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Abstract

We introduce a method for inducing the structure of (causal) possibilistic net-
works from databases of sample cases. In comparison to the construction
of Bayesian belief networks, the proposed framework has some advantages.
namely the expiicit consideration of imprecise .(set-volued) data, an'd the re-

alization of a controlled form of information cornprcssfon in order to increase

the efrciency of the learning strategy as well as approximate reasoning using

Iocal propagation techniques.
Our learning method has been applied to reconstruct a non-singly con-

nected network of 22 nodes and 22 arr-s without the need of any a priori
supplied node ordering.

1 Introduction
Bayesian networks provide a well-founded normative framework for knowledge re-
presentation and reasoning with uzcerfafn, but precise data. Extending pure prob-
abilistic settings to the treatment of. imprecise (set-valued) information usually re-
stricts the computational tractability of the corresponding inference mechanisms. It
is therefore near at hand to consider alternative uncertainty calculi that provide a
justified form of information cornpressfon in order to support efficient reasoning in
the presence of imprecise and uncertain data without affecting the expressive power
and correctness of decision making.

Such a modelling approach is appropriate for systems that accept approtintatein-
stead of crisp reasoning due to a non-significant sensitivity concerning slight changes
of information. Possibiiity theory [Zadeh 1978, Dubois and Prade 1988] seems to be
a promising framework for this purpose.

'This work has been partially funded by CEGESPRIT III Basic Research Project 6156
(DRUMS rr).

233



In this paper we focus our interest on the concept of. a possibilistic causal network,
which is a directed acyclic graph (DAG) and a family of (conditional) possibility
distributions. Since the covering of all aspects of possibilistic reasoning is beyond
the scope of this paper, we will confine to the problem of inducing the structure of
a possibilistic causal network from data.

In Section 2 we introduce a possibilistic interpretation of databases of set-valued
samples. Based on this semantic background, Sections 3 and 4 deal with possibilistic
networks and the structure induction method, respectively. In Section 5, we men-
tion some basic ideas and important results including an example of the successful
application of our approach.

2 Possibilistic Interpretation
of Sample Databases

Let Obj(X1 ,,...,Xn) be an object type of. interest, which is characterized by a set
V : lXt,...,X,\ of, aariables (attributes/ with finite domains 9(;) - Dom(X;),
i :1r... ,n.

The precise specification of..a current object state of this type is then formalized
as a tuple (ro : (-[t),...,.*.,[*)), taken from the unioerse of iliscourse O :62(r) *
... x O('). Any subset A E O can be used as a set-aalued. specifi,cation of ars, which
consists of all states that are possible candidates for t q. .E is therefore called correct
for a;e, if and only if cuo € .8. .B is called imprecise, iff l8l > l, precise, iff l^El = 1,

atd contrad.ictory, iff lfil - 9.

Suppose that general knowledge about dependencies among the variables is avaii-
able in form of a database D = (Di)L, of sample cases. Each case D; is interpreted
as a (set-valued) correct specification of a previously observed representative object
state r^.r; - (rj", ...,r:"\).

Supporting imprecision (non-specificity) consists in stating Di : D!" *. . .* D:") ,

whereDjd) denotesanonemptysubsetof O(i). Weassumethatu'(i) e D:n issatisfied,

but no further information about any preferences among the elements in Dr(') ir given.
When the cases ia D are applied as an imperfect specification of the current object
state trs, tben uncertainty concerning t.rs occurs in the way that the underlying
frame conditions (here named as contetts. and denoted by c;), in which the sample
states a;i have been observed, may only for some of the cases coincide with the
context on which the observation of c.,.rs is based on. The complete description of
context c; depends on the physical frame conditions of ,,si, but is also influenced
by the frame conditions of observing ui by a human expert, a sensor, or any other
observation unit. For the following consideration, we make some assumptions on
the relationships between contexts and context-dependent specifications of object
states. In particular, we suppose that our knowledge about t..,s c&o be represented
by .n imperfect specification
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f = (1, Pc),

C = {.r,.. .,c^},
1:C + F(O),
lki) = Dj, j=1,...,tu,

with C denoting the set of contexts, l!i) the context-dependent set-valued specifi-
cation of ui,, Po a probability measure on C, and p(O) the power set of O. P6'({c})
quantifies the probability of occurrence of context c € C. If all contexts are in the
sarne way representative and thus equally likely, then P6 should be the uniform
distribution on C.

