mathrm{O}_{2}<\mathrm{HOClO}_{3}<\mathrm{HOClO}<\mathrm{HOCl}$
14. $\mathrm{HOClO} \mathrm{O}_{3}<\mathrm{HOClO} 2<\mathrm{HOClO}<\mathrm{HOCl}$
15.

For the reaction,
$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$
$\Delta_{r} \mathrm{H}=-170.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Which of the following statements is not true?

1. At equilibrium, the concentrations of $\mathrm{CO}_{2}(\mathrm{~g})$ and water
(1) are not equal.
2. The equilibrium constant for the reaction is given by $K_{p}=\frac{\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{O}_{2}\right]}$
3. Addition of $\mathrm{CH}_{4}(\mathrm{~g})$ or $\mathrm{O}_{2}(\mathrm{~g})$ at equilibrium will cause a shift to the right
4. The reaction is exothermic
5. Which of the following pairs constitutes a buffer?
6. HNO_{2} and NaNO_{2}
7. NaOH and NaCl
8. HNO_{3} and $\mathrm{NH}_{4} \mathrm{NO}_{3}$
9. HCl and KCl
10. The hydrogen ion concentration of a $10^{-8} \mathrm{M} \mathrm{HCl}$ aqueous solution at $298 \mathrm{~K}\left(K_{w}=10^{-14}\right)$ is :
11. $1.0 \times 10^{-6} \mathrm{M}$
12. $1.0525 \times 10^{-7} M$
13. $9.525 \times 10^{-8} M$
14. $1.0 \times 10^{-8} M$
15. Which will make basic buffer:
16. 100 mL of $0.1 \mathrm{M} \mathrm{HCl}+100 \mathrm{~mL}$ of 0.1 M NaOH
17. 50 mL of $0.1 \mathrm{M} \mathrm{NaOH}+25 \mathrm{~mL}$ of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
18. 100 mL of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+100 \mathrm{~mL}$ of 0.1 M NaOH
19. 100 mL of $0.1 \mathrm{M} \mathrm{HCl}+200 \mathrm{~mL}$ of $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$
20. pH of a saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 9 . The solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ is:
21. 0.5×10^{-10}
22. 0.5×10^{-15}
23. 0.25×10^{-10}
24. 0.125×10^{-15}
25. Conjugate base of Bronsted acids $\mathrm{H}_{2} \mathrm{O}$ and HF are respectively -
26. $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{H}_{2} \mathrm{~F}^{+}$, respectively
27. OH^{-}and $\mathrm{H}_{2} \mathrm{~F}^{+}$, respectively
28. $\mathrm{H}_{3} \mathrm{O}^{+}$and F^{-}, respectively
29. OH^{-}and F^{-}, respectively
30. The pH of 0.01 M NaOH (aq) solution will be-
31. 7.01
32. 2
33. 12
34. 9
35. Which of the following cannot act both as Bronsted acid and as Bronsted base?
36. HCO_{3}^{-}
37. NH_{3}
38. HCl
39. HSO_{4}^{-}
40. The molar solubility of $\operatorname{CaF}_{2} \quad\left(\mathrm{~K}_{\mathrm{sp}}=5.3 \times 10^{-11}\right)$ in 0.1 M solution of NaF will be-
41. $5.3 \times 10^{-11} \mathrm{~mol} \mathrm{~L}^{-1}$
42. $5.3 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}$
43. $5.3 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}$
44. $5.3 \times 10^{-10} \mathrm{~mol} \mathrm{~L}^{-1}$
45. Find out the solubility of $\mathrm{Ni}(\mathrm{OH})_{2}$ in 0.1 M NaOH .

Given that the ionic product of $\mathrm{Ni}(\mathrm{OH})_{2}$ is 2×10^{-15}
(1) $2 \times 10^{-8} \mathrm{M}$.
(2) $1 \times 10^{-13} \mathrm{M}$
(3) $1 \times 10^{8} \mathrm{M}$
(4) 2×10^{-13}
57. The salt solution basic in nature among the following is-

1. Ammonium chloride
2. Ammonium sulphate
3. Ammonium nitrate
4. Sodium acetate
5. Given that the equilibrium constant for the reaction $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}$
has a value of 278 at a particular temperature. The value of the equilibrium constant for the following reaction at the same temperature is:
$S O_{3(g)} \leftrightharpoons S O_{2(g)}+1 / 2 O_{2(g)}$
6. 3.6×10^{-3}
7. 6.0×10^{-2}
8. 1.3×10^{-5}
9. 1.8×10^{-3}
10. Given reaction: $A_{2(g)}+B_{2(g)} \leftrightharpoons 2 A B_{(g)}$

At equilibrium , the concentrations of $\mathrm{A}_{2}=3.0 \times 10^{-3} \mathrm{M} ; \mathrm{B}_{2}=4.2 \times 10^{-3} \mathrm{M}$ and $\mathrm{AB}=2$. If the reaction takes place in a sealed vessel at $527^{\circ} \mathrm{C}$, then the value of K_{C} will be :

1. 3.9
2. 0.6
3. 4.5
4. 2.0
5. In qualitative analysis, the metals of Group I can be separated from other ions by precipitating them as chloride salts. A solution initially contains Ag^{+} and Pb^{2+} at a concentration of 0.10 M . Aqueous HCl is added to this solution until the Cl - concentration is 0.10 M. What will the concentration of Ag^{+}
and Pb^{2+} be at equilibrium?
$\left(\mathrm{K}_{\mathrm{sp}}\right.$ for $\left.\mathrm{AgCl}=1.8 \times 10^{-10}\right)$
$\left(K_{s p}\right.$ for $\left.\mathrm{PbCl}_{2}=1.7 \times 10^{-5}\right)$
6. $\left[A g^{+}\right]=1.8 \times 10^{-11} M$; $\left[\mathrm{Pb}^{2+}\right]=1.7 \times 10^{-4} M$
7. $\left[\mathrm{Ag}^{+}\right]=1.8 \times 10^{-7} \mathrm{M}$; $\left[P b^{2+}\right]=1.7 \times 10^{-6} M$
8. $\left[A g^{+}\right]=1.8 \times 10^{-11} M$;
$\left[\mathrm{Pb}^{2+}\right]=8.5 \times 10^{-5} \mathrm{M}$
9. $\left[A g^{+}\right]=1.8 \times 10^{-9} M$;
$\left[P b^{2+}\right]=1.7 \times 10^{-3} M$
10. The reaction
$2 A+B(g) \rightleftharpoons 3 C(g)+D(g)$
is begun with the concentrations of A and B both at an intial value of 1.00 M . When equilibrium is reached, the concentration of D is measured and found to be 0.25 M . The value for the equilibrium constant for this reaction is given by the expression.
11. $\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.75)\right]$
12. $\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.25)\right]$
13. $\left[(0.75)^{3}(0.25)\right] \div\left[(0.75)^{2}(0.25)\right]$
14. $\left[(0.75)^{3}(0.25)\right] \div\left[(1.00)^{2}(1.00)\right]$
15. The equilibrium constant Kp for the following reaction is-
$\mathrm{MgCO}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{MgO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
16. $\mathrm{Kp}=\mathrm{P}_{\mathrm{CO}_{2}}$
17. $\mathrm{Kp}=\mathrm{P}_{\mathrm{CO}_{2}} \times \frac{\mathrm{P}_{\mathrm{CO}_{2} \times \mathrm{P}_{\mathrm{MgO}}}}{\mathrm{P}_{\mathrm{MgCO}_{3}}}$
18. $\mathrm{Kp}=\frac{\mathrm{P}_{\mathrm{CO}_{2}}+\mathrm{P}_{\mathrm{MgO}}}{\mathrm{P}_{\mathrm{MgCO}_{3}}}$
19. $\mathrm{Kp}=\frac{\mathrm{P}_{\mathrm{MgCO}_{3}}}{\mathrm{P}_{\mathrm{CO}_{2} \times \mathrm{P}_{\mathrm{MgO}}}}$
20. Correct relation between dissociation constant's of a di-basic acid :
21. $K a_{1}=K a_{2}$
22. $K a_{1}>K a_{2}$
23. $K a_{1}<K a_{2}$
24. $K a_{1}=\frac{1}{K a_{2}}$
25. For any reversible reaction, if we increase the concentration of the reactants, then effect on equilibrium constant :
26. Depends on the amount of concentration
27. Unchanged
28. Decrease
29. Increase
30. Equilibrium constants K_{1} and K_{2} for the following equilibria :
$\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2} \xrightarrow{\mathrm{~K}_{1}} \mathrm{NO}_{2}(\mathrm{~g})$ and
$2 \mathrm{NO}_{2}(\mathrm{~g}) \stackrel{\mathrm{K}_{2}}{\rightleftharpoons} 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
are related as -
31. $\mathrm{K}_{2}=\frac{1}{\mathrm{~K}_{1}}$
32. $\mathrm{K}_{2}=\frac{\mathrm{K}_{1}}{2}$
33. $\mathrm{K}_{2}=\frac{1}{\mathrm{~K}_{1}^{2}}$
34. $\mathrm{K}_{2}=\mathrm{K}_{1}^{2}$
35. Conjugate acid of $\mathrm{NH}_{2}{ }^{-}$:
36. $\mathrm{NH}_{4} \mathrm{OH}$
37. $\mathrm{NH}_{4}{ }^{+}$
38. NH^{-2}
39. NH_{3}
40. Incorrect statement about pH and H^{+}is :
41. pH of neutral water is not zero.
42. Adding 1 M solution of $\mathrm{CH}_{3} \mathrm{COOH}$ and 1 M solution of NaOH , the pH will be 7 .
43. H^{+}of dilute and hot $\mathrm{H}_{2} \mathrm{SO}_{4}$ is more than concentrate and cold $\mathrm{H}_{2} \mathrm{SO}_{4}$
44. Mixing solution of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{HCl}, \mathrm{pH}$ will be less than 7
45. At $25^{\circ} \mathrm{C}$, the dissociation constant of a base, BOH , is 1.0×10^{-12}. The concentration of hydroxyl ions in 0.01 M aqueous solution of the base would be:-
(1) 1.0×10^{-6} mole L $^{-1}$
(2) $1.0 \times 10^{-7} \mathrm{~mole} \mathrm{~L}^{-1}$
(3) 2.0×10^{-6} mole L $^{-1}$
(4) $1.0 \times 10^{-5} \mathrm{~mole} \mathrm{~L}^{-1}$
46.

$A+B \leftrightharpoons C+D$ Cons $\tan t=K_{1}$
$E+F \rightleftharpoons G+H$ Cons $\tan t=K_{2}$
then $\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F} \Rightarrow$ product. The constant of reaction will be :

1. $\frac{K_{1}}{K_{2}}$
2. $\frac{K_{2}}{K 1}$
3. $K_{1} K_{2}$
4. None of these
5. The fertilizer which makes the soil acidic :
6. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
7. Super phosphate of lime .
8. $\mathrm{CH}_{3} \mathrm{COONa}$
9. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
10. Among the following examples, the species that behave as a lewis acid are :
$B F_{3}, S n C l 2, S n C l_{4}$
11. Stannous chloride, stannic chloride
12. $B F_{3}$, stannous chloride
13. Only $B F_{3}$
14. $B F_{3}$, stannous chloride , stannic chloride
72.4 gm of NaOH is dissolved in 1000 ml of water. The
H^{+}ion concentration will be -
15. $10^{-1} \mathrm{M}$
16. $10^{-13} \mathrm{M}$
17. $10^{-4} \mathrm{M}$
18. $10^{-10} \mathrm{M}$
19. The solubility product of a sparingly soluble salt AX_{2}
is 3.2×10^{-11}. It's solubility (in moles/litre) is:-
(1) 3.1×10^{-4}
(2) 2×10^{-4}
(3) 4×10^{-4}
(4) 5.6×10^{-6}
20. A compound BA_{2} has $K_{s p}=4 \times 10^{-12}$; solubility of this compound will be :
21. 10^{-3}
22. 10^{-4}
23. 10^{-5}
24. 10^{-6}
25. The rapid change of pH near the stoichiometric point of an acid-base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (HIn) and base (In^{-}) forms of the indicator by the expression -
26. $\log \frac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]}=\mathrm{pK}_{\mathrm{In}}-\mathrm{pH}$
27. $\log \frac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]}=\mathrm{pH}-\mathrm{pK}_{\mathrm{In}}$
28. $\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}=-\mathrm{pH}+\mathrm{pK}_{\mathrm{In}}$
29. All of the above.
30. For a reaction, $\mathrm{BaO}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{BaO}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=+$ ve.
At equilibrium condition, pressure of O_{2} depends on : -
31. Increase mass of BaO_{2}
32. Increase mass of BaO
33. Increase temperature on equilibrium.
34. Increase mass of BaO_{2} and BaO both.
35. Solubility of MX_{2} - type electrolytes is 0.5×10^{-4} Mole/lit. then find out K_{sp} of elctrolytes :-
1.5×10^{-12}
36. 25×10^{-10}
37. 1×10^{-13}
4.5×10^{-13}
38. The compound with highest pH among the following is :-
(1) $\mathrm{CH}_{3} \mathrm{COOK}$
(2) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(3) $\mathrm{NH}_{4} \mathrm{Cl}$
(4) NaNO_{3}
39. Solution of $0.1 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$ and $0.1 \mathrm{~N} \mathrm{NH}_{4} \mathrm{Cl}$ has pH 9.25. Then pk_{b} of $\mathrm{NH}_{4} \mathrm{OH}$ is : -
40. 9.25
41. 4.75
42. 3.75
43. 8.25
44. A compound among the following that can be classified as not a protonic acid,is :
(1) $\mathrm{B}(\mathrm{OH})_{3}$
(2) $\mathrm{PO}(\mathrm{OH})_{3}$
(3) $\mathrm{SO}(\mathrm{OH})_{2}$
(4) $\mathrm{SO}_{2}(\mathrm{OH})_{2}$
45. The reaction quotient (Q) for the reaction :
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
is given by $\mathrm{Q}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$. The reaction will proceed from right to left if :
46. $\mathrm{Q}=\mathrm{K}_{\mathrm{C}}$
47. $\mathrm{Q}<\mathrm{K}_{\mathrm{C}}$
48. $\mathrm{Q}>\mathrm{K}_{\mathrm{C}}$
49. $\mathrm{Q}=0$
(where K_{C} is the equilibrium constant)
50. The solubility product of AgI at $25^{\circ} \mathrm{C}$ is 1.0×10^{-16} $\mathrm{mol}^{2} \mathrm{~L}^{-2}$. The solubility of AgI in $10^{-4} \mathrm{~N}$ solution of KI at $25^{\circ} \mathrm{C}$ is approximately (in $\mathrm{mol} \mathrm{L}^{-1}$) :
51. 1.0×10^{-16}
52. 1.0×10^{-12}
53. 1.0×10^{-10}
54. 1.0×10^{-8}
55. The ionization constant of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.7×10^{-5} and the concentration of H^{+}ions is 3.4×10^{-4}. Then find out the initial concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ molecules-
56. 3.4×10^{-4}
57. 3.4×10^{-3}
58. 6.8×10^{-4}
59. 6.8×10^{-3}
60. If solubility of a $\mathrm{M}_{2} \mathrm{~S}$ salt is $3.5 \times 10^{-6} \mathrm{~mol}$ litre ${ }^{-1}$, then solubility product of $\mathrm{M}_{2} \mathrm{~S}$ is-
61. $1.7 \times 10^{-6} \mathrm{~mol}^{3}$ litre $^{-3}$
62. $1.7 \times 10^{-16} \mathrm{~mol}^{3}$ litre $^{-3}$
63. $1.7 \times 10^{-18} \mathrm{~mol}^{3}$ litre $^{-3}$
64. $1.7 \times 10^{-12} \mathrm{~mol}^{3}$ litre $^{-3}$
65. The pK_{b} of dimethylamine and pk_{a} of acetic acid are 3.27 and 4.77 respectively at $\mathrm{T}(\mathrm{K})$. The correct option for the pH of dimethylammonium acetate at solution is:
66. 7.75
67. 6.25
68. 8.50
69. 5.50

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

Redox Reactions

(Expected Questions in NEET 2022: 1)

Subtopic Name Number of Questions

Oxidizing \& Reducing Agents	11
Emf \& Electrode Potential	4
Introduction to Redox and Oxidation Number	4
Balancing of Equations	$\mathbf{3}$
Application of Electrode Potential	2
Equivalent Weight	1

Redox Reactions - NCERT based PYQs

1.

The correct order of N -compounds in its decreasing order of oxidation states is -

1. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{NH}_{4} \mathrm{Cl}$
2. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$
3. $\mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NO}, \mathrm{N}_{2}$
4. $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}, \mathrm{NO}, \mathrm{HNO}_{3}$
5.

For the redox reaction,
$\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
the correct coefficients of the reactants for the balanced equation are -

1. $16,5,2$
2. 2, 5, 16
3. 2, 16, 5
4. 5, 16, 2
5. (a) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+2 \mathrm{O}_{2}$
(b) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Ag}_{2} \mathrm{O} \rightarrow 2 \mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Role of hydrogen peroxide in the above reactions is respectively:

1. oxidizing in (a) and reducing in (b)
2. reducing in (a) and oxidizing in (b)
3. reducing in (a) and (b)
4. oxidizing in (a) and (b)
5. The change in oxidation number of chlorine when Cl_{2} gas reacts with hot and concentrated sodium hydroxide solution is -
6. Zero to +1 and Zero to -5
7. Zero to -1 and Zero to +5
8. Zero to -1 and Zero to +3
9. Zero to +1 and Zero to -3
10. Compound among the following having nitrogen in highest oxidation number is -
11. $\mathrm{N}_{2} \mathrm{H}_{4}$
12. NH_{3}
13. $\mathrm{N}_{3} \mathrm{H}$
14. $\mathrm{NH}_{2} \mathrm{OH}$
15. Oxidation numbers of P in PO_{4}^{3-}, of S in SO_{4}^{2-} and that of Cr in $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ are respectively,
16. $+5,+6$ and +6
17. $+3,+6$ and +5
18. $+5,+3$ and +6
19. $-3,+6$ and +6
20.

$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+\mathrm{e}^{-} ; \mathrm{E}^{\mathrm{o}}=-0.35 \mathrm{~V}$
$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-} ; \mathrm{E}^{\mathrm{o}}=-0.77 \mathrm{~V}$
The strongest oxidizing agent in the above equation is -

1. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
2. Fe^{2+}
3. Fe^{3+}
4. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
5. Number of moles of MnO_{4}^{-}required to oxidise one mole of ferrous oxalate completely in acidic medium will be
6. 0.6 mole
7. 0.4 mole
8. 7.5 moles
9. 0.2 mole
10. The number of moles of KMnO_{4} that will be needed to react with one mole of sulphite ion in acidic solution is :
11. $\frac{3}{5}$
12. $\frac{4}{5}$
13. $\frac{2}{5}$
14. 1
15. Disproportionation reaction among the following is -
(a) $2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}^{0}$
(b) $3 \mathrm{MnO}_{4}^{2-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(c) $2 \mathrm{KMnO}_{4} \xrightarrow{\Delta} \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}$
(d) $2 \mathrm{MnO}_{4}^{-}+3 \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{MnO}_{2}+4 \mathrm{H}^{\oplus}$
16. (a) and (d) only
17. (a) and (b) only
18. (a), (b) and (c)
19. (a), (c) and (d)
20. The oxidation state of Cr in CrO_{6} is -
21. -6
22. +12
23. +6
24. +4
25. The standard electrode potential $\left(\mathrm{E}^{\circ}\right)$ value of $\mathrm{Al}^{3+} / \mathrm{Al}, \mathrm{Ag}^{+} / \mathrm{Ag}, \mathrm{K}^{+} / \mathrm{K}$, and $\mathrm{Cr}^{3+} / \mathrm{Cr}$ are $-1.66 \mathrm{~V}, 0.80 \mathrm{~V},-2.93 \mathrm{~V}$, \& -0.79 V respectively. The correct decreasing order of reducing power of the metal is-
26. $\mathrm{Ag}>\mathrm{Cr}>\mathrm{Al}>\mathrm{K}$
27. $\mathrm{K}>\mathrm{Al}>\mathrm{Cr}>\mathrm{Ag}$
28. $\mathrm{K}>\mathrm{Al}>\mathrm{Ag}>\mathrm{Cr}$
29. $\mathrm{Al}>\mathrm{K}>\mathrm{Ag}>\mathrm{Cr}$

Redox Reactions - NCERT based PYQs

13. What is the change in oxidation number of carbon in the following reaction?
$\mathrm{CH}_{4(\mathrm{~g})}+4 \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{CCl}_{4(\mathrm{l})}+4 \mathrm{HCl}_{(\mathrm{g})}$
14. 0 to +4
15. -4 to +4
16. 0 to -4
17. +4 to +4
18. The oxidation number of the underlined atom in the following species
(1) $\mathrm{Cu}_{2} \underline{\mathrm{O}}$ is -1
(2) ClO_{3}^{-}is +5
(3) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is +6
(4) HAuCl_{4} is +3

Identify the incorrect option.
15. Identify the reaction from following having top position in EMF series (Standard reduction potential) according to their electrode potential at 298 K .

1. $\mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}_{\text {(s) }}$
2. $\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}_{(\mathrm{s})}$
3. $\mathrm{Au}^{3+}+3 \mathrm{e}^{-\rightarrow} \mathrm{Au}_{(\mathrm{s})}$
4. $\mathrm{K}^{+}+\mathrm{le}^{-\rightarrow} \mathrm{K}_{(\mathrm{s})}$
5. Standard reduction potentials of the half reactions are given below :
$F_{2(g)}+2 e^{-} \rightarrow 2{F^{-}}_{(a q)} ; E^{\circ}=+2.85 \mathrm{~V}$
$C l_{2(g)}+2 e^{-} \rightarrow 2 C l^{-}{ }_{(a q)} ; E^{\circ}=+1.36 \mathrm{~V}$
$B r_{2(g)}+2 e^{-} \rightarrow 2 \mathrm{Br}^{-}{ }_{(a q)} ; E^{\circ}=+1.06 \mathrm{~V}$
$I_{2(g)}+e^{-} \rightarrow 2 I^{-}(a q) ; E^{\circ}=+0.53 V$
The strongest oxidizing and reducing agents respectively are -
6. $B r_{2}$ and $C l^{-}$
7. Cl_{2} and Br^{-}
8. $C l_{2}$ and I_{2}
9. F_{2} and l^{-}
10. A solution contains $\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$ and I^{-}ions. This solution was treated with iodine at $35^{\circ} \mathrm{C} . \mathrm{E}^{\circ}$ for $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$
is +0.77 V and E° for $\mathrm{I}_{2} / 2 \mathrm{I}^{-}=0.536 \mathrm{~V}$.
The favourable redox reaction is-
11. Fe^{2+} will be oxidized to Fe^{3+}
12. I_{2} will be the reduced to I^{-}
13. There will be no redox reaction
14. I^{-}will be oxidized to I_{2}
15. The compound that contains zero oxidation state of Fe
16. $\left[F e(C N)_{6}\right]^{-4}$
17. $\left[F e(C N)_{6}\right]^{-3}$
18. $\mathrm{Fe}(\mathrm{CO})_{5}$
19. All of the above .
20.

$a \mathrm{Zn}+b \mathrm{NO}_{3}^{-}+c \mathrm{H}^{+} \rightarrow d \mathrm{NH}_{4}^{+}+e \mathrm{H}_{2} \mathrm{O}+f \mathrm{Zn}^{+2}$; a , b, c, d, e and f respectively are :

	a	b	c	d	e	f
(1)	2	4	6	8	4	2
(2)	1	4	10	3	1	4
(3)	4	1	10	1	3	4
(4)	10	4	1	3	4	2

20. Which is the best description of the behavior of bromine in the reaction given below:-
$\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2} \rightarrow \mathrm{HOBr}+\mathrm{HBr}$
(1) Both oxidized and reduced
(2) Oxidized only
(3) Reduced only
(4) Proton acceptor only
21. Oxidation numbers of A, B and C are $+2,+5$ and -2 respectively possible formula of compound is :
22. $\mathrm{A}_{2}\left(\mathrm{BC}_{2}\right)_{2}$
23. $\mathrm{A}_{3}\left(\mathrm{BC}_{4}\right)_{2}$
24. $\mathrm{A}_{2}\left(\mathrm{BC}_{3}\right)_{2}$
25. $\mathrm{A}_{3}\left(\mathrm{~B}_{2} \mathrm{C}\right)_{2}$
26. A non feasible reaction among the following is :-
27. $2 \mathrm{KI}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{KBr}+\mathrm{I}_{2}$
28. $2 \mathrm{KBr}+\mathrm{I}_{2} \rightarrow 2 \mathrm{KI}+\mathrm{Br}_{2}$
29. $2 \mathrm{KBr}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}+\mathrm{Br}_{2}$
30. $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~F}_{2} \rightarrow 4 \mathrm{HF}+\mathrm{O}_{2}$
31. Standard electrode potentials are
$F e^{+2} / F e E^{\circ}=-0.44$
$F e^{+3} / F e^{+2} E^{\circ}=0.77$
If $\mathrm{Fe}^{+2}, \mathrm{Fe}^{+3}$ and Fe block are kept together, then :-
32. $F e^{+3}$ increases
33. $F e^{+3}$ decreases
34. $\frac{\mathrm{Fe}^{+2}}{\mathrm{Fe}^{+3}}$ remains unchanged
35. $F e^{+2}$ decreases
36. The oxidation states(O.S.) of sulphur in the anions $\mathrm{SO}_{3}{ }^{2-}, \mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}$ and $\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$ follow the order -
37. $\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}<\mathrm{SO}_{3}{ }^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$
38. $\mathrm{SO}_{3}{ }^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$
39. $\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}<\mathrm{SO}_{3}{ }^{2-}$
40. $\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}<\mathrm{SO}_{3}{ }^{2-}$
41. The metal displacement reaction among the following is -
42. $\mathrm{Fe}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2} \uparrow$
43. $2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{PbO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2} \uparrow$
44. $2 \mathrm{KClO}_{3} \xrightarrow{\Delta} 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
45. $\mathrm{Cr}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \xrightarrow{\Delta} \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Cr}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3

 days of ANY NEETprepcourse

neetprep Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Hydrogen

(Expected Questions in NEET 2022: 1)

Subtopic Name	Number of Questions
Hard \& Soft Water	3
$\mathrm{H}_{2} \mathrm{O}_{2}$ (Hydrogen Peroxide)	2
Hydrogen- Types \& Isotopes	2
Preparation \& Properties	2
Water	1

1.

An incorrect statement among the following regarding hydrogen is -

1. Hydrogen never acts as cation in ionic salts
2. Hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$exists freely in solution
3. Dihydrogen does not act as a reducing agent
4. Hydrogen has three isotopes of which protium is the most common
5. The reaction of aqueous KMnO_{4} with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acidic conditions gives:
6. Mn^{4+} and O_{2}
7. Mn^{2+} and O_{2}
8. Mn^{2+} and O_{3}
9. Mn^{4+} and MnO_{2}
10. The ease of adsorption of the hydrated alkali metal ions on ion-exchange resins follows the order
11. $\mathrm{Li}^{+}<\mathrm{K}^{+}<N a^{+}<R b^{+}$
12. $R b^{+}<K^{+}<N a^{+}<L i^{+}$
13. $\mathrm{K}^{+}<N a^{+}<R b^{+}<L i^{+}$
14. $\mathrm{Na}^{+}<\mathrm{Li} i^{+}<\mathrm{K}^{+}<R b^{+}$
15. The method used to remove the temporary hardness of water is-
16. Synthetic resins method
17. Calgon's method
18. Clark's method
19. Ion-exchange method
20. Match the following and identify the correct option
(a) $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
(i)
(b) Temporary hardness of water (ii) An electron deficient hydride
(c) $\mathrm{B}_{2} \mathrm{H}_{6}$
(d) $\mathrm{H}_{2} \mathrm{O}_{2}$
(iii) Synthesis gas
(iv) Non-planar structure
(a) (b) (c) (d)
21. (iii) (ii) (i) (iv)
22. (iii) (iv) (ii) (i)
23. (i) (iii) (ii) (iv)
24. (iii) (i) (ii) (iv)
25. Some statements about water are given below:
(a) Heavy water is used as a moderator in nuclear reactors.
(b) Heavy water is more associated than ordinary water.
(c) Heavy water is a more effective solvent than ordinary water.
Which of the above statements are correct?
26. (a), (b) and (c)
27. (b) and (c)
28. (a) and (c)
29. (a) and (b)
30. The pair that on reaction will not evolve H_{2} gas is :
31. Copper and HCl (aqueous)
32. Iron and steam
33. Iron and $\mathrm{H}_{2} \mathrm{SO}_{4}$ (aqueous)
34. Sodium and ethyl alcohol
35. $\mathrm{H}_{2} \mathrm{O}_{2}$ on oxidation gives :
36. O^{-2}
37. $O H^{-}$
38. O_{2}^{-}
39. O_{2}
40. Pure water can be obtain from sea water by:
41. Centrifugation
42. Plasmolysis
43. Reverse osmosis
44. Sedimentation
45. Tritium, a radioactive isotope of hydrogen, emits which of the following particles?
46. Gamma (γ)
47. Neutron (n)
48. Beta $\left(\beta^{-}\right)$
49. Alpha (α)

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

 course
Uneetprep Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

The s-Block Elements

 (Expected Questions in NEET 2022: 1)
Subtopic Name
 Number of Questions

Reasoning Questions
Compounds of Ca and Na-

Preparations, Properties \& Uses 4
Biological Importance of s Block Elements and \& their ores

1. Ionic mobility of which of the following alkali metal ions is lowest when aqueous solution of their salts are put under an electric field?
2. K
3. Rb
4. Li
5. Na
6. The suspension of slaked lime in water is known as
7. lime water
8. quick lime
9. milk of lime
10. washing of lime
11. In context with beryllium, which one of the following statements is incorrect?
12. it is rendered passive by nitric acid
13. it forms $\mathrm{Be}_{2} \mathrm{C}$
14. its salts rarely hydrolyze
15. its hydride is electron-deficient and polymeric
16. The most acidic oxide among the following is -
17. MgO
18. BeO
19. BaO
20. CaO
21.

Which of the following statements is false?

1. Ca^{2+} ions are important in blood clotting
2. Ca^{2+} ions are not important in maintaining the regular beating of the heart
3. Mg^{2+} ions are important in the green parts of plants
4. Mg^{2+} ions form a complex with ATP
5. A compound that releases CO_{2} most easily upon heating is -
6. $\mathrm{K}_{2} \mathrm{CO}_{3}$
7. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
8. MgCO_{3}
9. CaCO_{3}
10.

Which of the following biologically important ions is also a constituent of sodium pump?

1. Ca^{2+}
2. Mg^{2+}
3. K^{+}
4. Fe^{2+}
5.

Solubility of the alkaline earth's metal sulphates in water decreases in the sequence-

1. $\mathrm{Mg}>\mathrm{Ca}>\mathrm{Sr}>\mathrm{Ba}$
2. $\mathrm{Ca}>\mathrm{Sr}>\mathrm{Ba}>\mathrm{Mg}$
3. $\mathrm{Sr}>\mathrm{Ca}>\mathrm{Mg}>\mathrm{Ba}$
4. $\mathrm{Ba}>\mathrm{Mg}>\mathrm{Sr}>\mathrm{Ca}$
5. Which one of the alkali metals forms only, the normal oxide, $\mathrm{M}_{2} \mathrm{O}$ on heating in air?
6. Rb
7. K
8. Li
9. Na
10. An active ingredient in bleaching powder for bleaching action is -
11. $\mathrm{Ca}(\mathrm{OCl})_{2}$
12. $\mathrm{CaO}_{2} \mathrm{Cl}$
13. CaCl_{2}
14. CaOCl_{2}
15. A compound that has higher hydration enthalpy than the lattice enthalpy is :
16. CaSO_{4}
17. BeSO_{4}
18. BaSO_{4}
19. SrSO_{4}
20. Property of the alkaline earth metals that increases with their atomic number
21. Solubility of their hydroxides in water
22. Solubility of their sulphates in water
23. Ionization Energy
24. Electro-negativity
25. Which one of the following compounds is a peroxide?
26. $K O_{2}$
27. $\mathrm{BaO} \mathrm{O}_{2}$
28. MnO_{2}
29. NO_{2}
30. An oxide that does not react with sodium hydroxide is:
31. $\mathrm{B}_{2} \mathrm{O}_{3}$
32. CaO
33. SiO_{2}
34. BeO
35. In the case of alkali metals, the covalent character decreases in the order
36. $\mathrm{MCl}>\mathrm{Ml}>\mathrm{MBr}>\mathrm{MF}$
37. $\mathrm{MF}>\mathrm{MCl}>\mathrm{MBr}>\mathrm{Ml}$
38. $\mathrm{MF}>\mathrm{MCl}>\mathrm{Ml}>\mathrm{MBr}$
39. $\mathrm{Ml}>\mathrm{MBr}>\mathrm{MCl}>\mathrm{MF}$
40. The correct order of increasing thermal stability of $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MgCO}_{3}, \mathrm{CaCO}_{3}$ and BeCO_{3} is:
41. $\mathrm{BeCO}_{3}<\mathrm{MgCO}_{3}<\mathrm{K}_{2} \mathrm{CO}_{3}<\mathrm{CaCO}_{3}$
42. $\mathrm{BeCO}_{3}<\mathrm{MgCO}_{3}<\mathrm{CaCO}_{3}<\mathrm{K}_{2} \mathrm{CO}_{3}$
43. $\mathrm{MgCO}_{3}<\mathrm{BeCO}_{3}<\mathrm{CaCO}_{3}<\mathrm{K}_{2} \mathrm{CO}_{3}$
44. $\mathrm{K}_{2} \mathrm{CO}_{3}<\mathrm{MgCO}_{3}<\mathrm{CaCO}_{3}<\mathrm{BeCO}_{3}$
45. In which of the following the hydration energy is higher than the lattice energy?
46. BaSO_{4}
47. MgSO_{4}
48. CaSO_{4}
49. SrSO_{4}
50. The correct order of the mobility of the alkali metal ions in aqueous solution is :
51. $\mathrm{Li}^{+}>\mathrm{Na} \mathrm{a}^{+}>\mathrm{K}^{+}>R b^{+}$
52. $\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Li}^{+}$
53. $\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Na}^{+}>\mathrm{Li}^{+}$
54. $R b^{+}>K^{+}>N a^{+}>L i^{+}$
55. Which of the following is an amphoteric hydroxide?
56. $\mathrm{Be}(\mathrm{OH})_{2}$
57. $\mathrm{Sr}(\mathrm{OH})_{2}$
58. $\mathrm{Ca}(\mathrm{OH})_{2}$
59. $\mathrm{Mg}(\mathrm{OH})_{2}$
60. Crude sodium chloride obtained by crystallization of brine solution does not contain-
(1) MgSO_{4}
(2) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
(3) $M g C l_{2}$
(4) CaSO_{4}
61. Which of the alkali metal choride (MCl) forms its dehydrate salt $\left(\mathrm{MCl} .2 \mathrm{H}_{2} \mathrm{O}\right)$ easily?
(1) LiCl
(2) CsCl
(3) RbCl
(4) KCl
62. HCl was passed through a solution of $\mathrm{CaCl}_{2}, \mathrm{MgCl}_{2}$, and NaCl . Compound(s) that gets crystallize is -
63. Only NaCl
64. Only MgCl_{2}
65. $\mathrm{NaCl}, \mathrm{MgCl}_{2}$, and CaCl_{2}
66. Both MgCl_{2} and CaCl_{2}
67. Identify the correct statement from the following.
68. The order of hydration enthalpies of alkaline earth cations
$\mathrm{Be}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Ca}^{2+}<\mathrm{Sr}^{2+}<\mathrm{Ba}^{2+}$
69. Lithium and Magnesium show some similarities in their physical properties as they are diagonally placed in the periodic tables.
70. Lithium is softer among all alkali metals.
71. Lithium chloride is deliquescent and crystallizes as a hydrate, $\mathrm{LiCl} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.
72. Among the following which one has the highest cation to anion size ratio?
73. CsF
74. LiF
75. NaF
76. CsI
77. The compound A on heating gives a colourless gas and a residue that is dissolved in water to obtain B . Excess of CO_{2} is bubbled through aqueous solution of B, C is a solid. Solid C on gentle heating gives back A . The compound A is -
78. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
79. $\mathrm{K}_{2} \mathrm{CO}_{3}$
80. $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
81. CaCO_{3}
82. Match List I with List II for the compositions of substances and select the correct answer using the code given below the lists-

List-I Substances
List-II
Composition
(A) Plaster of paris
(B) Epsomite
(C) Kieserite
(D) Gypsum
(i) $\mathrm{CaSO}_{4} \cdot 2 \mathrm{HO}$
(ii) $\mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$
(iii) $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
(iv) $\mathrm{MgSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
(v) CaSO_{4}

Code :
(A) (B) (C) (D)

1. (iv) (iii) (ii) (i)
2. (iii) (iv) (i) (ii)
3. (ii) (iii) (iv) (i)
4. (i) (ii) (iii) (v)

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

27. When $\mathrm{A}+$ Water $\rightarrow \mathrm{C}+\mathrm{B}, \mathrm{B}$ is reacted with D , gas C again obtained. 'D' gives 'C' with $\mathrm{H}_{2} \mathrm{SO}_{4}$. B gives yellow colour with bunsen flame. C is a flamable gas then what would be $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D :
28. $\mathrm{K}, \mathrm{H}_{2}, \mathrm{NaOH}, \mathrm{Zn}$
29. $\mathrm{Na}, \mathrm{NaOH}, \mathrm{H}_{2}, \mathrm{Zn}$
30. $\mathrm{Li}, H_{2}, \mathrm{LiOH}, \mathrm{Zn}$
31. None of the above
32. A solid compound ' X ' on heating gives CO_{2} gas and a residue. The residue mixed with water forms ' Y '. On passing an excess of CO_{2} through ' Y ' in water, a clear solution, ' Z ' is obtained. On boiling ' Z ', compound ' X ' is reformed. The compound ' X ' is :-
33. CaCO_{3}
34. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
35. $\mathrm{K}_{2} \mathrm{CO}_{3}$
36. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
37. Among the following alkaline earth metal halides, one which is covalent and soluble in organic solvents is:
38. Magnesium chloride
39. Beryllium chloride
40. Calcium chloride
41. Strontium chloride
42. The structures of beryllium chloride in solid-state, and vapour phase, are :
43. Dimer, and Linear, respectively.
44. Chain in both.
45. Chain, and dimer, respectively.
46. Linear in both.

