
Learning Search Guidance from Failures with Eliminable Edge Sets

Catherine Zeng1, Tom Silver2

1Harvard College, 2Massachusetts Institute of Technology
catherinezeng@college.harvard.edu, tslvr@mit.edu

Abstract
What can be learned from previous planning experience when
none of it was successful in finding any plans? We study this
question in the planning-as-graph-search setting. Our main
insight is that certain eliminable edge sets can be identified
from failed graph searches. These edge sets can then be used
to train a generalized predictor of eliminable edges, which in
turn can be used to guide search on new planning problems
from the same domain. Our preliminary experimental find-
ings across four visual navigation domains suggest that this
technique of learning from failed search attempts can result
in substantially improved planning in terms of the number of
nodes expanded before finding a plan.

I have not failed. I’ve just found 10,000 ways that won’t work.

THOMAS EDISON

1 Introduction
Search is a central paradigm in AI planning and beyond. In
the learning for planning literature, a perennial question is:
how can we leverage past search experience in similar prob-
lems to plan more efficiently and effectively in a new prob-
lem (Jiménez et al. 2012; Jiménez, Segovia-Aguas, and Jon-
sson 2019)? Approaches to this question almost always rely
on successful previous experience — planning attempts that
achieved their goal. In this work, we are interested in what
can be learned from failures to plan in previous determin-
istic planning problems, where at the time of learning, we
have not yet found any successful plans at all.

It is not immediately obvious that anything useful can
be learned without examples of planning success. One
approach suggesting the plausibility of this enterprise is
dead-end detection (Helmert 2004; Lipovetzky, Muise, and
Geffner 2016). A dead-end is a search state from which no
plan to the goal exists. Crucially, it is sometimes possible
to examine a failed search attempt and identify dead-ends; a
search state with no successors is a dead-end, and a state
whose only successors are dead-ends is also a dead-end.
A learning approach could leverage these identified dead-
ends to learn to predict dead-ends in a new planning prob-
lem, potentially speeding up the search. Unfortunately, there
are many domains of interest where dead-ends are limited
or absent altogether (e.g., domains where all actions are re-
versible). In these cases, can anything be learned from failed
search attempts?

Figure 1: Two search graphs where node n0 has the initial
state and n∗ has the goal. Edge labels omitted for clarity.
(a) The edge set {(n0, n1), (n1, n∗)} is eliminable, since a
plan through n2 would remain in the graph with those edges
removed. (b) Given a failed search attempt that has only
expanded five nodes from the initial state, one can already
see that the edge set {(n0, n1), (n1, n3)} is eliminable. In
this work, we use eliminable edge sets identified from failed
searches to learn a predictive model that allows us to pre-
emptively remove eliminable edge sets on new problems.

In this work, we consider eliminable edge sets: sets of
edges that can be eliminated from a search graph without
changing the solvability of the problem. See Figure 1 for
an example. This notion of eliminability subsumes dead-
end detection — all edges incident with a dead-end are
clearly eliminable — but also includes problem-specific re-
dundancy, where if there are multiple paths from initial state
to goal, all but one path can be eliminated. We show how
eliminable edge sets can be identified from failed searches,
with particular ease in the case of forward search algorithms
like A∗ and greedy best-first search (GBFS). These edges
can then be used to learn to predict eliminable edges in new
problems, leading to faster planning.

In experiments, we consider this approach of learning to
predict eliminable edge sets in four visual navigation do-
mains, all of which contain reversible actions and therefore
lack dead-ends. Our main empirical finding is that planning
with the learned edge elimination model considerably out-
performs planning with the same algorithm that led to the
failed search attempts. We continue with an analysis of the
aspects of the domains that enable this strong performance
and conclude with a discussion of remaining challenges and
open questions in learning from failed search attempts.

2 Related Work
Our work continues a long and active line of research in
learning for planning (Jiménez et al. 2012). Approaches in
this line include heuristic learning (Yoon, Fern, and Givan
2008; Arfaee, Zilles, and Holte 2011; Silver et al. 2016;
Garrett, Kaelbling, and Lozano-Pérez 2016; Shen, Trevizan,
and Thiébaux 2020) and generalized policy learning (Martin
and Geffner 2004; Srivastava et al. 2011; Bonet and Geffner
2015; Groshev et al. 2018; Gomoluch, Alrajeh, and Russo
2019; Jiménez, Segovia-Aguas, and Jonsson 2019). In con-
trast to these works, we are interested in learning from fail-
ures alone, without any successful plans or demonstrations.