We suppose that C can be formalized as a subset of a Boolean aigebra of propo.
sitions. The mappirrg t : C - f(O) indicates the assumption that there is a
functional dependency of the sample cases from the underlying contexts, so that
each context c; uniquely determines its set-valued specification f (ci) : Di of ui. lt
is reasonable to state that 7(c;) is correct for uu; (i.e.: r,.'i g Z(ci)) and of maximarn
specificity, which means that no proper subset of 7(c;) is guaranteed to be correct
for a,; with respect to context c;. Related to the current object state of interest,
specified by the (unknown) value uso e R, and observed in a new context cs, any c; in
C is adequate for delivering a set-valued specification of &.rs, if co and ci, formalized
as logical propositions, are not contradicting. Intersecting the context-dependent
set-valued specifications 7(c;) of all contexts c; that do not contradict ca, we obtain
the most specific correct set-valued specification of r^.,s with respect to 7.

The idea of using set-valued mappings on probability fields in order to treat
uncertain and imprecise data refers to similar random-set-like approaches that were

suggested, for instance, in [Strassen 1964], [Dempster 1968], and [Kamp6 de F6riet
1982]. But note that for operating on imperfect specifications in the field of know-
ledge-based systems, it is important to provide adequate semantics. We addressed
this topic in more detail elsewhere [Gebhardt and Kruse 1993a, Gebhardt and Kruse
1ee3bl.

When we are only given a database D = (Di)';L, of sample cases, where D; C O is

assumed to be a context-dependent most specific specification of uj,we are normally
not in the position to fully describe the contexts c3 in the form of propositions that
are taken from an appropriate underlying Boolean algebra of propositions. For this
reason it is convenient to carry out an information compression by paying attention
to the context-dependent specifications rather than to the contexts themselves. We
do not directly refer to I : (7, P6), but to its degree of a-correctness w.r.t. rzs,

which is defined as the total mass of all contexts c; that yield a correct context-
dependent specification 7(cj) of are. If we are given any c.l € O, then f : (7, P6) is
cailed a-cotrect w.r.t. c..,, iff

Pc({reC lu e 7(c)}) 2 o, 0 < o S 1.

Note that, although the application of a probability measure P6, suggests disjoint
contexts, we do not make any assumptions about the interrelation of contexts. With
respect to the frame conditions that cause the observations, the contexts may be
identical, partially corresponding, or disjoint. We add their weights, because disjoint
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contexts are the "worst case" in which we can not restrict the total weight to a
smaller value without losing correctness. In this manner, a possibility degree is the
upper bound for the total weight of the combined contexts.

Suppose that our only information about c,.r6 is the o-correctness of I w.r.t. c..rq,

without having any knowledge of the description of the contexts in C. Under these
restrictions, we are searching for the most specific set-valued specification Ao S O
of c,rs, namely the largest subset of O such that o-correctness of I w.r.t. t., is satisfied
for all u €. Ao. It easily turns out that the family (Ao)oeto,rl consists of all a-cuts
[rp]" of the induced possibility distribution

zrp:O + [0,1]
rr(c.,) = Pc ({" € C I a e z(c)}),

where for any z', taken from the set POSS(O) of all possibility distributions that
can be induced from imperfect specifications w.r.t. O, the o-cut [z']" is defined as'

[o]" : {to€Ol"(r))o}, 0(o(1,
[o]o : O.