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

The p-Block Elements (Class 11) (Expected Questions in NEET 2022: 1)

Subtopic Name Number of

Questions

Boron Family- Preparations, Properties \& Uses	8
Carbon Family - Preparations, Properties \& Uses	8
Properties of Structure of SiO2 \& Other Compounds	3
Anomalous Behavior of B \& C	1
Compounds of Boron- Preparations, Properties \& Uses	1
Properties of Glass, Pb \& Sn compounds	1

1. AlF_{3} is soluble in HF only in the presence of KF due to the formation of-
2. $\mathrm{K}_{3}\left(\mathrm{AIF}_{3} \mathrm{H}_{3}\right)$
3. $\mathrm{K}_{3}\left(\mathrm{AIF}_{6}\right)$
4. AIH_{3}
5. $\mathrm{K}\left(\mathrm{AIF}_{3} \mathrm{H}\right)$
6. The correct statement regarding inert pair effect is -
7. Sn^{2+} is oxidizing agent while Pb^{4+} is a reducing agent
8. Sn^{2+} and Pb^{2+} both are an oxidizing agents
9. Sn^{4+} is a reducing agent while Pb^{4+} is oxidizing agent
10. Sn^{2+} is a reducing agent while Pb^{4+} is oxidizing agent
11. An element that cannot form MF_{6}^{3-} ion is -
12. Ga
13. Al
14. B
15. In
16.

The correct order of atomic radii in group 13 elements is-

1. $\mathrm{B}<\mathrm{Al}<\mathrm{In}<\mathrm{Ga}<\mathrm{Tl}$
2. $\mathrm{B}<\mathrm{Al}<\mathrm{Ga}<\mathrm{In}<\mathrm{Tl}$
3. $\mathrm{B}<\mathrm{Ga}<\mathrm{Al}<\mathrm{Tl}<\mathrm{In}$
4. $\mathrm{B}<\mathrm{Ga}<\mathrm{Al}<\mathrm{In}<\mathrm{Tl}$
5. In which of the following pairs, both the species are not isostructural?
6. $\mathrm{SiCl}_{4}, \mathrm{PCl}_{4}^{+}$
7. Diamond, silicon carbide
8. $\mathrm{NH}_{3}, \mathrm{PH}_{3}$
9. $\mathrm{XeF}_{4}, \mathrm{XeO}_{4}$
10. The stability of +1 oxidation state among Al, Ga, In and Tl increases in the sequence
11. $\mathrm{Ga}<\ln <\mathrm{Al}<\mathrm{Tl}$
12. $\mathrm{Al}<\mathrm{Ga}<\ln <\mathrm{Tl}$
13. $\mathrm{Tl}<\ln <\mathrm{Ga}<\mathrm{Al}$
14. $\ln <\mathrm{Tl}<\mathrm{Ga}<\mathrm{Al}$
15.

Which of these is not a monomer for a high molecular mass silicone polymer?

1. $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$
2. $\mathrm{Me}_{3} \mathrm{SiCl}$
3. PhSiCl_{3}
4. MeSiCl_{3}
5.

The basic structural unit of silicates is :

1. $\mathrm{SiO}_{4}{ }^{4-}$
2. $\mathrm{SiO}_{3}{ }^{2-}$
3. $\mathrm{SiO}_{4}{ }^{2-}$
4. SiO
5. A compound among the following is least likely to behave as Lewis base -
6. NH_{3}
7. BF_{3}
8. OH^{-}
9. $\mathrm{H}_{2} \mathrm{O}$
10.

Silicate among the following have one oxygen atom of $\left[\mathrm{SiO}_{4}\right]^{4-}$ is shared -

1. Sheet silicate
2. Pyrosilicate
3. Three dimensional silicate
4. Linear chain silicate
5. The stability of +1 oxidation state increases in the sequence
6. $\mathrm{Al}<\mathrm{Ga}<\mathrm{In}<\mathrm{Tl}$
7. $\mathrm{Tl}<\mathrm{In}<\mathrm{Ga}<\mathrm{Al}$
8. $\mathrm{In}<\mathrm{Tl}<\mathrm{Ga}<\mathrm{Al}$
9. $\mathrm{Ga}<\mathrm{In}<\mathrm{Al}<\mathrm{Tl}$
10. The incorrect statement among the following is -
11. SnF_{4} is ionic in nature
12. PbF_{4} is covalent in nature
13. SiCl_{4} is easily hydrolysed
14. $\mathrm{GeX}_{4}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ is more stable than GeX_{2}
15. Which of the following species is not stable?
16. $\left[\mathrm{SiCl}_{6}\right]^{2-}$
17. $\left[\mathrm{SiF}_{6}\right]^{2-}$
18. $\left[\mathrm{GeCl}_{6}\right]^{2-}$
19. $\left[\mathrm{Sn}(\mathrm{OH})_{6}\right]^{2-}$
20. Aluminium chloride in acidified aqueous solution forms a complex 'A'. Formula of A and hybridisation state of Al in ' A ' is respectively-
21. $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}, \mathrm{sp}^{3} \mathrm{~d}^{2}$
22. $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{3+}, \mathrm{sp}^{3}$
23. $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{3+}, \mathrm{dsp}^{2}$
24. $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}, \mathrm{d}^{2} \mathrm{sp}^{3}$
25. Which of the following compounds is used in cosmetic surgery?
26. Silica
27. Silicates
28. Silicones
29. Zeolites
30. Identify the correct statements from the following:
a. $\mathrm{CO}_{2}(\mathrm{~g})$ is used as a refrigerant ice-cream and frozen food.
b. The structure of C_{60} customs twelve 6 carbon rings and twenty-five 5 carbon rings
c. ZSM-5, a type of zeolite, is used to convent alcohol into gasoline.
d. CO is a colorless and odorless gas
31. (a) and (c) only
32. (b) and (c) only
33. (c) and (d) only
34. (a), (c) and (c) only
35. Which of the following oxide is amphoteric in nature?
(1) SnO_{2}
(2) SiO_{2}
(3) GeO_{2}
(4) CO_{2}
36. Which of the following oxide is amphoteric?
37. CO_{2}
38. SnO_{2}
39. CaO
40. SiO_{2}
41. Which of the following statements is incorrect?
42. NaHCO_{3} on heating gives $\mathrm{Na}_{2} \mathrm{CO}_{3}$
43. Pure sodium metal dissolves in liquid ammonia to give a blue solution.
44. NaOH reacts with glass to give sodium silicate
45. Aluminium reacts with excess NaOH to give $\mathrm{Al}(\mathrm{OH})_{3}$
46. Incorrect statement among the following about the zeolites is:-
(1) They have open structure which enables them to take up small molecules.
(2) Zeolites are aluminosilicates having three dimensional network.
(3) Some of the SiO_{4}^{4-} units are replaced by AlO_{4}^{5-} and AlO_{6}^{9-} ions in zeolites.
(4) They are used as cation exchangers.
47. In Borax bead test which compound is formed :
(1) Orthoborate
(2) Metaborate
(3) Double oxide
(4) Tetraborate
48.

$\mathrm{PbO}_{2} \rightarrow \mathrm{PbO} \quad \Delta G_{298}<0$
$\mathrm{SnO}_{2} \rightarrow \mathrm{SnO} \quad \Delta G_{298}>0$
The most probable oxidation state of $\mathrm{Pb} \& \mathrm{Sn}$ will be-

1. $\mathrm{Pb}^{+4}, \mathrm{Sn}^{+4}$
2. $\mathrm{Pb}^{+4}, \mathrm{Sn}^{+2}$
3. $\mathrm{Pb}^{+2}, \mathrm{Sn}^{+2}$
4. $\mathrm{Pb}^{+2}, \mathrm{Sn}^{+4}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

 course
U•neetprep
 Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Some Basic Concepts of Chemistry

 (Expected Questions in NEET 2022: 2)| Subtopic Name | Number of |
| :--- | :---: |
| | Questions |
| Concentration Based Problem | 13 |
| Moles, Atoms \& Electrons | 13 |
| Equation Based Problem | $\mathbf{6}$ |
| Limiting Reagent | 6 |
| Empirical \& Molecular Formula | $\mathbf{4}$ |
| Equivalent Concept | $\mathbf{1}$ |
| Introduction | $\mathbf{1}$ |

1. Suppose the elements X and Y combine to form two compounds XY_{2} and $\mathrm{X}_{3} \mathrm{Y}_{2}$. When 0.1 moles of $X Y_{2}$ weighs 10 g and 0.05 mole of $X_{3} Y_{2}$ weighs 9 g , the atomic weight of X and Y are respectively-
2. 40,30
3. 60,40
4. 20,30
5. 30,20
6. Among the following the temperature dependent parameter is -
7. Molarity
8. Mole fraction
9. Weight percentage
10. Molality
11.

The number of water molecules is maximum in-

1. 18 mL of water
2. 0.18 g of water
3. 0.00224 L of water vapours at 1 atm and 273 K
4. $10^{-3} \mathrm{~mol}$ of water
5. If Avogadro number N_{A}, is changed from $6.022 \times 10^{23} \mathrm{~mol}^{-1}$ to $6.022 \times 10^{20} \mathrm{~mol}^{-1}$ this would change -
6. The definition of mass in units of grams
7. The mass of one mole of carbon
8. The ration of chemical species to each other in a balanced equation
9. The ratio of elements to each other in a compound
10. 20.0 g of a magnesium carbonate sample decomposes on heating to give carbon dioxide and 8.0 g magnesium oxide. The percentage purity of magnesium carbonate in the sample is -
(Atomic weight of $\mathrm{Mg}=24$)
1.75
11. 96
12. 60
13. 84
14. What is the mass of precipitate formed when 50 mL of 16.9% solution of AgNO_{3} is mixed with 50 mL of 5.8%
NaCl solution? $(\mathrm{Ag}=107.8, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Na}=23, \mathrm{Cl}=$ 35.5)
15. 28 g
2.3 .5 g
3.7 g
16. 14 g
17. What is the mole fraction of the solute in a 1.00 m aqueous solution?
18. 0.177
19. 0.1770
20. 0.0534
21. 0.0177
22. The number of water molecules is maximum in
23. 18 molecules of water
24. 1.8 g of water
25. 18 g of water
26. 18 moles of water
27. A mixture of gases contains H_{2} and O_{2} gases in the ratio of $1: 4(\mathrm{w} / \mathrm{w})$. The molar ratio of the two gases in the mixture will be -
28. 1:4
29. $4: 1$
30. $16: 1$
31. $2: 1$
32. When 22.4 litres of $\mathrm{H}_{2}(\mathrm{~g})$ is mixed with 11.2 litres of $\mathrm{Cl}_{2}(\mathrm{~g})$, each at STP , the moles of $\mathrm{HCl}(\mathrm{g})$ formed is equal to :
33. 1 mol of $\mathrm{HCl}(\mathrm{g})$
34. 2 mol of $\mathrm{HCl}(\mathrm{g})$
35. 0.5 mol of $\mathrm{HCl}(\mathrm{g})$
36. 1.5 mol of $\mathrm{HCl}(\mathrm{g})$
37. 1.0 g of magnesium is burnt with $0.56 \mathrm{~g} \mathrm{O}_{2}$ in a closed vessel. Which reaction is left in excess and how much? (At, wt. $\mathrm{Mg}=24 ; \mathrm{O}=16$)
38. $\mathrm{Mg}, 0.16 \mathrm{~g}$
39. $O_{2}, 0.16 \mathrm{~g}$
40. $\mathrm{Mg}, 0.44 \mathrm{~g}$
41. $O_{2}, 0.28 \mathrm{~g}$
42.

The weight of $70 \% \quad \mathrm{HNO}_{3}$ concentrated nitric acid solution should be used to prepare 250 mL of $2.0 \mathrm{M} \mathrm{HNO}_{3}$ is -

1. 90.0 g conc. HNO_{3}
2. 70.0 g conc. HNO_{3}
3. 54.0 g conc. HNO_{3}
4. 45.0 g conc. HNO_{3}
5.

6.02×10^{20} molecules of urea are present in 100 mL of its solution. The concentration of solution is:

1. 0.01 M
2. 0.001 M
3. 0.1 M
4. 0.02 M
5. Mole fraction of solute in a 1.00 molal aqueous solution is
6. 0.0177
7. 0.0344
8. 1.770
9. 0.1770
10. 25.3 g of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is dissolved in enough water to make 250 mL of solution. If sodium carbonate dissociates completely, the molar concentration of sodium ion, Na^{+}and carbonate ion, CO_{3}^{2-} are respectively -
(molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \mathrm{~g} \mathrm{~mol}^{-1}$)
11. 0.955 M and 1.910 M
12. 1.910 M and 0.955 M
13. 1.90 M and 1.910 M
14. 0.477 M and 0.477 M
15. The number of atoms in 0.1 mole of a triatomic gas is $\left(\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)$
16. 6.026×10^{22}
17. 1.806×10^{23}
18. 3.600×10^{23}
19. 1.800×10^{22}
20. 10 g of hydrogen and 64 of oxygen were filled in a steel vessel and exploded. Amount of water produced in this reaction will be
21. 2 mol
2.3 mol
3.4 mol
22. 1 mol
23. Volume occupied by one molecule of water (density $=$ $1 \mathrm{~g} \mathrm{~cm}^{-3}$) is
24. $9.0 \times 10^{-23} \mathrm{~cm}^{3}$
25. $6.023 \times 10^{-23} \mathrm{~cm}^{3}$
26. $3.0 \times 10^{-23} \mathrm{~cm}^{3}$
27. $5.5 \times 10^{-23} \mathrm{~cm}^{3}$
28. The volume of oxygen gas $\left(\mathrm{O}_{2}\right)$ measured at $0^{0} \mathrm{C}$ and 1 atm, needed to burn completely 1 L of propane gas $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ measured under the same conditions is
29. 7 L
30. 6 L
31. 5 L
32. 10 L
33.

The moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl is -

1. 0.044
2. 0.333
3. 0.011
4. 0.029
5. Concentrated aqueous sulphuric acid is 98% $\mathrm{H}_{2} \mathrm{SO}_{4}$ by mass and has a density of $1.80 \mathrm{~g} \mathrm{~mL}^{-1}$, volume of acid required to make one litre of 0.1 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution is-
6. 11.10 mL
7. 16.65 mL
8. 22.20 mL
9. 5.55 mL
10. The number of moles of hydrogen molecules required to produce 20 moles of ammonia through Haber's process is -
11. 40 mol
12. 10 mol
13. 20 mol
14. 30 mol
15. The density of 2 M aqueous solution of NaOH is 1.28 $\mathrm{g} / \mathrm{cm}^{3}$. The molality of the solution is -
[molecular mass of $\mathrm{NaOH}=40 \mathrm{gmol}^{-1}$]
16. 1.20 m
17. 1.56 m
18. 1.67 m
19. 1.32 m
20. The maximum number of atoms is present in the following -
(1) 1 g of $\mathrm{Mg}_{(\mathrm{s})}$
(2) 1 g of $\mathrm{O}_{2}(\mathrm{~g})$
(3) 1 g of $\mathrm{Li}_{\text {(s) }}$
(4) 1 g of $\mathrm{Ag}_{(\mathrm{s})}$
21. Which has the maximum number of molecules among the following?
22. $64 \mathrm{~g} \mathrm{SO}_{2}$
23. $44 \mathrm{~g} \mathrm{CO}_{2}$
24. $48 \mathrm{~g} \mathrm{O}_{3}$
25. $8 \mathrm{~g} \mathrm{H}_{2}$
26. Percentage of $\mathrm{C}, \mathrm{H} \& \mathrm{~N}$ are given as follows :
$\mathrm{C}=40 \% \mathrm{H}=13.33 \% \mathrm{~N}=46.67 \%$
The empirical formula will be :
27. $\mathrm{CH}_{2} \mathrm{~N}$
28. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}$
29. $\mathrm{CH}_{4} \mathrm{~N}$
30. $\mathrm{CH}_{3} \mathrm{~N}$
31. The mole fraction of the solute in one molal aqueous solution is :-
(1) 0.027
(2) 0.036
(3) 0.018
(4) 0.009
32. The mass of carbon anode consumed (giving only carbondioxide) in the production of 270 kg of aluminium metal from bauxite by the Hall process is :-
(1) 90 kg
(2) 540 kg
(3) 180 kg
(4) 270 kg
(Atomic mass : $\mathrm{Al}=27$)
33. The number of moles of KMnO_{4} reduced by one mole of KI in alkaline medium is :-
(1) One
(2) Two
(3) Five
(4) One fifth
34. Number of significant figures in the following numbers are :
(I) 161 cm
(II) 0.0161
(III) 1.61
(1) $3,3,3$
(2) $3,4,3$
(3) $3,2,3$
(4) $3,4,4$
35. In the Haemoglobin (Molecular wt $=67200$) iron found 0.33% (by weight). The number of iron atom will be in its one molecule :
36. 1
37. 2
38. 3
39. 4
40. $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{NO}$

When one mole ammonia and one mole oxygen taken :

1. Oxygen is completely consumed
2. Ammonia is completely consumed
3. Both (1) and (2) are correct
4. No one is correct
5. A mole ratio of H_{2} and O_{2} gas is 8 . The ratio of weight is-
6. $1: 1$
7. $2: 1$
8. $4: 1$
9. $1: 2$
10. A compound contain C, H and O . If $\mathrm{C}=40 \%$ and $\mathrm{H}=$ 6.67% and rest is oxygen then empirical formula of compound will be :
11. $\mathrm{CH}_{2} \mathrm{O}$
12. $\mathrm{CH}_{4} \mathrm{O}$
13. $\mathrm{CH}_{4} \mathrm{O}_{2}$
14. CHO
15. The maximum number of molecules is present in:-
(1) 5 L of N_{2} gas at STP
(2) 0.5 g of H_{2} gas
(3) 10 g of O_{2} gas
(4) 15 L of H_{2} gas at STP
16. What is false for mole fraction :
17. $\mathrm{x}<1$
18. $-2 \leq x \leq 2$
19. $0 \leq x \leq 1$
20. Always non-negative
21. Volume of CO_{2} obtained by the complete decomposition of $9.85 \mathrm{gm} . \mathrm{BaCO}_{3}$ is :
22. 2.24 lit.
23. 1.12 lit.
24. 0.84 lit.
25. 0.56 lit
26. 1 M and 2.5 litre NaOH solution mixed with another 0.5 M and 3 litre NaOH solution. Molarity of the resultant solution is :-
27. 0.80 M
28. 1.0 M
29. 0.73 M
30. 0.50 M
31. Which has maximum number of molecules :-
(1) $7 \mathrm{gm} \mathrm{N}_{2}$
(2) $2 \mathrm{gm} \mathrm{H}_{2}$
(3) $16 \mathrm{gm} \mathrm{NO}_{2}$
(4) $16 \mathrm{gm} \mathrm{O}_{2}$
32. The percentage of C, H and N in an organic compound are $40 \%, 13.3 \%$ and 46.7% respectively, The empirical formula of the compound is :
(1) $\mathrm{C}_{3} \mathrm{H}_{13} \mathrm{~N}_{3}$
(2) $\mathrm{CH}_{2} \mathrm{~N}$
(3) $\mathrm{CH}_{4} \mathrm{~N}$
(4) $\mathrm{CH}_{6} \mathrm{~N}$
33. Molarity of liquid HCl if density of liq. HCl is 1.17 gm/cc :-
34. 36.5
35. 18.25
36. 32.05
37. 42.10
38. Sp. vol. of cylinderical virus particle is
$6.02 \times 10^{-2} c c / g m$. Whose radius and length are $7 \AA \&$ $10 \AA$ respectively. If $N_{A}=6.02 \times 10^{23}$. Find mol. wt. of virus : -
39. $15.4 \mathrm{~kg} / \mathrm{mol}$
$2.1 .54 \times 10^{4} \mathrm{~kg} / \mathrm{mol}$
40. $3.08 \times 10^{4} \mathrm{~kg} / \mathrm{mol}$
41. $3.08 \times 10^{3} \mathrm{~kg} / \mathrm{mol}$
42. In Haber process 30 litres of dihydrogen and 30 litres of dinitrogen were taken for reaction which yielded only 50% of the expected product. What will be the composition of gaseous mixture under the above condition in the end :
(1) 20 litres ammonia, 20 litres nitrogen, 20 litres hydrogen
(2) 10 litres ammonia, 25 litres nitrogen, 15 litres hydrogen
(3) 20 litres ammonia, 10 litres nitrogen, 30 litres hydrogen
(4) 20 litres ammonia, 25 litres nitrogen, 15 litres hydrogen
43. An organic compound contains 80% (by wt.) carbon and the remaining percentage of hydrogen. The right option for the empirical formula of this compound is:
[Atomic wt. of C is $12, \mathrm{H}$ is 1]
44. CH_{3}
45. CH_{4}
46. CH
47. CH_{2}

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep course

U- neetprep Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Hydrocarbons
 (Expected Questions in NEET 2022: 2)

Subtopic Nane	Number of Questions
Alkanes, Alkenes and Alkynes - Chemical Properties	22
Aliphatic Hydrocarbon -Nomenclature, Isomerism \& Mechanism	9
Aromatic Hydrocarbons - Reactions \& Mechanism	6
Aliphatic Hydrocarbon - Methods of Preparation	5
Aromatic Hydrocarbons - Benzene - Structure, Preparation \& Chemical Reactions	5
Alkanes, Alkenes and Alkynes - Conformations and Hybridisation	4
Aliphatic Hydrocarbon- Physical Properties	1
Aromatic Hydrocarbons - Nomenclature, Isomerism \& Huckel's Rule	1

1.

The correct order of acidity is-
5.

Hydrocarbon (A) reacts with bromine by substitution reaction to form an alkyl bromide B, B undergoes the Wurtz reaction to give a gaseous hydrocarbon containing
$\mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{CH}_{8}$ ss than four carbon atoms.
The formula of (A) is-

1. $\mathrm{CH} \equiv \mathrm{CH}$
$\stackrel{.}{\mathrm{CH}} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH}_{3}-\mathrm{CH}_{3}$
2. $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
3.

$\mathrm{CH}_{3}-\mathrm{CH}_{3}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH} \equiv \mathrm{CHCH}_{3}-\mathrm{CH}_{3}$
4.
4. CH_{4}
$\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{CH}_{3}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH} \equiv \mathrm{CH}$
6.

The compound $\mathrm{C}_{7} \mathrm{H}_{8}$ undergoes the following reactions:
$\mathrm{C}_{7} \mathrm{H}_{8} \xrightarrow{3 \mathrm{Cl}_{2} / \mathrm{hv}} \mathrm{A} \xrightarrow{\mathrm{Br}_{2} / \mathrm{Fe}} \mathrm{B} \xrightarrow{\mathrm{Zn} / \mathrm{HCl}} \mathrm{C}$
The product ' C ' is-

1. m-Bromotoluene
2. o-Bromotoluene
3. 3-Bromo-2,4,6-trichlorotoluene
4. p-Bromotoluene
5. Which of the following compounds shall not produce propene by reaction with HBr followed by elimination or direct only elimination reaction?
6.

2.

3.

4.

4. The compound that will react most readily with gaseous bromine has the formula is-

1. $\mathrm{C}_{3} \mathrm{H}_{6}$
2. $\mathrm{C}_{2} \mathrm{H}_{2}$
3. $\mathrm{C}_{4} \mathrm{H}_{10}$
4. $\mathrm{C}_{2} \mathrm{H}_{4}$
5.

P, Q, and R in the above-mentioned sequence of reactions are respectively -
1.

2.

3.

4.

8.

The molecule among the following that has hybridization $\mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}$, and sp from left to right atoms is-

1. $\mathrm{HC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{H}$
2. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
3. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
4. $\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
5. The correct statement regarding the comparison of staggered and eclipsed conformations of ethane is-
6. The eclipsed conformation of ethane is more stable than staggered conformation because eclipsed conformation has no torsional strain.
7. The eclipsed conformation of ethane is more stable than staggered conformation even though the eclipsed conformation has a torsional strain.
8. The staggered conformation of ethane is more stable than eclipsed conformation because staggered conformation has no torsional strain.
9. The staggered conformation of ethane is less stable than eclipsed conformation because staggered conformation has a torsional strain.
10.

 X and Y in the above-mentioned reaction are respectively

1. $\mathrm{X}=2$-Butyne; $\mathrm{Y}=3$-Hexyne
2. $\mathrm{X}=2$-Butyne; $\mathrm{Y}=2$-Hexyne
3. $\mathrm{X}=1$-Butyne; $\mathrm{Y}=2$-Hexyne
4. $\mathrm{X}=1$-Butyne; $\mathrm{Y}=3$-Hexyne
5. HCl with an alkene X reacts in accordance with 12. Markovnikov's rule,
to give a product 1-Chloro-1-methylcyclohexane. The The reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCH}_{3}$ with HBr producesstructure of alkene (X) is -

6.

3. (1) and (2)
4.

4.

1. $\mathrm{C}_{6} \mathrm{H}_{5} \underset{\substack{\mathrm{CH} \\ \mathrm{Br}}}{\mathrm{CH}} \mathrm{CH}_{2} \mathrm{CH}_{3}$
2. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \underset{\substack{\mathrm{Br}}}{\mathrm{CH} \mathrm{CH}_{3}}$
3. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$

4.

Above mentioned single molecule is obtained from ozonolysis. The starting cyclic compound is -
1.

2.
3.

4.

14.

What products are formed when the following compound is treated with Br_{2} in the presence of FeBr_{3} ?

1.

2.

and

15.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \underset{\mathrm{H}_{2} \mathrm{O}_{2}}{\mathrm{HBr}} \mathrm{Y} \xrightarrow{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}} \mathrm{Z}
$$

Product Z in the above-mentioned reaction is -

1. $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
2. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
3. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{O}-\mathrm{CH}_{3}$
4. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
5. Which of the following organic compounds has same hybridization as its combustion product $-\left(\mathrm{CO}_{2}\right)$?
6. Ethane
7. Ethyne
8. Ethene
9. Ethanol
10.

Which of the following compounds will not undergo Friedal-Craft's reaction easily:

1. Xylene
2. Nitrobenzene
3. Toluene
4. Cumene
5.

The isobutyl group among the following is-
1.

19. The incorrect IUPAC name among the following is -

1. $\mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$

1 -bromo prop-2-ene

2. 4-bromo-2, 4-dimethylhexane

3. 2-methyl-3-phenylpentane

4. 5-oxohexanoic acid
2. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$
3.

4.

20.

Major Product Minor Product
The major product in the above mentioned reaction is-
1.

2.

4.

21. The linear molecules among the following is -

1. $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
2. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$
3. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
4. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
5.

(a)

(b)

The major products A . and C . in the above mentioned reaction are respectively-

2.

3.

4.
23. The correct IUPAC name of the given compound is-

1. 3-Ethyl-4-ethenylheptane
2. 3-Ethyl-4-propylhex-5-ene
3. 3-(1-Ethyl propyl) hex-1-ene
4. 4-Ethyl-3-propylhex-1-ene
5. Liquid hydrocarbons can be converted to a mixture of gaseous hydrocarbons by
6. oxidation
7. cracking
8. distillation under reduced pressure
9. hydrolysis
10. The reaction of toluene with Cl_{2} in presence of FeCl_{3} gives ' X ' and the reaction in presence of light gives ' Y '. Thus, X ' and ' Y ' are respectively-
11. $\mathrm{X}=$ Benzal chloride, $\mathrm{Y}=\mathrm{o}$-chlorotoluene
12. $X=m$-chlorotoluene, $Y=p$-chlorotoluene
13. $\mathrm{X}=\mathrm{o}$ and p -chlorotoluene, $\mathrm{Y}=$ trichloromethyl benzene
14. $\mathrm{X}=$ Benzyl chloride, $\mathrm{Y}=\mathrm{m}$-chlorotoluene
15. Nitrobenzene can be prepared from benzene by using a mixutre of conc. HNO_{3} and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. In the mixture, nitric acid acts as a/an:
16. reducing agent
17. acid
18. base
19. catalyst
20. Benzene reacts with $\mathrm{CH}_{3} \mathrm{Cl}$ in the presence of anhydrous AlCl_{3} to form-
21. Toluene
22. Chlorobenzene
23. Benzylchloride
24. Xylene
25. In the given hydrocarbon,

$$
\mathrm{CH}_{3}-\underset{5}{\mathrm{C}} \mathrm{H}=\underset{4}{\mathrm{C}} \mathrm{H}-\underset{3}{\mathrm{CH}_{2}}-\underset{2}{\mathrm{C}} \equiv \underset{1}{\mathrm{CH}}
$$

The state of hybridization of carbons 1,3 and 5 are-

1. $\mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}^{3}$
2. $\mathrm{sp}, \mathrm{sp}^{3}, \mathrm{sp}^{2}$
3. $\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
4. $\mathrm{sp}^{3}, \mathrm{sp}^{2}, \mathrm{sp}$
5. An alkene "A" on reaction with O_{3} and $\mathrm{Zn}-\mathrm{H}_{2} \mathrm{O}$ gives propanone and ethanal in equimolar ratio. Addition of HCl to alkene " A " gives " B " as the major product. The structure of product " B " is:

2.

4.

30. The most suitable reagent for the following conversion is-

1. $\mathrm{Hg}^{2+} / \mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{O}$
2. Na /liquid NH_{3}
3. $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, quinoline
4. $\mathrm{Zn} / \mathrm{HCl}$
5. The reaction among the following that proceeds through an electrophilic substitution reaction, is:
6.

2.

3.

4.

32. The alkane that gives only one monochloro product on chlorination with Cl_{2} in presence of diffused sunlight is -

1. 2,2,-dimethylbutane
2. neopentane
3. n-pentane
4. Isopentane
5. In the following reaction
$\mathrm{H}_{3} \mathrm{CC} \equiv \mathrm{CH} \xrightarrow[873 \mathrm{~K}]{\text { Red Hot Iron Tube }} \mathrm{A}$
The number of (σ) bonds present in the product (A) is-
6. 21
2.9
7. 24
8. 18
9. Elimination reaction of 2-Bromopentane to form pent-2-ene is-
(a) β-Elimination reaction
(b) Follows Zaitsev rule
(c) Dehydrohalogenation reaction
(d) Dehydration reaction
10. (a), (c), (d)
11. (b), (c), (d)
12. (a), (b), (d)
13. (a), (b), (c)
14. Which of the following alkane cannot be made in good yield by Wurtz reaction?
15. 2,3-Dimethylbutane
16. n-Heptane
17. n-Butane
18. n-Hexane
19. An alkene on ozonolysis gives methanal as one of the products. Its structure is:

20.

4.

37. Which of the following is a free radical substitution reaction?
(1) Benzene with $\mathrm{Br}_{2} / \mathrm{AlCl}_{3}$
(2) Acetylene with HBr
(3) Methane with $\mathrm{Br}_{2} / \mathrm{hv}$
(4) Propene with $\mathrm{HBr} /\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{2}$
38. The reagent that can be used to distinguish between 1butyne and 2-butyne is:

1. HCl
2. O_{2}
3. $B r_{2}$
4. $\mathrm{NaNH} \mathrm{H}_{2}$
5. In Friedal craft reaction Toluene can be prepared by :
6. $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{Cl}$
7. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{CH}_{4}$
8. $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{2} \mathrm{Cl}_{2}$
9. $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{COCl}$
10. The reagent used to converts propene to 1-propanol is
11. $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}$
12. $\mathrm{B}_{2} \mathrm{H}_{6}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{OH}^{-}$
13. $\mathrm{Hg}(\mathrm{OAc})_{2}, \mathrm{NaBH}_{4} / \mathrm{H}_{2} \mathrm{O}$
14. Aq. KOH
15. Which of the following is not the characteristic of arenes :
16. More stability
17. Resonance
18. Delocalization of π electrons
19. Electrophilic addition
20. 2-Bromopentane reacts with ethanolic KOH gives main product :
21. Cis-2-pentene
22. Trans-2-pentene
23. 1-pentene
24. None of the above
25. Phenyl acetylene reacts with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in presence of HgSO_{4} gives :
(1)

(2)

(3)

(4)

26. Compound ' A ' on chlorination gives compound ' B '. ' B ' reacts with alc. KOH to give gas ' C ' which decolorizes Baeyer reagent. Ozonolysis of compound ' C ' gives only HCHO compound. Compound ' A ' is
27. $\mathrm{C}_{2} \mathrm{H}_{6}$
28. $\mathrm{C}_{2} \mathrm{H}_{4}$
29. $\mathrm{C}_{4} \mathrm{H}_{10}$
30. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
31. Reaction of HBr with propene in the presence of peroxide gives :-
(1) 3-bromo propane
(2) Allyl bromide
(3) n-propyl bromide
(4) Isopropyl bromide
32. Using anhydrous AlCl_{3} as catalyst, which one of the following reactions produces ethylbenzene (PhEt) :-
33. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{C}_{6} \mathrm{H}_{6}$
34. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{C}_{6} \mathrm{H}_{6}$
35. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}+\mathrm{C}_{6} \mathrm{H}_{6}$
36. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{6} \mathrm{H}_{6}$
37. The molecular formula of diphenyl methane,

The number of structural isomers possible when one of the hydrogens is replaced by a chlorine atom is :-

1. 4
2. 8
3.7
3. 6
4. On ozonolysis, the alkene that gives the following produt is :

5.

2. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$
3. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$
4.

49. A compound of the molecular formula is $C_{7} H_{16}$ shows optical isomerism, the compound will be-

1. 2,3-Dimethyl pentane
2. 2,2-Dimethyl butane
3. 2-Methyl hexane
4. None of the above
5.

The compound
 on reaction with NaIO_{4} in the presence of KMnO_{4} given :

1. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
2. $\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{CH}_{3} \mathrm{COOH}$
3. $\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{CH}_{3} \mathrm{CHO}$
4. $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{CO}_{2}$
5. Among the following the free-radical substitution reaction is-

6. The dihedral angle of the least stable conformer of ethane is-
7. 60°
8. 0°
9. 120°
10. 180°
11. The major product of the following chemical reaction is:

$$
\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{HBr} \xrightarrow{\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)_{2} \mathrm{O}_{2}} ?
$$

1.

2.
3.

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Environmental Chemistry (Expected Questions in NEET 2022: 1)

Subtopic Name
 Number of Questions

Air Pollution - Smog	4
Air Pollution - Greenhouse Effect	3
Air Pollution - Acid Rain	1
Air Pollution - Ozone	1
Water Pollution - Biological Oxygen Demand	1

1. Which oxide of nitrogen is not a common pollutant introduced into the atmosphere both due to natural and human activity?
2. $\mathrm{N}_{2} \mathrm{O}_{5}$
3. NO_{2}
4. $\mathrm{N}_{2} \mathrm{O}$
5. NO
6. Which one of the following is not a common component of Photochemical Smog?
7. Ozone
8. Acrolein
9. Peroxyacetyl nitrate
10. Chlorofluorocarbons
11. The incorrect statement among the following regarding photochemical smog is -
12. Carbon monoxide does not play any role in photochemical smog formation.
13. Photochemical smog is an oxidising agent in character.
14. Photochemical smog is formed through photochemical reaction involving solar energy.
15. Photochemical smog does not cause irritation in eyes and throat.
16.

Which one of the following statements is not true?

1. Concentration of dissolved oxygen below 5 ppm is good for the growth of fish
2. Clean water would have a BOD value of less than 5 ppm
3. Oxides of sulphur, nitrogen and carbon are the most widespread air pollutant
4. pH of drinking water should be between 6.5-8.5
5.

Green chemistry means such reactions that:

1. Produce colour during reactions.
2. Reduce the use and production of hazardous chemicals.
3. Are related to the depletion of ozone layer.
4. Study the reactions in plants.
5. The incorrect statement about carbon monoxide is1. It reduces the oxygen-carrying ability of blood.
6. The carboxyhaemoglobin (haemoglobin bound to CO) is less stable than oxyhaemoglobin.
7. It is produced due to incomplete combustion.
8. It forms carboxyhaemoglobin.
9. Which of the following statement is NOT true about acid rain?
(1) It is due to reaction of $\mathrm{SO}_{2}, \mathrm{NO}_{2}$ and CO_{2} with rain water
(2) Causes no damage to monuments like Taj Mahal.
(3) It is harmful to plants.
(4) Its pH is less than 5.6
10. The compound responsible for depletion of the ozone layer in the upper strata of the atmosphere :-
(1) Ferrocene
(2) Fullerenes
(3) Freons
(4) Polyhalogens
11. Match List-1 with List-II

List-I	List-II
(a) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$	(i) Acid rain
(b) $\mathrm{HOCl}(\mathrm{g}) \xrightarrow{\text { hv }} \mathrm{OH}+\mathrm{Cl}$	(ii) Smog
(c) $\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ $\mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$	(iii) Ozone depletion
(d) $\mathrm{NO}_{2}(\mathrm{~g}) \xrightarrow{\text { hv }} \mathrm{NO}(\mathrm{g})+\mathrm{O}(\mathrm{g})$	Tropospheric pollution

Choose the correct answer from the options given below.

1. (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
2. (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)
3. (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
4. (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
5. Among the following, the one that is not a greenhouse gas is:
6. Sulphur dioxide
7. Nitrous oxide
8. Methane
9. Ozone

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get
 FREE ACCESS for 3
 days of ANY NEETprep

course

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Solid State

(Expected Questions in NEET 2022: 1)

Subtopic Name	Number of Questions
Density \& Packing Fraction	14
Introduction \& Crystal System	12
 Coordination Number	11
 Semi-Conductors	6

1. Incorrect statement among the following is -
2. Density decreases in case of crystals with Schottky's defect.
3. $\mathrm{NaCl}(\mathrm{s})$ is insulator, silicon is semiconductor, silver is conductor, quartz is piezo electric crystal.
4. Frenkel defect is favoured in those ionic compounds in which sizes of cation and anions have large difference in sizes.
5. $F e_{0.98} \mathrm{O}$ has non stoichiometric metal excess defect.
6.

Iron exhibits bce structure at room temperature. Above $900^{\circ} \mathrm{C}$, it transforms to fcc structure. The ratio of density of iron at room temperature to that at $900^{\circ} \mathrm{C}$ is -
(Molar mass and atomic radii of iron remains constant with temperature)

1. $\frac{\sqrt{3}}{\sqrt{2}}$
2. $\frac{4 \sqrt{3}}{3 \sqrt{2}}$
3. $\frac{3 \sqrt{3}}{4 \sqrt{2}}$
4. $\frac{1}{2}$
5.

Lithium has a bcc structure. Its density is $530 \mathrm{~kg} \mathrm{~m}^{-3}$ and its atomic mass is $6.94 \mathrm{~g} \mathrm{~mol}^{-1}$. The edge length of a unit cell of lithium metal is:
$\left(\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)$

1. 352 pm
2. 527 pm
3. 264 pm
4. 154 pm
5. The correct statement regarding defects in the crystalline solid is -
6. Schottky defects have no effect on the density of crystalline solids.
7. Frenkel defects decreases the density of crystalline solids.
8. Frenkel defect is a dislocation defect.
9. Frenkel defect is found in halides of alkaline metals.
10. The vacant space in BCC lattice cell is :
11. 26%
12. 48%
13. 23%
14. 32%
15.

A given metal crystallizes out with a cubic structure having edge length of 361 pm . If there are four metal atoms in one unit cell, the radius of one atom is -

1. 40 pm
2. 127 pm
3. 80 pm
4. 108 pm
5. If a is the length of the side of a cube, the distance between the body centered atom and one corner atom in the cube will be:
6. $\frac{2}{\sqrt{3}} a$
7. $\frac{4}{\sqrt{3}} a$
8. $\frac{\sqrt{3}}{4} a$
9. $\frac{\sqrt{3}}{2} a$
10.

A metal has a fcc lattice. The edge length of the unit cell is 404 pm . The density of the metal is $2.72 \mathrm{~g} \mathrm{~cm}^{-3}$. The molar mass of the metal is :
$\left(\mathrm{N}_{\mathrm{A}}\right.$ Avogadro's constant $\left.=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)$
$1.30 \mathrm{~g} \mathrm{~mol}^{-1}$
2. $27 \mathrm{~g} \mathrm{~mol}^{-1}$
3. $20 \mathrm{~g} \mathrm{~mol}^{-1}$
4. $40 \mathrm{~g} \mathrm{~mol}^{-1}$
9.

The number of carbon atoms per unit cell of the diamond unit cell is:

1. 8
2. 6
3. 1
4. 4
5. A metal crystallizes with a fcc lattice. The edge of the unit cell is 408 pm . The diameter of the metal atom is :
6. 288 pm
7. 408 pm
8. 144 pm
9. 204 pm
10. AB crystallizes in a body-centered cubic lattice with edge length 'a' equal to 387 pm . The distance between two oppositely charged ions in the lattice is
11. 335 pm
12. 250 pm
13. 200 pm
14. 300 pm
15.

Sodium has body centered packing. Distance between two nearest atoms is $3.7 \AA$. The lattice parameter is -

1. $6.8 \AA$
2. $4.3 \AA$
3. $3.0 \AA$
4. $8.5 \AA$
5. Copper crystallises in a face-centred cubic lattice with a unit cell length of 361 pm . The radius of the copper atom is
6. 128 pm
7. 157 pm
8. 181 pm
9. 108 pm
10. If the lattice parameter for a crystalline structure is 3.6
\AA, then the atomic radius in fcc crystal is :
11. $1.81 \AA$
12. $2.10 \AA$
13. $2.92 \AA$
14. $1.27 \AA$
15. 4
16. Lithium metal crystallises in a body centred cubic crystal. If the length of the side of the unit cell of lithium is 351 pm , the atomic radius of the lithium will be :
17. 240.8 pm
18. 151.8 pm
3.75 .5 pm
19. 300.5 pm
20.

Which of the following statements is not correct?

1. The fraction of the total volume occupied by die atoms in a primitive cell is 0.48
2. Molecular solids are generally volatile
3. The number of carbon atoms in an unit cell of diamond is 8
4. The number of Bravais lattices in which a crystal can be categorized is 14
5. If 'a' stands for the edge length of the cubic systems: simple cubic, body centred cubic and face centred cubic, then the ratio of radii of the spheres in these systems will be respectively :
6. $\frac{1}{2} \mathrm{a} ; \frac{\sqrt{3}}{4} \mathrm{a}: \frac{1}{2 \sqrt{2}} \mathrm{a}$
7. $\frac{1}{2} \mathrm{a} ; \sqrt{3} \mathrm{a}: \frac{1}{\sqrt{2}} \mathrm{a}$
8. $\frac{1}{2} \mathrm{a} ; \frac{\sqrt{3}}{2} \mathrm{a}: \frac{\sqrt{2}}{2} \mathrm{a}$
9. $1 \mathrm{a} ; \sqrt{3} \mathrm{a}: \sqrt{2} \mathrm{a}$
10.

Percentage of free space in a body centred cubic unit cell is -

1. 30%
2. 32%
3. 34%
4. 28%
5.

Silicon give p-type of semiconductor on dope with -

1. Germanium.
2. Arsenic.
3. Selenium.
4. Boron.
5. For a cubic crystal structure which one of the following relations indicating the cell characteristic is correct?
6. $a \neq b \neq c$ and $\alpha \neq \beta$ and $\gamma \neq 90^{\circ}$
7. $a \neq b \neq c$ and $\alpha=\beta=\gamma=90^{\circ}$
8. $a=b=c$ and $\alpha \neq \beta=\gamma=90^{\circ}$
9. $a=b=c$ and $\alpha=\beta=\gamma=90^{\circ}$
10. The fraction of total volume occupied by the atoms present in a simple cube is :
11. $\frac{\pi}{6}$
12. $\frac{\pi}{3 \sqrt{2}}$
13. $\frac{\pi}{4 \sqrt{2}}$
14. $\frac{\pi}{4}$
15. If NaCl is doped with $10^{-4} \mathrm{~mol} \%$ of SrCl_{2}, the concentration of cation vacancies will be $\left(N_{A}=\right.$ $6.02 \times 10^{23} \mathrm{~mol}^{-1}$) :
16. $6.02 \times 10^{15} \mathrm{~mol}^{-1}$
17. $6.02 \times 10^{16} \mathrm{~mol}^{-1}$
18. $6.02 \times 10^{17} \mathrm{~mol}^{-1}$
19. $6.02 \times 10^{14} \mathrm{~mol}^{-1}$
20. CsBr crystallises in a body centred cubic lattice. The unit cell length is 436.6 pm . Given that the atomic mass of $\mathrm{Cs}=133$ and that of $\mathrm{Br}=80 \mathrm{amu}$ and Avogadro number being $6.02 \times 10^{23} \mathrm{~mol}^{-1}$, the density of CsBr is :
$1.42 .5 \mathrm{~g} / \mathrm{cm}^{3}$
21. $0.425 \mathrm{~g} / \mathrm{cm}^{3}$
22. $8.25 \mathrm{~g} / \mathrm{cm}^{3}$
23. $4.25 \mathrm{~g} / \mathrm{cm}^{3}$
24. The appearance of colour in solid alkali metal halides is generally due to :
25. F-centres.
26. Schottky defect.
27. Frenkel defect.
28. Interstitial positions.
29. A compound is formed by cation C and anion A . The anions form hexagonal close packed (hcp) lattice and the cations occupy 75% of octahedral voids. The formula of the compound is:
30. $\mathrm{C}_{3} \mathrm{~A}_{4}$
31. $\mathrm{C}_{2} \mathrm{~A}_{3}$
32. $\mathrm{C}_{3} \mathrm{~A}_{2}$
33. $\mathrm{C}_{4} \mathrm{~A}_{3}$
34. The formula of nickel oxide with metal deficiency defect in its crystal is $N i_{0.98} O$. The crystal contains Ni^{2+} and Ni^{3+} ions. The fraction of nickel existing as $N i^{2+}$ ions in the crystal is-
35. 0.96
36. 0.04
37. 0.50
38. 0.31
39. An element has a body-centered cubic (BCC) structure with a cell edge of 288 pm . The atomic radius is:
40. $\frac{\sqrt{2}}{4} \times 288 \mathrm{pm}$
41. $\frac{4}{\sqrt{3}} \times 288 \mathrm{pm}$
42. $\frac{4}{\sqrt{2}} \times 288 \mathrm{pm}$
43. $\frac{\sqrt{3}}{4} \times 288 \mathrm{pm}$
44. A compounds that can show both, Frenkel as well as Schottky defects is -
(1) AgBr
(2) AgI
(3) NaCl
(4) ZnS
45. Structure of a mixed oxide is cubic close-packed (CCP). The cubic unit cell of mixed oxide is composed of oxide ions. One fourth of the tetrahedral voids are occupied by divalent metal A and the octahedral voids are occupied by a monovalent metal B. The formula of the oxide is -
46. $A_{2} B O_{2}$
47. $A_{2} B_{3} O_{4}$
48. $A B_{2} O_{2}$

4 $A B O_{2}$
31. Copper has face-centered cubic (fcc) lattice with interatomic spacing equal to $2.54 \AA$. The value of lattice constant for this lattice is-
(1) $3.59 \AA$
(2) $2.54 \AA$
(3) $1.27 \AA$
(4) $5.08 \AA$
32. The cations and anions are arranged in alternate form in :

1. Metallic crystal
2. Ionic crystal
3. Co-valent crystal
4. Semi-conductor crystal
5. A cube of any crystal A-atom placed at every corners and B-atom placed at every centre of face. The formula of compound is :
6. AB
7. AB_{3}
8. $\mathrm{A}_{2} \mathrm{~B}_{2}$
9. $\mathrm{A}_{2} \mathrm{~B}_{3}$
10. Schottky defect shows :
11. Same number of cation and anions decrease from lattice.
12. Cations and anions are replaces from their sites.
13. Maximum number of cations and anions are same.
14. None of the above.
15. The edge length of face centred unit cubic cells is 508 pm . If the radius of the cation is 110 pm , the radius of the anion is :
16. 144 pm
17. 398 pm
18. 288 pm
19. 618 pm
20. Number of atom per unit cell in B.C.C. : -
(1) 9
(2) 4
(3) 2
(4) 1
21. On the basis of unit cell concept a crystal has :
22. 7 systems
23. 14 systems
24. 230 systems
25. 32 systems
26. A compound formed by elements X and Y crystallizes in a cubic structure in which the X atoms are at the corners of a cube and the Y atoms are at the face-centers. The formula of the compound is :-
(1) $X_{3} Y$
(2) XY
(3) XY_{2}
(4) XY_{3}
27. MgO and NaCl has similar structure. In MgO , magnesium is surrounded by how many oxygen atoms :
28. 2
29. 4
30. 6
31. 1
32. The pyknometric density of sodium chloride crystal is $2.165 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ while its X-ray density is 2.178×10^{3} $\mathrm{kg} \mathrm{m}^{-3}$. The fraction of unoccupied sites in sodium chloride crystal is :
(1) 5.96
(2) 5.96×10^{-2}
(3) 5.96×10^{-1}
(4) 5.96×10^{-3}
33. Zn convert it's melted state to its solid state, it has HCP structure, then number of nearest atom is :-
34. 6
35. 8
36. 12
37. 4
38. The number of tetrahedral and octahedral voids in hexagonal primitive unit cell are repectively:
39. 2,1
40. 12,6
41. 8,4
42. 6,12
43. The correct option for the number of body centred unit cells in all 14 types of Bravais lattice unit cells is :
44. 2
45. 3
3.7
46. 5

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there FREE ACCESS for 3 days of ANY NEETprep course

Solutions

(Expected Questions in NEET 2022: 2)

Subtopic Name	Number of
	Ouestions
Raoult's Law	10
Osmosis \& Osmotic Pressure	7
Depression of Freezing Point	6
Introduction/ Colligative properties	5
Relative Lowering of Vapour	
Pressure	5
Elevation of Boiling Point	4
Dalton's Law of Partial Pressure	2
Van't Hoff Factor	2
Azeotrope	1

1. The van't Hoff factor (i) for a dilute aqueous solution of the strong electrolyte barium hydroxide is-
2. 0
3. 1
4. 2
5. 3
6. The incorrect statement among following for an ideal solution is -
7. $\Delta \mathrm{H}_{\text {mix }}=0$
8. $\Delta \mathrm{U}_{\text {mix }}=0$
9. $\Delta \mathrm{P}=\mathrm{P}_{\text {obs. }} . \mathrm{P}_{\text {calculated by Raoult 's } L \text { Law }}=0$
10. $\Delta \mathrm{G}_{\text {mix }}=0$
11. If the molality of the dilute solutions is doubled, the value of molal depression constant $\left(\mathrm{K}_{\mathrm{f}}\right)$ will be-
12. Halved
13. Tripled
14. Unchanged
15. Doubled
16.

At $100{ }^{\circ} \mathrm{C}$ the vapour pressure of a solution of 6.5 g of a solute in 100 g water is 732 mm . If $\mathrm{K}_{\mathrm{b}}=0.52$, the boiling point of this solution will be-

1. $100^{0} \mathrm{C}$
2. $102{ }^{0} \mathrm{C}$
3. $103{ }^{0} \mathrm{C}$
4. $101{ }^{0} \mathrm{C}$
5.

Consider the following statements about the composition of the vapour over an ideal 1:1 molar mixture of benzene and toluene. The correct statement is-
Assume that the temperature is constant at $25^{\circ} \mathrm{c}$.
(Given, vapour pressure data at $25^{\circ} \mathrm{C}$, benzene $=12.8 \mathrm{kPa}$, toluene $=3.85 \mathrm{kPa}$)

1. The vapour will contain a higher percentage of toluene
2. The vapour will contain equal amounts of benzene and toluene
3. Not enough information is given to make a prediction
4. The vapour will contain a higher percentage of benzene
5.

for an ideal solution, the non zero value will be for-

1. $\Delta H_{m i x}$
2. $\Delta S_{\operatorname{mix}}$
3. $\Delta V_{\text {mix }}$
4. $\Delta P=P_{\text {observed }}-P_{\text {Raoult }}$
5.

The boiling point of $0.2 \mathrm{~mol} \mathrm{~kg}^{-1}$ solution of X in water is greater than equimolal solution of Y in water.

The correct statements in this case is-

1. X is undergoing dissociation in water.
2. Molecular mass of X is greater than the molecular mass of Y.
3. Molecular mass of X is less he molecular mass of y.
4. Y is undergoing dissociation in water while X undergoes no change.

8.

The electrolyte having same value of Van't Hoff factor (i) as that of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ (if all are 100% ionized) is-

1. $\mathrm{K}_{2} \mathrm{SO}_{4}$
2. $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
3. $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
4. $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
5. Of the following 0.10 m aqueous solutions, the one will exhibit the largest freezing point depression is-
6. KCl
7. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
8. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
9. $\mathrm{K}_{2} \mathrm{SO}_{4}$
10. p_{A} and p_{B} are the vapor pressure of pure liquid components, A and B , respectively of an ideal binary solution. If x_{A} represents the mole fraction of component
A, the total pressure of the solution will be
11. $p_{A}+x_{A}\left(p_{B}-p_{A}\right)$
12. $p_{A}+x_{A}\left(p_{A}-P_{B}\right)$
13. $p_{B}+x_{A}\left(p_{B}-p_{A}\right)$
14. $p_{B}+x_{A}\left(p_{A}-p_{B}\right)$
15.

The freezing point depression constant for water is -1.86° $\mathrm{C} \mathrm{m}^{-1}$. If $5.00 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}$ is dissolved in $45.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$, the freezing point is changed by $-3.82{ }^{\circ} \mathrm{C}$. The van't Hoff factor for $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is-

1. 2.63
2. 3.11
3. 0.381
4. 2.05
5.

The van't Hoff factor, i, for a compound that undergoes dissociation and association in a solvent, is respectively -

1. Less than one and less than one
2. Greater than one and less than one
3. Greater than one and greater than one
4. Less than one and greater than one
5. An aqueous solution is 1.00 molal in KI. Vapour pressure of the solution can be increase by-
6. Addition of NaCl
7. Addition of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
8. Addition of 1.00 molal Kl
9. Addition of water
10. A solution of sucrose(molar mass $=342 \mathrm{~g} \mathrm{~mol}^{-1}$) has been prepared by dissolving 68.5 g of sucrose in 1000 g of water. The freezing point of the solution obtained will be (k_{f} for water $=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)
11. $-0.372{ }^{\circ} \mathrm{C}$
12. $-0.520^{\circ} \mathrm{C}$
13. $+0.372{ }^{\circ} \mathrm{C}$
14. $-0.570{ }^{\circ} \mathrm{C}$
15. A 0.0020 m aqueous solution of an ionic compound $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right) \mathrm{Cl}$ freezes at -0.0073 C . Number of moles of ions which 1 mol of ionic compound produces on being dissolved in water will be -
$\left(\mathrm{k}_{\mathrm{f}}=-1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
16. 2
17. 3
18. 4
19. 1
20. 0.5 molal aqueous solution of a weak acid $(H X)$ is 20% ionised. The lowering in freezing point of the solution is :
[K_{f} for water $=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]
21. -1.12 K
22. 0.56 K
23. 1.12 K
24. -0.56 K
25. A solution containing 10 g per dm^{3} of urea (molecular mass $=60 \mathrm{~g} \mathrm{~mol}^{-1}$) is isotonic with a 5% solution of a nonvolatile solute. The molecular mass of this non-volatile solute is -
$1.25 \mathrm{~g} \mathrm{~mol}^{-1}$.
26. $300 \mathrm{~g} \mathrm{~mol}^{-1}$.
27. $350 \mathrm{~g} \mathrm{~mol}^{-1}$.
28. $200 \mathrm{~g} \mathrm{~mol}^{-1}$.
29. 1.00 g of non-electrolyte solute (molar mass 250 g mol^{-1}) was dissolved in 51.2 g of benzene. If the freezing point depression constant, K_{f} of benzene is $5.12 \mathrm{~mol}^{-1}$ kg K , the freezing point of benzene will be lowered by -
30. 0.4 K
31. 0.3 K
32. 0.5 K
33. 0.2 K
34. A solution of acetone in ethanol :
35. shows a negative deviation from Raoult's law
36. shows a positive deviation from Raoult's law
37. behaves like a near ideal solution
38. obeys Raoult's law
39. During osmosis, the flow of water through a semipermeable membrane is -
40. From a solution having higher concentration only
41. From both sides of the semi-permeable membrane with equal flow rates
42. From both sides of the semi-permeable membrane with unequal flow rates
43. From a solution having lower concentration only
44. For an ideal solution, the correct option is-
45. $\Delta_{\text {mix }} \mathrm{G}=0$ at constant T and P
46. $\Delta_{\text {mix }} S=0$ at constant T and P
47. $\Delta_{\text {mix }} \mathrm{V} \neq 0$ at constant T and P
48. $\Delta_{\text {mix }} \mathrm{H}=0$ at constant T and P
49. The mixture that forms maximum boiling azeotrope is-
50. Heptane+Octane
51. Water+Nitric acid
52. Ethanol + Water
53. Acetone + Carbon disulfide
54. The correct statement regarding a solution of two component A and B exhibiting positive deviation from idea behavior is -
55. Intermolecular attractive force between $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$ are stronger than those between A-B
56. $\Delta_{m i x} H=0$ at cons $\tan t T$ and P
57. $\Delta_{m i x} V=0$ at cons $\tan t T$ and P
58. Intermolecular attractive forces between $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$ are equal to those between A-B
59. The mixture shows positive deviation from Raoult's law is-
60. Benzene + Toluene
61. Acetone + Chloroform
62. Chloroethane + Bromoethane
63. Ethanol + Acetone
64. The freezing point of depression constant $\left(K_{f}\right)$ of benzene is $5.12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}{ }^{-1}$. The freezing point depression for the solution of molality 0.078 m containing a non-electrolyte solute in benzene is- (rounded off upto two decimal places) :
65. 0.80 K
66. 0.40 K
67. 0.60 K
68. 0.20 K
69. If 8 g of a non-electrolyte solute is dissolved in 114 g of n-octane to reduce its vapour pressure to 80%, the molar mass (in $\mathrm{g} \mathrm{mol}^{-1}$) of the solute is -
[Molar mass of n -octane is $114 \mathrm{~g} \mathrm{~mol}^{-1}$]
70. 40
71. 60
72. 80
73. 20
74. Isotonic solutions have same-
75. Vapour pressure
76. Freezing temperature
77. Osmotic pressure
78. Boiling temperature
79. Vapour pressure of chloroform $\left(\mathrm{CHCl}_{3}\right)$ and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at $25^{\circ} \mathrm{C}$ are 200 mmHg and 41.5 mmHg respectively. Vapour pressure of the solution obtained by mixing 25.5 g of $\left(\mathrm{CHCl}_{3}\right)$ and 40 g of $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at the same temperature will be: (Molecular mass of $\left(\mathrm{CHCl}_{3}\right)=119.5 \mathrm{u}$ and molecular mass of $\left.\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=85 \mathrm{u}\right)$
80. 90.40 mm Hg
81. 119.5 mm Hg
82. 75 mm Hg
83. 173.9 mm Hg
84. A 0.1 molal aqueous solution of a weak acid (HA) is 30% ionized. If K_{f} for water is $1.86^{\circ} \mathrm{C} / \mathrm{m}$, the freezing point of the solution will be -
85. $-0.24^{\circ} \mathrm{C}$
86. $-0.18^{\circ} \mathrm{C}$
87. $-0.54^{\circ} \mathrm{C}$
88. $-0.36^{\circ} \mathrm{C}$
89. 200 mL of an aqueous solution of a protein contains it's 1.26 g . The Osmotic pressure of this solution at 300 K is found to be 2.57×10^{-3} bar. The molar mass of protein will be
$\left(\mathrm{R}=0.083 \mathrm{~L}_{\mathrm{bar}}^{\mathrm{mol}}{ }^{-1} \mathrm{~K}^{-1}\right):$
90. $61038 \mathrm{~g} \mathrm{~mol}^{-1}$
91. $51022 \mathrm{~g} \mathrm{~mol}^{-1}$
92. $122044 \mathrm{~g} \mathrm{~mol}^{-1}$
$4.31011 \mathrm{~g} \mathrm{~mol}^{-1}$
93. The vapour pressure of two liquids ' P ' and ' Q ' are 80 and 60 torr, respectively. The total vapour pressure of solution obtained by mixing 3 mole of P and 2 mole of Q would be :-
(1) 68 torr
(2) 140 torr
(3) 72 torr
(4) 20 torr
94. A solution of urea (mol. mass $56 \mathrm{~g} \mathrm{~mol}^{-1}$) boils at $100.18^{\circ} \mathrm{C}$ at the atmospheric pressure. If K_{f} and K_{b} for water are 1.86 and $0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}{ }^{-1}$ respectively, the above solution will freeze at:-
(1) $-6.54^{\circ} \mathrm{C}$
(2) $-0.654^{\circ} \mathrm{C}$
(3) $6.54^{\circ} \mathrm{C}$
(4) $0.654^{\circ} \mathrm{C}$
95. A solution has a $1: 4$ mole ratio of pentane to hexane. The vapour pressures of the pure hydrocarbons at $20^{\circ} \mathrm{C}$ are 440 mm Hg for pentane and 120 mm Hg for hexane. The mole fraction of pentane in the vapour phase would be-
(1) 0.200
(2) 0.478
(3) 0.549
(4) 0.786
96. The addition of water vapours does not change the density of -
97. CCl_{4}
98. CS_{2}
99. Ether
100. Coke
101. $1 \%(\mathrm{w} / \mathrm{w})$ solution of a compound is isotonic with 5% (w/w)sucrose (sugar) solution. Then molecular wt. of compound will be :
102. 32.4
103. 68.4
104. 129.6
105. 34.2
106. Mole fraction of solute is 0.2 in solution then lowering in V.P $(\Delta \mathrm{P})=10$. If lowering in V.P. $(\Delta \mathrm{P})=20$ then mole fraction of solvent will be in solution :
107. 0.2
108. 0.4
109. 0.6
40.8
110. From the colligative properties of solution which one is the best method for the determination of molecular weight of proteins \& polymers :

1. Osmotic pressure

2. Lowering in vapour pressure
3. Lowering is freezing point
4. Elevation in boiling point
5. A solution contains non volatile solute of molecular mass M_{2}. The molecular mass of solute in terms of osmotic pressure is :-
6. $\mathrm{M}_{2}=\left(\frac{\mathrm{m}_{2}}{\pi}\right) \mathrm{VRT}$
7. $\mathrm{M}_{2}=\left(\frac{\mathrm{m}_{2}}{\mathrm{~V}}\right) \frac{\mathrm{RT}}{\pi}$
8. $\mathrm{M}_{2}=\left(\frac{\mathrm{m}_{2}}{\mathrm{~V}}\right) \pi \mathrm{RT}$
9. $\mathrm{M}_{2}=\left(\frac{\mathrm{m}_{2}}{\mathrm{~V}}\right) \frac{\pi}{\mathrm{RT}}$

Note:
$\mathrm{m}_{2} \rightarrow$ mass of solute
$\mathrm{V} \rightarrow$ Volume of solution
$\Pi \rightarrow$ Osmotic pressure
39. The ideal solution indicates -
(1) $A-B$ attraction force is greater than $A-A$ and $B-B$
(2) $\mathrm{A}-\mathrm{B}$ attraction force is less than $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$
(3) Attraction force remains same in $A-A$ and $B-B$
(4) Volume of the solution is different from the sum of the volume of solute and solvent
40. Beans get cooked earlier in a pressure cooker, because:

1. Boiling point increase with increasing pressure
2. Boiling point decrease with increasing pressure
3. Extra pressure of pressure cooker, softens the beans
4. Internal energy is not lost while cooking in a pressure cooker
5. The following solutions were prepared by dissolving 10 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in 250 ml of water $\left(\mathrm{P}_{1}\right) .10 \mathrm{~g}$ of urea $\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}\right)$ in 250 ml of water $\left(\mathrm{P}_{2}\right)$ and 10 g of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ in 250 ml of water $\left(\mathrm{P}_{3}\right)$. The decreasing order of osmotic pressure of these solutions is:
6. $\mathrm{P}_{2}>\mathrm{P}_{3}>\mathrm{P}_{1}$
7. $\mathrm{P}_{3}>\mathrm{P}_{1}>\mathrm{P}_{2}$
8. $\mathrm{P}_{2}>\mathrm{P}_{1}>\mathrm{P}_{3}$
9. $\mathrm{P}_{1}>\mathrm{P}_{2}>\mathrm{P}_{3}$
10. The correct option for the value of vapour pressure of a solution at $45^{\circ} \mathrm{C}$ with benzene to octane in a molar ratio $3: 2$ is :
[At $45^{\circ} \mathrm{C}$ vapour pressure of benzene is 280 mm Hg and that of octane is 420 mm Hg . Assume Ideal gas]
11. 336 mm of Hg
12. 350 mm of Hg
13. 160 mm of Hg
14. 168 mm of Hg

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there
CLICK HERE to get
FREE ACCESS for 3
days of ANY NEETprep
course

Electrochemistry

(Expected Questions in NEET 2022: 2)

Subtopic Name	Number of Questions
Electrode \& Electrode Potential	13
Faraday's Law of Electrolysis	11
Relation between Emf ,G, Kc \& pH	10
Kohlrausch Law \& Cell Constant	8
Conductance \& Conductivity	$\mathbf{3}$
Batteries \& Salt Bridge	2
Electrochemical Series	2
Electrolytic \& Electro-Chemical Cell	2
Nernst Equation	2

1. The molar conductivity of a $0.5 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of AgNO_{3} with electrolytic conductivity of $5.76 \times 10^{-3} \mathrm{Scm}^{-}$ ${ }^{1}$ at 298 K is -
2. $11.5 \mathrm{Scm}^{2} / \mathrm{mol}$
3. $21.5 \mathrm{Scm}^{2} / \mathrm{mol}$
4. $31.5 \mathrm{Scm}^{2} / \mathrm{mol}$
5. $41.5 \mathrm{Scm}^{2} / \mathrm{mol}$
6. During the electrolysis of molten sodium chloride, the time required to produce 0.10 mol of chlorine gas using a current of 3 amperes is
7. 55 minutes
8. 110 minutes
9. 220 minutes
10. 330 minutes
11.

In the electrochemical cell:
$\mathrm{Zn}\left|\mathrm{ZnSO}_{4}(0.01 \mathrm{M}) \| \mathrm{CuSO}_{4}(1.0 \mathrm{M})\right| C u$, the emf of this Daniel cell is E_{1}. When the concentration of ZnSO_{4} is changed to 1.0 M and that of CuSO_{4} changed to 0.01 M , the emf changes to E_{2}. From the followings, which one is the relationship between E_{1} and E_{2} ? (Given, $\frac{R T}{F}=0.059$)

1. $E_{1}<E_{2}$
2. $E_{1}>E_{2}$
3. $E_{2}=0 \neq E_{1}$
4. $E_{1}=E_{2}$
5. If the $\mathrm{E}_{\text {cell }}$ for a given reaction has a negative value, which of the following gives correct relationships for the values of $\Delta \mathrm{G}^{0}$ and K_{eq} ?
6. $\Delta \mathrm{G}^{o}>0 ; \mathrm{K}_{\mathrm{eq}}<1$
7. $\Delta \mathrm{G}^{\mathrm{o}}>0 ; \mathrm{K}_{\mathrm{eq}}>1$
8. $\Delta \mathrm{G}^{\mathrm{o}}<0 ; \mathrm{K}_{\mathrm{eq}}>1$
9. $\Delta \mathrm{G}^{o}<0 ; \mathrm{K}_{\mathrm{eq}}<1$
10. The number of electrons delivered at the cathode during electrolysis by a current of 1 ampere in 60 seconds is :
$\left(\right.$ Charge on electron $\left.=1.60 \times 10^{-19} \mathrm{C}\right)$
11. 6×10^{23}
12. 6×10^{20}
13. 3.75×10^{20}
14. 7.48×10^{20}
15.

Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below:

Then the species undergoing disproportionation is:-

1. BrO_{3}^{-}
2. ${ }^{\mathrm{BrO}_{4}^{-}}$
3. Br_{2}
4. HBrO

Electrochemistry - NCERT based PYQs

7.

The pressure of H_{2} required to make the potential of H_{2} electrode zero in pure water at 298 K is :

1. $10^{-12} \mathrm{~atm}$
2. $10^{-10} \mathrm{~atm}$
3. $10^{-4} \mathrm{~atm}$
4. $10^{-14} \mathrm{~atm}$
5.

A device that converts energy of combustion of fuels like hydrogen and methane, directly into electrical energy is known as :

1. Fuel cell
2. Electrolytic cell
3. Dynamo
4. Ni-Cd cell
5. When $0.1 \mathrm{~mol}_{\mathrm{MnO}}^{4}{ }^{2-}$ is oxidized the quantity of electricity required to completely oxidise $\mathrm{MnO}_{4}{ }^{2-}$ to $\mathrm{MnO}_{4}{ }^{-}$is :
6. 96500 C
7. $2 \times 96500 \mathrm{C}$
8. 9650 C
9. 96.50 C
10. The weight of silver (at.wt. = 108) displaced by a quantity of electricity which displaces 5600 mL of O_{2} at STP will be :
11. 5.4 g
12. 10.8 g
13. 54.0 g
14. 108.0 g
15.

A hydrogen gas electrode is made by dipping platinum wire in a solution of HCl of $\mathrm{pH}=10$ and by passing hydrogen gas around the platinum wire at one atm pressure. The oxidation potential of electrode would be :

1. 0.59 V
2. 0.118 V
3. 1.18 V
4. 0.059 V
5.

At $25^{\circ} \mathrm{C}$ molar conductance of 0.1 molar aqueous solution of ammonium hydroxide is $9.54 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ and at infinite dilution, its molar conductance is 238 ohm $^{-}$ $1 \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. The degree of ionization of ammonium hydroxide at the same concentration and temperature is :

1. 20.800%
2. 4.008%
3. 40.800%
4. 2.080%
5. A button cell used in watches functions as following
$\mathrm{Zn}(\mathrm{s})+\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Zn}^{2+}(\mathrm{aq})+$ $2 \mathrm{OH}^{-}(\mathrm{aq})$

If half cell potentials are :
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s}) ; \mathrm{E}^{\mathrm{o}}=-0.76 \mathrm{~V}$
$\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{E}^{\mathrm{o}}=$ 0.34 V

The cell potential will be:

1. 0.42 V
2. 0.84 V
3. 1.34 V
4. 1.10 V
5. Limiting molar conductivity of $\mathrm{NH}_{4} \mathrm{OH}$ (i.e., $\Lambda_{\mathrm{m}\left(\mathrm{NH}_{4} \mathrm{OH}\right)}^{0}$ is equal to -
6. $\Lambda_{\mathrm{m}(\mathrm{NaOH})}^{0}+\Lambda_{\mathrm{m}(\mathrm{NaCl})}^{0}-\Lambda_{\mathrm{m}(\mathrm{NaOH})}^{0}$
7. $\Lambda_{\mathrm{m}(\mathrm{NaOH})}^{0}+\Lambda_{\mathrm{m}(\mathrm{NaCl})}^{0}-\Lambda_{\mathrm{m}\left(\mathrm{NH}_{4} \mathrm{Cl}\right)}^{0}$
8. $\Lambda_{\mathrm{m}\left(\mathrm{NH}_{4} \mathrm{OH}\right)}^{0}+\Lambda_{\mathrm{m}\left(\mathrm{NH}_{4} \mathrm{Cl}\right)}^{0}-\Lambda_{\mathrm{m}(\mathrm{HCl})}^{0}$
9. $\Lambda_{\mathrm{m}\left(\mathrm{NH}_{4} \mathrm{Cl}\right)}^{0}+\Lambda_{\mathrm{m}(\mathrm{NaOH})}^{0}-\Lambda_{\mathrm{m}(\mathrm{NaCl})}^{0}$
10.

Standard electrode potential of three metals X, Y and Z are $-1.2 \mathrm{~V},+0.5 \mathrm{~V}$ and -3.0 V respectively. The reducing power of these metals will be :

1. $\mathrm{Y}>\mathrm{X}>\mathrm{Z}$
2. $\mathrm{Z}>\mathrm{X}>\mathrm{Y}$
3. $X>Y>Z$
4. $\mathrm{Y}>\mathrm{Z}>\mathrm{X}$
5.

If the $E_{c e l l}^{0}$ for a given reaction has a negative value then which of the following gives the correct relationships for the values of ΔG^{0} and $K_{e q}$?

1. $\Delta \mathrm{G}^{0}<0 ; \mathrm{K}_{\mathrm{eq}}>1$
2. $\Delta \mathrm{G}^{0}<0 ; \mathrm{K}_{\mathrm{eq}}<1$
3. $\Delta \mathrm{G}^{0}>0 ; \mathrm{K}_{\mathrm{eq}}<1$
4. $\Delta \mathrm{G}^{0}>0 ; \mathrm{K}_{\mathrm{eq}}>1$
5.

The electrode potentials for

$$
\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathrm{aq})
$$

and $\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$
are +0.15 V and +0.50 V respectively. The value of $\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{0}$ will be :

1. 0.325 V
2. 0.650 V
3. 0.150 V
4. 0.500 V
5.

Standard electrode potential for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$ couple is +0.15 V and that for the $\mathrm{Cr}^{3+} / \mathrm{Cr}$ couple is -0.74 . These two couple in their standard state are connected to make a cell. The cell potential will be :

1. +0.89 V
2. +0.18 V
3. +1.83 V
4. +1.199 V
5. In producing chlorine by electrolysis 100 kW power a t 125 V is being consumed. How much chlorine per minute is liberated (ECE of chlorine is 0.367 X $10-6 \mathrm{kgC}^{-}$ ${ }^{1}$)
1.1. $76 \times 10^{-3} \mathrm{~kg}$
6. $9.67 \times 10^{-3} \mathrm{~kg}$
$3.17 .61 \times 10^{-3} \mathrm{~kg}$
7. $3.67 \times 10^{-3} \mathrm{~kg}$
8. For the reduction of silver ions with copper metal, the standard cell potential was found to be +0.46 V a t $25^{\circ} \mathrm{C}$. The value of standard Gibbs energy, $\Delta \mathrm{G}^{\mathrm{o}}$ will be :
$\left(\mathrm{F}=96500 \mathrm{C} \mathrm{mol}^{-1}\right)$
9. -89.0 kJ
10. -89.0 J
11. -44.5 kJ
12. -98.0 kJ
13.

$\mathrm{Al}_{2} \mathrm{O}_{3}$ is reduced by electrolysis at low potentials and high currents. If $4.0 \times 10^{4} \mathrm{~A}$ of current is passed through molten $\mathrm{Al}_{2} \mathrm{O} 3$ for 6 hours, what mass of aluminium is produced ? (Assume 100% current efficiency, at. mass of $\mathrm{Al}=27 \mathrm{~g} \mathrm{~mol}^{-1}$)

1. $9.0 \times 10^{3} \mathrm{~g}$
2. $8.1 \times 10^{4} \mathrm{~g}$
3. $2.4 \times 10^{5} \mathrm{~g}$
4. $1.3 \times 10^{4} \mathrm{~g}$
5. The molar conductance of $\frac{\mathrm{M}}{32}$ solution of a weak monobasic acid is $8.0 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ and at infinite dilution is $400 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$. The dissociation constant of this acid is :
6. 1.25×10^{-5}
7. 1.25×10^{-6}
8. 6.25×10^{-4}
9. 1.25×10^{-4}
10. Given,
(i) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu} \quad \mathrm{E}^{0}=0.337 \mathrm{~V}$
(ii) $\mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+} \mathrm{E}^{\mathrm{o}}=0.153 \mathrm{~V}$

Electrode potential, E^{0} for the reaction, $\mathrm{Cu}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}$, will be :

1. 0.52 V
2. 0.90 V
3. 0.30 V
4. 0.38 V
5.

Kohlrausch's law states that at :

1. Finite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte.
2. Infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte depending on the nature of the other ion of the electrolyte.
3. Infinite dilution, each ion makes definite contribution to conductance of an electrolyte whatever be the nature of the other ion of the electrolyte.
4. Infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte.
5.

The sequence of ionic mobility in aqueous solution is :

1. $\mathrm{K}^{+}>\mathrm{Na}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
2. $\mathrm{Cs}^{+}>\mathrm{Rb}^{+}>\mathrm{K}^{+}>\mathrm{Na}^{+}$
3. $\mathrm{Rb}^{+}>\mathrm{K}^{+}>\mathrm{Cs}^{+}>\mathrm{Na}^{+}$
4. $\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
5. A steady current of 1.5 A flows through a copper voltmeter for 10 min . If the electrochemical equivalent of copper is $30 \times 10^{-5} \mathrm{gC}^{-1}$, the mass of copper deposited on the electrode will be :
6. 0.40 g
7. 0.50 g
8. 0.67 g
9. 0.27 g
10. The equilibrium constant of the reaction :
$\mathrm{Cu}(s)+2 \mathrm{Ag}^{+}(a q) \rightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{Ag}(s) ;$
$E^{0}=0.46 \mathrm{~V}$ at 298 K is :
11. 2.4×10^{10}
12. 2.0×10^{10}
13. 4.0×10^{10}
14. 4.0×10^{15}
15.

In producing chlorine through electrolysis 100 W power at 125 V is being consumed. Liberation of chlorine per min is -
(ECE of chlorine is $0.367 \times 10^{-6} \mathrm{~kg} / \mathrm{C}$)

1. 17.6 mg
2.21 .3 mg
3.24 .3 mg
4.13 .6 mg
2. If $\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\mathrm{o}}=-0.441 \mathrm{~V}$ and $\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{0}=0.771 \mathrm{~V}$, the standard emf of the reaction :
3. A hypothetical electrochemical cell is shown below $A\left|A^{+}(x M) \| B^{+}(y M)\right| B$
The Emf measured is +0.20 V . The cell reaction is :
4. $A^{+}+B \rightarrow A+B^{+}$
5. $A^{+}+e^{-} \rightarrow A ; B^{+}+e^{-} \rightarrow B$
6. The cell reaction cannot be predicted.
7. $A+B^{+} \rightarrow A^{+}+B$
8. For the cell reaction $2 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})$
$\mathrm{E}_{\text {cell }}^{\ominus}=0.24 \mathrm{~V}$ at 298 K . The standard Gibbs energy $\left(\Delta, \mathrm{G}^{\ominus}\right)$ of the cell reaction is:
[Given: $F=96500 \mathrm{C} \mathrm{mol}^{-1}$]
9. $23.16 \mathrm{~kJ} \mathrm{~mol}^{-1}$
10. $-46.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$
11. $-23.16 \mathrm{~kJ} \mathrm{~mol}^{-1}$
12. $46.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$
13. For a cell involving one electron $\mathrm{E}_{\text {cell }}^{\ominus}=0.59 \mathrm{~V}$ at 298 K , the equilibrium constant for the cell reaction is:
$\left[\right.$ Given that $\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.059 \mathrm{~V}$ at $\mathrm{T}=298 \mathrm{~K}$]
14. 1.0×10^{30}
15. 1.0×10^{2}
16. 1.0×10^{5}
17. 1.0×10^{10}
$\mathrm{Fe}+2 \mathrm{Fe}^{3+} \rightarrow 3 \mathrm{Fe}^{2+}$ will be :
18. 0.330 V
19. 1.653 V
20. 1.212 V
21. 0.111 V
22. Following limiting molar conductivities are given as
$\lambda_{m}^{0}\left(H_{2} S O_{4}\right)=x S c m^{2} \mathrm{~mol}^{-1}$
$\lambda_{m}^{0}\left(K_{2} S O_{4}\right)=y S c m^{2} \mathrm{~mol}^{-1}$
$\lambda_{m}^{0}\left(\mathrm{CH}_{3} \mathrm{COOK}\right)=z S c m^{2} \mathrm{~mol}^{-1}$
$\lambda_{m}^{0}\left(\right.$ in $\left.\mathrm{Scm}^{2} \mathrm{~mol}^{-1}\right)$ for $\mathrm{CH}_{3} \mathrm{COOH}$ will be-
23. $x-y+2 z$
24. $x+y+z$
25. $x-y+z$
26. $\frac{(x-y)}{2}+z$
27. The number of Faradays (F) required to produce 20 g of calcium from molten CaCl_{2} (Atomic mass of $\mathrm{Ca}=40 \mathrm{~g}$ mol^{-1}) is:
(1) 2
(2) 3
(3) 4
(4) 1
28. On electrolysis of dilute sulphuric acid using Platinum (Pt) electrode, the product obtained at the anode will be:
29. Oxygen gas
30. $\mathrm{H}_{2} \mathrm{~S}$ gas
31. SO_{2} gas
32. Hydrogen gas
33. In a typical fuel cell, the reactants (R) and product (P) are :-
(1) $R=H_{2(g)}, O_{2(g)} ; P=H_{2} O_{2(l)}$
(2) $R=H_{2(g)}, O_{2(g)} ; P=H_{2} O_{(l)}$
(3) $R=H_{2(g)}, O_{2(g)}, \mathrm{Cl}_{2}(g) ; P=\mathrm{HClO}_{4(a q)}$
(4) $R=H_{2(g)}, N_{2(g)} ; P=N H_{3(a q)}$
34. The Gibb's energy for the decomposition of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is as follows:
$\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2} ; \Delta r G=+960 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The potential difference needed for the electrolytic reduction of aluminium oxide
$\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ at $500^{\circ} \mathrm{C}$ is at least,
35. 3.0 V
36. 2.5 V
37. 5.0 V
38. 4.5 V
39. Molar conductivities $\left(\wedge^{\circ}{ }_{m}\right)$ at infinite dilution of $\mathrm{NaCl}, \mathrm{HCl}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ are 126.4, 425.9 and 91.0 $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ respectively. $\left(\wedge^{\circ}{ }_{m}\right)$ for $\mathrm{CH}_{3} \mathrm{COOH}$ will be:
40. $180.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
41. $290.8 S_{\mathrm{cm}^{2} \mathrm{~mol}^{-1}}$
42. $390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
43. $425.5 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$

Electrochemistry - NCERT based PYQs

Contact Number: 9667591930 / 8527521718
39. The correct expression that represents the equivalent conductance at infinite dilution of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is: (Given that $\wedge_{\mathrm{Al}^{3+}}^{\circ}$ and $\wedge_{\mathrm{SO}_{4}^{2-}}^{\circ}$ are the equivalent conductances at infinite dilution of the respective ions)

1. $\wedge_{A l^{3+}}^{\circ}+\wedge_{S O_{4}^{2-}}^{\circ}$
2. $\left(\wedge_{A l^{3+}}^{\circ}+\wedge_{S O_{4}^{2-}}^{\circ}\right) \times 6$
3. $\frac{1}{3} \wedge_{A l^{3+}}^{\circ}+\frac{1}{2} \wedge_{S O_{4}^{2-}}^{\circ}$
4. $2 \wedge_{A l^{3+}}^{\circ}+3 \wedge_{S O_{4}^{2-}}^{\circ}$
5. Consider the following relations for emf of a electrochemical cell :
(a) emf of cell $=$ (Oxidation potential of anode) (Reduction potential of cathode)
(b) emf of cell $=$ (Oxidation potential of anode) + (Reduction potential of cathode)
(c) emf of cell $=$ (Reduction potential of anode) + (Reduction potential of cathode)
(d) emf of cell $=$ (Oxidation potential of anode) (Oxidation potential of cathode)

The correct relation among the given options is :

1. (a) and (b)
2. (c) and (d)
3. (b) and (d)
4. (c) and (a)
5. The concentration of $Z n C l_{2}$ solution will change when it is placed in a container which is made of :
6. Al
7. Cu
8. Ag
9. None
10. The cell reaction of an electrochemical cell is $C u^{2+}\left(C_{1}\right)+Z n \rightarrow C u+Z n^{2+}\left(C_{2}\right)$.

The change in free energy will be the function of :
$1 . \ln \left(C_{1}+C_{2}\right)$
2. $\ln \left(\frac{C_{2}}{C_{1}}\right)$
$3 . \ln C_{2}$
4. $\ln C_{1}$
43. 4.5 g of aluminium (at. mass 27 amu) is deposited at cathode from Al^{3+} solution by a certain quantity of electric charge. The volume of hydrogen produced at STP from H^{+}ions in solution by the same quantity of electric charge will be -
(1) 44.8 L
(2) 11.2 L
(3) 22.4 L
(4) 5.6 L
44. For the disproportionation of copper :
$2 C u^{+} \rightarrow C u^{+2}+C u, E^{\circ}$ is :-
(Given E° for $\mathrm{Cu}^{+2} / \mathrm{Cu}$ is $0.34 \mathrm{~V} \mathrm{\&} \mathrm{E}^{\circ}$ for $\mathrm{Cu}^{+2} / \mathrm{Cu}^{+}$is 0.15 V)

1. 0.49 V
2. -0.19 V
3. 0.38 V
4. -0.38 V
5. Cell reaction is spontaneous when :
6. $\Delta \mathrm{G}^{\mathrm{o}}$ is negative
7. $\Delta \mathrm{G}^{\mathrm{o}}$ is positive
8. $E_{R e d}^{\circ}$ is positive
9. $E_{R e d}^{\circ}$ is negative
10. At infinite dilution equivalent conductances of $\mathrm{Ba}^{+2} \&$ Cl^{-}ions are $127 \& 76 \mathrm{ohm}^{-1} \mathrm{~cm}^{-1} \mathrm{eq}^{-1}$ respectively. Equivalent conductance $\left(\mathrm{ohm}^{-1} \mathrm{~cm}^{-1} \mathrm{eq}^{-1}\right) \mathrm{of} \mathrm{BaCl}_{2}$ at infinite dilution is :
11. 139.5
12. 101.5
13. 203
14. 279
15. The value of E^{0} cell for the following reaction is -
$C u^{2+}+S n^{2+} \rightarrow C u+S n^{4+}$
(Given, equilibrium constant is 10^{6})
16. 0.17
17. 0.01
18. 0.05
19. 1.77
20. The standard Emf of a galvanic cell involving cell reaction with $\mathrm{n}=2$ is found to be 0.295 V at $25^{\circ} \mathrm{C}$. The equilibrium constant of the reaction would be :-
(Given $\mathrm{F}=96500 \mathrm{C} \mathrm{mol}^{-1} ; \mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
$1.4 .0 \times 10^{12}$
21. 1.0×10^{2}
22. 1.0×10^{10}
23. 2.0×10^{11}
24. In electrolysis of NaCl when Pt electrode is taken then H_{2} is liberated at cathode while with Hg cathode it forms sodium amalgam :-
(1) Hg is more inert than Pt
(2) More voltage is required to reduce H^{+}at Hg than at Pt
(3) Na is dissolved in Hg while it does not dissolve in Pt
(4) Concentration of H^{+}ions is larger when Pt electrode is taken.
25. On the basis of the information available from the reaction :
$\frac{4}{3} \mathrm{Al}+\mathrm{O}_{2} \rightarrow \frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3}, \Delta \mathrm{G}=-827 \mathrm{KJ} \mathrm{mol}^{-1}$ of O_{2}, the minimum e.m.f. required to carry out electrolysis of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is : $\left(\mathrm{F}=96500 \mathrm{C} \mathrm{mol}^{-1}\right)$
(1) 2.14 V
(2) 4.28 V
(3) 6.42 V
(4) 8.56 V
26. The EMF of a Daniel cell at 298 K is $\mathrm{E}_{1} \mathrm{Zn}\left|\mathrm{ZnSO}_{4}(0.01 \mathrm{M}) \| \mathrm{CuSO}_{4}(1.0 \mathrm{M})\right| \mathrm{Cu}$.
When the concentration of ZnSO_{4} is 1.0 M and that of CuSO_{4} is 0.01 M , the EMF is changed to E_{2}. The correct relationship between E_{1} and E_{2} is :
27. $\mathrm{E}_{1}>\mathrm{E}_{2}$
28. $\mathrm{E}_{1}<\mathrm{E}_{2}$
29. $\mathrm{E}_{1}=\mathrm{E}_{2}$
30. $\mathrm{E}_{2}=0 \neq \mathrm{E} 1$
31. The molar conductance of $\mathrm{NaCl}, \mathrm{HCI}$, and $\mathrm{CH}_{3} \mathrm{COONa}$ at infinite dilution are $126.45,426.16$, and $91.0 \mathrm{~S} \mathrm{~cm} \mathrm{~mol}^{-1}$ respectively. The molar conductance of $\mathrm{CH}_{3} \mathrm{COOH}$ at infinite dilution is. Choose the right option for your answer.
$1.698 .28 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
32. $540.48 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
33. $201.28 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
$4.390 .71 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
34. The molar conductivity of 0.007 M acetic acid is 20 S $\mathrm{cm}^{2} \mathrm{~mol}^{-1}$. The dissociation constant of acetic acid is -
$\left[\Lambda_{\mathrm{H}^{+}}^{\circ}=350 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right]$
$\left[\Lambda^{\circ} \mathrm{CH}_{3} \mathrm{COO}^{-}=50 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right]$
35. $1.75 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
36. $2.50 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
37. $1.75 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
38. $2.50 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

course

CHEMICAL KINETICS

(Expected Questions in NEET 2022: 2)

Subtopic Name	Number of Questions
Definition, Rate Constant, Rate Law	20
First Order Reaction Kinetics	20
Arrhenius Equation	12
Order, Molecularity and Mechanism	$\mathbf{8}$

1. A first order reaction has a specific reaction rate of 10^{-}
$2 \mathrm{sec}^{-1}$. How much time will it take for 20 g of the reactant to reduce to 5 g ?
2. 138.6 sec
3. 346.5 sec
4. 693.0 sec
5. 238.6 sec
6. Which one of the following statements is not correct?
7. The value of equilibrium constant is changed in the presence of a catalyst in the reaction at equilibrium.
8. Enzymes catalyse mainly bio-chemical reactions
9. Coenzymes increase the catalytic activity of enzyme
10. Catalyst does not initiate any reaction
11. The correct difference between first- and second-order reactions is that
12. the rate of a first-order reaction does not depend on reactant concentration; the rate of a second-order reaction does depend on reactant concentrations.
13. the half-life of a first-order reaction does not depend on $[\mathrm{A}]_{0}$; the half-life of a second-order reaction does depend on $[\mathrm{A}]_{0}$
14. a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed.
15. the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations
16.

The addition of a catalyst during a chemical reaction alters which of the following quantities?

1. Internal energy
2. Enthalpy
3. Activation energy
4. Entropy
5.

The rate of a first-order reaction is $0.04 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{~s}^{-1}$ at 10 seconds and $0.03 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{~s}^{-1}$ at 20 seconds after initiation of the reaction. The half-life period of the reaction is:
1.44 .1 s
2. 54.1 s
3. 24.1 s
4. 34.1 s
7. The rate Constant of reaction $\mathrm{A} \rightarrow \mathrm{B}$ is 0.6×10^{-3} mole per second. If the Concentration of A is 5 , then concentration of B after 20 min is

1. 1.08 M
2. 3.60 M
3. 0.36 M
4. 0.72 M
5.

The activation energy of a reaction can be determined from the slope of which of the following graphs?

1. $\ln \mathrm{K}$ vs T
2. $\ln \frac{\mathrm{K}}{\mathrm{T}} \mathrm{vs} \mathrm{T}$
3. $\ln \mathrm{K}$ vs $\frac{\mathrm{I}}{\mathrm{T}}$
4. $\ln \frac{\mathrm{T}}{\mathrm{K}}$ vs $\frac{\mathrm{I}}{\mathrm{T}}$
5.

When initial concentration of the reactant is doubled, the half-life period of a zero order reaction

1. is halved
2. is doubled
3. is tripled
4. remains unchanged

Chemical Kinetics - NCERT based PYQs

9.

When initial concentration of a reactant is doubled in a reaction, its half-life period is not affected. The order of the reaction is :

1. 0
2. 1
3. 1.5
4. 2
5.

What is the activation energy for a reaction if its rate doubles when the temperature is raised from $20^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$? $\left(\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$

1. $269 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2. $34.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3. $15.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4. $342 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5. In a reaction, $\mathrm{A}+\mathrm{B}$ Product, rate is doubled when the concentration of B is doubled, and rate increases by a factor of 8 when the concentrations of both the reactants (A and B) are doubled. Rate law for the reaction can be written as
6. Rate $=k[A][B]^{2}$
7. Rate $=k[A]^{2}[B]^{2}$
8. Rate $=k[A][B]$
9. Rate $=k[A]^{2}[B]$
10. In a zero order reaction for every 10° rise of temperature, the rate is doubled. If the temperature is increased from $10{ }^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$, the rate of the reaction will become
11. 256 times
12. 512 times
13. 64 times
14. 128 times
15.

A reaction having equal energies of activation for forward and reverse reaction has:

1. $\Delta \mathrm{G}=0$
2. $\Delta \mathrm{H}=0$
3. $\Delta \mathrm{H}=\Delta \mathrm{G}=\Delta \mathrm{S}=0$
4. $\Delta \mathrm{S}=0$
5.

The incorrect statement regarding order of reaction is:

1. Order is not influenced by the stoichiometric coefficient of the reactants.
2. Order of reaction is the sum of power to the concentration terms of reactants to express the rate of reaction.
3. Order of reaction is always whole number.
4. Order can be determined by experiments only.
5. For the reaction,
$\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
the value of rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}$ is given as 6.25 $\times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$. The rate of formation of NO_{2} and O_{2} is given respectively as
following results were obtained
6.

During the kinetic study of the reaction, $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$,

1. \quad Initial rate of
$6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L} L^{-1} \mathrm{~s}^{-1}$ and $6.25 \times 10^{-3} \mathrm{~mol} L^{-1} \mathrm{~s}^{-1}$ Run 2.
$1.25 \times 10^{-2} \mathrm{~mol} L^{-1} \mathrm{~s}^{-1}$ and $3.125 \times 10^{-3} \mathrm{~mol} \mathrm{~L} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$.
2.

$6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L} L^{-1} \mathrm{~s}^{-1}$ and $3.125 \times 10^{-3} \mathrm{~mol} L^{-1} \mathrm{~s}^{-\mathrm{I}}$.
0.1
0.1
6.0×10^{-3}
4.
$1.25 \times 10^{-2} \mathrm{~mol} \mathrm{~L} L^{-1} \mathrm{~s}^{-1}$ and $6.25 \times 10^{-3} \mathrm{~mol} L^{-1} \mathrm{~s}^{-1} \mathrm{II}$
0.3
0.2

III
0.3
0.4

IV
0.4
0.1
2.40×10^{-2} formation of D/mol
L^{-1}
7.2×10^{-2}
16. For an endothermic reaction, the energy of activation is E_{a}, and the enthalpy of reaction is $\Delta \mathrm{H}$ (both of these in $\mathrm{kJ} / \mathrm{mol}$). The minimum value of E_{a} will be

1. Less than ΔH
2. Equal to $\Delta \mathrm{H}$
3. More than $\Delta \mathrm{H}$
4. Equal to zero

Based on the above data which one of the following is correct?

1. rate $=k[A]^{2}[B]$
2. rate $=k[A][B]$
3. rate $=k[A]^{2}[B]^{2}$
4. rate $=k[A][B]^{2}$
5. Half-life period of a first order reaction is 1386 s . The specific rate constant of the reaction is
6. $5.0 \times 10^{-3} s^{-1}$
7. $0.5 \times 10^{-2} s^{-1}$
8. $0.5 \times 10^{-3} s^{-1}$
9. $5.0 \times 10^{-2} s^{-1}$
10. For the reaction, $\mathrm{A}+\mathrm{B} \rightarrow$ products, it is observed that
(1) On doubling the initial concentration of A only, the rate of reaction is also doubled and
(2) On doubling the initial concentrations of both A and B, there is a change by a factor of 8 in the rate of the reaction.
The rate of this reaction is, given by
11. rate $=k[A]^{2}[B]$
12. rate $=k[A][B]^{2}$
13. rate $=k[A]^{2}[B]^{2}$
14. rate $=k[A][B]$
15. For the reaction, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$, if $\frac{d\left[N H_{3}\right]}{d t}=2 \mathrm{x}$ $10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$, the value of $\frac{-d\left[H_{2}\right]}{d t}$ would be :
16. $3 \times 10^{-4} \mathrm{~mol} \mathrm{~L} L^{-1} \mathrm{~s}^{-1}$
17. $4 \times 10^{-4} \mathrm{~mol} L^{-1} \mathrm{~s}^{-1}$
18. $6 \times 10^{-4} \mathrm{~mol} L^{-1} \mathrm{~s}^{-1}$
19. $1 \times 10^{-4} \mathrm{~mol} \mathrm{~L} L^{-1} \mathrm{~s}^{-1}$
20. In the reaction,
$\mathrm{BrO}_{3}^{-}(\mathrm{aq})+5 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}(\mathrm{l})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
The rate of appearance of bromine $\left(\mathrm{Br}_{2}\right)$ is related to rate of disappearance of bromide ions as following
21. $\frac{d\left[B r_{2}\right]}{d t}=-\frac{3}{5} \frac{d\left[B r^{-}\right]}{d t}$
22. $\frac{d\left[B r_{2}\right]}{d t}=-\frac{5}{3} \frac{d[B r]}{d t}$
23. $\frac{d\left[B r_{2}\right]}{d t}=\frac{5}{3} \frac{d\left[B r^{-}\right]}{d t}$
24. $\frac{d\left[B r_{2}\right]}{d t}=\frac{3}{5} \frac{d\left[B r^{-}\right]}{d t}$
25. The rate constants k_{1} and k_{2} for two different reactions are $10^{16} \cdot \mathrm{e}^{-2000 / \mathrm{T}}$ and $10^{15} \cdot \mathrm{e}^{-1000 / \mathrm{T}}$, respectively. The temperature at which $\mathrm{k}_{1}=\mathrm{k}_{2}$ is
26. 1000 K
27. $\frac{2000}{2.303} \mathrm{~K}$
28. 2000 K
29. $\frac{1000}{2.303} \mathrm{~K}$
30. The bromination of acetone occurs in acid solution is represented by this equation.
$\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq}) \rightarrow$
$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{Br}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$
These kinetic data were obtained for given reaction concentrations.
Initial concentrations, M
$\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right] \quad\left[\mathrm{Br}_{2}\right] \quad\left[\mathrm{H}^{+}\right]$
$0.30 \quad 0.05 \quad 0.05$
$0.30 \quad 0.10 \quad 0.05$
$0.30 \quad 0.10 \quad 0.10$
$\begin{array}{lll}0.40 & 0.05 & 0.20\end{array}$

Initial rate, disappearance of $\mathrm{Br}_{\mathbf{2}}, \mathbf{M s}^{\mathbf{- 1}}$

5.7×10^{-5}
5.7×10^{-5}
1.2×10^{-4}
3.1×10^{-4}
Based on the above data, the rate equation is