Learning from failed planning attempts is related to
the challenge of exploration with sparse rewards in rein-
forcement learning (RL) (Kaelbling, Littman, and Moore
1996; Lehman and Stanley 2008; Bellemare et al. 2016;
Andrychowicz et al. 2017; Nair et al. 2018; Ecoffet et al.
2019). Especially relevant is exploration in multitask RL;
see Colas et al. (2020) for a recent survey. Much of the dif-
ficulty of exploration in RL stems from the transition model
being unknown. For example, several approaches attempt to
learn a transition model and use prediction error to guide
exploration (Pathak et al. 2017; Burda et al. 2018). In our
planning setting, we assume the transition model is known.

As discussed in Section 1, eliminable edge sets can
be seen as a generalization of dead-ends (Helmert 2004;
Lipovetzky, Muise, and Geffner 2016), which are closely re-
lated to nogoods in constraint satisfaction problems (Schiex
and Verfaillie 1994; Katsirelos and Bacchus 2005). Previ-
ous work on learning dead-end detectors considers planning
in factored, logical domains, and identifies formulaic repre-
sentations of states that are verifiable dead-ends (Steinmetz
and Hoffmann 2016, 2017a,b). In contrast, we consider a
planning setting where states and transition models are not
necessarily logical or factored, and we take an empirical ap-
proach in the spirit of the learning for planning literature
mentioned above. Moreover, our proposed method provides
leverage in domains that have no dead-ends to detect.

3 Problem Setting
We consider deterministic finite planning domains with
states S, actions A, and transition function SUCC(s, a) = s′

with s, s′ ∈ S and a ∈ A. Transitions have nonnegative
costs; for simplicity, we assume unit transition costs. A sin-
gle planning problem consists of an initial state s0 ∈ S and
a goal g ⊆ S . A solution to a planning problem is a plan,
that is, a sequence of actions (a0, a1, . . . , aT−1) such that
st+1 = SUCC(st, at) for 0 ≤ t < T , and sT ∈ g. In this
work, we are interested in satisficing planning, where solu-
tions need not be optimal.

Deterministic planning can be framed as graph search. A
graph G = (V, E) for a planning domain associates one
node ns ∈ V per state s and one directed edge between
nodes ns and ns′ with label a, denoted (ns, a, ns′) ∈ E ,
if SUCC(s, a) = s′. A plan for a particular problem corre-
sponds to a path in the graph starting at ns0 and ending at a
node nsT such that sT ∈ g.

We are interested in learning to plan more efficiently and

effectively from previous experience. Formally, we assume
access to a set of TRAIN planning problems with varying
initial states and goals. A set of held-out TEST problems
are used for evaluation after training. The state space S, ac-
tion space A and transition function SUCC are fixed across
all problems. To permit generalization between problems
with disjoint states, we will assume access to a featurizer
φ(s0, g, s, a, s

′) ∈ F , which maps an initial state, goal, and
transition to a feature space (e.g., images).

We are specifically interested in learning from planning
failures. In the planning-as-graph-search setting, a failed
planning attempt can be represented by the set of nodes V ′
and edges E ′ that were explored during search; these consti-
tute a subgraph G′ of the domain graph G, and the attempt is
a failure when no path in G′ leads from initial state to goal.
Each TRAIN problem is associated with one such subgraph.
The question motivating this research is: what, if anything,
can be learned from these failed searches that will aid plan-
ning in the TEST problems?

4 Learning A Generalized Predictor of
Eliminable Edge Sets from Failed Searches

The main insight leading to our approach is the following:
in examining the subgraph of a failed planning attempt, it is
possible to identify sets of edges that are eliminable. These
are edges that, in hindsight, could have been left unexplored
without inhibiting planning. Our approach is to use these
eliminable edge sets to learn a predictive model that will al-
low us to preemptively eliminate edges on the held-out TEST
problems. We next formalize what it means for an edge set
to be eliminable and then describe the details of our model.

