

Semi-automated regional classification of the style of activity of slow rock-slope deformations using PS InSAR and SqueeSAR velocity data

Chiara Crippa^{*1}, Elena Valbuzzi¹, Paolo Frattini¹, Giovanni B. Crosta¹, Margherita C. Spreafico¹, Federico Agliardi¹

*chiara.crippa1@unimib.it

¹Department of Earth and Environmental Sciences University of Milano-Bicocca

Springer Link Crippa et al., Landslides (2021) open access

DSGSD and large landslides

-ondazione CARIPLO

Slow rock slope deformations:

continuum between DSGSDs and Large Landslides

DSGSD	Large Landslides (LL)		
> 6 – 10 km ²	> 1 km²		
Limited cumulative strain	Higher cumulative strain		
Creep behaviour	Hidrological sensitivty		
Morphostructures	Topographic expression		

- Recently recognized as active landslides
- Widespread (>1300 in the Alps)
- Complex displacement pattern →

different damage potential

3

Slow rock slope deformations *style of activity* = complex combination of:

- 1) Segmentation, heterogenous activity
- 2) Displacement rate (mm-cm/yr)

3) Kinematics

Research needs and methods

Main issues:

- Many
- Complex: ≠ style of activity and stages of evolution
- Threaten infrastructures

Study approach:

- InSAR and morphostructural data integration
- Multi-technique approach
- Multi-scale approach

Regional scale

Screening: semi-automated classification

Semi detailed mapping + PSI dataset

Improved PSI analysis

→ segmentation and heterogeneity
 → kinematics

- Austroalpine, Penninic and Southalpine domains
- Alpine sector: high elevation, steep topography, medium strength foliated metamorphics
- Southalpine sector: less steep, stratigraphic control

Available PSI datasets:

Satellite	PSI technique	Mode	Θ(°)	δ(°)	Revisit time(days)	Time interval(yr)
ERS 1/2	PSInSAR™	Ascending	23.20	~13.00	25	1992-2003
ERS 1/2	PSInSAR [™]	Descending	23.09	~12.00	35	1992-2000
RADARSAT-S3	SqueeSAR™	Ascending	32.49	12.12	24	2002 2007
RADARSAT-S3	SqueeSAR™	Descending	36.27	9.60	24	2003-2007
Sentinel1A/B	SqueeSAR™	Ascending	41.99	10.23		2015 2017
Sentinel1A/B	SqueeSAR [™]	Descending	41.78	8.89	12 (6 after 2016)	2015-2017

- 208 mapped slow rock slope deformations: 134 DSGSDs+74 LL uniformly mapped
- Semi detailed mapping: 3 polygonal layers + 3 linear layers

Descriptive morphostructural and morphometric variables for each landslide

Mean LOS velocity : ineffective in representing the state of activity

DEGLI STUD

-ondazione

CARIPLO

 Automated discrimination of homogenous/segmented landslides through peak analysis implemented in an original Matlab tool
 _{a)}
 _{b)}
 _{b)}

• Δ parameter \rightarrow changes in the 2D displacement vector orientation along slope

ondazione

RIPLO

• Asymmetry of Δ frequency as predictor of kinematics \rightarrow signature of landslide kinematics

• Δ mean, mode, median, skewness, kurtosis = inputs of a supervised machine learning analysis

Linear discriminant resulted the best predictive model with an accuracy higher than 80%.

• Multivariate analysis = PCA + cluster analysis (K-medoids)

Variable type	Label	Variable name
	DB	Deformed nested landslides density
Marabastrustural	NB	Immature nested landslide density
worphostructural	LS	Landslide scarp sector density
	DM	Morpho-structures density
Morphometrical	Ні	Hypsometric integral
	L/W	Elongation ratio
	A/2p	Shape factor
	Δh	Relief
	Aspect	Northerness
InSAR derived	v_PM	Velocity of major peak
	v_Pm	Velocity of minor peak
	Q_dev	Quartile deviation
	Δ_SK	Skewness of Δ distribution
	Δ_Μ	Median of Δ distribution

- Combined (mapping+ InSAR derived variables)
- 1) Bulk inventory
- 2) DSGSDs

- SAR covered \rightarrow 166 cases
- 3) Large Landslides
- Morphometric (mapping derived variables)
- 3) Bulk inventory (with SAR blind) \rightarrow 208 cases

PCA and cluster analysis on the bulk inventory (SAR covered): *different statistical signatures* of DSGSD and LL \rightarrow morphological differences (e.g. L/W: more elongated shape for large landslides; density of DB: higher accumulated internal deformation for LL; energy relief: > for DSGSD)

- Combined PCA on SAR covered DSGSDs (117)
- 5 cluster analysis on the PCs scores
- PC1-PC2-PC3: 50.2% of the variance

• gc1-gc5 groups: representative rate + kinematics + morphostructural expression

- Combined PCA on SAR covered Large Landslides (49)
- 2 cluster K-medoids analysis on the PCs scores
- PC1-PC2-PC3: 47.2% of the variance

LL1-LL2: ≠ morphostructural expression → ≠ maturity and accumulated deformation

- Landslides with no SAR data (42) \rightarrow listwise exclusion from combined PCA
- PCA & cluster on mapping derived variables+ proximity analysis
- PC1-PC2-PC3: 67% of variance

gc attribution to SAR blind landslides

	Classes	Kin	DM	DB	Median V _{LOS} (mm/yr)	Vel heterogeneity
DSGSD	Gc1	Т	High	Medium	13.5	High
	Gc2	Т	High	Medium	4.4	Low
	Gc3	R-RT	Medium	High	3.9	Low
	Gc4	T-RT	Medium	Low	6.1	High
	Gc5	R-RT	Low	Low	3.7	Medium
ш	LL1	Т	High	Low	4.5	Low
	LL2	R-RT	Medium	High	4.3	Medium

Style of activity of slow rock-slope deformations:

interplay between displacement rates, kinematics and complexity (e.g. segmentation, heterogeneity, internal damage, structural controls)

Slow rock slope deformations: *main characteristics*

- DSGSD and large landslides: different expression, mechanisms, evolutionary stages
- Similar displacement rates may correspond to ≠ kinematics and damage potential
- Statistically-based classification → style of activity groups

Slow rock slope deformations: *implications*

- Screening of slow rock slope deformations → *through replicable semi automated tools*
- Identification of critical case studies
- Prioritization of detailed site-specific mapping, monitoring and modelling studies