1. Rate $=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]$
2. Rate $=\mathrm{k}\left[\mathrm{CH}=\mathrm{COCH}_{3}\right]\left[\mathrm{Br}_{2}\right]$
3. Rate $=\mathbf{k}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{Br}_{2}\right]\left[\mathrm{H}^{+}\right]^{2}$
4. Rate $=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{Br}_{2}\right]\left[\mathrm{H}^{+}\right]$
5. The reaction of hydrogen and iodine monochloride is given as :
$\mathrm{H}_{2}(g)+2 \mathrm{ICl}(g) \rightarrow 2 \mathrm{HCl}(g)+I_{2}(g)$
This reaction is of first order with respect to $\mathrm{H}_{2}(g)$ and
$\mathrm{ICl}(g)$, following mechanisms were proposed :
Mechanism A :
$\mathrm{H}_{2}(g)+2 \mathrm{ICl}(g) \rightarrow 2 \mathrm{HCl}(g)+I_{2}(g)$
Mechanism B :
$\mathrm{H}_{2}(g)+\mathrm{ICl}(g) \rightarrow \mathrm{HCl}(g)+\mathrm{HI}(g)$; slow
$\mathrm{HI}(g)+\mathrm{ICl}(g) \rightarrow \mathrm{HCl}(g)+I_{2}(g) ;$ fast
6. B Only
7. A and B both
8. Neither A nor B
9. A only
10. In a first order reaction $A \rightarrow B$, if k is rate constant and initial concentration of the reactant A is 0.5 M then the half-life is :
11. $\frac{0.693}{0.5 k}$
12. $\frac{\log 2}{k}$
13. $\frac{\log 2}{k \sqrt{0.5}}$
14. $\frac{I n 2}{k}$
15. If 60% of a first order reaction was completed in 60 $\mathrm{min}, 50 \%$ of the same reaction would be completed in approximately:
$(\log 4=0.60, \log 5=0.69)$
16. 50 min
17. 45 min
18. 60 min
19. 40 min
20. For the reaction,
$2 A+B \rightarrow 3 C+D$
Incorrect expression for rate of reaction is:
21. $-\frac{d[C]}{3 d t}$
22. $-\frac{d[B]}{d t}$
23. $\frac{d[D]}{d t}$
24. $-\frac{d[A]}{2 d t}$
25. Consider the reaction
$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$
The equality relationship between $\frac{d\left[N H_{3}\right]}{d t}$ and $-\frac{d\left[H_{2}\right]}{d t}$ is :
26. $\frac{d\left[N H_{3}\right]}{d t}=-\frac{1}{3} \frac{d\left[H_{2}\right]}{d t}$
27. $+\frac{d\left[\mathrm{NH}_{3}\right]}{d t}=-\frac{2}{3} \frac{d\left[\mathrm{H}_{2}\right]}{d t}$
28. $+\frac{d\left[\mathrm{NH}_{3}\right]}{d t}=-\frac{3}{2} \frac{d\left[\mathrm{H}_{2}\right]}{d t}$
29. $+\frac{d\left[N H_{3}\right]}{d t}=-\frac{d\left[H_{2}\right]}{d t}$
30. If the rate constant for a first order reaction is k, the time (t) required for the completion of 99% of the reaction is given by:
31. $\mathfrak{t}=2.303 / \mathrm{k}$
32. $\mathrm{t}=0.693 / \mathrm{k}$
33. $\mathrm{t}=6.909 / \mathrm{k}$
34. $t=4.606 / \mathrm{k}$
35. For the chemical reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ the correct option is:
36. $3 \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=2 \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}$
37. $-\frac{1}{3} \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=-\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}$
38. $-\frac{\mathrm{d}\left[\mathrm{N}_{2}\right]}{\mathrm{dt}}=2 \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}$
39. $-\frac{\mathrm{d}\left[\mathrm{N}_{2}\right]}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}$
40. A first order reaction has a rate constant of 2.303 $\times 10^{-3} \mathrm{~s}^{-1}$. The time required for 40 g of this reactant to reduce to 10 g will be [Given that $\log _{10} 2=0.3010$]
(1) 230.3 s
(2) 301 s
(3) 2000 s
(4) 602 s
41. For a reaction, activation energy $E_{a}=0$ and the rate constant at 200 K is $1.6 \times 10^{6} \mathrm{~s}^{-1}$. The rate constant at 400 K will be [Given that gas constant, $\mathrm{R}=8.314 \mathrm{~J}$ $K^{-1} \mathrm{~mol}^{-1}$]
(1) $3.2 x 10^{4} s^{-1}$
(2) $1.6 x 10^{6} s^{-1}$
(3) $1.6 x 10^{3} s^{-1}$
(4) $3.2 \times 10^{6} s^{-1}$
42. The rate constant for a first order reaction is $4.606 \times 10^{-3} \mathrm{~s}^{-1}$. The time required to reduce 2.0 g of the reactant to 0.2 g is:
43. 200 s
44. 500 s
45. 1000 s
46. 100 s
47. An increase in the concentration of the reactants of a reaction leads to change in:
(1) heat of reaction
(2) threshold energy
(3) collision frequency
(4) activation energy
48. The half-life for a zero order reaction having 0.02 M initial concentration of reactant is 100 s . The rate constant (in $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$) for the reaction is
(1) 1.0×10^{-4}
(2) 2.0×10^{-4}
(3) 2.0×10^{-3}
(4) 1.0×10^{-2}
49. The unit of rate constant for a zero-order reaction is -
50. s^{-1}
51. $\mathrm{mol} \mathrm{L}{ }^{-1} \mathrm{~s}^{-1}$
52. $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
53. $\mathrm{L}^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$
54. The half life of a certain enzyme catalysed reaction is 138 s , that follow the 1st order kinetics. The time required for the concentration of the substance to fall from 1.28 mg L^{-1} to $0.04 \mathrm{mg} \mathrm{L}^{-1}$, is-
55. 276 s
2.414 s
56. 552 s
57. 690 s
58. The rate of the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ can be written in three ways:
$\frac{-d\left[N_{2} O_{5}\right]}{d t}=k\left[N_{2} O_{5}\right]$
$\frac{d\left[N O_{2}\right]}{d t}=k^{\prime}\left[N_{2} O_{5}\right]$
$\frac{d\left[O_{2}\right]}{d t}=k{ }^{\prime}\left[N_{2} O_{5}\right]$
The relationship between k and k^{\prime} and between k and $\mathrm{k}^{\prime \prime}$ are-
59. $\mathrm{k}^{\prime}=\mathrm{k}, \mathrm{k}^{\prime \prime}=\mathrm{k}$
60. $\mathrm{k}^{\prime}=2 \mathrm{k} ; \mathrm{k}^{\prime \prime}=\mathrm{k}$
61. $\mathrm{k}^{\prime}=2 \mathrm{k}, \mathrm{k}^{\prime \prime}=\mathrm{k} / 2$
62. $\mathrm{k}^{\prime}=2 \mathrm{k} ; \mathrm{k}^{\prime \prime}=2 \mathrm{k}$
63. The rate of the reaction
$2 \mathrm{NO}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NOCl}$ is given by the rate equation rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]$
The value of the rate constant can be increased by -
64. Increasing the concentration of NO.
65. Increasing the concentration of the Cl_{2}
66. Increasing the temperature
67. All of the above.
68. The rate of reaction between two reactants A and B decreases by a factor of 4 if the concentration of reactant B is doubled. The order of this reaction with respect to reactant B is :-
(1) 2
(2) -1
(3) 1
(4) -2
69. For a first-order reaction $\mathrm{A} \rightarrow \mathrm{B}$ the reaction rate at a reactant concentration of 0.01 M is found to be $2.0 \times 10^{-5} \mathrm{~mole}^{-1} \mathrm{~s}^{-1}$. The half-life period of the reaction is:-
1.300s
70. 30s
3.220 s
71. 347 s
72. The concentration of a solution is changed from 0.2 to 0.4 , then what will be rate and rate constant. The reaction is of first order and rate constant is $K=1 \times 10^{-6}$:
$1.2 \times 10^{-7} ; 1 \times 10^{-6}$
$2.1 \times 10^{-7} ; 1 \times 10^{6}$
$3.4 \times 10^{-7} ; 1 \times 10^{-6}$
73. $2 \times 10^{-3} ; 1 \times 10^{-3}$
74. Half life of a radioactive sample is 4 days. After 16 days how much quantity of matter remain undecayed :
75. $\frac{1}{4}$
76. $\frac{1}{8}$
77. $\frac{1}{16}$
78. $\frac{1}{32}$
79. The rate of a first-order reaction is $1.5 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$ $\min ^{-1}$ at 0.5 M concentration of the reactant. The half life of the reaction is:-
(1) 23.1 min
(2) 8.73 min
(3) 7.53 min
(4) 0.383 min
80. The bombardment of α-particle on N_{7}^{14} emits proton then new atom will be :
81. O_{8}^{17}
82. O_{8}^{16}
83. C_{6}^{14}
84. Ne
85. Half life of a substance is 77 days then it's decay constant (days ${ }^{-1}$) will be :
86. 0.9
87. 0.09
88. 0.009
89. 0.013
90. For the reaction $\mathrm{H}^{+}+\mathrm{BrO}_{3}^{-}+3 \mathrm{Br}^{-} \rightarrow 5 \mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O}$ the correct representation of the consumption $\&$ formation of reactants and products is :
91. $\frac{d\left[B r^{-}\right]}{d t}=-\frac{3}{5} \frac{d\left[B r_{2}\right]}{d t}$
92. $\frac{d\left[B r^{-}\right]}{d t}=\frac{3}{5} \frac{d\left[B r_{2}\right]}{d t}$
93. $\frac{d\left[\mathrm{Br}^{-}\right]}{d t}=-\frac{5}{3} \frac{d\left[\mathrm{Br}_{2}\right]}{d t}$
94. $\frac{d\left[B r^{-}\right]}{d t}=\frac{5}{3} \frac{d\left[B r_{2}\right]}{d t}$
95. ${ }_{92} \mathrm{U}^{235}$, nucleus absorb a neutron and disintegrate in ${ }_{54} \mathrm{Xe}^{139},{ }_{38} \mathrm{Sr}^{94}$ and x . The product x is :-
(1) 3 - neutrons
(2) 2 - neutrons
(3) α - particle
(4) β-particle
96. $3 \mathrm{~A} \rightarrow 2 \mathrm{~B}$, rate of reaction $\frac{+\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}$ is equal to :-
97. $-\frac{3}{2} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}$
98. $-\frac{2}{3} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}$
99. $-\frac{1}{3} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}$
100. $+2 \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}$
101. $2 \mathrm{~A} \rightarrow \mathrm{~B}+\mathrm{C}$; It would be a zero order reaction when : -
(1) The rate of reaction is proportional to square of concentration of A
(2) The rate of reaction remains same at any concentration of A
(3) The rate remains unchanged at any concentration of B and C
(4) The rate of reaction doubles if concentraion of B is increased to double.
102. For the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ rate and rate constant are 1.02×10^{-4} and $3.4 \times 10^{-5} \mathrm{sec}^{-1}$ respectively, then the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ at that time will be : -
103. $1.732 \mathrm{~mol} \mathrm{~L}^{-1}$
104. $3.0 \mathrm{~mol} \mathrm{~L}^{-1}$
105. $1.02 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
106. $3.4 \times 10^{5} \mathrm{~mol} \mathrm{~L}^{-1}$
107. When a biochemical reaction is carried out in a laboratory outside the human body in the absence of enzyme, then the rate of reaction obtained is 10^{-6} times, then activation energy of reaction in the presence of enzyme is :-
108. $\frac{6}{R T}$
109. P is required.
110. Different from, E_{a} obtained in laboratory.
111. Data is insufficient.
112. The activation energy for a simple chemical reaction A $\rightarrow B$ is E_{a} in forward direction. The activation energy for reverse reaction :
(1) Is negative of E_{a}
(2) Is always less than E_{a}
(3) Can be less than or more than E_{a}
(4) Is always double of E_{a}
113. The reaction $\mathrm{A} \rightarrow \mathrm{B}$ follows first order kinetics. The time taken for 0.8 mole of A to produce 0.6 mole of B is 1 hour. The time taken for conversion of 0.9 mole of A to produce 0.675 mole of B is :
(1) 1 hour
(2) 0.5 hour
(3) 0.25 hour
(4) 2 hour
114. The following equilibria are given :
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} \quad \mathrm{~K}_{1}$
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO} \quad \mathrm{K}_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}_{2} \mathrm{O} \quad \mathrm{K}_{3}$
The equilibrium constant of the reaction
$2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$ in terms of K_{1}, K_{2} and K_{3} is:
115. $K_{1} K_{2} K_{3}$
116. $\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{3}}$
117. $\frac{\mathrm{K}_{1} \mathrm{~K}_{3}^{2}}{\mathrm{~K}_{2}}$
118. $\frac{\mathrm{K}_{2} \mathrm{~K}_{3}^{3}}{\mathrm{~K}_{1}}$
119. If the rate of the reaction is equal to the rate constant, the order of the reaction is -
(1) 0
(2) 1
(3) 2
(4) 3
120. The temperature dependence of rate constant (k) of a chemical reaction is written in terms of Arrhenius equation,
$\mathrm{k}=\mathrm{A} \cdot \mathrm{e}^{-\mathrm{E}^{*} / \mathrm{RT}}$. Activation energy $\left(\mathrm{E}^{*}\right)$ of the reaction can be calculated by plotting :
121. k vs T
122. k vs $\frac{1}{\log \mathrm{~T}}$
123. $\log \mathrm{k}$ vs $\frac{1}{\mathrm{~T}}$
124. $\log \mathrm{k}$ vs $\frac{1}{\log \mathrm{~T}}$
125. The radioisotope, tritium $\left({ }_{1}^{3} \mathrm{H}\right)$ has a half-life of 12.3 years. If the initial amount of tritium is 32 mg , how many milligrams of its would remain after 49.2 years :
1.1 mg
2.2 mg
3.4 mg
4.8 mg
126. For a reaction $\mathrm{A} \rightarrow \mathrm{B}$, enthalpy of reaction is $-4.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and enthalpy of activation is $9.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The correct potential energy profile for the reaction is shown in option.

127.

2.

4.
61. The slope of Arrhenius Plot ($\ln \mathrm{k} v / \mathrm{s} \frac{1}{\mathrm{~T}}$) of the firstorder reaction is $-5 \times 10^{3} \mathrm{~K}$. The value of E_{a} of the reaction is-
[Given $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$]

1. $166 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2. $-83 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$3.41 .5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3. $83.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

course

SURFACE CHEMISTRY

(Expected Questions in NEET 2022: 1)

Subtopic Name	Number of Questions
Colloidal Solution	14
Adsorption and Absorption	4
Adsorption Isotherm	3
Catalyst	3

Surface Chemistry - NCERT based PYQs

1. The coagulation values in millimoles per litre of the electrolytes used for the coagulation of $\mathrm{As}_{2} \mathrm{~S}_{3}$ are given below
I. $(\mathrm{NaCl})=52$, II. $\left(\mathrm{BeCl}_{2}\right)=0.69$, III. $\left(\mathrm{MgSO}_{4}\right)=0.22$

The correct order of their coagulating power is-

1. $\mathrm{I}>\mathrm{II}>\mathrm{III}$
2. $\mathrm{II}>\mathrm{I}>\mathrm{III}$
3. $\mathrm{III}>\mathrm{II}>\mathrm{I}$
4. III $>\mathrm{I}>$ II
5.

Coagulating power of an ion depends on -

1. The magnitude of the charge on the alone.
2. Size of the ion alone.
3. Both magnitude and sign of the charge the ion.
4. The sign of the charge on the ion alone.
5.

The characteristics associated with adsorption is -

1. $\Delta \mathrm{G}, \Delta \mathrm{H}$ and $\Delta \mathrm{S}$ all are negative.
2. $\Delta \mathrm{G}$ and $\Delta \mathrm{H}$ are negative but $\Delta \mathrm{S}$ is positive.
3. $\Delta \mathrm{G}$ and $\Delta \mathrm{S}$ are negative but $\Delta \mathrm{H}$ is positive.
4. $\Delta \mathrm{G}$ is negative but $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are positive.
5.

Fog is a colloidal solution of -

1. Gas in liquid
2. Solid in gas
3. Gas in gas
4. Liquid in gas
5.

Which property of colloidal solution is independent of charge on the colloidal particles?

1. Coagulation
2. Electrophoresis
3. Electroosmosis
4. Tyndall effect
5. Which property of colloids is not dependent on the charge on colloidal particles?
6. Coagulation
7. Electrophoresis
8. Electro-osmosis
9. Tyndall effect
10. In Freundlich adsorption isotherm, the value of $1 / n$ is -
11. Between 0 and 1 in all cases.
12. Between 2 and 4 in all cases.
13. 1 in case of physical adsorption.
14. 1 in case of chemisorption.
15. Which one of the following statements is incorrect about enzyme catalysis?
16. Enzymes are mostly proteinous in nature.
17. Enzyme action is specific.
18. Enzymes are denaturized by ultraviolet rays at high temperature.
19. Enzymes are least reactive at optimum temperature.

Surface Chemistry - NCERT based PYQs

9. If x is amount of adsorbate and m is amount of adsorbent, which of the following relations is not related to adsorption process?
10. $\frac{\mathrm{x}}{\mathrm{m}}=\mathrm{f}(\mathrm{T})$ at constant P
11. $\mathrm{p}=\mathrm{f}(\mathrm{T})$ at constant $(\mathrm{x} / \mathrm{m})$
12. $\frac{\mathrm{x}}{\mathrm{m}}=\mathrm{p} \times \mathrm{T}$
13. $\frac{\mathrm{x}}{\mathrm{m}}=\mathrm{f}(\mathrm{p})$ at constant T
14. A plot of $\log x / m$ versus $\log p$ for the adsorption of a gas on a solid gives a straight line with slope equal to :
15. $\log \mathrm{k}$
16. n
17. $\frac{1}{n}$
18. $\log 1 / \mathrm{k}$
19. Which mixture of the solutions will lead to the formation of negatively charged colloidal $[\mathrm{AgI}] \mathrm{I}^{-}$sol?
20. 50 mL of $0.1 \mathrm{M} \mathrm{AgNO}_{3}+50 \mathrm{~mL}$ of 0.1 M KI
21. 50 mL of $1 \mathrm{M} \mathrm{AgNO}_{3}+50 \mathrm{~mL}$ of 0.5 M KI
22. 50 mL of $1 \mathrm{M} \mathrm{AgNO}_{3}+50 \mathrm{~mL}$ of 2 M KI
23. 50 mL of $2 \mathrm{M} \mathrm{AgNO}_{3}+50 \mathrm{~mL}$ of 1.5 M KI
24. The correct option representing a Freundlich adsorption isotherm is-
(1) $\frac{x}{m}=k p^{0.3}$
(2) $\frac{x}{m}=k p^{2.5}$
(3) $\frac{x}{m}=k p^{-0.5}$
(4) $\frac{x}{m}=k p^{-1}$
25. Measuring Zeta potential is useful in determining the following property of colloidal solution -
26. Solubility.
27. Stability of the colloidal particles.
28. Size of the colloidal particles.
29. Viscosity.
30. In which of the sols, the colloidal particles are with a negative charge?
(1) TiO_{2}
(2) Hemoglobin
(3) Starch
(4) Hydrated $\mathrm{Al}_{2} \mathrm{O}_{3}$
31. Which one of the following forms micelles in aqueous solution above certain concentration -
(1) Glucose
(2) Urea
(3) Dodecyl trimetly1 ammonium chloride
(4) Pyridinium chloride
32. At the critical micelle concentration (CMC) the surfactant molecules :
33. Associate
34. Dissociate
35. Decompose
36. Become completely soluble
37. According to hardy Schultze law the order of coagulation power of cations will be
38. $N a^{+}>B a^{+2}>A l^{+3}$
39. $A l^{+3}>B a^{+2}>N a^{+}$
40. $B a^{+2}>A l^{+3}>N a^{+}$
41. $A l^{+3}>N a^{+}>B a^{+2}$

Surface Chemistry - NCERT based PYQs

18. Which one of the following method is commonly used method for destruction of colloid :
19. Dialysis
20. Condensation
21. Filteration by animal membrane
22. By adding electrolyte
23. Position of the nonpolar \& polar part in Micelle is-
(1) Polar at the outer surface but non-polar at an inner surface
(2) Polar at inner surface non-polar at an outer surface
(3) Distributed over all the surface
(4) Are present on the surface only
24. Which of the following is correct : -
25. Cyclo heptane is an aromatic compound
26. Diastase is an enzyme
27. Acetophenone is an ether
28. All the above
29. Which is not correct regarding the adsorption of a gas on the surface of solid: -
30. On increasing temperature adsorption increase continuously
31. Enthalpy \& entropy change is negative
32. Adsorption is more for some specific substance
33. Reversible
34. According to the adsorption theory of catalysis, the speed of the reaction increase because :
(1) The concentration of reactant molecules at the active centers of the catalyst becomes high due to adsorption
(2) In the process of adsorption, the activation energy of the molecules becomes large
(3) Adsorption produces heat which increases the speed of the reaction
(4) Adsorption lowers the activation energy of the reaction.
35. The right option for the statement "Tyndall effect is exhibited by", is:
36. Starch solution
37. Urea solution
38. NaCl solution
39. Glucose solution

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

General Principles \& Processes of Isolation

 of Elements(Expected Questions in NEET 2022: 1)

Subtopic Name	Number of Questions
Introduction - Flux, Leaching, Roasting \& Calcination	10
Metallurgy of individual elements	5
Refining Process	3
Ellingham Diagram	1

1. Extraction of gold and silver involves leaching with CN^{-}ion. Silver is later recovered by:
2. Distillation
3. Zone refining
4. Displacement with Zn
5. Liquation
6. Considering Ellingham diagram, which of the following metals can be used to reduce alumina?
7. Fe.
8. Zn
9. Mg
10. Cu
11.

Match items of Column I with the items of Column II and assign the correct code.
Column I
A) Cyanide process

Column II

1) Ultra pure Ge
B) Froth floatation Process
C) Electrolytic

Reduction
D) Zone refining

1. A-2, B-3, C-1, D-4
2. A-1, B-2, C-3, D-4
3. A-3, B-4, C-2, D-1
4. A-4, B-2, C-3, D-1
2) Dressing of ZnS
3) Extraction of Al
4) Extracting of Au
4. In the extraction of copper from its sulphide ore, the metal finally obtained by the reduction of cuprous oxide with
5. Iron (II) sulphide
6. Carbon monoxide
7. Copper (I) sulphide
8. Sulphur dioxide
9.

Roasting of sulphides gives the gas X as a by-product. This is a colorless gas with choking smell of burnt sulphur and caused great damage to respiratory organs as a result of acid rain. Its aqueous solution is acidic, acts as a oxidizing agent and its acid has never been isolated. The gas X is:

1. SO_{2}
2. CO_{2}
3. SO_{3}
4. $\mathrm{H}_{2} \mathrm{~S}$
5. Aluminium is extracted from alumina $\mathrm{Al}_{2} \mathrm{O}_{3}$ by electrolysis of a molten mixture of :
6. $\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{HF}+\mathrm{NaAlF}_{4}$
7. $\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{CaF}_{2}+\mathrm{NaAlF}_{4}$
8. $\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Na}_{3} \mathrm{AlF}_{6}+\mathrm{CaF}_{2}$
9. $\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{KF}+\mathrm{Na}_{3} \mathrm{AlF}_{6}$
10. Which one of the following is a mineral of iron?
11. Malachite
12. Cassiterite
13. Pyrolusite
14. Magnetite
15. In the extraction of copper from its sulphide ore, the metal is finally obtained by the reduction of cuprous oxide with
16. Copper (l) sulphide $\left(\mathrm{Cu}_{2} \mathrm{~S}\right)$
17. Sulphur dioxide $\left(\mathrm{SO}_{2}\right)$
18. Iron Sulphide (FeS)
19. Carbon monoxide (CO)
20.

Which of the following elements is present as the impurity to the maximum extent in the pig Iron?

1. Carbon
2. Silicon
3. Phosphorus
4. Manganese
5.

A pair of metals that can be purified by van Arkel method is -

1. Zr and Ti
2. Ag and Au
3. Ni and Fe
4. Ga and In
5. Sulphide ores of metals are usually concentrated by froth flotation process. Which one of the following sulphide ores offers an exception and is concentrated by chemical leaching?
6. Argentite
7. Galena
8. Copper pyrite
9. Sphalerite
10. Which one is malachite from the following?
11. $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$
12. CuFeS_{2}
13. $\mathrm{Cu}(\mathrm{OH})_{2}$
14. $\mathrm{Fe}_{3} \mathrm{O}_{4}$
15. Identify the incorrect statement
16. The scientific and technological process used for isolation of the metal from its ore is known as metallurgy
17. Minerals are naturally occurring chemical substances in the earth's crust
18. Ores are minerals that may contain a metal
19. Gangue is an ore contaminated with undesired materials
20. The correct statement among the following is :
21. Blister copper has blistered appearance due to evolution of CO_{2}
22. Vapour phase refining is carried out for Nickel by Van Arkel method.
23. Pig iron can be moulded into a variety of shapes.
24. Wrought iron is impure iron with 4% carbon.
25. The following reactions take place in the blast furnace in the preparation of impure iron.
Identify the reaction pertaining to the formation of the slag.
26. $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$
27. $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{l})+3 \mathrm{CO}_{2}(\mathrm{~g})$
28. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
29. $\mathrm{CaO}(\mathrm{s})+\mathrm{SiO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CaSiO}_{3}(\mathrm{~s})$
30. Maximum impurity in Pig iron is :
31. Mn
32. Phosphorous
33. Graphite
34. Sulphur
35. The method of zone refining of metals is based on the principle of-
36. Greater mobility of the pure metal than that of the impurity
37. Higher melting point of the impurity than that of the pure metal
38. Greater noble character of the solid metal than that of the impurity
39. Greater solubility of the impurity in the molten state than in the solid
40. Which one of the following methods can be used to obtain highly pure metal which is liquid at room temperature?
41. Distillation
42. Zone refining
43. Electrolysis
44. Chromatography
45. The maximum temperature that can be achieved in blast furnace is :
46. Upto 1900 K
47. Upto 5000 K
48. Upto 1200 K
49. Upto 2200 K

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

to get for 3 days of ANY NEETprep course

The p-Block Elements (Group 15 to 18)

(Expected Questions in NEET 2022: 2)

Subtopic Name	Number of Questions
Group 15 -Preparation, Properties \& Uses	14
Group 17 - Preparation, Properties \& Uses	14
Group 16- Preparation, Properties \& Uses	8
Group 18- Preparation, Properties \& Uses	5
Interhalogen Compounds	2

1.

Match the interhalogen compounds of column I with the geometry in column-II and assign the correct code:

Column-I

Column-II

(A) XX^{\prime}
(i) T-shape
(B) $\mathrm{XX}^{\prime}{ }_{3}$
(ii) Pentagonal bipyramidal
(C) $X X^{\prime}{ }_{5}$
(iii) Linear
(D) $\mathrm{XX}^{\prime}{ }_{7}$
(iv) Square Pyramidal

1. A-(iii) B-(i) C-(iv) D-(ii)
2. A-(i) B-(iv) C-(iii) D-(ii)
3. A-(iv) B-(iii) C-(ii) D-(i)
4. A-(iii) B-(iv) C-(i) D-(ii)
5. Which of the following pairs of the compound is isostructural?
6. $\mathrm{TeF}_{2}, \mathrm{XeF}_{2}$
7. $\mathrm{IBr}_{2}{ }^{-}, \mathrm{XeF}_{2}$
8. $\mathrm{IF}_{3}, \mathrm{XeF}_{2}$
9. $\mathrm{BeCl}_{2}, \mathrm{XeF}_{2}$
10. Among the following, which one is a wrong statement?
11. PH_{5} and BiCl_{5} do not exist
12. $\mathrm{p} \pi-\mathrm{d} \pi$ bonds are present in SO_{2}
13. SeF_{4} and CH_{4} have same shape
14. $\mathrm{I}^{+}{ }_{3}$ has bent geometry
15.

Which of the following statements is not true for halogens?

1. All form monobasic oxyacids.
2. All are oxidizing agents.
3. All but fluorine show positive oxidation states.
4. Chlorine has the highest electron-gain enthalpy.
5. In the structure of ClF_{3}, the number of lone pairs of electrons on central atom ' Cl ' is
6. 1
7. 2
8. 3
9. 4
10. Match the compounds given in Column I with the hybridization and shape given in Column II and mark the correct option.

Column I

A) XeF_{6}
B) XeO_{3}
C) XeOF_{4}
D) XeF_{4}

1. A-1 B-2 C-4 D-3
2. A-4 B-3 C-1 D-2
3. A-4 B-1 C-2 D-3
4. A-1 B-3 C-4 D-2

Column II

1) Distorted octahedral
2) Square planar
3) Pyramidal
4) Square pyramidal
3. The reaction among the following that does not showoxidising behaviour of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is -
4. $\mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
5. $3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 3 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
6. $\mathrm{C}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
7. $\mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{HF}$
8.

Which is the correct statement for the given acids?

1. Phosphinic acid is a monoprotic acid while phosphonic acid is a diprotic acid
2. Phosphinic acid is a diprotic acid while phosphonic acid is a monoprotic acid
3. Both are triprotic acids
4. Both are diprotic acids
5.

Which one of the following orders is correct for the bond dissociation enthalpy of halogen molecules?

1. $\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{F}_{2}>\mathrm{l}_{2}$
2. $\mathrm{Br}_{2}>1_{2}>\mathrm{F}_{2}>\mathrm{Cl}_{2}$
3. $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{l}_{2}$
4. $\mathrm{l}_{2}>\mathrm{Br}_{2}>\mathrm{Cl}_{2}>\mathrm{F}_{2}$
5. Which of the statements given below is incorrect?
6. $\mathrm{Cl}_{2} \mathrm{O}_{7}$ is an anhydride of perchloric acid
7. O_{3} molecule is bent
8. ONF is isoelectronic with NO_{2}^{-}
9. $O F_{2}$ is an oxide of fluorine
10. The variation of the boiling point of the hydrogen halides is in the order $\mathrm{HF}>\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}$, What explains the higher boiling point of hydrogen fluoride?
11. The electro negativity of flourine is much higherthan for other elements in the group
12. There is strong hydrogen bonding between HF molecules
13. The bond energy of HF molecules is greater than in other hydrogen halides
14. The effect of nuclear shielding is much reducedin flourine which polarizes the HF molecule
15. Strong reducing behavior of $\mathrm{H}_{3} \mathrm{PO}_{2}$ is due to-
16. Presence of one-OH group and two P-H bonds
17. High electron gain enthalpy of phosphorus
18. High oxidation state of phosphorus
19. Presence of two -OH groups and one $\mathrm{P}-\mathrm{H}$ bonds
20. Acidity of diprotic acids in aqueous solutions increases in the order:
21. $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$
22. $\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Te}$
23. $\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}$
24. $\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{~S}$
25.

A compound among the following that does not give oxygen on heating is -

1. $\mathrm{Zn}\left(\mathrm{ClO}_{3}\right)_{2}$
2. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
3. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
4. KClO_{3}
5. The incorrect statement among the following regarding oxoacids of phosphorus is -
6. Orthophosphoric acid is used in the manufacture of triple superphosphate
7. Hypophoshphorous acid is a diprotic acid
8. All oxoacids contain tetrahedral four coordinated phosphorus
9. All oxoacids contain at least one $\mathrm{P}=\mathrm{O}$ unit and one P OH group
10. Oxidation states of P in $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$, are respectively
11. $+3,+5,+4$
12. $+5,+3,+4$
13. $+5,+4,+3$
14. $+3,+4,+5$
15. Among the following which is the strongest oxidising agent?
16. F_{2}
17. $B r_{2}$
18. l_{2}
19. $C l_{2}$
20. The electronegativity difference between N and F is greater than that between N and H yet the dipole moment of $\mathrm{NH}_{3}(1.5 \mathrm{D})$ is larger than that of $\mathrm{NF}_{3}(0.2 \mathrm{D})$. This is because :
21. in NH_{3} as well as in NF_{3} the atomic dipole and bond dipole are in the same direction
22. in NH_{3} the atomic dipole and bond dipole are in the same direction whereas in NF_{3} these are in opposite directions
23. in NH_{3} as well as in NF_{3} the atomic dipole and bond dipole are in opposite directions
24. in NH_{3} the atomic dipole and bond dipole is in the opposite directions whereas in NF_{3} these are in the same directions
25. The number of unpaired electrons in a paramagnetic diatomic molecule of an element with atomic number 16 is :
26. 3
27. 4
28. 1
29. Which is the correct thermal stability order for $\mathrm{H}_{2} \mathrm{E}(\mathrm{E}=\mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{Te}$ and Po$)$?
30. $\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Po}<\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}$
31. $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Po}$
32. $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2}$ Po
33. $\mathrm{H}_{2} \mathrm{Po}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}$
34. Match the Xenon compounds in Coloumn-I with its structure in Column-II and assign the correct code:

Column-I

(a)	XeF_{4}	(i)	pyramidal
(b)	XeF_{6}	(ii)	square planar
(c)	XeOF_{4}	(iii)	distorted octahedral
(d)	XeO_{3}	(iv)	square pyramidal

Code:
(a) (b) (c) (d)

1. (iii) (iv) (i) (ii)
2.

(i) (ii) (iii) (iv)
3.
(ii) (iii)
(iv) (i)
4.
22. Match the following:
(a) Pure nitrogen
(i) Chlorine
(b) Haber process
(ii) Sulphuric acid
(c) Contact process
(iii) Ammonia
(d) Deacon's process
(iv) Sodium azide or Barium azide

The correct matching among the following is -
(a) (b) (c) (d)

1. (iv) (iii) (ii) (i)
2. (i) (ii) (iii) (iv)
3. (ii) (iv) (i) (iii)
4.

(iii) (iv)
(ii) (i)
23. The incorrect statement among the following related to PCl_{5} is:

1. PCl_{5} molecules is non-reactive
2. Three equatorial $\mathbf{P}-\mathrm{Cl}$ bonds make an angle of 120° with each other
3. Two axial $\mathrm{P}-\mathrm{Cl}$ bonds make an angle of 180° with each other
4. Axial $\mathrm{P}-\mathrm{Cl}$ bonds are longer than equatorial $\mathrm{P}-\mathrm{Cl}$ bonds
5. The correct structure of tribromo octoxide is:
6.

3.

25. A compound ' X ' upon reaction with $\mathrm{H}_{2} \mathrm{O}$ produces a colorless gas ' Y ' with a rotten fish smell. Gas ' Y ' is absorbed in a solution of CuSO_{4} to give $\mathrm{Cu}_{3} \mathrm{P}_{2}$ as one of the products. The compound ' X ' is-

1. $\mathrm{Ca}_{3} \mathrm{P}_{2}$
2. $\mathrm{NH}_{4} \mathrm{Cl}$
3. $\mathrm{As}_{2} \mathrm{O}_{3}$
4. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
5. Which of the following oxoacids of phosphorus has the strongest reducing property?
(1) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
(2) $\mathrm{H}_{3} \mathrm{PO}_{3}$
(3) $\mathrm{H}_{3} \mathrm{PO}_{2}$
(4) $\mathrm{H}_{3} \mathrm{PO}_{4}$
6. Identify the correct formula of 'oleum' from the following
7. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
8. $\mathrm{H}_{2} \mathrm{SO}_{3}$
9. $\mathrm{H}_{2} \mathrm{SO}_{4}$
10. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
11. Which of the following compound of sulphur has $-\mathrm{O}-\mathrm{O}$-linkage?
12. $\mathrm{H}_{2} \mathrm{SO}_{4}$, sulphuric acid
13. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$, peroxodisulphuric acid
14. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$, pyrosulphuric acid
15. $\mathrm{H}_{2} \mathrm{SO}_{3}$, sulphurous acid
16. Match the compounds of Xe in column I with the molecular structure in column II.

Column-I Column-II
(a) XeF_{2}
(i) Square planar
(b) XeF_{4}
(ii) Linear
(c) XeO_{3}
(iii) Square pyramidal
(d) XeOF_{4}
(iv) Pyramidal

1. (a)-(ii), (b)-(i), (c)-(iii), (d)-(iv)
2. (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)
3. (a)-(ii), (b)-(iii), (c)-(i), (d)-(iv)
4. (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
5. In which of the following arrangements the given sequence is not strictly according to the property indicated against it?
(1) $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$:
increa $\sin g p K_{a}$ values
(2) $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$:
increa $\sin g$ acidic character
(3) $\mathrm{CO}_{2}<\mathrm{SiO}_{2}<\mathrm{SnO}_{2}<\mathrm{PbO}_{2}$:
increa $\sin g$ oxidi $\sin g$ power
(4) $H F<H C l<H B r<H I:$ increa $\sin g$ acidic strength
6. Match List-I (substances) with List-II (processes) employed in the manufacture of the substances and select the correct option.

List -I

Substances
(a) Sulphuric acid
(b) Steel
(c) Sodium carbonate
(d) Ammonia

List - II
Processes
(i) Haber's Process
(ii) Bessemer's Process
(iii) Leblanc Process
(iv) Contact Process
35. A compound having two direct bonds between P and H atom is :

1. $\mathrm{H}_{3} \mathrm{PO}_{2}$
2. $\mathrm{H}_{3} \mathrm{PO}_{3}$
3. $\mathrm{H}_{3} \mathrm{PO}_{4}$
4. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$

Options :
(a) (b) (c) (d)

1. (i) (ii) (iii) (iv)
2. (iv) (iii) (ii) (i)
3. (iv) (ii) (iii) (i)
4. (i) (iv) (ii) (iii)
5. Which statement is wrong:
6. Bond energy of $\mathrm{F}_{2}>\mathrm{Cl}_{2}$
7. Electronegativity of $\mathrm{F}>\mathrm{Cl}$
8. F is more oxidizing than Cl
9. Electron affinity of $\mathrm{Cl}>\mathrm{F}$
10. Compound that has planar structure :
11. XeF_{4}
12. XeOF_{2}
13. $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
14. XeO_{4}
15. Oxidation number of P in pyrophosphoric acid is :
16. +5
17. +2
18. +3
19. +4
20. Correct statement among the following is :-
(1) Silicon exhibits 8 coordination number in it's compound.
(2) Bond energy of F_{2} is less than Cl_{2}
(3) Mn (III) oxidation state is more stable than Mn (II) in aqueous state.
(4) Elements of $15^{\text {th }} \mathrm{gp}$ shows only +3 and +5 oxidation states.
21. Incorrect statement among the following is :
(1) Among halide ions, iodide is the most powerful reducing agent.
(2) Fluorine is the only halogen that does not show a variable oxidation state.
(3) HOCl is a stronger acid than HOBr
(4) HF is a stronger acid than HCl
22. In X- H ----- Y, X and Y both are electronegative elements :
23. Electron density on X will increase and on H will decrease.
24. In both electron density will increase.
25. In both electron density will decrease.
26. On X electron density will decrease and on H increases.
27. Nitrogen form N_{2}, but phosphorous form P_{2}, it's at a time convert in P_{4}, reason is : -
28. Triple bond present between phosphorous atom.
29. $\mathrm{p} \pi-p \pi$ bonding is weak in phosphorous.
30. $\mathrm{p} \pi-p \pi$ bonding is strong in phosphorous.
31. Multiple bond form easilly phosphorous.