4.1 Eliminable Edge Sets
Definition 4.1 (Eliminable edge set). Given a graph G =
(V, E) for a planning domain and a problem (s0, g), a set
of edges E− ⊂ E is eliminable if either 1) the problem is
unsolvable, or 2) the problem is solvable in the subgraph
G− = (V, E \ E−), i.e. there exists a path from ns0 ∈ V to a
node nsT ∈ V in the subgraph G−, where sT ∈ g.

In the graph illustrated in Figure 1a, where ac-
tion labels are omitted for visual clarity, the edge
set {(n0, n1), (n1, n∗)} is eliminable because the path
((n0, n2), (n2, n

∗)) remains in the graph with the edge set
removed. Similarly, {(n0, n2), (n2, n∗)} is eliminable, since
the path through n1 remains in the corresponding subgraph.
The set {(n0, n1), (n0, n2)}, however, is not eliminable.

From this example, we can see that eliminability is im-
portantly a property of a set of edges and cannot be re-
duced to a property of individual edges; one cannot deter-
mine whether the edge (n0, n1) is safe to eliminate without
knowing whether the edge (n0, n2) will also be eliminated.

There is a clear relationship between eliminable edges and
plans: given the path of a plan, the set of all edges not in the
path is eliminable. However, as we will see in the next sec-
tion, in the subgraph for a failed planning attempt, where no
plan can be found, it may still be possible to identify non-
trivial eliminable edge sets.

4.2 Eliminability in Failed Searches
Given a subgraph representing a failed planning attempt, we
would like to identify an eliminable edge set. We begin with
definitions familiar from graph search.
Definition 4.2 (Expanded node, open node). Given a sub-
graph Gsub = (Vsub, Esub) of a domain graph G = (V, E), a
node n ∈ Vsub is expanded if for all edges (n, a, n′) ∈ E ,
(n, a, n′) ∈ Esub. Otherwise, the node is open.
Definition 4.3 (Reachable node, edge). Given a graph G =
(V, E) and a planning problem (s0, g), a node n ∈ V is
reachable if there is a path from ns0 to n in G. An edge
(n, a, n′) ∈ E is reachable if n is reachable.

The following lemma gives us a mechanism to identify
eliminable edge sets in certain naturally arising subgraphs.
Lemma 4.1. Given a subgraph Gsub = (Vsub, Esub) of the do-
main graph G, a planning problem (s0, g) with ns0 ∈ Vsub,
and an edge set E− ⊆ Esub, let G−sub = (Vsub, Esub \ E−).
Suppose 1) no plan exists in Gsub; 2) all open nodes in Vsub
are reachable in G−sub; and 3) all edges in E− are reachable
in Gsub. Then E− is eliminable.

Proof. See Appendix A.
Thus to test whether an edge set is eliminable in a sub-

graph for a failed planning attempt (where no plan exists),
one could check whether each edge is reachable in the sub-
graph, and that there are paths from the initial state to all
open nodes in the graph with the edges removed. For exam-
ple, consider the graph shown in Figure 1b, where the five
non-goal nodes are expanded, but descendants of n3 and n4
are open. In examining the five-node subgraph, we can see
that the edge set {(n0, n1), (n1, n3)} must be eliminable,
since both edges are reachable, and a path from n0 to n3 and
a path from n0 to n4 remain in the graph after those edges
have been removed.

Identifying Eliminable Edges in Forward Searches. In
practice, when planning with forward1 search algorithms
like GBFS or A∗, we do not need to explicitly test whether
edge sets satisfy the criteria of Lemma 4.1. At any given time
in the execution of these algorithms, the shortest paths from
the initial state to all open nodes are maintained. The edges
in these paths are not eliminable. The complement of this
set — all previously visited edges that are not in the paths
— constitute an eliminable set. We can therefore extract an
eliminable edge set directly from a failed forward search.

4.3 Learning to Predict Eliminability
After applying the above technique to each problem (s0, g)
in the TRAIN set, we obtain one set of eliminable edges per
problem, denoted D−s0,g . For each problem, let D+

s0,g be the
complement of D−s0,g: edges that were explored in the failed
planning attempt for (s0, g), but are not in the eliminable set.
From these problem-specific sets, we can construct:

D− = {(s0, g, s, a, s′) : (ns, a, ns′) ∈ D−s0,g}
1This work focuses on forward search, but we expect that it

possible to formulate a version of Lemma 4.1 that would work for
backward search as well, where expansion and reachability would
emanate from the goal, rather than the initial state.