Note that zrr(tu) can in fact be viewed as a degree of possibility for the truth of
a1e 

-- c,rs": If or(r) = 1, then u e 1(c\ holds for all contexts c € C., which meaEs
that a.r - r..,1 is possible for all sample object states ui, j :1,...,rr2, so that a,r6 : q.r

should be possible without any restriction.
If z'p(a.,) = 0, then @i = u has been rejected for w|,,J = 1, ...,Dt since r,.r # lki)

is true for the set-valued specifications 7(c;) of. wi. This entails the impossibility of
u)o : o)t if the description of the context co for the specification of a.,s is assumed to
be a conjunction of the descriptions of aay contexts h C.

If 0 < 7rr(@) ( 1, then there a.re contexts that support u)o = ri as well as contexts
that contradict trs - c.r. The quantity rp(c.r) reflects the maximumpossible total
mass of contexts that support ab - u.

Note that in the recent years several proposals for the semantics of a theory of
possibility as a framework for reasoning with uncertain and imprecise data have
been made. Among the numerical approaches, we like to mention the epistemic
interpretation of finzy sets [Zadeh 1978], the axiomatic view of possibility theory
using possibility measures [Dubois and Prade 1988], one-point coverages of random
sets [Nguyen 1978, Hestir et al. 1991], contour functions of consonant belief functions
[Shafer 1976], falling shadows in set-valued statistics [Wang 1983], Spohn's theory of
epistemic states [Spohn 1990], and possibility theory based on likelihoods [Dubois et
al. 1993]. Ignoring the underlying interpretation of contexts, 7rr formally coincides
with the one-point coverage of I, when it is interpreted as a (not necessarily nested)
random set. From a semantics point of view, operating on possibility distributions
in our setting may better be strongly oriented at the concept of o-correctness. For
an extensive presentation of this background of possibility theory, we refer to [Geb-
hardt and Kruse i993b, Gebhardt and Kruse 1993c]. Special aspects of possibility
measures for decision making in this framework have been considered in [Gebhardt
and Kruse 1994].
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3 The Concept of a Possibilistic Causal Network
For the following investigations, we suppose that all relevant dependencies among the
variables in 7 can be represented in a qualitative way with the aid of a depend,ency

hypergraph H = (V,E) [Berge 1976].

From a quantitative point of view, a dependency hypergraph I/ = (V,t), when
applied to a relation .E ! O, induces a constraint network Nu(R) over I/, which is
defined as the family of nonempty relations

RrY ilf (E),

with II$ denoting the pointwise projection from S)v onto OE. In this connection,
let O{"} be the domain of the variable u e V. lf. VV I V is an arbitrary subset of
variables, then

X,.rOi,), if.W *0
{r}, if.W -0

is defined as the product of their domains, where the empty tuple e is the only
element of Oo.

Since Na@) specifies local dependencies among the values of the variables in
E €. €, Jtfs@) may be less informative than .8. More particularly, defining

rel(,A/r(E)) 9{r€0lVE et:lIur(u) e Rr1

as the set of all global dependencies in O that can be derived from //r(ft), we obtain

E e rel(,4/r(n)).

Structure id,entification of .R is the task of finding a dependency hypergraph
H : (v't) such that 

R _ rer(r4r(ft))

holds. The induced constraint network,l\/r(fi) is then called a /oss/ess join decom-
position of .E which describes or represents R.

Given a dependency hypergraph H = (V,t), any most specific set-valued speci-

fication .E of the current object state ars is assumed to have a lossless join decompo-
sition (Re)see. This property has an important influence on the interpretation of
a sample database 2, caused by the decomposability of 2 into a family (DB)686 of.

databases, where each DB provides sample cases of observed dependencies among
the variables contained in the hyperedge E. The database DB - @?)L, consists
of the set-valued specifications Df :tI[(D;) of the dependencies II$(c.5) that are
part of the sample object states r.1. Given the dependency hypergraph I/ and the
database D, the pair (2, f/) may be applied in order to imperfectly specify a.,e.