41. Statement I:

Acid strength increases in the order given as $\mathrm{HF} \ll \mathrm{HCl}$ $\ll \mathrm{HBr} \ll \mathrm{HI}$.

Statement II:

As the size of the elements $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, I increase down the group, the bond strength of $\mathrm{HF}, \mathrm{HCI}, \mathrm{HBr}$, and HI decreases and so the acid strength increases.

In the light of the above statements, choose the correct answer from the options given below.

1. Statement I is correct but Statement II is false.
2. Statement I is incorrect but Statement II is true.
3. Both Statement I and Statement II are true.
4. Both Statement I and Statement II are false.
5. The incorrect statement about noble gases is -
6. Noble gases have weak dispersion forces.
7. Noble gases have large positive values of electron gain enthalpy.
8. Noble gases are sparingly soluble in water.
9. Noble gases have very high melting and boiling points.
10. In which one of the following arrangements the given sequence is not strictly according to the properties indicated against it?
11. $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$: Increasing acidic character
12. $\mathrm{CO}_{2}<\mathrm{SiO}_{2}<\mathrm{SnO}_{2}<\mathrm{PbO}_{2}$: Increasing oxidizing power
13. $\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$: Increasing acidic strength
14. $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$: Increasing pK a values

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

The d \& f Block Elements

(Expected Questions in NEET 2022: 1)

Subtopic Name	Number of
	Questions
d-Block Elements- Properties \& Uses	44
f-Block Elements- Properties \& Uses	11
Chemistry of Mn and Cr Compounds	5
Lanthanoid /Actinoid Contraction	5

1. A gas that can readily decolorized acidified 5.
KMnO_{4} solution:
2. SO_{2}
3. NO_{2}
4. $\mathrm{P}_{2} \mathrm{O}_{5}$
5. CO_{2}

An ion among the following that exhibits d - d transition and paramagnetism is -

1. CrO_{4}^{2-}
2. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
3. MnO_{4}^{-}
4. MnO_{4}^{2-}
5. Zinc can be coated on iron to produce galvanised iron but the reverse is not possible because:
6. Zinc is lighter than iron.
7. Zinc has a lower melting point than iron.
8. Zinc has lower negative reduction potential than iron.
9. Zinc has a higher negative reduction potential than iron.
10. Which one of the following statements related to lanthanons is incorrect?
11. Europium shows +2 oxidation state.
12. The basicity decreases as the ionic radius decreases from pr to Lu .
13. All the lanthanons are much more reactive than aluminium.
14. Ce^{+4} solution are widely used as oxidizing agent in volumetric analysis.
15. The reason for greater range of oxidation states in actinoids is attributed to:
16. Actinoid Contraction
17. 5f, 6d and 7s levels having comparable energies.
18. 4 f and 5 d levels being close in energies.
19.

When copper is heated with conc. HNO_{3} it produces :

1. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)$ and NO
2. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$, NO and NO_{2}
3. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{N}_{2} \mathrm{O}$
4. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ and NO_{2}
5. Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the correct code :

Column I Column II
a. $\mathrm{Co}^{3+} \quad$ i. $\sqrt{ } 8$ B.M.
b. $\mathrm{Cr}^{3+} \quad$ ii. $\sqrt{ } 35$ B.M.
c. $\mathrm{Fe}^{3+} \quad$ iii. $\sqrt{ } 15$ B.M.
d. $\mathrm{Ni}^{2+} \quad$ iv. $\sqrt{2} 24$ B.M.

1. a-iv; b-iii; c-ii; d-i
2. a-i; b-ii; c-iii; d-iv
3. a-iv; b-i; c-ii; d-iii
4. a-iii; b-iv; c-i; d-ii
5. The radioactive nature of actinoids
6.

The electronic configurations of Eu (Atomic no. 63), Gd (Atomic no. 64) and Tb (Atomic no. 65) are :

1. $[\mathrm{Xe}] 4 \mathrm{f}^{6} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2},[\mathrm{Xe}] 4 \mathrm{f}^{7} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$ and $[\mathrm{Xe}] 4 \mathrm{f}^{9} 6 \mathrm{~s}^{2}$
2. $[\mathrm{Xe}] 4 \mathrm{f}^{6} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2},[\mathrm{Xe}] 4 \mathrm{f}^{7} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$ and $[\mathrm{Xe}] 4 \mathrm{f}^{8} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$
3. $[\mathrm{Xe}] 4 \mathrm{f}^{7} 6 \mathrm{~s}^{2},[\mathrm{Xe}] 4 \mathrm{f}^{7} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$ and $[\mathrm{Xe}] 4 \mathrm{f}^{9} 6 \mathrm{~s}^{2}$
4. $[\mathrm{Xe}] 4 \mathrm{f}^{7} 6 \mathrm{~s}^{2},(\mathrm{Xe}] 4 \mathrm{f}^{8} 6 \mathrm{~s}^{2}$ and $[\mathrm{Xe}] 4 \mathrm{f}^{8} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$

9.

The correct statement among the following when SO_{2} is passed through acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution is -

1. The solution is decolorized.
2. SO_{2} is reduced.
3. Green coloured $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is formed.
4. The solution turns blue.
5. Gadolinium belongs to 4 f series. It's atomic number is 64. Which of the following is the correct electronic configuration of gadolinium?
6. $[X e] 4 f^{8} 6 d^{2}$
7. $[X e] 4 f^{9} 5 s^{1}$
8. $[X e] 4 f^{7} 5 d^{1} 6 s^{2}$
9. $[X e] 4 f^{6} 5 d^{2} 6 s^{2}$
10. Assuming complete ionization, same moles of which of the following compounds will require the least amount of acidified KMnO_{4} for complex oxidation?
11. FeSO_{4}
12. $\mathrm{Fe} \mathrm{SO}_{3}$
13. $\mathrm{FeC}_{2} \mathrm{O}_{4}$
14. $\mathrm{Fe}\left(\mathrm{NO}_{2}\right)_{2}$
15.

Because of lanthanoid contraction, which of the following pairs of elements have nearly same atomic radii? (Numbers in the parenthesis are atomic numbers).

1. Ti (22) and Zr (40)
2. $\mathrm{Zr}(40)$ and Nb (41)
3. Zr (40) and Hf (72)
4. Zr (40) and Ta (73)
5.

Which of the following processes does not involve oxidation of iron?

1. Rusting of iron sheets
2. Decolourisation of blue CuSO_{4} solution by iron
3. Formation of $\mathrm{Fe}(\mathrm{CO})_{5}$ from Fe
4. Liberation of H_{2} from steam by iron a high temperature
5. In acidic medium, $\mathrm{H}_{2} \mathrm{O}_{2}$ changes $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$ to CrO_{5} which has two ($-\mathrm{O}-\mathrm{O}-$) bonds Oxidation state of Cr in CrO_{5} is :
6. +5
7. +3
8. +6
9. -10
10. Reason of lanthanoid contraction is:
11. Negligible screening effect of ' f ' orbitals
12. Increasing nuclear charge
13. Decreasing nuclear charge
14. Decreasing screening effect

16.

Diamagnetic lanthanoid ion among the following is -
(At nos. $\mathrm{Ce}=58, \mathrm{Sm}=62, \mathrm{Eu}=63, \mathrm{Yb}=70$)

1. Sm^{2+}
2. Eu^{2+}
3. Yb^{2+}
4. Ce^{2+}

17.

KMnO_{4} can be prepared from $\mathrm{K}_{2} \mathrm{MnO}_{4}$ as per the reaction:
$3 \mathrm{MnO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+4 \mathrm{OH}^{-}$
The reaction can go to completion by removing OH^{-}ions by adding:

1. KOH
2. CO_{2}
3. SO_{2}
4. HCl
5.

The incorrect statement among the following regarding interstitial compounds is -

1. They are chemically reactive.
2. They are much harder than the pure metal.
3. They have higher melting points than the pure metal.
4. They retain metallic conductivity.
5. The incorrect statement among the following is -
6. On passing $H_{2} S$ through acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution, a milky colour is observed.
7. $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is preffered over $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in volumetric analysis.
8. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution in acidic medium is orange.
9. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution becomes yellow in increasing the pH beyond 7
10.

For the four successive transition elements ($\mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}$ and Co), the stability of +2 oxidation state will be there in which of the following order?
(At. $\mathrm{No} \mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27$)

1. $\mathrm{Fe}>\mathrm{Mn}>\mathrm{Co}>\mathrm{Cr}$
2. $\mathrm{Co}>\mathrm{Mn}>\mathrm{Fe}>\mathrm{Cr}$
3. $\mathrm{Cr}>\mathrm{Mn}>\mathrm{Co}>\mathrm{Fe}$
4. $\mathrm{Mn}>\mathrm{Fe}>\mathrm{Cr}>\mathrm{Co}$
5.

Actinoids exhibit more number of oxidation states than lanthanoids. It is because of :

1. The greater metallic character of the lanthanoids than that of the corresponding actinoids.
2. More energy difference between 5 f and 6 d orbitals than that between 4 f and 5d orbitals.
3. The lesser energy difference between 5 f and 6 d orbitals than that between 4 f and 5 d orbitals.
4. More active nature of the actinoids.
5. Acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution turns green when $\mathrm{Na}_{2} \mathrm{SO}_{3}$ is added to it. This is due to the formation of
6. CrO_{4}^{2-}
7. $\mathrm{Cr}_{2}\left(\mathrm{SO}_{3}\right)_{3}$
8. CrSO_{4}
9. $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
10. Which of the following ions will exhibit colour in aqueous solutions?
11. $\mathrm{La}^{3+}(\mathrm{Z}=57)$
12. $\mathrm{Ti}^{3+}(\mathrm{Z}=22)$
13. $\mathrm{Lu}^{3+}(\mathrm{Z}=71)$
14. $\mathrm{Sc}^{3+}(\mathrm{Z}=21)$
15. Which one of the following ions has electronic configuration $[\mathrm{Ar}] 3 \mathrm{~d}^{6}$?
(At. no $: \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27, \mathrm{Ni}=28$)
16. $N i^{3+}$
17. $M n^{3+}$
18. $F e^{3+}$
19. Co^{3+}
20. Which of the following pairs has the same size?
21. $F e^{2+}, N i^{2+}$
22. $Z r^{4+}, T i^{4+}$
23. $Z r^{4+}, H f^{4+}$
24. $Z n^{2+}, H f^{4+}$
25.

Which one of the elements with the following outer orbital configurations may exhibit the largest number of oxidation states?

1. $3 \mathrm{~d}^{3}, 4 \mathrm{~s}^{2}$
2. $3 d^{5}, 4 s^{1}$
3. $3 \mathrm{~d}^{5}, 4 \mathrm{~s}^{2}$
4. $3 \mathrm{~d}^{2}, 4 \mathrm{~s}^{2}$
5. Identify the incorrect statement among the following :
6. There is a decrease in the radii of the atoms or ions as one proceeds from La to Lu .
7. Lanthanoid contraction is the accumulation of successive shrinkages
8. As a result of lanthanoid contraction, the properties of 4d series of the transition elements have no similarities with the 5 d series of elements
9. Shielding power of 4 f electrons is quite weak.
10. Which one of the following ions is the most stable in aqueous solution?
(At. No. $\mathrm{Ti}=22, \mathrm{~V}=23, \mathrm{Cr}=24, \mathrm{Mn}=25$)
11. $C r^{3+}$
12. V^{3+}
13. $T i^{3+}$
14. $M n^{3+}$
15. The d-electron configurations of $\mathrm{Cr}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}$ and Ni^{2+} and $3 d^{4}, 3 d^{5}, 3 d^{6}$ and $3 d^{8}$ respectively. Which one of the following aqua complexes will exhibit the minimum paramagnetic behaviour?
(At. $\mathrm{No} . \mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Ni}=28$)
16. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
17. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
18. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
19. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
20. Actinoids exhibit more number of oxidation states than lanthanoids. The main reason for this is :
21. More energy difference between 5 f and 6 d orbitals than that between 4 f and 5d orbitals
22. Greater metallic character of the lanthanoids than that of the corresponding actinoids
23. Lesser energy difference between 5 f and 6 d orbitals than that between 4 f and 5 d orbitals
24. More active nature of the actinoids
25. The manganate and permanganate ions are tetrahedral, due to:
26. The π-bonding involves overlap of d-orbitals of oxygen with d-orbitals of manganese
27. The π-bonding involves overlap of p-orbitals of oxygen with d-orbitals of manganese
28. There is no π-bonding
29. The π-bonding involves overlap of p-orbitals of oxygen with p-orbitals of manganese
30. Match the catalyst with the process:

Catalyst Process
$\begin{array}{ll}\text { (i) } \mathrm{V}_{2} \mathrm{O}_{5} & \text { (a) The oxidation of ethylene to }\end{array}$ ethanal
(ii) $\mathrm{TiCl}_{4}+\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}$
(iii) $P d C l_{2}$ manufacture of $\mathrm{H}_{2} \mathrm{SO}_{4}$
(iv) Nickel complexes
(b) Polymerisation of alkynes
(c) Oxidation of SO_{2} in the
(d) Polymerisation of ethylene

Which of the following is the correct matching of Catalyst \& Process?
(1) (i)-(c), (ii)-(d), (iii)-(a), (iv)-(b)
(2) (i)-(a), (ii)-(b), (iii)-(c), (iv)-(d)
(3) (i)-(a), (ii)-(n), (iii)-(b), (iv)-(d)
(4) (i)-(c), (ii)-(a), (iii)-(d), (iv)-(b)
33. When neutral or faintly alkaline KMnO_{4} is treated with potassium iodide, iodide ion is converted into ' X ', ' X ' is-

1. I_{2}
2. IO_{4}^{-}
3. IO_{3}^{-}
4. $I O^{-}$
5. The calculated spin only magnetic moment of Cr^{2+} ion is :
6. 4.90 BM
7. 5.92 BM
8. 2.84 BM
9. 3.87 BM
10. Identify the incorrect statement.
11. The transition metals and their compounds are known for their catalytic activity due to their ability to adopt multiple oxidation states and to form complexes.
12. Interstitial compounds are those that are formed when small atoms like H, C or N are trapped inside the crystal lattices of metals.
13. The oxidation states of chromium in $\mathrm{CrO} \mathrm{O}_{4}^{2-}$ and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ are not the same.
14. $C r^{2+}\left(d^{4}\right)$ is a stronger reducing agent than $F e^{2+}\left(d^{6}\right)$ in water.
15. Urea reacts with water to form A which will decompose to form B. B when passed through Cu^{2+} (aq), deep blue color solution C is formed. What is the formula of C from the following?
16. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
17. $\mathrm{Cu}(\mathrm{OH})_{2}$
18. $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$
19. CuSO_{4}
20. Identify the incorrect statement from the following:
(1) Zirconium and Hafnium have identical radii of 160 pm and 159 pm , respectively as a consequence of lanthanoid contraction.
(2) Lanthanoids reveal only +3 oxidation state.
(3) The lanthanoid ions other than the f^{0} type and the f^{14} type are all paramagnetic.
(4) The overall decrease in atomic and ionic radii from lanthanum to lutetium is called lanthanoid contraction.
21. Match the following aspects with the respective metal.

Aspects
(a) The metal which reveals a maximum number of oxidation states
(b) The metal although placed inn 3d block is considered not as a transition element
(c) The metal which does not exhibit variable oxidation states
(d) The metal which in +1 oxidation state in aqueous solution undergoes disproportionation

Select the correct option :
(1) (a)-(i) (b)-(iv) (c)-(ii) (d)-(iii)
(2) (a)-(iii) (b)-(iv) (c)-(i) (d)-(ii)
(3) (a)-(iii)
(b)-(i) (c)-(iv)
(d)-(ii)
(4) (a)-(ii)
(b)-(iv) (c)-(i)
(d)-(iii)
39. The catalytic activity of transition metals and their compounds is ascribed mainly to:

1. their unfilled d-orbitals
2. their ability of adopt variable oxidation states
3. their chemical reactivity
4. their magnetic behaviour
5. Which one of the following does not correctly represent the correct order of the property indicated against it ?
6. $\quad T i^{3+}<V^{3+}<\mathrm{Cr}^{3+}<\mathrm{Mn}^{3+}$: increasing magnetic moment
7. $T i<V<C r<M n$: increasing melting point 3. $\mathrm{Ti}<\mathrm{V}<\mathrm{Mn}<\mathrm{Cr}$: increasing 2nd ionization enthalpy
8. $\mathrm{Ti}<\mathrm{V}<\mathrm{Cr}<\mathrm{Mn}$: increasing number of oxidation states
9. The most common oxidation state of lanthanoid is -
10. 2
11. 5
12. 3
13. 4
14. Which of the following exhibits only a +3 oxidation state?
15. Th
16. Ac
17. Pa
18. U
19. Four successive members of the first series of the transition metals are listed below. For which one of them does the standard potential $\left(E^{\circ}{ }_{M^{2+} / M}\right)$ value have a positive sign?
20. $\mathrm{Ni}(\mathrm{Z}=28)$
21. $\mathrm{Cu}(\mathrm{Z}=29)$
22. $\mathrm{Fe}(\mathrm{Z}=26)$
23. $\operatorname{Co}(Z=27)$
24. The aqueous solution containing which one of the following ions will be colourless -
(1) Fe^{2+}
(2) Mn^{2+}
(3) Ti^{3+}
(4) Sc^{3+}
[Atomic number : $\mathrm{Sc}=21, \mathrm{Fe}=26, \mathrm{Ti}=24, \mathrm{Mn}=25$]
25. Four successive members of the first row transition elements are listed below with their atomic numbers. which one of them is expected to have the highest third ionization enthalpy :-
(1) Vanadium $(Z=23)$
(2) Manganese $(Z=25)$
(3) Chromium $(Z=24)$
(4) $\operatorname{Iron}(Z=26)$
26. Colourless ion among the following is:
27. Cr^{+4}
28. Sc^{+3}
29. Ti^{+3}
30. V^{+3}
31. An element among the following that exhibit maximum oxidation state is :
32. Cr
33. Mn
34. Fe
35. V
36. The main reason for larger number of oxidation states exhibited by the actinoids than the corresponding lanthanoids, is :-
(1) Lesser energy difference between 5 f and 6 d orbitals than between 4 f and 5d orbitals
(2) More energy difference between 5 f and 6 d orbitals than between 4 f and 5d orbitals
(3) Greater reactive nature of the actinoids than the lanthanoids
(4) Larger atomic size of actinoids than the lanthanoids
37. Ion that gives color with the water :
38. $C u^{+}$
39. $C r^{3+}$
40. $N a^{+}$
41. None of the above.
42. Maximum oxidation state is shown by :
43. La
44. Gd
45. Eu
46. Am
47. A coloured and paramagnetic compound among the following is -
48. $C u F_{2}$
49. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
50. KMnO_{4}
51. $K_{4}\left[F e(C N)_{6}\right]$
52. Lanthanoids are :-
(1) 14 elements in the seventh period (atomic no. $=90$ to
103) that are filling 5 f sublevel.
(2) 14 elements in the sixth period (atomic no. 58 to 71) that are filling 4 f sublevel
(3) 14 elements in the seventh period (atomic no. $=58$ to
104) that are filling 4 f sublevel
(4) 14 elements in the sixth period (atomic no. 90 to 103) that are filling 4 f sublevel
53. An element among the following that can form more than one binary compound with chlorine is:-
54. Zn
55. K
56. Ca
57. Fe
58. $\mathrm{FeCr}_{2} \mathrm{O}_{4}$ reacts with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ gives the product :
59. $\mathrm{Na}_{2} \mathrm{CrO}_{4}$
60. $\mathrm{Na} a_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
61. $\mathrm{Fe}_{3} \mathrm{O}_{4}$
62. FeO
63. A set of ions among the following has $3 \mathrm{~d}^{2}$ electronic configuration is:-
64. $\mathrm{Ti}^{+}, \mathrm{V}^{4+}, \mathrm{Cr}^{6+}, \mathrm{Mn}^{7+}$
65. $\mathrm{Ti}^{4+}, \mathrm{V}^{3+}, \mathrm{Cr}^{2+}, \mathrm{Mn}^{3+}$
66. $\mathrm{Ti}^{2+}, \mathrm{V}^{3+}, \mathrm{Cr}^{4+}, \mathrm{Mn}^{5+}$
67. $\mathrm{Ti}^{3+}, \mathrm{V}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Mn}^{4+}$
68. General electronic configuration of lanthanoids is :
(1) $(n-2) f^{1-14}(n-1) s^{2} p^{6} d^{0-1} n s^{2}$
(2) $(n-2) f^{10-14}(n-1) d^{0-1} n s^{2}$
(3) $(n-2) f^{0-14}(n-1) d^{10} n s^{2}$
(4) $(n-2) d^{0-1}(n-1) f^{1-14} n s^{2}$
69. An element among the following that shows maximum number of oxidation states is:-
(1) Cr
(2) Fe
(3) Mn
(4) V
70. Zn gives H_{2} gas with $\mathrm{H}_{2} \mathrm{SO}_{4} \& \mathrm{HCl}$ but not with HNO_{3} because :-
71. Zn act as oxidising agent when react with HNO_{3}
72. HNO_{3} is weaker acid then $\mathrm{H}_{2} \mathrm{SO}_{4} \& \mathrm{HCl}$
73. In electrochemical series Zn is above hydrogen
74. $\mathrm{NO}_{3}{ }^{\Theta}$ is reduced in preference to hydronium ion.
75. Incorrect statement among the following options is:
76. $L a(O H)_{3}$ is less basic than $L u(O H)_{3}$
77. In Lanthanide series ionic radius of $L n^{+3}$ ions decreases.
78. La is actually an element of transition series rather Lanthanide.
79. Atomic radius of Zr and Hf are same because of Lanthanide contraction.
80. The catalytic activity of transition metals is due to :
81. High enthalpy of atomization
82. Paramagnetic behaviour
83. Colour of hydrated ions
84. Variable oxidation states
85. The basic character of the transition metal monoxides follows the order :
86. $\mathrm{VO}>\mathrm{CrO}>\mathrm{TiO}>\mathrm{FeO}$
87. $\mathrm{CrO}>\mathrm{VO}>\mathrm{FeO}>\mathrm{TiO}$
88. $\mathrm{TiO}>\mathrm{FeO}>\mathrm{VO}>\mathrm{CrO}$
89. $\mathrm{TiO}>\mathrm{VO}>\mathrm{CrO}>\mathrm{FeO}$
(Atomic nos. $\mathrm{Ti}=22, \mathrm{~V}=23, \mathrm{Cr}=24, \mathrm{Fe}=26$)
90. The correct order of ionic radii of $\mathrm{Y}^{3+}, \mathrm{La}^{3+}, \mathrm{Eu}^{3+}$, and Lu^{3+} is :-
91. $\mathrm{Y}^{3+}<\mathrm{La}^{3+}<\mathrm{Eu}^{3+}<\mathrm{Lu}^{3+}$
92. $\mathrm{Y}^{3+}<\mathrm{Lu}^{3+}<\mathrm{Eu}^{3+}<\mathrm{La}^{3+}$
93. $\mathrm{Lu}^{3+}<\mathrm{Eu}^{3+}<\mathrm{La}^{3+}<\mathrm{Y}^{3+}$
94. $\mathrm{La}^{3+}<\mathrm{Eu}^{3+}<\mathrm{Lu}^{3+}<\mathrm{Y}^{3+}$

Atomic nos. $\mathrm{Y}=39, \mathrm{La}=57, \mathrm{Eu}=63, \mathrm{Lu}=71$.
63. $\mathrm{Zr}(\mathrm{Z}=40)$ and $\mathrm{Hf}(\mathrm{Z}=72)$ have similar atomic and ionic radii because of:

1. lanthanoid contraction
2. having similar chemical properties
3. belonging to same group
4. diagonal relationship
5. The incorrect statement among the following is :
6. Lanthanoids are good conductors of heat and electricity.
7. Actinoids are highly reactive metals, especially when finely divided.
8. Actinoid contraction is greater for element to element than Lanthanoid contraction.
9. Most of the trivalent Lanthanoid ions are colorless in the solid-state.
10. Match List-I with List-II

List-I	List-II
(a) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$	(i) 5.92 BM
(b) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	(ii) 0 BM
(c) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$	(iii) 4.90 BM
(d) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	(iv) 1.73 BM

Choose the correct answer from the options given below.

1. (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)
2. (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
3. (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)
4. (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

course

Coordination Compounds

(Expected Questions in NEET 2022: 3)

Subtopic Name	Number of Questions
vBT \& CFT \& their Limitations	24
Isomerism in Coordination Compounds	18
Introduction and Classification / Nomenclature	11
 their Uses	7
Ligands	5
Werner's Theory	1

1. The correct order of the stoichiometries of AgCl formed when AgNO_{3} in excess is treated with the complexes: $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}, \mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}, \mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$ respectively is:
2. $3 \mathrm{AgCl}, 1 \mathrm{AgCl}, 2 \mathrm{AgCl}$
3. $3 \mathrm{AgCl}, 2 \mathrm{AgCl}, 1 \mathrm{AgCl}$
4. $2 \mathrm{AgCl}, 3 \mathrm{AgCl}, 1 \mathrm{AgCl}$
5. $1 \mathrm{AgCl}, 3 \mathrm{AgCl}, 2 \mathrm{AgCl}$
6. Correct increasing order for the wavelengths of absorption in complexes of Co^{3+} are:
7.

$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}<\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
2.
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}<\left[\mathrm{Co}(e n)_{3}\right]^{3+}$
3.
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}<\left[\mathrm{Co}(e n)_{3}\right]^{3+}<\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
4.
$\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}<\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}<\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
3. Pick out the correct statement with respect to $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$

1. It is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridised and tetrahedral
2. It is $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridised and octahedral
3. It is dsp ${ }^{2}$ hybridised and square planar
4. It is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridised and octahedral
5.

The type of isomerism shown by the complex $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]^{+}$is :
5.

The geometry and magnetic behaviour of the complex $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ are

1. square planar geometry and diamagnetic
2. tetrahedral geometry and diamagnetic
3. square planar geometry and paramagnetic
4. tetrahedral geometry and paramagnetic
5.

Iron carbonyl, $\mathrm{Fe}(\mathrm{CO})_{5}$ is

1. Tetranuclear
2. Mononuclear
3. Trinuclear
4. Dinuclear
5. Number of possible isomers for the complex $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] C l$ will be (en=ethylenediamine)
6. 1
3.3
7. 4
8. The hybridization involved in complex $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is :
(Atomic number of $\mathrm{Ni}=28$)
9. $d s p^{2}$
10. $s p^{3}$
11. $d^{2} s p^{2}$
12. $d^{2} s p^{3}$
13. Geometrical isomerism
14. Coordination isomerism
15. Ionization isomerism
16. Linkage isomerism
17. The sum of coordination number and oxidation number of the metal M in the complex $\left[\mathrm{M}(\mathrm{en})_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right] \mathrm{Cl}$ is -
1.9
18. 6
3.7
19. 8
20. The IUPAC name of complex ion, $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is
21. Hexacyanoiron(III) ion
22. Hexacyanitoferrate(III) ion
23. Tricynoferrate(III) ion
24. Hexacyanidoferrate(III) ion
25.

An ion has magnetic moment 2.84 BM is -
(At. no. $\mathrm{Ni}=28, \mathrm{Ti}=22, \mathrm{Cr}=24, \mathrm{Co}=27$)

1. Ni^{2+}
2. Ti^{3+}
3. Cr^{2+}
4. Co^{2+}
5.

Cobalt (III) chloride forms several octahedral complexes with ammonia.

A compound among the following that doesnot give test for chloride ions with silver nitrate at $25^{\circ} \mathrm{C}$ is -

1. $\mathrm{CoCl}_{3} \cdot 3 \mathrm{NH}_{3}$
2. $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$
3. $\mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}$
4. $\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}$
5.

The correct statement among the following is:

1. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has no unpaired electrons and will be in a low-spin configuration.
2. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has four unpaired electrons and will be in a low-spin configuration.
3. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has four unpaired electrons and will be in a high-spin configuration.
4. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has no unpaired electrons and will be in a high-spin configuration.
5. An ion that has magnetic moment 2.83 BM is -
(Atomic Number: $\mathrm{Ti}=22, \mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Ni}=28$)
6. $T i^{3+}$
7. $N i^{2+}$
8. $C r^{3+}$
9. $M n^{2+}$
10. An anticancer agent among the following is -
11. mer $-\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]$
12. Cis $-\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
13. $\mathrm{Cis}-\mathrm{K}_{2}\left[\mathrm{Pt} \mathrm{Cl}_{2} \mathrm{Br}_{2}\right]$
14. $\mathrm{NH}_{2} \mathrm{CoCl}_{4}$
15.

A magnetic moment of 1.73 BM will be shown by one among the following :

1. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
2. TiCl_{4}
3. $\left[\mathrm{CoCl}_{6}\right]^{4-}$
4. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
5.

An excess of AgNO_{3} is added to 100 mL of a 0.01 M solution of dichlorotetraaquachromium (III) chloride.
The number of moles of AgCl precipitated would be :

1. 0.002
2. 0.003
3. 0.01
4. 0.001
5. Which one of the following is an outer orbital complex and exhibits paramagnetic behavior?
6. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
7. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
8. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
9. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
10.

The complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\operatorname{Cr}(\mathrm{CN})_{6}\right]$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ shows -

1. Ionisation isomerism
2. Co-ordination isomerism
3. Geometrical isomerism
4. Linkage isomerism
5.

The number of geometrical isomers shown by $\left[\mathrm{Pt}(\mathrm{Py})\left(\mathrm{NH}_{3}\right) \mathrm{BrCl}\right]$ -

1. 4
2. 0
3. 2
4. 3
5. The d-electron configurations of $\mathrm{Cr}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}$, and Co^{2+} are $\mathrm{d}^{4}, \mathrm{~d}^{5}, \mathrm{~d}^{6}$, and d^{7} respectively.

Minimum paramagnetic behavior is shown by -
(At. $\mathrm{No} \mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27$)

1. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
2. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
3. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
4. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
5. Of the following complex ions, which is diamagnetic in nature?
6. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
7. $\left[\mathrm{CuCl}_{4}\right]^{2-}$
8. $\left[\mathrm{CoF}_{6}\right]^{3-}$
9. $\left[\mathrm{NiCl}_{4}\right]^{2-}$
10.

An ion among the following that does not show optical isomerism is -
(en = ethylenediamine)

1. $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$
2. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
3. $\left[\mathrm{Co}(\mathrm{en}) \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
4. $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
5.

A complex ions among the following is expected to absorb visible light-
(At. no. $\mathrm{Zn}=30, \mathrm{Sc}=21, \mathrm{Ti}=22, \mathrm{Cr}=24$)

1. $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]^{3+}$
2. $\left[\mathrm{Ti}(\mathrm{en})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{4+}$
3. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
4. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
5. The complexes with the highest paramagnetic behavior among the following is -
(where gly $=$ glycine, en $=$ ethylenediamine and bpy $=$ bipyridyl moieties)
(At no : $\mathrm{Ti}=22, \mathrm{~V}=21, \mathrm{Fe}=26, \mathrm{Co}=27$)
6. $\left[\mathrm{V}(\mathrm{gly})_{2}(\mathrm{OH})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
7. $\left[\mathrm{Fe}(\mathrm{en})(\mathrm{bpy})\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$
8. $\left[\mathrm{Co}(\mathrm{OX})_{2}(\mathrm{OH})_{2}\right]^{-}$
9. $\left[\mathrm{Ti}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
10. CFSE (in octahedral field) will be maximum in -
(Atomic number $\mathrm{Co}=27$)
11. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
12. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
13. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
14. $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
15. Out of $\mathrm{TiF}_{6}^{2-}, \mathrm{CoF}_{6}^{3-}, \mathrm{Cu}_{2} \mathrm{Cl}_{2}$ and $\mathrm{NiCl}_{4}^{2-}(\mathrm{Z}$ of $\mathrm{Ti}=$ $22, \mathrm{Co}=27, \mathrm{Cu}=29, \mathrm{Ni}=28$) the colourless species are
16. TiF_{6}^{2-} and CoF_{6}^{3-}
17. $C u_{2} C l_{2}$ and $N i C l_{4}^{2-}$
18. $T i F_{6}^{2-}$ and $C u_{2} C l_{2}$
19. CoF_{6}^{3-} and NiCl_{4}^{2-}
20. A compound among the following that gives a pair of enantiomorphs is -
(en $\left.=\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$
21. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{NO}_{2}$
22. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
23. $\left[\mathrm{Co}(e n){ }_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
24. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCl}_{6}\right]$
25. A pair that contain both the ions coloured in aqueous solution is -
(At. no. : $\mathrm{Sc}=21, \mathrm{Ti}=22, \mathrm{Ni}=28, \mathrm{Cu}=29, \mathrm{Co}=27$)
26. $N i^{2+}, T i^{3+}$
27. $S c^{3+}, T i^{3+}$
28. $\mathrm{Sc}^{3+}, \mathrm{Co}^{2+}$
29. $N i^{2+}, C u^{+}$
30. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{Cl}$ exhibits :
31. linkage isomerism, ionization isomerism and optical isomerism
32. linkage isomerism, ionization isomerism and geometrical isomerism
33. ionization isomerism, geometrical isomerism and optical isomerism
34. linkage isomerism, geometrical isomerism and optical isomerism
35. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ (at. No. of $\mathrm{Cr}=24$) has a magnetic moment of 3.83 BM , the correct distribution of 3 delectrons in the chromium of the complex is :
36. $3 d_{x^{2}-y^{2}}^{1}, 3 d_{z^{2}}^{1}, 3 d_{x y}^{1}$
37. $3 d_{x y}^{1}, 3 d_{x^{2}-y^{2}}^{1}, 3 d_{y z}^{1}$
38. $3 d_{x y}^{1}, 3 d_{z y}^{1}, 3 d_{x z}^{1}$
39. $3 d_{x y}^{1}, 3 d_{y z}^{1}, 3 d_{z^{2}}^{1}$
40. What is the correct electronic configuration of the central atom in $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ based on crystal field theory?
41. $\mathrm{e}^{4} \mathrm{t}_{2 \mathrm{~g}}^{2}$
42. $\mathrm{t}_{2 \mathrm{~g}}{ }^{4} \mathrm{e}_{\mathrm{g}}^{2}$
43. $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$
44. $e^{3} t_{2 g}^{3}$
45. The crystal field stabilization energy (CFSE) for $\left[\mathrm{CoCl}_{6}\right]^{4-}$ is $18000 \mathrm{~cm}^{-1}$, the CFSE for $\left[\mathrm{CoCl}_{4}\right]^{2-}$ will be :
46. $6000 \mathrm{~cm}^{-1}$
47. $16000 \mathrm{~cm}^{-1}$
48. $18000 \mathrm{~cm}^{-1}$
49. $8000 \mathrm{~cm}^{-1}$
50. Correct order of increasing field strength of ligands among the following is -
51. $\mathrm{SCN}^{-}<\mathrm{F}^{-}<\mathrm{CN}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
52. $\mathrm{F}^{-}<\mathrm{SCN}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{CN}^{-}$
53. $\mathrm{CN}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SCN}^{-}<\mathrm{F}^{-}$
54. $\mathrm{SCN}^{-}<\mathrm{F}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{CN}^{-}$
55. The complex that is not expected to exhibit isomerism is:
56. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
57. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
58. $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}$
59. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$
60. The carbonyl compound having the strongest $\mathrm{C}-\mathrm{O}$ bond is :
61. $\mathrm{Fe}(\mathrm{CO})_{5}$
62. $\mathrm{Mn}(\mathrm{CO})_{6}^{+}$
63. $\mathrm{Cr}(\mathrm{CO})_{6}$
64. $\mathrm{V}(\mathrm{CO})_{6}^{-}$
65. Among the given complex, the complex having highest paramagnetic behaviour is :
66. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
67. $\left[\mathrm{Ti}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
68. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
69. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(At. No. $\mathrm{Ti}=22, \mathrm{Cr}=24, \mathrm{Co}=27, \mathrm{Zn}=30$)
70. Which one of the following pair represents stereo isomerism :-
(1) Linkage isomerism and Geometrical isomerism
(2) Chain isomerism and Rotational isomerism
(3) Optical isomerism and Geometrical isomerism
(4) Structural isomerism and Geometrical isomerism
71. A complex compound which is formed by ligands nitrate and chloride. It gives two moles of AgCl precipitate with AgNO_{3}. What will be its formulae :
72. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{3}\right] \mathrm{Cl}_{2}$
73. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{NO}_{3} \mathrm{Cl}$
74. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{NO}_{3}$
75. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{ClNO}_{3}\right] \mathrm{Cl}$
76. Shape of $\mathrm{Fe}(\mathrm{CO})_{5}$ is :
77. Octahedral
78. Square planar
79. Trigonal bipyramidal
80. Square pyramidal
81. Which one of the following is expected to exhibit optical isomerism ? $(\mathrm{en}=$ ethylenediamine $)$
82. cis $-\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
83. cis $-\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$
84. trans $-\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$
85. trans $-\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
86. Mg is present in :
87. Chlorophyll
88. Haemoglobin
89. Vitamin- 12
90. Vitamin-B
91. Number of isomers of $\left[P t\left(N H_{3}\right)_{4}\right]\left[C u C l_{4}\right]$ complex are :
92. 2
93. 3
94. 4
95. 5
96. The coodination compound that will give four isomers is :
97. $\left[\mathrm{Fe}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}$
98. $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
99. $\left[\mathrm{Fe}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NH}_{3} \mathrm{ClBr}\right] \mathrm{Cl}$
100. $\left[\mathrm{Co}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\right] \mathrm{Cl}_{3}$
101. The IUPAC name of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{ClBrNO} \mathrm{O}_{2}\right]$ will $51 . \mathrm{CN}^{-}$is a strong field ligand. This is due to the fact that be :
(1) Triamminebromochloronitrocobaltate (III)
(2) Triamminebromochloronitrocobalt (III)
(3) Triamminebromonitrochlorocobalt (III)
(4) Triamminenitrobromochlorocobalt (III)
102. In $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] B r_{3}$, number of unpaired electrons in Cr is :
103. 4
104. 3
105. 1
106. 2
107. Anticancer agent among the following is :-
108.