(a) TMaze (b) Hallways

(c) WallRoom (d) FourRooms

Figure 2: Miniworld Domains

D+ = {(s0, g, s, a, s′) : (ns, a, n′s) ∈ D+
s0,g}.

Recall that we have access to a featurizer
φ(s0, g, s, a, s

′) ∈ F . Applying the featurizer to all
points inD− andD+, we arrive at a dataset that is amenable
to standard binary classification. After training a classifier
fθ : F → {0, 1} with parameters θ, we can use the
learned model to eliminate edges during search on a new
problem. In practice, rather than pruning edges entirely, we
will learn a probabilistic classifier and use the predicted
probability that an edge is eliminable to determine the order
of expansion during GBFS.

It is important to emphasize that we are not learning
to predict whether an edge is eliminable in any universal
sense; as we saw in Section 4.1, individual edge eliminabil-
ity is not well-defined. Instead, the learned model fθ can be
used to predict a certain eliminable edge set for any given
problem. In other words, given a problem (s0, g), fθ acts
like an indicator function: all edges (ns, a, n

′
s) for which

fθ(φ(s0, g, s, a, s
′)) = 1 are in the eliminable edge set.

Erring on the Side of Non-Eliminability. In predicting
eliminability, false positives (incorrectly predicting “elim-
inable”) are more problematic than false negatives, since
pruning or down-weighting a crucial edge could doom or de-
lay search. In early experiments, we found that learned pre-
dictors would sometimes predict false positives as the search
considered edges that were substantially different from those
seen in the training data. To remedy this, inspired by previ-
ous work in exploration for RL (Tang et al. 2017), we in-
troduce an unseen wrapper around our classifier that deter-
mines whether an edge is sufficiently different from previ-
ously seen edges by some metric, and if so, assigns it a zero
probability of eliminability (see Section 5.1 for details).

5 Experiments and Results
We now present preliminary experiments and results.

5.1 Experimental Setup
Domains. We test our approach in four visual navi-
gation domains implemented in Miniworld (Chevalier-
Boisvert 2018): TMaze, Hallways, WallRoom, and
FourRooms. Hallways and WallRoom are custom do-
mains original to this work. All domains involve an agent

Figure 3: Model performance for different amounts of training expansion, where training expansion refers to the number of
nodes expanded during training search as a fraction of the number of node expansions required for a blind best-first search
search to solve the problem. In all domains and across different training expansion amounts, our approach improves upon a
blind best-first search.

navigating to a goal. Figure 2 (left images) shows top views
of the environments, where the agent’s initial position is por-
trayed by the red arrow and a goal position portrayed by the
red square. States are comprised of the agent position and
direction. There are three possible actions from each state:
move forward, turn 90◦ left, or turn 90◦ right. Each state
is associated with a first-person image (Figure 2, right im-
ages). The featurizer φ(s0, g, s, a, s′) is a concatenation of
the images for states s and s′.2

In domains such as TMaze and Hallways, we expect
our model to learn that edges corresponding to moving the
agent forward into an empty hallway with no exits are likely
to be eliminable. It is less clear a priori that the model will
learn useful information in WallRoom or FourRooms.

Model Class. We parameterize the eliminability classifier
fθ as a convolutional neural network (CNN). For the unseen
wrapper (Section 4.3), we discretize the state space using
locality-sensitive hashing (LSH). Details about the CNN and
the LSH can be found in Appendix B.

Data Collection. Each of the four domains has one
training task. To collect failed searches, we run blind
best-first search (i.e., breadth-first search) with a predeter-
mined number of node expansions such that no plan to the
goal is found. The number of node expansions is deter-
mined as a proportion of the number of nodes an average
best-first search takes to solve the problem. For example,
train expansion=0.2 indicates that, for a task where
blind search takes roughly 300 node expansions to solve, the
training search expanded 60 nodes. We verified that no plans
were found in any training problem.