Our knowledge about Lr6 corr be represented with the aid of a family (fs)s66 of
imperfect specifications fs = (ys,Ps), where 1e : Cs - F(OE) is defined on the
set Cs - {4 , . . . ., P^} of those contexts S tnat reflect the frame conditions for

specifying the sample dependenc y IIY@), i.e., ^yB(€) *: Df .

aW d:-t
J&
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Under the assumption that the contexts 4 i" CE are equally likely, we choose

pr(4)91 for all j = L,...,tu. The family Nu@) = (trrr)see of the induced
possibility distributions 7rp" is ca^lled a possibilistic (constraint) networlc over V.

Stating as-corr€ctness of f6 w.r.t. IIE(ro), we obtain Ra = lorr),, as the most
specific correct set-valued specification of tI$(ids) that follows from the ioterpretation
of. D and H. The specifications Ra carL be combined to the constraint network
N - (Rs)Eer as a lossless join decomposition of rel(,,l/), which is the resulting most
specific correct set-valued specification of u,,6.

The following definition introduces an alternative view of a possibilistic network,
which incorporates causality aspects in the way that it deals with a directed acyclic
graph of qualitative dependencies, and a family of (conditional) possibility distribu-
tions.

Definition 3.1 Let V = {Xr,...,X,-} be a set of aariables, O(t) : Dom(Xt),
i=1,...,D, their attached,finite domains, andQ- O(l) x... x Q@) their corntnon
uniaerse of discoarse. Furthermore, let D = (Dj)L, be a ilatabase of (set-oalued)

sarnple cases Dj : DI" r .. .* D:") with 0 + D:f S Ot;l for j :1,...,tu.
Letl = (t,Pc), determinedbyl: C -) F(0), C = {"r,...,%}, anil

tG;): Di, i - 1,...)nz, be an imperlect specification of the current object state
aro€O ofinterest.

LetG = (V,E) be a d,irected acyclic graph. For anyw gV and, X eV\W,
def,ne

plD;W+V1 : O -+ POSS(O{x}1,

gID;W * V](ar) E or(X lW:w),, where

or(x lw:r)(r') E Pr({"e c l, eilYr}k)) and,r'et1(x{7(4)}).

For any X e V, let
par6(X) I {y ev I (y,x) e E}

denote the set of all parent nodes of X. Then, the family

Nc(D)Y @lo,par6(X) * Xl)xeu

is called, a possibilistic causal network for ws, induced, byD and G.

Note that l"r(X I W = c..,)]" is the most specific correct set-valued specification
of [Ifyl(cuo) that follows from 2, given the instantiation of the variables in I4z (i.e.
II[r(ro) : tr) and the o-correctness of lryg1;1 w.r.t. nh,rtxl(c.ro).

The possibilistic causal network Nc(D) is an information-compressed represen-
tation of our knowledge about crrs, given the database 2 and a DAG G : (V,, E) ot
causal dependencies among the variables in 7. The DAG G induces the dependency
hypergraph

H(G) - (V,Ec), 8"9 {{X} upar6(X) | X e V},,

and, incorporating the database D, the possibilistic constraint network Jrfxpl(D).
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4 Inducing Possibilistic Networks from Data
In this section we present a new method for inducing a possibiiistic causal network
Nc(D) and therefore its attached possibilistic constraint network Jr[ug(D) from a
database 2 of sample cases. This method is based on viewing a DAG as an abstract
deductive reasoning scheme.