2.

3.

4.

50. In an octahedral structure, the pair of d orbitals involved in $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridization is :-

1. $\mathrm{d}_{\mathrm{xz}}, \mathrm{d}_{\mathrm{x}}^{2}-\mathrm{y}^{2}$
2. $\mathrm{d}_{\mathrm{z}}^{2}, \mathrm{~d}_{\mathrm{xz}}$
3. $d_{x y}, d_{y z}$
4. $\mathrm{d}_{\mathrm{x}}^{2}-\mathrm{y}^{2}, \mathrm{~d}_{\mathrm{z}}^{2}$
(1) It is a pseudohalide.
(2) It can accept electrons from metal species.
(3) It forms high spin complexes with metal species.
(4) It carries negative charge .
5. Considering $\mathrm{H}_{2} \mathrm{O}$ as a weak field ligand, the number of unpaired electrons in $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ will be -
(At. no. of $\mathrm{Mn}=25$)
(1) Five
(2) Two
(3) Four
(4) Three
6. Among $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right],\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}, \quad\left[\mathrm{NiCl}_{4}\right]^{2-}$ species, the hybridization states at the Ni atom are respectively :-
(At. No. of $\mathrm{Ni}=28$)
7. $\mathrm{sp}^{3}, \mathrm{dsp}^{2}, \mathrm{sp}^{3}$
8. $\mathrm{sp}^{3}, \mathrm{sp}^{3}, \mathrm{dsp}^{2}$
9. $\mathrm{dsp}^{2}, \mathrm{sp}^{3}, \mathrm{sp}^{3}$
10. $\mathrm{sp}^{3}, \mathrm{dsp}^{2}, \mathrm{dsp}^{2}$
11. Coordination compound that would exhibit optical isomerism is :
(1) Diamminedichloroplatinum (II)
(2) Trans-dicyanobis (ethylenediamine) chromium (III) chloride
(3) Tris - (ethylenediamine) cobalt (III) chloride
(4) Pentaamminenitrocobalt (III) iodide
12. Atomic number of Cr and Fe are respectively 24 and 26 . Among the following the one that is paramagnetic with the spin of electron is :-
13. $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$
14. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
15. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-4}$
16. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}$
17. The hypothetical chlorodiaquatriamminecobalt (III) chloride can be represented as-
18. $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$
19. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{3}\right]$
20. $\left[\mathrm{Co}\left(\mathrm{NH}_{2}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}\right]$
21. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right]$
22. The coordination compound that give maximum number of isomers :-
23. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$
24. $\left[\mathrm{Ni}(e n)\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}$
25. $\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(e n)_{2}\right]$
26. $\left[\mathrm{Cr}(\mathrm{SCN})_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}$
27. According to IUPAC nomenclature, sodium nitroprusside is named as -
28. Sodium nitroferricyanide
29. Sodium nitroferrocyanide
30. Sodium pentacyanidonitrosyl ferrate (II)
31. Sodium pentacyanonitrosyl ferrate (III)
32. The number of unpaired electrons in the complex ion $\left[\mathrm{CoF}_{6}\right]^{3-}$ is-
$(\mathrm{A}+\mathrm{No}=\mathrm{Co}=27)$
33. 2
34. 3
35. 4
36. Zero
37. The octahedral complex that will not show geometrical isomerism is:
(A and B are monodentate ligands)
(1) $\left[\mathrm{MA}_{2} \mathrm{~B}_{4}\right]$
(2) $\left[\mathrm{MA}_{3} \mathrm{~B}_{3}\right]$
(3) $\left[\mathrm{MA}_{4} \mathrm{~B}_{2}\right]$
(4) $\left[\mathrm{MA}_{5} \mathrm{~B}\right]$
38. Vitamin B_{12} contains :
39. Fe (II)
40. Co (III)
41. $\mathrm{Zn}(\mathrm{II})$
42. $\mathrm{Ca}(\mathrm{II})$
43. The coordination number of Ni in $\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{4-}$ is :
44. 3
45. 6
46. 4
47. 2
48. The organometallic compound that is σ and π bonded is :-
49. $\left[F e\left(\eta^{5}-C_{5} H_{5}\right)_{2}\right]$
50. $K\left[P t C l_{3}\left(\eta^{2}-C_{2} H_{4}\right)\right]$
51. $\left[\mathrm{Co}(\mathrm{CO})_{5} \mathrm{NH}_{3}\right]^{+2}$
52. $\mathrm{Fe}\left(\mathrm{CH}_{3}\right)_{3}$
53. Incorrect option among the following is :-
54. $\mathrm{Ni}(\mathrm{CO})_{4}$, Tetrahedral, paramagnetic
55. $N i(C N)_{4}^{-2}$,Square planar, diamagnetic
56. $\mathrm{Ni}(\mathrm{CO})_{4}$ Tetrahedral, diamagnetic
57. $\left[N i(C l)_{4}\right]^{-2}$ Tetrahedral, paramagnetic
58. The complex that will exhibit maximum ionic conductivity in aqueous solution is :-
59. $K_{4}\left[F e(C N)_{6}\right]$
60. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
61. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$
62. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
63. Ethylene diaminetetraacetate (EDTA) ion is :
64. Bidentate ligand with two " N " donor atoms
65. Tridentate ligand with three "N" donor
66. Hexadentate ligand with four " O " and two atoms " N " donor atoms
67. Unidentate ligand

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

Haloalkanes \& Halarenes

(Expected Questions in NEET 2022: 1)

Subtopic Name	Number of Questions
Chemical Properties	25
Mechanism of Reactions	8
Physical Properties	4
Iodoform, Freons \& DDT	1
Isomerism \& Chirality	1

1. The compound among the following that can be used as the halide component for Friedel-Crafts reaction is-
2. Chlorobenzene
3. Bromobenzene
4. Chloroethene
5. Isopropyl chloride
6. Consider the reaction,
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}+\mathrm{NaCN}-\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CN}+\mathrm{NaBr}$
This reaction will be the fastest in -
7. Ethanol
8. Methanol
9. N,N'-dimethylformamide (DMF)
10. Water
11. For the following reactions,
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{KOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{KBr}+\mathrm{H}_{2} \mathrm{O}$

The correct statement among the following is -

1. (i) Elimination, reaction, (ii) is substitution and (iii) is addition reaction
2. (i) Elimination, (ii) and (iii) are substitution reactions
3. (i) Substitution, (ii) and (iii) are addition reactions
4. (i) and (ii) are elimination reactions and (iii) is addition reaction
5. The correct statement among the following regarding $\mathrm{S}_{\mathrm{N}} 1$ reaction is -
6. 100% racemisation
7. Inversion more than retention leading to partial racemisation
8. 100% retention
9. 100% Inversion
prep
10. A compound among the following undergoes racemisation upon hydrolysis with aquous KOH is -
(i)

(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
(iii) $\mathrm{CH}_{3}-\stackrel{\mathrm{CH}_{3}}{\mathrm{CH}}-\mathrm{CH}_{2} \mathrm{Cl}$
(iv) $\mathrm{CH}_{3}-\stackrel{\mathrm{Cl}}{\mathrm{CH}}-\mathrm{C}_{2} \mathrm{H}_{5}$
11. (i) and (ii)
12. (ii) and (iv)
13. (iv) only
14. (i) and (iv)
15. $\mathrm{CH}_{3}-\mathrm{Br} \xrightarrow{\mathrm{KCN}} \mathrm{A} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{B} \xrightarrow[\text { ether }]{\mathrm{LiAlH}_{4}} \mathrm{C}$

The end product (C) in the above mentioned reaction is -

1. Acetone
2. Methane
3. Acetaldehyde
4. Ethyl alcohol
5.

The correct sequence of increasing reactivity of C-X bond towards nucleophile in the following compounds is -

1. $\mathrm{I}<\mathrm{II}<\mathrm{IV}<$ III
2. $\mathrm{II}<\mathrm{III}<\mathrm{I}<$ IV
3. $\mathrm{IV}<\mathrm{III}<\mathrm{I}<$ II
4. III $<$ II $<$ I $<$ IV
5. The reaction that cannot form new carbon-carbon bonds is -
6. Reimer-Tiemann reaction
7. Cannizaro reaction
8. Wurtz reaction
9. Friedel-Crafts acylation
10. The hydrolysis reaction that takes place at the slowest rate among the following is-

11. $\mathrm{H}_{3} \mathrm{CCH}_{2} \mathrm{Cl} \xrightarrow{a q . \mathrm{NaOH}} \mathrm{H}_{3} \mathrm{CCH}_{2} \mathrm{OH}$
12. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{Cl} \xrightarrow{\text { aq. } \mathrm{NaOH}} \mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{OH}$
13.

10. A compound that does not undergo $\mathrm{S}_{\mathrm{N}} 1$ reaction with OH^{-}is -

1. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Cl}$
2. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$
3.

12. (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(b) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$

(c)
(d) $\mathrm{CH}_{3} \mathrm{OH}$

Iodoform reaction is given by -

1. Only (b)
2. (a), (b) and (c)
3. (a) and (b)
4. (a), (c) and (d)
5. Which of the following compounds undergoes nucleophilic substitution reaction most easily?
6.

2.

14. Consider the reactions :
(i) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2} \mathrm{OC}_{2} \mathrm{H}_{5}+\mathrm{HBr}$
(ii) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2} \mathrm{OC}_{2} \mathrm{H}_{5}+\mathrm{Br}^{-}$
The mechanisms of reactions (i) and (ii) are respectively :

1. $\mathrm{S}_{\mathrm{N}} 2$ and $\mathrm{S}_{\mathrm{N}} 1$
2. $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$
3. $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 1$
4. $\mathrm{S}_{\mathrm{N}} 2$ and $\mathrm{S}_{\mathrm{N}} 2$
5. Which of the following undergoes nucleophilic substitution exclusively by SN^{1} mechanism :
(1) Ethyl chloride
(2) Isopropyl chloride
(3) Benzyl chloride
(4) Chlorobenzene
6. The -OH group of an alcohol or the carboxylic acid can be replaced by -Cl using :
(1) Hypochlorous acid
(2) Chlorine
(3) Hydrochloric acid
(4) Phosphorous pentachloride
7. Reactivity order of halides for dehydrohalogenation is :-
(1) $\mathrm{R}-\mathrm{F}>\mathrm{R}-\mathrm{Cl}>\mathrm{R}-\mathrm{Br}>\mathrm{R}-$ I
(2) $\mathrm{R}-\mathrm{I}>\mathrm{R}-\mathrm{Br}>\mathrm{R}-\mathrm{Cl}>\mathrm{R}-\mathrm{F}$
(3) $\mathrm{R}-\mathrm{I}>\mathrm{R}-\mathrm{Cl}>\mathrm{R}-\mathrm{Br}>\mathrm{R}-\mathrm{F}$
(4) $\mathrm{R}-\mathrm{F}>\mathrm{R}-\mathrm{I}>\mathrm{R}-\mathrm{Br}>\mathrm{R}-\mathrm{Cl}$
8. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl} \xrightarrow{\mathrm{NaCN}} \mathrm{X} \xrightarrow{\mathrm{Ni} / \mathrm{H}_{2}} \mathrm{Y} \xrightarrow{\text { Acetic anhydride }} \mathrm{Z}$

Z in the above reaction sequence is :-
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCOCH}_{3}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONHCH}_{3}$
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONHCOCH}_{3}$
19. When $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCl}_{2}$ is treated with NaNH_{2}, the product formed is :-
(1)

(2)

(3)

20.

obtained by chlorination of n-butane, will be : -

1. Meso form
2. Racemic mixture
3. d-form
4. 1-form
5. An organic compound $\mathrm{A}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right)$ on reaction with Na /diethyl ether gives a hydrocarbon which on monochlorination gives only one chloro derivative then, A is :-
6. t-butyl chloride
7. sec. butyl chloride
8. Iso butyl chloride
9. n-butyl chloride
10. The correct sequence of bond enthalpy of ' $\mathrm{C}-\mathrm{X}$ ' bond for the following compounds is -
11. $\mathrm{CH}_{3}-\mathrm{F}<\mathrm{CH}_{3}-\mathrm{Cl}>\mathrm{CH}_{3}-\mathrm{Br}>\mathrm{CH}_{3}-\mathrm{I}$
12. $\mathrm{CH}_{3}-\mathrm{Cl}>\mathrm{CH}_{3}-\mathrm{F}>\mathrm{CH}_{3}-\mathrm{Br}>\mathrm{CH}_{3}-\mathrm{I}$
13. $\mathrm{CH}_{3}-\mathrm{F}<\mathrm{CH}_{3}-\mathrm{Cl}<\mathrm{CH}_{3}-\mathrm{Br}<\mathrm{CH}_{3}-\mathrm{I}$
14. $\mathrm{CH}_{3}-\mathrm{F}>\mathrm{CH}_{3}-\mathrm{Cl}>\mathrm{CH}_{3}-\mathrm{Br}>\mathrm{CH}_{3}-\mathrm{I}$
15. The major product formed in dehydrohalogenation reaction of 2-Bromo pentane is Pent-2-ene.This product formation is based on-
16. Hofmann Rule
17. Huckel's Rule
18. Saytzeff's Rule
19. Hund's Rule

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep course

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Alcohols, Phenols \& Ethers

(Expected Questions in NEET 2022: 2)

Subtopic Name	Number of Questions
 Properties	20
 Properties	13
 Properties, Uses	5
Mechanism of Dehydration, Methanol \& Ethanol	4

1. The heating of phenylmethyl ethers with HI produces-
2. Iodobenzene
3. Phenol
4. Benzene
5. Ethyl chloride
6.

The most acidic compound among the following is -
1.

2.

4.

3. Compound $\mathrm{A}, \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$ is found to react with NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with a characteristic smell. A and Y are respectively-

2.

3.

4.

4. The compound A on treatment with Na gives B , and with PCl_{5} gives C . B and C react together to give diethyl ether.
A, B and C are respectively-

1. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CI}$
2. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CI}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$
3. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
4. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
5.

The above mentioned reaction can be classified as-

1. Alcohol formation reaction
2. Dehydration reaction
3. Williamson alcohol synthesis reaction
4. Williamson ether synthesis reaction
5. Reaction of phenol with chloroform in the presence of dilute sodium hydroxide finally introduces a functional group X.

X is -

1. $-\mathrm{CH}_{2} \mathrm{Cl}$
2. -COOH
3. $-\mathrm{CHCl}_{2}$
4. -CHO
5. Which of the following reaction(s) can be used for the preparation of alkyl halides?
I. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{HCl} \xrightarrow{\text { anh. } \mathrm{ZnCl}_{2}}$
II. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{HCl} \rightarrow$
III. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{HCl} \rightarrow$
IV. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}+\mathrm{HCl} \xrightarrow{\text { anh. } \mathrm{ZnCl}_{2}}$
6. I, III and IV
7. I and II
8. Only IV
9. III and IV
10.

Which of the following is not the product of dehydration

?
1.

2.

3.

9.

The reaction,

$\xrightarrow[-\mathrm{NaCl}]{ } \mathrm{CH}_{3}-\underset{\substack{\mathrm{CH}_{3}}}{\mathrm{CH}_{3}}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
is called

1. Williamson synthesis
2. Williamson continuous etherification process
3. Etard reaction
4. Gatterman-Koch reaction
5. Anisole is produced by the following set of reactants is

-

1. $\mathrm{CH}_{3} \mathrm{CHO} ; \mathrm{RMgX}$
2. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} ; \mathrm{NaOH} ; \mathrm{CH}_{3} \mathrm{l}$
3. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$; neutral FeCl_{3}
4. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3} ; \mathrm{CH}_{3} \mathrm{COCl} ; \mathrm{AlCl}_{3}$
5.

Ether among the following will produce methyl alcohol on treatment with hot concentrated Hl -

1. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{3}$

2. $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}$ CH_{3}
3. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}$
4. The most reactive compound among the following towards electrophilic aromatic substitution reaction is -
5.

2.

4.

13. The most acidic compound among the following is - 14 .

$\xrightarrow[\mathrm{KOH}]{\mathrm{KMnO}_{4}} B \underset{\mathrm{FeCl}_{3}}{\mathrm{Br}_{2}} C \xrightarrow[H^{+}]{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}} D$
The product ' D ' in the above mentioned reaction is-
2.

3.

4.

1.

2.

3.

4.

15. , Phenol $\xrightarrow{\mathrm{Zn} \text { dust }} \mathrm{X} \xrightarrow[\text { Anhy. } \mathrm{AlCl}_{3}]{\mathrm{CH}_{3} \mathrm{Cl}} \mathrm{Y} \xrightarrow{\text { Alkaline } \mathrm{KMnO}_{4}} \mathrm{Z}$

The product ' Z ' in the above mentioned reaction is-

1. Toluene
2. Benzaldehyde
3. Benzoic acid
4. Benzene
5. $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{HI} \rightarrow \mathrm{B}$ (Product)

The product ' B ' in the above mentioned reaction is-

1. $\mathrm{CH}_{3} \mathrm{OH}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHl}$
2. $1 \mathrm{CH}_{2} \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}$
3. $\mathrm{CH}_{3} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}$
4. $\mathrm{CH}_{3} \mathrm{I}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
5.

Ethanol $\xrightarrow{\mathrm{PBr}_{3}} \mathrm{X} \xrightarrow{\text { alc. } \mathrm{KOH}} \mathrm{Y} \xrightarrow[\text { (ii) } \mathrm{H}_{2} \mathrm{O} \text {, heat }]{(\mathrm{i}) \mathrm{H}_{2} \mathrm{SO}_{4} \text {, room temperature }} \mathrm{Z}$;

The product ' B ' in the above mentioned reaction is-

1. $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
2. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
3. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{SO}_{3} \mathrm{H}$
4. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
5.

The product formed in the above mentioned reaction is -

1. $\mathrm{CH}_{3}-\stackrel{\mathrm{CH}_{3}}{\mathrm{CH}}-\mathrm{CH}_{2}-\mathrm{I}+\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{OH}$
2. $\mathrm{CH}_{3}-\underset{\substack{\mathrm{C} \\ \mathrm{CH}_{3}}}{\mathrm{CH}}-\mathrm{CH}_{3}+\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{OH}$
$3 . \mathrm{CH}_{3}-\underset{\substack{\mathrm{C} \\ \mathrm{CH}_{3}}}{\mathrm{CH}}-\mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3}-\mathrm{CH}_{3}$
3. $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OH}+\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{I}$
4.

The structure of intermediate A in the following reaction is:

2.

3.

20. The reaction that does not give benzoic acid as the major product is-
1.

2.

3.

4.

21. When vapour of a secondary alcohol is passed over heated copper at 573 K , the product formed is -

1. A carboxylic acid
2. An aldehyde
3. A ketone
4. An alkene
5. The major products C and D formed in the following reaction respectively are-
$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3} \xrightarrow[\Delta]{\text { excess } \mathrm{HI}} \mathrm{C}+\mathrm{D}$
6. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{I}$ and I-C $\left(\mathrm{CH}_{3}\right)_{3}$
7. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ and $\mathrm{I}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
8. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{I}$ and $\mathrm{HO}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
9. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ and $\mathrm{HO}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
10. Anisole on reaction with HI gives-
11.

2.

3.

4.

25. The most reactive compound among the following for electrophilic aromatic substitution is-
1.

2.

4.

3.

24. The reaction between acetone and methylmagnesium chloride followed by hydrolysis will give:

1. sec-Butyl alcohol
2. tert-Butyl alcohol
3. iso-Butyl alcohol
4. iso-Propyl alcohol
5. The strongest acid among the following is -
6.

2.

3.

4.

27. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{OH}^{-}]{\mathrm{B}_{2} \mathrm{H}_{6}} Z$

Z in the above reaction is -

1. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
2. $\mathrm{CH}_{3} \mathrm{CH}_{2} \underset{\text { OH }}{\mathrm{C}} \mathrm{HCH}_{3}$
3. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
4. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
5. The compound that is used as antifreeze in automobile radiators is:
6. Glycol
7. Nitrophenol
8. Ethyl alcohol
9. Methyl alcohol
10. Which one of the following compounds will be most readily dehydrated?
(1)

(2)

(3)

(4)

11. Among the following four compounds
(a) Phenol
(b) methyl phenol
(c) meta-nitrophenol
(d) para-nitrophenol

The acidity order is -

1. $c>d>a>b$
2. $a>d>c>b$
3. $\mathrm{b}>\mathrm{a}>\mathrm{c}>\mathrm{d}$
4. $d>c>a>b$
5. Which of the following does not give nucleophilic substitution with alcohol :
6. $\mathrm{CH}_{3} \mathrm{COCl}$
7. Acetic anhydride
8. Ether
9. None
10. Which of the following statement is correct for the stability of ions of ethyl alcohol and phenol :
11. Delocalisation of π-electrons in phenoxide ion
12. Delocalisation of electrons in ethoxide ion
13. Inductive effect of ethyl and phenyl group
14. Localisation of sigma-electrons in phenoxide ion
15. The compound that gives p-cresol with p-methyl diazonium chloride is :
16. $\mathrm{H}_{2} \mathrm{O}$
17. $\mathrm{H}_{3} \mathrm{PO}_{2}$
18. HCOOH
19. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
(B) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
20. Order of acidic strength of the following compound will be :
(A)

(D)

21. The compound that will not form a yellow precipitate on heating with an alkaline solution of iodine is :-
22. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
23. $\mathrm{CH}_{3} \mathrm{OH}$
24. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
25. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
26. n-propyl alcohol and isopropyl alcohol can be chemically distinguished by which reagent :-
(1) PCl_{5}
(2) Reduction
(3) Oxidation with Potassium dichromate
(4) Ozonolysis
27. When phenol is treated with CHCl_{3} and NaOH , the product formed is :-
(1) Benzaldehyde
(2) Salicylaldehyde
(3) Salicylic acid
(4) Benzoic acid
28. The correct acidic order of following is : -
(I)

(II)

(III)

29. I $>$ II $>$ III
30. $\mathrm{C}>\mathrm{D}>\mathrm{B}>\mathrm{A}$
31. III $>$ I $>$ II
32. II $>$ III $>$ I
33. I $>$ III $>$ II
34. Incorrect statement among the following is :-
35. $F e C l_{3}$ is used in detection of phenol.
36. Fehling solution is used in detection of glucose.
37. Tollen reagent is used in detection of unsaturation.
38. $\mathrm{NaHSO} \mathrm{S}_{3}$ is used in detection of carbonyl compound.
39. In preparation of alkene from alcohol using $\mathrm{Al}_{2} \mathrm{O}_{3}$ which is effective factor :-
40. Porousity of $\mathrm{Al}_{2} \mathrm{O}_{3}$
41. Temperature
42. Concentration
43. Surface area of $\mathrm{Al}_{2} \mathrm{O}_{3}$
44. Correct statement among the solution is : -
45. Any aldehyde gives secondary alcohol on reduction.
46. Reaction of vegetable oil with $\mathrm{H}_{2} \mathrm{SO}_{4}$ give glycerin.
47. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, iodine with NaOH gives iodoform.
48. Sucrose on reaction with NaCl give invert sugar.
49. What is the IUPAC name of the organic compound formed in the following chemical reaction?

Acetone $\frac{{ }^{\text {(i) }} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr} \text {, dry Ether }}{\text { (ii) } \mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}}$Product

1. pentan-3-ol
2. 2-methyl butan-2-ol
3. 2-methyl propan-2-ol
4. pentan-2-ol

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

CLICK HERE to get FREE ACCESS for days of ANY NEETprep course

Aldehydes, Ketones \& Carboxylic Acids (Expected Questions in NEET 2022: 3)

Subtopic Name	Number of
	Questions
Aldehydes \& Ketones: Preparation \& Properties	23
Isomers \& Reaction Mechanism	15
Name Reaction	13
 Properties	7
Acid Derivatives - Preparation, Properties \& Uses	5

1.

$\mathrm{A}, \mathrm{X}, \mathrm{Y}$, and Z in the above mentioned reaction is -

1. A- Methoxymethane, X-Ethanol, Y-Ethanoic acid, ZSemicarbazone.
2. A- Ethanal, X-Ethanol, Y-But-2-enal, ZSemicarbazone.
3. A- Ethanol, X-Acetaldehyde, Y-Butanone, ZHydrazone.
4. A- Methoxymethane, X-Ethanoic acid, Y-Acetate, ZHydrazine.
5. Cyclohexanone undergoes aldol condensation followed by heating to give -

6.

2.

3.

4.
3.

The electrophile involved in the above reaction is -

1. Dichloromethyl cation $\left(\stackrel{\oplus}{\mathrm{C}} \mathrm{HCl}_{2}\right)$
2. Formyl cation $(\stackrel{\oplus}{\mathrm{C}} \mathrm{HO})$
3. Dichloromethyl anion $\left(\stackrel{\oplus}{\mathrm{C}} \mathrm{HCl}_{2}\right)$
4. Dichlorocarbene (: CCl_{2})
5. Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to -
6. Formation of intramolecular H-bonding
7. Formation of carboxylate ion
8. More extensive association of carboxylic acid via van der waals force of attraction
9. Formation of intermolecular H-bonding
10. The correct order of strengths of the carboxylic acids are-

11. $\mathrm{I}>\mathrm{II}>\mathrm{III}$
12. $\mathrm{II}>\mathrm{III}>\mathrm{I}$
13. $\mathrm{III}>\mathrm{II}>\mathrm{I}$
14. $\mathrm{II}>\mathrm{I}>\mathrm{III}$
15.

The correct statement regarding a carbonyl compound with a hydrogen atom on its alpha-carbon, is-

1. A carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as aldehyde-ketone equilibration.
2. A carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as carbonylation.
3. A carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as keto-enol tautomerism.
4. A carbonyl compound with a hydrogen atom on its alpha-carbon never equilibrates with its corresponding enol.
5.

A reagents that can distinguish cis-cyclopenta-1,2-diol from the trans-isomer is -

1. Ozone
2. MnO_{2}
3. Aluminium isopropoxide
4. Acetone
5.

The product formed by the reaction of an aldehyde with a primary amine is-

1. Ketone
2. Carboxylic acid
3. Aromatic acid
4. Schiff base
5. Reaction of a carbonyl compound with one of the following reagents involves nucleophilic addition followed by the elimination of water. The reagents is-
6. A Grignard reagent
7. Hydrazine in presence of feebly acidic solution
8. Hydrocyanic acid
9. Sodium hydrogen sulphite
10. Treatment of cyclopentanone with methyl lithium gives -
11. Cyclopentanonyl cation
12. Cyclopentanonyl radical
13. Cyclopentanonyl biradical
14. Cyclopentanonyl anion
15.

compounds that can exhibit tautomerism is -
1.1 and 11
2. 1 and 111
3. 11 and 111
4. 1, 11 and 111
12.

An organic compound X having molecular formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ yields phenyl hydrazone and gives negative response to the iodoform test and Tollen's test. It produces n-pentane on reduction. X could be

1. pentanal
2. 2-pentanone
3. 3-pentanone
4. n-amyl alcohol
5. Which of the following will not be soluble in sodium hydrogen carbonate?
6. 2, 4, 6-trinitrophenol
7. Benzoic acid
8. o-Nitrophenol
9. Benezenesulphonic acid
10.

Most reactive towards Nucleophilic addition reaction is-

1.

2.

.
4.

15. Benzaldehyde cannot be prepared by-

2.

3.

4.

16.

The products of the above mentioned reaction are-

1.

3.

4.

4.

18. The correct order of decreasing acid strength of trichloroacetic acid (A), trifluoroacetic acid (B), acetic acid (C) and formic acid (D) is-

1. $\mathrm{B}>\mathrm{A}>\mathrm{D}>\mathrm{C}$
2. $\mathrm{B}>\mathrm{D}>\mathrm{C}>\mathrm{A}$
3. $\mathrm{A}>\mathrm{B}>\mathrm{C}>\mathrm{D}$
4. $\mathrm{A}>\mathrm{C}>\mathrm{B}>\mathrm{D}$
5. $\mathrm{CH}_{3} \mathrm{CHO}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHO}$ can be distinguished by-
6. Benedict test
7. Iodoform test
8. Tollen's reagent test
9. Fehling solution test
10. Clemmensen reduction of a ketone is carried out in the presence of-
11. $\mathrm{Zn}-\mathrm{Hg}$ with HCl
12. LiAlH_{4}
13. H_{2} and Pt as a catalyst
14. Glycol with KOH
15.

The product ' D ' in the above mentioned reaction is-

3.

23. The example of nucleophilic substitution reaction among the following is-

1. $\mathrm{RCHO}+\mathrm{R}^{\prime} \mathrm{MgX} \rightarrow \mathrm{R}-\underset{\mathrm{OH}}{\mathrm{CH}}-\mathrm{R}^{\prime}$
2.

3. $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{HCN} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$
4.
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3}-\underset{\mathrm{OH}}{\mathrm{CH}}-\mathrm{CH}_{3}$
24.

Propanoic acid with $\mathrm{Br} 2 / \mathrm{P}$ yields a dibromo product. Its structure would be

1. $\mathrm{CH}_{2} \mathrm{Br}-\mathrm{CHBr}-\mathrm{COOH}$
$B r$
2. $\mathrm{H}-\underset{\mid}{\mid}-\mathrm{CH}_{2} \mathrm{COOH}$
3. $\mathrm{CH}_{2} \mathrm{Br}-\mathrm{CH}_{2}-\mathrm{COBr}$
4.

25. Acetophenone yields a stable compound A with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$ in basic medium.

The structure of A is-
1.

2.

3.

4.

26.

A strong base can abstract an α - hydrogen from-

1. Alkene
2. Amine
3. Ketone
4. Alkane
5. Reduction of aldehydes and ketones into hydrocarbons using amalgam and conc. HCl is called-
6. Clemmensen reduction
7. Cope reduction
8. Dow reduction
9. Wolff-Kishner reduction
acetone on ozonolysis is -
10. 2-Methyl-2-butene
11. 2-Methyl-1-butene
12. Cyclopentane
13. 3-Methyl-1-butene
14. A compound that yields the corresponding alcohol and acid on hydrolysis of 50% aqueous sodium hydroxide is -
15. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHO}$
16. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
17. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
18. C

19. The product formed in aldol condensation is-
20. A beta-hydroxy acid
21. A beta-hydroxy aldehyde or a beta-hydroxy ketone
22. An alpha-hydroxy aldehyde or ketone.
23. An alpha-beta unsaturated ester
24. A carbonyl compound reacts with hydrogen cyanide to form cyanohydrins, that forms a racemic mixture of α hydroxy acid on hydrolysis. The carbonyl compound is-
25. Acetaldehyde
26. Acetone
27. Diethyl ketone
28. Formaldehyde
29. Nucleophilic addition reaction will be most favored in-
30. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{3}$
31. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}$
32. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
33. $\mathrm{CH}_{3} \mathrm{CHO}$
34.

strong heating

The product of the above mentioned reaction is-
1.

2.

3.

4.

34. Reaction between benzaldehyde and acetophenone in presence of dilute NaOH is known as-

1. Cannizzaro's reaction
2. Cross Cannizzaro's reaction
3. Cross aldol condensation
4. Aldol condensation
5.

The ' X ' in the above mentioned reaction is-

1.

2.

3.

4.

36. An acid that forms an Anhydride (X)on heating and Acid imide (Y) on strong heating with ammonia is
(1)

(2)

(3)

(4)

37.

The reactant ' A ' in the above mentioned reaction is-

1. Benzoyl chloride
2. Toluene
3. Acetophenone
4. Benzoic acid
5. Methyl acetate
6. Acetamide
7. 2-Hydroxypropane
8. Acetophenone
9. Consider the following reaction :

The product ' A ' is -

1. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
2. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$
3. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
4. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
5. Match the compounds given in List -I with their characteristic reactions given in List -II. Select the correct option.