Training. The CNN is trained with binary cross-entropy
loss, using the Adam optimizer (Kingma and Ba 2014) with
learning rate 0.0001 for 320 epochs.

Testing. Each domain has nine test tasks, with variation in
the initial states and goals such that none are identical to the
training task. During test search, the model predicts elim-
inability of edges as they are encountered. The probability
of eliminability is used as a heuristic to guide GBFS.

Additional Details. Each experiment configuration
shown in this paper is run with 25 random seeds, where ran-

2The initial state and goal are not factored into the feature rep-
resentation because we train on only one problem per domain.

domness is introduced via neural network initialization, the
SimHash A matrix (Appendix B), and the randomized tie-
breaking during search. All search code is based on Pyper-
plan (Alkhazraji et al. 2020) and all neural-network code is
written in PyTorch (Paszke et al. 2019).

5.2 Results
As shown in Figure 3, in each of the four domains and
across various training expansion amounts, the eliminabil-
ity predictor improves search in test problems compared to
a blind best-first search. Improvements generally increase
as the training expansion amount increases. In simpler do-
mains such as TMaze, we can see a case of diminishing re-
turns; train expansion=0.4 achieves almost the same
as train expansion=0.6, which has indiscernable per-
formance from train expansion=0.8.

In Appendix C, we report additional results that probe the
impact of the unseen wrapper. We find that the CNN model
without the unseen wrapper can perform substantially worse
than a blind search, especially at low training percentages.
The unseen wrapper allows the eliminability predictor to
consistently perform better than blind search. It it is interest-
ing to note that, even at a low train expansion=0.2,
the CNN can learn improvements in search that cannot be
attributed solely to the unseen wrapper.

6 Discussion and Conclusion
In this work, we investigated what can be learned from
failed planning attempts alone, finding generalized elim-
inable edge set predictors to be a promising candidate.
Among many possible future directions, we are most ea-
ger to (1) apply the approach in other domains, e.g., IPC
tasks (Long and Fox 2003); (2) study the approach in set-
tings where nontrivial domain-independent (e.g., delete-
relaxation) heuristics are available; (3) investigate learning
during a single search, using what is learned to bootstrap
planning in the rest of the problem; (4) consider further con-
nections to the RL literature on exploration, perhaps adapt-
ing our approach to the RL setting where the transition
model is unknown.

References
Alkhazraji, Y.; Frorath, M.; Grützner, M.; Helmert, M.;
Liebetraut, T.; Mattmüller, R.; Ortlieb, M.; Seipp, J.; Sprin-
genberg, T.; Stahl, P.; and Wülfing, J. 2020. Pyper-
plan. https://doi.org/10.5281/zenodo.3700819. doi:10.5281/
zenodo.3700819. URL https://doi.org/10.5281/zenodo.
3700819.
Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, P.; and
Zaremba, W. 2017. Hindsight experience replay. arXiv
preprint arXiv:1707.01495 .
Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2011. Learning
heuristic functions for large state spaces. Artificial Intelli-
gence 175(16-17): 2075–2098.
Bellemare, M.; Srinivasan, S.; Ostrovski, G.; Schaul, T.;
Saxton, D.; and Munos, R. 2016. Unifying count-based ex-
ploration and intrinsic motivation. In Advances in Neural
Information Processing Systems, 1471–1479.
Bonet, B.; and Geffner, H. 2015. Policies that generalize:
Solving many planning problems with the same policy. In
Twenty-Fourth International Joint Conference on Artificial
Intelligence.
Burda, Y.; Edwards, H.; Storkey, A.; and Klimov, O. 2018.
Exploration by random network distillation. arXiv preprint
arXiv:1810.12894 .
Chevalier-Boisvert, M. 2018. gym-miniworld environ-
ment for OpenAI Gym. https://github.com/maximecb/gym-
miniworld.
Colas, C.; Karch, T.; Sigaud, O.; and Oudeyer, P.-Y. 2020.
Intrinsically Motivated Goal-Conditioned Reinforcement
Learning: a Short Survey.
Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley, K. O.; and
Clune, J. 2019. Go-explore: a new approach for hard-
exploration problems. arXiv preprint arXiv:1901.10995 .
Garrett, C. R.; Kaelbling, L. P.; and Lozano-Pérez, T. 2016.
Learning to rank for synthesizing planning heuristics. arXiv
preprint arXiv:1608.01302 .
Gomoluch, P.; Alrajeh, D.; and Russo, A. 2019. Learn-
ing classical planning strategies with policy gradient. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 29, 637–645.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning generalized reactive policies us-
ing deep neural networks. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling.
Helmert, M. 2004. A Planning Heuristic Based on Causal
Graph Analysis. In ICAPS, volume 16, 161–170.
Jiménez, S.; De La Rosa, T.; Fernández, S.; Fernández, F.;
and Borrajo, D. 2012. A review of machine learning for
automated planning. The Knowledge Engineering Review
27(4): 433–467.
Jiménez, S.; Segovia-Aguas, J.; and Jonsson, A. 2019. A re-
view of generalized planning. The Knowledge Engineering
Review 34: e5.

Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement learning: A survey. Journal of artificial in-
telligence research 4: 237–285.
Katsirelos, G.; and Bacchus, F. 2005. Generalized nogoods
in CSPs. In AAAI, volume 5, 390–396.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980 .
Lehman, J.; and Stanley, K. O. 2008. Exploiting open-
endedness to solve problems through the search for novelty.
In Eleventh International Conference on Artificial Life (AL-
IFE XI).
Lipovetzky, N.; Muise, C.; and Geffner, H. 2016. Traps,
invariants, and dead-ends. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling,
volume 26.
Long, D.; and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. Journal of Artificial
Intelligence Research 20: 1–59.
Martin, M.; and Geffner, H. 2004. Learning generalized
policies from planning examples using concept languages.
Applied Intelligence 20(1): 9–19.
Nair, A.; McGrew, B.; Andrychowicz, M.; Zaremba, W.;
and Abbeel, P. 2018. Overcoming exploration in reinforce-
ment learning with demonstrations. In 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
6292–6299. IEEE.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury,
J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.;
Antiga, L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito,
Z.; Raison, M.; Tejani, A.; Chilamkurthy, S.; Steiner,
B.; Fang, L.; Bai, J.; and Chintala, S. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning
Library. In Wallach, H.; Larochelle, H.; Beygelz-
imer, A.; d'Alché-Buc, F.; Fox, E.; and Garnett, R.,
eds., Advances in Neural Information Processing Sys-
tems 32, 8024–8035. Curran Associates, Inc. URL
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf.
Pathak, D.; Agrawal, P.; Efros, A. A.; and Darrell, T. 2017.
Curiosity-driven exploration by self-supervised prediction.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 16–17.
Schiex, T.; and Verfaillie, G. 1994. Nogood recording for
static and dynamic constraint satisfaction problems. Inter-
national Journal on Artificial Intelligence Tools 3(02): 187–
207.
Shen, W.; Trevizan, F.; and Thiébaux, S. 2020. Learning
domain-independent planning heuristics with hypergraph
networks. In Proceedings of the International Conference
on Automated Planning and Scheduling.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture 529(7587): 484–489.

Srivastava, S.; Immerman, N.; Zilberstein, S.; and Zhang, T.
2011. Directed search for generalized plans using classical
planners. Proceedings of the International Conference on
Automated Planning and Scheduling .
Steinmetz, M.; and Hoffmann, J. 2016. Towards clause-
learning state space search: Learning to recognize dead-
ends. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30.
Steinmetz, M.; and Hoffmann, J. 2017a. Search and Learn:
On Dead-End Detectors, the Traps they Set, and Trap Learn-
ing. In IJCAI, 4398–4404.
Steinmetz, M.; and Hoffmann, J. 2017b. State space search
nogood learning: Online refinement of critical-path dead-
end detectors in planning. Artificial Intelligence 245: 1–37.
Tang, H.; Houthooft, R.; Foote, D.; Stooke, A.; Chen, O. X.;
Duan, Y.; Schulman, J.; DeTurck, F.; and Abbeel, P. 2017.
Exploration: A study of count-based exploration for deep
reinforcement learning. In Advances in neural information
processing systems, 2753–2762.
Yoon, S.; Fern, A.; and Givan, R. 2008. Learning control
knowledge for forward search planning. Journal of Machine
Learning Research 9(Apr): 683–718.