More particularly, let ( be a topological ordering of.V, i.e. all nodes u,u' eV
with u' < u satisfy the condition (u, D') * E. Suppose that u1 I uz.. - 1 an reflects
this ordering. For any o, € O, we either want to identify c,; as the current object state
(o : a.,e) or to verify a * uo by marking those variables u;, i = 1,. .. , n, for which
II[",1(,.r) turns out to be inconsistent with the available general knowledge about
tDs. This knowledge is encoded bV Nc@) and the total mass as of all contexts
in Cz whose description does not contradict the description of the context S for
the specification of the dependenc1 tlY@o) within the current object state aro. Let
,' = fiLotrl(r) and tr" = Ilfyl(,"). Since we assume that the descriptions of the

addressed contexts are not available, we only know that 0 l az 1a(,rs',u",X)
holds, where

d,(,i',,,,)",X) E or(X I par6(X) = r')(r")
is the maximum possible correctness degree of. lz w.r.t. fU@). Applied to any
c.r € O, the reasoning scheme works as follows:

Scheme 4.L
Pseud,ocod,e of a ileductiue reasoning scheme for id,entifying or rejecting any w e dl

as the cutrent object state u.ts, gioen a possibilistic causal netuork Nc(D).

for z':: 1 to z do begin

assign X := u; and calculate r; i:lrp(X I par6(X) = Il[*"1xy(r));

ifr;t'0
then determine the total mass oz of all contexts in Cz, Z : par6(X)U {X},

whose description does not contradict the description of the context cf;

for the specification of.II[(un);

note that l s is as-correct w.r.t. tlY@o);

provide further information such that either II[yi(ro) is identified within
the set Q; :: lor1,, of remaining possible instantiations of X, or
tr[;r1(r) * ll(y,,(uo) is recognized.

end;

if (z'; = 0) or (tl[rsy(r) I [l{y,,(ro))

then mark X as a variable where an erraneous instantiation has been detected
(, * ro)

end

end
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The amount of information that has to be added in order to identify II[11(,.10) within
the set Oi of possible alternatives can be quantified by I/(O;), where I/ deuotes the
Hartley rnea,sure of informatfoz [Hartley 1928].

For any nonempty finite set A,,

H(A)Y los, lAl

is the number of elementary propositions (measured in bits), whose truth values must
be determined for the specification and thus the identification of a single element in
the reference set A.

Note that in the case (Dt = 0, there is no need for adding further information,
since no possible alternative instantiations of u; exist. We therefore define

r(01 d3o'

Based on Hartley information, we measure the nonspecificity of ,A/6(D) with
respect to r.r € O, namely the total amount of additional information (beyond D)
that is necessary either to identify r.,.r as the current object state (c.r - ,o) by carrying
out inference in the presented deductive reasoning scheme, or to mark all variables
for which the reasoning process provides a contradiction (o * ro). We assume that
all choices of as-corcectness degrees in the interval [0, a(ar', ," , X)l are equally likelS
and that in our a priori state of knowledge, we are indifferent concerning the value
of &rs. Summarizing these ideas, we obtain the following definition.

Definition4.Z Let G : (V,E) be a DAG, D a d,atabase of sample coses, and,

Ne(D) = (plD;par6(X) - X))xe, their induceil possibilistic causol network.
Then, for any c,.r € O and any farnily A(a.,) = (a;(r))L, of correctness d.egrees

that satbfy 0 S c;(o) < o(Ilf,*o(xr)(@),II[x,1(r), X;), the quantity

Nonspec[.Af6 (D))(r,A(.) ) : t u (lvlo;parc(X; ) - X;] (-)1", 
1.,1 )

rL

i=1

is called, the nonspecificity 
"t 

Nc(D) w.r.t. c,.r and A(r).
Assuming uniform distributions on Q and, alt L(u), w e {1, then

E(NonspeclNc@)l) = Nonspec [.A/6 (D))(r, A (o ) ) dF1 1, I

is called t[e expected nonspecificity of Jr[c(D).

The concept of the expected nonspecificity of a causal constraint network is helpful
for inducing an optimal DAG G that minimizes E(Nonspectl/c(r)]) relative to 2
and a chosen class of DAGs. The following Theorem shows another representation
of this quantity, which is more convenient for computational aspects.