List - I

Compounds

(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(b) $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$
(d) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$

List - II

Reactions

(i) alkaline hydrolysis
(ii) with KOH (alcohol) and CHCl_{3} produces bad smell
(iii) gives white ppt. with ammoniacal AgNO_{3}
(iv) with Lucas' reagent cloudiness appears after 5 minutes

Options :
(a) (b) (c) (d)
(1) (iii) (ii) (i) (iv)
(2) (ii) (iii) (i) (iv)
(3) (iv) (ii) (iii) (i)
(4) (ii) (i) (iv) (iii)
41. The order of reactivity of phenyl magnesium bromide (PhMgBr) with the following compounds :

I

II

III

1. I $>$ II $>$ III
2. $\mathrm{III}>$ II $>$ I
3. $\mathrm{II}>\mathrm{I}>$ III
4. $\mathrm{I}>\mathrm{III}>\mathrm{II}$
5. Ethyl alcohol
6. Ethyl alcohol and dry HCl
7. Ethyl chloride
8. Sodium ethoxide
9. RCHO and $\mathrm{NH}_{2} \mathrm{NH}_{2}$ react with each other in an acidic medium. The product obtained is-
10. RCON_{3}
11. $\mathrm{RCH}=\mathrm{NH}$
12. $\mathrm{RCH}_{2} \mathrm{NH}_{2}$
13. $\mathrm{RCH}=\mathrm{NNH}_{2}$
14. Reduction by LiAlH_{4} of hydrolysed product of an ester gives :
15. Two alcohols
16. Two aldehyde
17. One acid and one alcohol
18. Two acids
19. The following compound that does not give iodoform test is-
20. 3-Pentanone
21. 2-Pentanone
22. Ethanol
23. Ethanal
24. The major organic product formed from the following reaction

(1)

(2)

(3)

(4)

25. In a set of reactions acetic acid yielded a product D
$\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{SOCl}_{2}} \mathrm{~A} \xrightarrow[\text { Anhy. } \mathrm{AlCl}_{3}]{\text { Benzene }} \mathrm{B}$
$\xrightarrow{\mathrm{HCN}} \mathrm{C} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{D}$
The structure of D would be -
26.

2.

3.

48. Ethylbenzene is obtained from phenyl methyl ketone by using-

1. $\mathrm{Zn}-\mathrm{Hg}+\mathrm{HCl}$
2. LiAlH_{4}
3. KMnO_{4}
4. None of the above
5. Acetaldehyde reacts with semicarbazide product will be :
6. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{NHNH}_{2}$
7. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{NCONHNH}_{2}$
8. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{NNH}-\mathrm{CO}-\mathrm{NH}_{2}$
9.

50. Cyanohydrin of the following compound on hydrolysis gives an optically active product

1. HCHO
2. $\mathrm{CH}_{3} \mathrm{CHO}$
3. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
4. All of the above
5. Which one of the following can be oxidized to the corresponding carbonyl compound?
6. o-Nitrophenol
7. Aniline
8. 2-Methyl-2-hydroxypropane
9. 2-Hydroxy propane
10. Clemmensen reduction reaction is :

11.

$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{COCH}_{3}+\mathrm{NH}_{2} \mathrm{NH}_{2} \xrightarrow{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{3}$
4. All of the above
53.

The product P is-

1.

2.

3.

4.

54. In the following reaction product, ' P ' is-
$\mathrm{R}-\underset{\substack{\| \\ \mathrm{O}}}{\mathrm{C}}-\mathrm{Cl} \xrightarrow[\mathrm{Pd}-\mathrm{BaSO}_{4}]{\stackrel{\mathrm{H}_{2}}{\longrightarrow}} \mathrm{P}$

1. $\mathrm{RCH}_{2} \mathrm{OH}$
2. RCOOH
3. RCHO
4. RCH_{3}
5.

Product ' P ' in the above reaction is :-
1.

2.

3.

4.

56.
$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{HCN} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN} \xrightarrow{\mathrm{H.OH}} \mathrm{CH}_{3} \mathrm{CH}($
In the above reaction, an asymmetric centre is generated. The acid obtained in the final product would be:

1. $100 \% \mathrm{R}$-isomer
2. 100% S-isomer
3. $50 \% \mathrm{R}+50 \% \mathrm{~S}$-isomer
4. $20 \% \mathrm{R}+80 \%$ S-isomer
5. In a set of the given reactions, acetic acid yielded product C .
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{PCl}_{5} \rightarrow \mathrm{~A} \xrightarrow[\text { Anh. } \mathrm{AlCl}_{3}]{\mathrm{C}_{6} \mathrm{H}_{6}} \mathrm{~B} \xrightarrow[\text { ether }]{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}}{ }^{\prime} \mathrm{C}^{\prime}$,
6. A and B in the following reactions are :

Product C would be

1. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{2} \mathrm{H}_{5}$
2. $\mathrm{CH}_{3} \mathrm{COC}_{6} \mathrm{H}_{5}$
3. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{5}$

4

58. When m-chlorobenzaldehyde is treated with 50% KOH solution, the product(s) obtained is (are)
1.

3.

3.

1.

, $\mathrm{B}=\mathrm{H}_{3} \mathrm{O}^{\oplus}$
3. $\mathrm{A}=\mathrm{RR}^{\prime} \mathrm{CH}_{2} \mathrm{CN}, \mathrm{B}=\mathrm{NaOH}$
4.

60.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-} \mathrm{Na}^{+} \xrightarrow[\text { Heat }]{\mathrm{NaOH},+?} \mathrm{CH}_{3} \mathrm{CH}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3}$
Consider the above reaction and identify the missing reagent/chemical.

1. CaO
2. DIBAL-H
3. $\mathrm{B}_{2} \mathrm{H}_{6}$
4. Red Phosphorus
5. Match List-I with List-II.

List-I	List-II	
(a) $\xrightarrow[\text { Anhyd. } \mathrm{AlCl}_{3} / \mathrm{CuCl}]{\mathrm{CO}, \mathrm{HCl}}$	(i) Hell-VolhardZelinsky reaction	
$\left.\right\|^{\text {(b) } \mathrm{O}} \begin{aligned} & \\| \\ & \mathrm{R}-\mathrm{C}-\mathrm{CH}_{3}+\mathrm{NaOX} \rightarrow \end{aligned}$	(ii) GattermannKoch reaction	
(c) $\mathrm{R}-\mathrm{CH}_{2}-\mathrm{OH}+\mathrm{R}^{\prime} \mathrm{COOH}$ Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$	(iii) Haloform reaction	
(d) $\mathrm{R}-\mathrm{CH}_{2} \mathrm{COOH}$ (i) $\mathrm{X}_{2} / \operatorname{Red} \mathrm{P}$ $\xrightarrow[\text { (ii) } \mathrm{H}_{2} \mathrm{O}]{\longrightarrow}$	(iv) Esterification	

Choose the correct answer from the options given below.

1. (a)-(i), (b)-(iv), (c)-(iii), (d)-(ii)
2. (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
3. (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
4. (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)
5. The product formed in the following chemical reaction is :

6.

2.

3.

4.
63. The intermediate compound ' X ' in the following chemical reaction is :

1.

2.

3.
4.

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

course

AMINES

(Expected Questions in NEET 2022: 1)

Subtopic Name	Number of
	Questions
Amines - Preparation \& Properties	20
Diazonium Salts: Preparation, Properties \& Uses	8
Identification of Primary, Secondary \& Tertiary Amines	5
Urea \& Nitro Compound	3

1. The correct increasing order of basic strength for the following compounds is:
(I)

(II)

(III)

2. $\mathrm{III}<\mathrm{I}<$ II
3. III $<$ II $<$ I
4. $\mathrm{II}<\mathrm{I}<$ III
5. $\mathrm{II}<\mathrm{III}<\mathrm{I}$
6. Which of the following reactions is appropriate for converting acetamide to methanamine?
7. Hoffmann hypobromamide reaction
8. Stephens reaction
9. Gabriels phthalimide synthesis
10. Carbylamine reaction
11. Nitration of aniline in strong acidic medium also gives m-nitroaniline because -
12. In spite of substituents nitro group always goes to only m-position
13. In electrophilic substitution reactions amino group is meta directive
14. In absence of substituents nitro group always goes to only m-position
15. In acidic (strong) medium aniline is present as anilinium ion
16. A nitro-compounds among the following that does not react with nitrous acid is--
17.

2.

3.
4.

5. A nitrogen-containing aromatic compound A reacts with $\mathrm{Sn} / \mathrm{HCl}$, followed by HNO_{2} to give an unstable compound B . B, on treatment with phenol, forms a beautiful colored compound C with the molecular formula $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$. The structure of compound A is -
1.

2.

4.

Amines - NCERT based PYQs

6.

The correct statement regarding the basicity of arylamines is -

1. Arylamines are generally more basic than alkylamines because the nitrogen lone-pair electrons are not delocalized by interaction with the aromatic ring π electron system
2. Arylamines are generally more basic than alkylamines because of aryl group +I effect
3. Arylamines are generally more basic than alkylamines because the nitrogen atom in arylamines is sp-hybridized
4. Arylamines are generally less basic than alkylamines because the nitrogen lone-pair electrons are delocalized by interaction with the aromatic ring π-electron system.
5. The number of structural isomers possible from the molecular formula $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$ is
6. 4
7. 5
8. 2
9. 3
10. Aniline cannot be prepared by -
11. Hydrolysis of phenyl isocyanide with an acidic solution
12. Degradation of benzamide with bromine in alkaline Solution
13. Reduction of nitrobenzene with $\mathrm{H}_{2} / \mathrm{Pd}$ in ethanol
14. Potassium salt of phthalimide treated with chlorobenzene followed by the hydrolysis aqueous NaOH solution
15. The following reaction is known as -

16. Friedel-Crafts reaction
17. Perkins reaction
18. Acetylation reaction
19. Schotten-Baumann reaction
20.

The product (A) in the above mentioned reaction is :

2.

3.

4.

11. The most stable diazonium salt among the following is
-

1. $\mathrm{CH}_{3} \mathrm{~N}_{2}^{+} \mathrm{X}^{-}$
2. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+} \mathrm{X}^{-}$
3. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}_{2}^{+} \mathrm{X}^{-}$
4. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{~N}_{2}^{+} \mathrm{X}^{-}$
5.

A in the above reaction, is:

1. $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$
2. $\mathrm{H}_{3} \mathrm{PO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$
3. $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}$
4. $\mathrm{HgSO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}$
5.

Nitrobenzene on reaction with conc. $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$ at 80 $-100^{\circ} \mathrm{C}$ forms -

1. 1,3-Dinitrobenzene
2. 1, 4- Dinitrobenzene
3. 1, 2, 4-Trinitrobenzene
4. 1, 2-Dinitrobenzene
5. Aniline gives a set of the following reactions that yielded a colored product ' Y '.

The structure of ' Y ' is -

1.

3.

4.

15. The reagent used to convert acetamide into methyl amine is -

1. $\mathrm{NaOH}-\mathrm{Br}_{2}$
2. Soda lime
3. Hot conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
4. PCl_{5}
5. The incorrect statment among the following about the primary amine is -
6. Alkyl amines are stronger bases than aryl amines
7. Alkyl amines react with, nitrous acid to produce alcohols
8. Aryl amines react with nitrous acid to produce phenols
9. Alkyl amines are stronger bases than ammonia
10.

$$
+\mathrm{NaNO}_{2}+\mathrm{HCl} \rightarrow \text { Product }
$$

The product formed in the above mentioned reaction is -
1.

2.

4.

18.

A
The structure of C in the above mentioned reaction is -

2.

3.

4.

19. Which one of the following on reduction with lithium aluminium hydride yield a secondary amine?

1. Nitroethane
2. Methylisocyanide
3. Acetamide
4. Methyl cyanide
5. In a set of reactions propanoic acid yielded a compound D.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \xrightarrow{\mathrm{SOCl}_{2}} \mathrm{~B} \xrightarrow{\mathrm{NH}_{3}} \mathrm{C} \xrightarrow[\mathrm{Br}_{2}]{\mathrm{KOH}} \mathrm{D}$
The structure of D would be :
6. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
7. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}$
8. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHCH}_{3}$
9. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
10. More basic than aniline among the following compounds is -
11. Diphenylamine
12. Triphenylamine
13. p-nitroaniline
14. Benzylamine
15. The correct order of the basic strength of methyl substituted amines in aqueous solution is:
16. $\mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
17. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
18. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}>\mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
19. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}>\mathrm{CH}_{3} \mathrm{NH}_{2}$
20. An amine that gives the carbyl amine test is -
NHCH_{3}
21.

2.

3.

23. The amine that reacts with Hinsberg's reagent to give an alkali insoluble product is:-
1.

2.

3.
4.

.

26. An organic compound $\left(C_{3} H_{9} N\right)$ (A), when treated with nitrous acid, gave an alcohol and N_{2} gas was evolved. (A) on warming with CHCl_{3} and caustic potash gave (C) which on reduction gave isopropylmethylamine. The structure of (A) is

1. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{3}$
2. $\mathrm{CH}_{3}-\underset{C_{3}}{\mathrm{~N}}-\mathrm{CH}_{3}$
3. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{NH}_{2}$
4.

27. Which of the following compounds is most basic?
1.

2.

3.

4.

28. An organic compound 'A' on treatment with NH_{3} gives ' B ', which on heating gives ' C '. ' C ' when treated with Br_{2} in the presence of KOH produces ethylamine. Compound ' A ' is -

1. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
2. $\mathrm{CH}_{3} \mathrm{COOH}$
3. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
4. $\mathrm{CH}_{3}-\underset{\mathrm{CH}_{3}}{\mathrm{C}} \mathrm{HCOOH}$
5.

If D is N -methyl aniline than A is:
1.

2.

3. $\mathrm{CH}_{3} \mathrm{NH}_{2}$
4.

30. Aniline reacts with Br_{2} water, $\mathrm{NaNO} / \mathrm{HCl}$ gives respectively:

1. p-Bromoaniline; p-Chloroaniline
2. 2,4,6-Tribromoaniline; p -Chloroaniline
3. 2,4,6-Tribromoaniline; Benzenediazoniumchloride
4. p-Bromoaniline; Benzenediazoniumchloride
5. Aniline in a set of reactions yielded a product D

The structure of the product D would be -

1. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
2. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}$
3. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHOH}$
4. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCH}_{2} \mathrm{CH}_{3}$
5. Aniline when diazotized in cold and then treated with dimethyl aniline gives a coloured product. Its structure would be :-
6.

2.

3.

4.

34. The final product C , obtained in this reaction, would be :

1.

2.

3.

33. The reaction which gives isocyanide is :

1. Reimer Tiemann reaction.
2. Carbylamine reaction.
3. Hoffmann bromamide reaction.
4. None of the above.
5. Identify the compound that will react with Hinsberg's reagent to give a solid which dissolves in alkali.

6.

2.
3.

4.
36. The reagent ' R ' in the given sequence of a chemical reaction is :

1. HI
2. $\mathrm{CuCN} / \mathrm{KCN}$
3. $\mathrm{H}_{2} \mathrm{O}$
4. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

course from AIPMT 1998 to NEET 2021

Biomolecules

(Expected Questions in NEET 2022: 1)

Subtopic Name	Number of
	Questions
Vitamins, Hormones \& Enzymes	14
a -Amino Acids, Peptide Bond, Proteins \& Structure	11
Polysaccharides \& their Importance	7
DNA ,RNA \& Metal Ions	6
Carbohydrates - Classification \& D-L configuration	6
 Chemical Properties	1

1. Which one of the following compounds show the 8 .
presence of intramolecular hydrogen bond? The correct statement regarding RNA and DNA,
2. $\mathrm{H}_{2} \mathrm{O}_{2}$
3. HCN
4. Cellulose
5. Concentrated acetic acid
6. In humans, the main oxygen carrier in the blood is -
7. Hemocyanin
8. Proteins
9. Hemoglobin
10. Both microorganisms and haemoglobin.
11. The difference between amylose and amylopectin is :
12. Amylopectin have $1 \rightarrow 4 \alpha$ - linkage and $1 \rightarrow 6 \alpha$ linkage.
13. Amylose have $1 \rightarrow 4 \alpha$ - linkage and $1 \rightarrow 6 \beta$ - linkage.
14. Amylopectin have $1 \rightarrow 4 \alpha$ - linkage and $1 \rightarrow 6 \beta$ linkage.
15. Amylose is made up of glucose and galactose. respectively is
16. The sugar component in RNA is ribose and the sugar component in DNA is 2^{\prime}-deoxyribose
17. The sugar component in RNA is arabinose and the sugar component in DNA is ribose
18. The sugar component in RNA is 2^{2}-deoxyribose and the sugar component in DNA is arabinose
19. The sugar component in RNA is arabinose and the sugar component in DNA is 2'-deoxyribose
20.

A non-reducing sugar among the following is -

1. Lactose
2. Glucose
3. Sucrose
4. Maltose
5. The central dogma of molecular genetics states that the genetic information flows from
6. amino acid - proteins - DNA
7. DNA - carbohydrates - proteins
8. DNA - RNA - proteins
9. DNA - RNA - Carbohydrates
10. Which of the following statements is not correct?
11. Ovalbumin is a simple food reserve in egg white
12. Blood protiens thrombin and fibrinogen are involved in blood clotting
13. Denaturation makes the protiens more active.
14. Insulin maintains sugar level in the blood of a human body.
15.

A compounds that can form a zwitterion is -

1. Aniline
2. Acetanilide
3. Benzoic acid
4. Glycine
5.

Amino acids are linked together in protein by :

1. β-glycosidic bond.
2. Peptide bond.
3. Dative bond.
4. α-glycosidic bond.
5. $\mathrm{D}(+)$ glucose yield an oxime with hydroxyl amine . The structure of the oxime would be:
6.

2.

3.

4.

11. The disease caused by deficiency of vitamin B_{1} is:

1. Convulsions
2. Beri-beri
3. Cheilosis
4. Sterility
5. The segment of DNA, that acts as the instrumental manual for the synthesis of the protein is -
6. Nucleotide
7. Ribose
8. Gene
9. Nucleoside
10. Which of the following hormones contains iodine?
11. Insuline
12. Testosterone
13. Adernaline
14. Thyroxine
15.

An amine that acts as hormone is -

1. Thyroxine
2. Oxypurin
3. Insulin
4. Progesterone
5.

In DNA, the complementary bases are :

1. Adenine and thymine; guanine and cytosine
2. Adenine and thymine; guanine and uracil
3. Adenine and guanine, thymine and cytosine
4. Uracil and adenine; cytosine and guanine
5. Which one of the following vitamins is water-soluble?
6. Vitamin-B
7. Vitamin-E
8. Vitamin-K
9. Vitamin-A
10. RNA and DNA are chiral molecules, their chirality is due to :
11. L- sugar component
12. Chiral bases
13. chiral phosphate exter unit
14. D- sugar component
15. During the process of digestion, the proteins present in food materials are hydrolysed to amino acids.
The two enzymes involved in the process
Proteins $\xrightarrow{\text { Enzyme (A) }}$ Polypeptides $\xrightarrow{\text { Enzyme (B) }}$ Amino acids, are respectively:
16. Amylase and maltase
17. Diastase and lipase
18. Pepsin and trypsin
19. Invertase and zymase
20. Which one of the following is a peptide hormone?
21. Glucagon
22. Testosterone
23. Thyroxin
24. Adernaline
25. Enzymes that utilize ATP in phosphate transfer require an alkaline earth metal (M) as the cofactor.
M is:
26. Sr
27. Be
28. Mg
29. Ca
30. The non-essential amino acid among the following is :
31. Lysine
32. Valine
33. Leucine
34. Alanine
35. Which structure(s) of proteins remains(s) intact during denaturation process?
36. Both secondary and tertiary structures
37. Primary structure only
38. Secondary structure only
39. Tertiary structure only
40. Sucrose on hydrolysis gives :
41. α-D-Glucose $+\beta$-D-Glucose
42. α-D-Glucose $+\beta$-D-Fructose
43. α-D-Fructose $+\beta$-D-Fructose
44. β-D-Glucose $+\alpha$-D-Fructose
45. The following metal ions activates many enzymes participates in the oxidation of glucose to produce ATP and with Na is responsible for the transmission of nerve signals
46. Copper
47. Calcium
48. Potassium
49. Iron
50. Which of the following is a basic amino acid?
51. Alanine
52. Tyrosine
53. Lysine
54. Serine
55. The reaction of concentrated sulphuric acid with carbohydrates $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ is an example of
(1) Dehydration
(2) Oxidation
(3) Reduction
(4) Sulphonation
56. Deficiency of which vitamin causes osteomalacia?
(1) Vitamin A
(2) Vitamin D
(3) Vitamin K
(4) Vitamin E
57. Fructose reduces Tollen's reagent due to -
58. Primary alcoholic group
59. Secondary alcoholic group
60. Enolisation of fructose followed by conversion to aldehyde by base
61. Asymmetric carbon
62. Which of the following is not a fat soluble vitamin?
63. Vitamin A
64. Vitamin B complex
65. Vitamin D
66. Vitamin E
67. Which of the statements about "Denaturation" given below are correct?
Statements
(a) Denaturation of proteins causes loss of secondary and tertiary structures of the protein.
(b) Denaturation leads to the conversion of double strand of DNA into a single strand.
(c) Denaturation affects primary structure which gets distorted.
Options :
68. (a), (b) and (c)
69. (b) and (c)
70. (a) and (c)
71. (a) and (b)
72. α-D-glucose and β-D-glucose are :
73. Epimers
74. Anomers
75. Functional isomers
76. Chain isomers
77. The base found in DNA but not in RNA :
78. Thymine
79. Adenine
80. Guanine
81. Cytosine
82. Sucrose on hydrolysis gives :
83. $\mathrm{L}(+)$ Glucose $+\mathrm{D}(+)$ Fructose
84. L(-) Glucose $+\mathrm{L}(-)$ Fructose
85. $\mathrm{D}(+)$ Glucose $+\mathrm{D}(-)$ Fructose
86. $\mathrm{D}(+)$ Glucose $+\mathrm{L}(-)$ Fructose
87. The compound that does not reduce Fehling solution is :
88. Glucose
89. Fructose
90. Sucrose
91. Maltose
92. The hormone that helps in the conversion of glucose to glycogen is :-
(1) Bile acids
(2) Adrenaline
(3) insulin
(4) Cortisone
93. The structure that represents the peptide chain is :-
94.

2.

3.

4.

38. The helical structure of a protein is stabilized by:-

1. Hydrogen bonds
2. Ether bonds
3. Peptide bonds
4. Dipeptide bonds
5. Among the following reducing sugar is :-
(1) Galactose
(2) Gluconic acid
(3) β-methyl galactoside
(4) Sucrose
6. Compound that gives positive Fehling solution test is
7. Sucrose
8. Glucose
9. Fats
10. Protein
11. Which is the correct statement among the following?
12. Starch is a polymer of α-glucose
13. Amylose is a component of cellulose
14. Proteins are composed of only one type of amino acid
15. In the cyclic structure of fructose, there are four carbons and one oxygen atom
16. The RBC deficiency is deficiency disease of:
17. Vitamin B_{1}
18. Vitamin B_{1}
19. Vitamin B_{12}
20. Vitamin B_{6}
21. The enzyme which hydrolyses triglycerides to fatty questions in the test.
acids and glycerol is called :-
(1) Lipase
(2) Zymase
(3) Pepsin
(4) Maltase
22. Enzymes are made up of : -
(1) Edible proteins.
(2) Proteins with specific structure.
(3) Nitrogen containing carbohydrates.
(4) Carbohydrates.

CLICK HERE to get FREE ACCESS for 3 days of ANY NEETprep

 course41. Which is not a true statement: -
(1) α-carbon of α-amino acid is asymmetric except glycine.
(2) Some protein of human body are found in L-form
(3) Human body can synthesize all proteins they need
(4) At $\mathrm{pH}=7$ both amino and carboxylic groups exist in ionized form

Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Polymers
 (Expected Questions in NEET 2022: 1)

Subtopic Name
 Number of Questions

Polymers: Natural \& Synthetic,	
Biodegradable \& Non-Biodegradable	18
Classification - Methods of	
Polymerization \& Copolymerization	12
Application of Polymers	1

1. The correct structure of Nylon - 6,6 polymer is:
2.

.

3.

4.

2. Incorrect statement regarding cross-linked or network polymers is:

1. They contain covalent bonds between various linear polymer chains.
2. They are formed from bi and tri functional monomers.
3. Examples are bakelite and melamine.
4. They contain strong covalent bonds in same polymer chain.
5.

Natural rubber has -

1. All trans-configuration
2. Alternate cis - and trans-configuration
3. Random cis - and trans-configuration
4. All cis-configuration
5. Caprolactam is used for the manufacture of :
6. Nylon - 6
7. Teflon
8. Terylene
9. Nylon - 6, 6

5.

Biodegradable polymer that can be prepared from glycine and aminocaproic acid is -

1. Nylon 2-nylon 6
2. PHBV
3. Buna-N
4. Nylon-6, 6
5.

The example of a thermosetting polymer among the following options is :

1. $\left(-\mathrm{CH}_{2}-\underset{\mathrm{Cl}}{\mathrm{C}} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\right)_{n}$
2. $\left(\mathrm{CH}_{2}-\mathrm{CH}-\right)_{n}$
3. $\left(\begin{array}{ccc}\stackrel{\mathrm{H}}{\|} & \stackrel{\mathrm{H}}{\mathrm{N}} & \stackrel{\mathrm{O}}{\|} \\ -\left(\mathrm{CH}_{2}\right)_{6} & \stackrel{\mathrm{O}}{\mathrm{N}} & -\stackrel{\|}{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{4} \\ & & \\ \mathrm{C}-)_{n}\end{array}\right.$
4.

7. Which of the following organic compounds polymerizes to form the polyester Dacron?

1. Propylene and para $H O-\left(C_{6} H_{4}\right)-O H$
2. Benzolic acid and ethanol
3. Terepthalic acid and ethylene glycol
4. Benzoic acid and para $\mathrm{HO}-\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)-\mathrm{OH}$
5.

Which is the monomer of Neoprene in the following?

1. $\mathrm{CH}_{2}=\underset{\substack{\text { CH}}}{\mathrm{C}}-\mathrm{CH}=\mathrm{CH}_{2}$
2. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{H}$
3. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
4.

Nylon is an example of :

1. Polysaccharide
2. Polyamide
3. Polythene
4. Polyester
5. Which one of the following is not a condensation polymer?
6. Melamine
7. Glyptal
8. Dacron
9. Neoprene
10.

The polymer that can be classified as polyster polymer is :

1. Bakelite
2. Melamine
3. Nylon-66
4. Terylene
5.

The structure of neoprene polymer is:

1. $\left(-\mathrm{CH}_{2}-\underset{\mathrm{Cl}}{\mathrm{C}}=\mathrm{CH}-\mathrm{CH}_{2}-\right)_{n}$
2. $\binom{\mathrm{CN}}{\mathrm{CH}_{2}-\mathrm{CH}-}_{n}$
3. $\left(-\stackrel{\left.\stackrel{\mathrm{Cl}}{\stackrel{1}{\mathrm{C}}} \mathrm{CH}_{2}-\right)_{n}}{ }\right.$
4. $\left(\begin{array}{c}-\mathrm{CH} \\ \vdots \\ \mathrm{C}_{6} \mathrm{H}_{5}\end{array} \mathrm{CH}_{2}-\right)_{n}$
5. Structures of some common polymers are given. The incorrect match is:
6. Teflon

$$
\left(-\mathrm{CF}_{2}-\mathrm{CF}_{2}-\right)_{n}
$$

2. Neoprene

3. Terylene

4. Nylon 66
$\left[-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NHCO}\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CO}-\right]_{n}$
5. The straight chain polymer is formed by -
6. Hydrolysis of $\mathrm{CH}_{3} \mathrm{SiCl}_{3}$ followed by condensation polymerization.
7. Hydrolysis of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}$ followed by condensation polymerization.
8. Hydrolysis of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ by addition polymerisation.
9. Hydrolysis of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}_{2}$ followed by condensation polymerization.
10.

Which one of the following statements is not true?

1. in vulcanisation, the formation of sulphur bridges between different chains make rubber harder and stronger
2. Natural rubber has the trans-configuration at every double bond
3. Buna-S is a copolymer of butadiene and styrene
4. Natural rubber is a 1,4-polymer of isoprene
5. Which one of the following polymers is prepared by condensation polymerization?
6. Nylon-66
7. Teflon
8. Rubber
9. Styrene
10. $\left[\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NHCO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}\right]_{n}$ is a :
11. Co-polymer
12. Addition polymer
13. Thermo-setting polymer
14. Homopolymer
15. The biodegradable polymer is:
16. Buna-S
17. Nylon-6, 6
18. Nylon 2-nylon 6
19. Nylon-6
20. The polymer that is used as a substitute for wool in making commercial fibres is -
21. Melamine
22. Nylon-6, 6
23. Polyacrylonitrile
24. Buna-N
25. Natural polymer among the following options is:
26. Poly(Butadiene-styrene)
27. Polybutadiene
28. Poly(Butadiene-acrylonitrile)
29. Cis-1,4-polyisoprene
30. The correct statement regarding Bakelite is:
(1) It is a cross linked polymer.
(2) It is an addition polymer.
(3) It is a branched chain polymer.
(4) It is a linear polymer.
31. The set of monomer that forms a biodegradable polymer is:
32. $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}$ and
$\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{COOH}$
33. $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ and
$\mathrm{HOOC}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{COOH}$
34. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}_{2}$ and
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
35. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CN}$ and
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
36. Monomer of natural rubber is :
37.

$\mathrm{CH}_{3}-\mathrm{C}=\mathrm{CH}=\mathrm{CH}_{3}$
CH_{3}
2. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
3.
$\mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$

CH_{3}
4.
$\mathrm{CH}_{2}=$
$\mid \quad \mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}$

$\mathrm{CH}_{3} \quad \mathrm{CH}_{3}$
25. Which one of the following is a chain growth polymer :-
(1) Nucleic acid
(2) Polystyrene
(3) protein
(4) Starch
26.

The monomer of

1. 2-methyl propene
2. Styrene
3. Propylene
4. Ethene
5. Cellulose is polymer of :-
(1) Glucose
(2) Fructose
(3) Ribose
(4) Sucrose
6. $\mathrm{CF}_{2}=\mathrm{CF}_{2}$ is monomer of :
7. Teflon
8. Orlon
9. Polythene
10. Nylon-6
11. Incorrect match among the following is :
(1) Neoprene $\left[-\mathrm{CH}_{2}-\underset{\mathrm{Cl}}{\mathrm{C}}=\mathrm{CH}-\mathrm{CH}_{2}-\right]_{\mathrm{n}}$
(2) Nylon-66

(3) Terylene $\left[\mathrm{OCH}_{2}-\mathrm{CH}_{2}-\stackrel{\text { O}}{\mathrm{C}}-\square-\stackrel{\text { O}}{\mathrm{C}}-\right]_{\mathrm{n}}$
(4) PMMA

12. Acrolein is hard, and a high melting point material. The structure of acrilan among the following is-

13.

3.

4.
30. Among the following, the monomers give the polymer neoprene on polymerization is-

1. $\mathrm{CH}_{2}=\mathrm{CHCl}$
2. $\mathrm{CCl}_{2}=\mathrm{CCl}_{2}$
3.

4. $\mathrm{CF}_{2}=\mathrm{CF}_{2}$
2.

31. Which one of the following polymers are prepared by addition polymerization?

1. Novolac
2. Dacron
3. Teflon
4. Nylon-66

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get

FREE ACCESS for 3 days of ANY NEETprep

course

\cup neet prep Selected Questions (Only NCERT based) from AIPMT 1998 to NEET 2021

Chemistry in Everyday Life

(Expected Questions in NEET 2022: 1)

Subtopic Name	Number of
	Questions
Classification of Medicines	12
 Propellant	3
Food - Preservatives, Artificial Sweeteners \& Antioxidants	2

Chemistry in Everyday Life - NCERT based PYQs

1. Mixture of chloroxylenol and terpineol acts as:
2. Antiseptic
3. Antipyretic
4. Antibiotic
5. Analgesic
6.

Which of the following is an analgesic?

1. Penicillin
2. Streptomycin
3. Chloromycetin
4. Novalgin
5.

Bithional is generally added to the soaps as an additive to function as a/an

1. softener
2. dryer
3. buffering agent
4. antiseptic
5. Artificial sweetner which is stable under cold conditions only is:
6. Saccharine
7. Sucralose
8. Aspartame
9. Alitame
10.

Antiseptics and disinfectants either kill or prevent growth of microrganisms. Identify which of the following statements is not true :

1. Chlorine and Iodine are used as strong disinfectants.
2. Dilute solutions of Boric acid and Hydrogen Peroxide are strong antiseptics.
3. Disinfectants harm the living tissues.
4. A 0.2% solution of phenol is an antiseptic while 1% solution acts as a disinfectant.
5.

A compound among the following that can be used as an antihistamine is :

1. Diphenylhydramine
2. Norethindrone
3. Omeprazole
4. Chloramphenicol
5. A compound among the following can be used as tranquilizer is :
6. Promethazine
7. Valium
8. Naproxen
9. Mifepristone
10.

Which one of the following is employed as a tranquilizer?

1. Equanil
2. Naproxen
3. Tetracycline
4. Chlorpheninamine
5. The human body does not produce :
6. DNA
7. Vitamins
8. Hormones
9. Enzymes
10. Among the following, the narrow-spectrum antibiotic is:
11. chloramphenicol
12. penicillin G
13. ampicillin
14. amoxicillin
15. The artificial sweetener stable at cooking temperature and does not provide calories is-
16. Saccharin
17. Aspartame
18. Sucralose
19. Alitame
20. Which of the following is a cationic detergent?
21. Sodium stearate
22. Cetyl trimethyl ammonium bromide
23. Sodium dodecylbenzene sulphonate
24. Sodium lauryl sulfate
25. Which of the following is not true about chloramphenicol?
(1) It inhibits the growth of only grampositive bacteria.
(2) It is a broad spectrum antibiotic.
(3) It is not bactericidal.
(4) It is bacteriostatic.
26. Chloramphenicol is an :
27. antihistaminic
28. antiseptic and disinfectant
29. antibiotic-broad spectrum
30. antifertility drug
31. Aspirin can be prepared by the reaction of acetyl chloride with :
32. Benzoic acid
33. Phenol
34. p-Hydroxy benzoic acid
35. o-Hydroxy benzoic acid
36. Which of the following forms cationic micelles above certain concentration :-
(1) sodium acetate
(2) Urea
(3) Cetyl trimethylammonium chloride
(4) Sodium dodecyl sulphonate
37. Statement I: Aspirin and Paracetamol belong to the class of narcotic analgesics.
Statement II: Morphine and Heroin are non-narcotic analgesics.
38. Statement I is correct but Statement II is false.
39. Statement I is incorrect but Statement II is true.
40. Both Statement I and Statement II are true.
41. Both Statement I and Statement II are false.

Fill OMR Sheet*

*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there. After filling the OMR, you would get answers and explanations for the questions in the test.

CLICK HERE to get
 FREE ACCESS for 3
 days of ANY NEETprep

course

[^0]: 6. The function of the gap junction is to
 7. Performing cementing to keep neighbouring cells together
 8. Facilitate communication between adjoining cells by connecting the cytoplasm for rapid transfer of ions, small molecules and some large molecules
 9. Separate two cells from each other
 10. Stop substance from leaking across a tissue