A Proof of Lemma 4.1
Lemma 4.1. Given a subgraph Gsub = (Vsub, Esub) of the do-
main graph G, a planning problem (s0, g) with ns0 ∈ Vsub,
and an edge set E− ⊆ Esub, let G−sub = (Vsub, Esub \ E−).
Suppose 1) no plan exists in Gsub; 2) all open nodes in Vsub
are reachable in G−sub; and 3) all edges in E− are reachable
in Gsub. Then E− is eliminable.

Proof. To review, there are four graphs here:

• G is the full domain graph.

• Gsub is the subgraph of the failed search, that is, the nodes
and edges that were explored during a search where no
plan was found.

• G−sub is the subgraph of the failed search with the edges in
E− eliminated.

• Let G− = (V, E \ E−) be the subgraph of the full domain
graph with the edges in E− eliminated.

If the planning problem is unsolvable, any edge set is
eliminable, and the conclusion is trivial. Otherwise, there
exists a plan in G, that is, a path from ns0 ∈ V to some
nsT ∈ V with sT ∈ g. This path must contain a node nopen
that is open in Gsub; otherwise, the path would contain only
nodes that are expanded in Gsub, and Gsub would contain a
plan, violating assumption (1). By assumption (2), nopen is
reachable in G−sub, and therefore also reachable in G−, since
G−sub is a subgraph of G−. It remains to show that there is a
path from nopen to nsT in G−.

Consider a path from nopen to nsT in G. Let n′open be the
last open node in this path, i.e., the closest open node to
the goal nsT . Since it is open, n′open is reachable in G−sub
and therefore also in G−. Now consider the edges on the
path from n′open to nsT and suppose that one or more are in
E−, the eliminated set. Because E− ⊆ Esub, these edges are
in Esub. Furthermore, by assumption (3), each such edge is
reachable in Gsub, and thus all of the constituent nodes are
reachable in Gsub as well, including nsT . But we assumed in
(1) that Gsub does not contain a plan, so this is a contradic-
tion. Therefore no edges along the path from n′open to nsT
are eliminated, and thus a plan in G− (from ns0 to n′open to
nsT) is maintained after the elimination of E−.

B Experimental Details
CNNs are implemented in PyTorch version 1.5.0. The image
features are passed through two convolutional layers with
kernel size 10 and stride 1 and two max pooling layers with
kernel size 2 and stride 2, followed by three fully connected
layers with ReLU activation with hidden dimensions 120
and 84.

LSH maps high dimensional input to discrete hash codes,
such that similar inputs are mapped to the same hashes.
In particular, we use SimHash (Tang et al. 2017), an LSH
which measures similarity by angular distance. Given a
vector x ∈ RD, SimHash retrieves a binary code h =
sgn(Ax) ∈ {−1, 1}k, where A is a k ×D matrix with i.i.d.
entries drawn from from a standard Gaussian distribution
N (0, 1). Larger k values correspond to fewer collisions and

finer granularity in discretization (we use k = 500). For our
purposes, x is a flattened representation of φ(s0, g, s, a, s′),
the image features for an edge.

C Additional Experiments
We ran additional experiments to analyze the effect
of the unseen wrapper. In these experiments, we com-
pare four models: blind, blind unseen, cnn, and
cnn unseen. blind is a simple best-first search, whereas
blind unseen is the best-first search with the unseen
wrapper, i.e. prioritizing unseen edges. cnn is the CNN
model with no additions, and cnn unseen, the CNN with
the unseen wrapper, is the model we used for the main re-
sults.

Figure 4 shows model comparisons for training
expansion=0.2, and Figure 5 shows model compar-
isons for training expansion=0.8. We see that, es-
pecially when search is limited during training, the CNN
model without the unseen wrapper can occasionally perform
quite poorly, sometimes significantly worse than a blind
search. Although the unseen wrapper can be a detriment
to average performance, it acts as a “safety net” and con-
sistently prevents the CNN model from performing much
worse than blind search. Note that at both high and low
training expansion, the CNN model with the unseen
wrapper can provide substantial improvements to search in
comparison to the blind and blind unseen models.

Figure 4: Models comparison at training expansion=0.2

Figure 5: Models comparison at training expansion=0.8