1s/
Wklnpt
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Theorem 4.3 For any X €V and anyW CV, X eW, define

m(W,X) E 1

EqTTilT

I t,
a(u',u",X\ 

1

a(ut ,t lt', X)
H (ftrp(X lW : u')1")da.

u'lQw ,,1" Eg.lxl
a(u',u" ,X)>O

Then,

E(Nonspe.t//c(2)l) = t m(par6(X), X)
xev

5 Results and Concluding Remarks

o Let g*(V),k>2, denote the class of all directed acyclicgraphs w.r.t. V that
satisfy the condition lpar(X)l S f -t for all X e V. Based on Theorem 4.3, we

developed aa Algorithm G1 for determining a DAG G e gr(V) that minimizes
E(Nonspe"PVc(D)]) among all DAGs in g*(V) that satisfy the node ordering
constraints of G. Algorithm Gl has a time complexity of. O(kmne). It does

not need any presupposed node ordering, and although it is only optimal w.r.t.
a subclass of.Qx(V), it nevertheless tends to deliver a good choice w.r.t. 9*(V).

o Eleminating arcs of a DAG G e Qx(V) in order to get a more simple DAG
G' e /x-r(V), is connected with a loss of information which is quantified
by the corresponding increasement of E(NonspeclN6,(D)I) i" comparison to
E(Nonspe.p\fc(D)l).

o Algorithm Gl can be made more efficient with the aid of a Greedy search

method, starting with jz(V) *d stepwise extending the optimal output graph
with respect to those arcs that reflect the strongest causal dependencies (i.e.
the smallest degree of nonspecificity) to the class 9*(I/). The resulting Algo-
rithm G2 has a time complexity of O(mn2).

o From a graph theoretical point of view, independence in the DAG of a pos-

sibilistic causal network is represented in the same way as independence in
Bayesian networks. Due to the different uncertainty calculus, independence
in our approach turns out to basically coincide with the concept of non-
interactiuity well-known from possibility theory. Non-interactivity satisfies

the basic properties of independence as proposed in [Pearl 1988], with the
exception of the intersection axiom.

o From database theory it is well-known that given a relation .R and any hy-
pergraph I/, deciding whether rel(,A/r(fi)) : .B is NP-hard. Constructing a
lossless join decomposition of a relation within a class of dependency hyper-
graphs is presumably intractable even in cases where each individual member
of the class is tractable [Dechter and Pearl 1992].
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Figure 1: The blood-type example network

Since the problem of structure identification in relational data can be viewed
as a special case of the corresponding problem in the possibilistic framework,
it is out of reach to get a general, non-heuristic, efficient algorithm for pos-
sibilistic structure identification. One of the tasks of our future research in
this field therefore consists in working out, how far Algorithms Gl and G2
deliver tight approximations of optimal (i.e. ma:rimum specificity preserviug)
decompositious.

o Algorithms Gl and G2 have successfully been applied for reconstructing the
network shown in Figure 1. The underlying application refers to a Bayesian
approach, implemented with HUGIN [Andersen et al. 1989] for daily use in
Denmark. It deals with the determination of the genotype and verifying the
parentage in the F-blood group system of Danish Jersey Cattle [Rasmussen
1992]. The application is supported by a real database of.747 sample cases for
the 9 attributes marked as grey nodes in Figure 1, including lots of missing
values. There is also additional expert knowledge regarding the quantitative
dependencies among other attributes. Using this information we extended
the database to an artificial database for all attributes. Running Algorithm
G2 on this database, the network could be efficientiy reconstructed in the
possibilistic setting without erraneous links, except from those dependencies,
where a unique directing of arcs is not possible, since not expressable in a
database. We will include our learning strategy in the system POSSINFER
[Kruse et al. 1994], a software tool for possibilisticinference that we develop
in cooperation with Deutsche Aerospace in the field of data fusion problems.
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