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Abstract. Frames and Bessel sequences in Fréchet spaces and their duals
are defined and studied. Their relation with Schauder frames and represent-
ing systems is analyzed. The abstract results presented here, when applied to
concrete spaces of analytic functions, give examples and consequences about
sampling sets and Dirichlet series expansions.

1. Introduction and preliminaries

The purpose of this article is twofold. On the one hand, we study Λ-Bessel
sequences (gi)i ⊂ E ′, Λ-frames, and frames with respect to Λ in the dual of a
Hausdorff locally convex space E, in particular for Fréchet spaces and complete
(LB)-spaces E with a sequence space Λ. We investigate the relation of these
concepts with representing systems in the sense of Korobeinik (see, e.g., Kadets
and Korobeinik [13]) and with Schauder frames that were investigated by the
authors in [8]. On the other hand, our article emphasizes the deep connection
of frames for Fréchet and (LB)-spaces with sufficient and weakly sufficient sets
for weighted Fréchet and (LB)-spaces of holomorphic functions. These concepts
correspond to sampling sets in the case of Banach spaces of holomorphic functions.
Our general results in Sections 2 and 3 permit us to obtain as a consequence
examples and results in the literature in a unified way in Section 4, emphasizing
their structural aspects.

Section 2 of our article is inspired by the work of Casazza, Christensen, and
Stoeva [10] in the context of Banach spaces. Their characterizations of Banach
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frames and frames with respect to a BK-sequence space gave us the proper hint to
present here the right definitions in our more general setting (see Definition 2.1).
The main result of this section is Proposition 2.8. A point of view different from
ours concerning frames in Fréchet spaces was presented by Pilipovic and Stoeva in
[24], [25]. Banach frames were introduced by Gröchenig. Shrinking and boundedly
complete Schauder frames for Banach spaces were studied by Carando, Lassalle,
and Schmidberg in [9]. Other precise references to work in this direction in the
Banach space setting can be seen in [10]. Motivated by the applications to weakly
sufficient sets for weighted (LB)-spaces of holomorphic functions, we present sev-
eral abstract results about Λ-frames in complete (LB)-spaces that require a del-
icate analysis in Section 3. Our main result is Theorem 3.4. Finally, applica-
tions, results, and examples are collected in Section 4 concerning sufficient sets
for weighted Fréchet spaces of holomorphic functions and weakly sufficient sets
for weighted (LB)-spaces of holomorphic functions. We include here consequences
related to the work of many authors (see [1]–[3], [7], [14], [17], [20], [21], [26], [29]).

Throughout this work, E denotes a locally convex Hausdorff linear topological
space (LCS), and CS(E) is the system of continuous seminorms describing the
topology of E. Sometimes additional assumptions on E are added. The symbol
E ′ stands for the topological dual of E and σ(E ′, E) for the weak* topology on
E ′. We set E ′

β for the dual E ′ endowed with the topology β(E ′, E) of uniform
convergence on the bounded sets of E. We will refer to E ′

β as the strong dual of E.
The Mackey topology µ(E ′, E) is the topology on E ′ of the uniform convergence
on the absolutely convex and weakly compact sets of E. We refer to [12] for LCS.
If T : E → F is a continuous linear operator, then its transpose is denoted by
T ′ : F ′ → E ′, and it is defined by T ′(v)(x) := v(T (x)), x ∈ E, v ∈ F ′. We recall
that a Fréchet space is a complete meterizable LCS. An (LB)-space is an LCS
that can be represented as an injective inductive limit of a sequence (En)n of
Banach spaces. In most of the results we need the assumption that the LCS is
barreled. The reason is that the Banach–Steinhaus theorem holds for barreled
LCS. Every Fréchet space and every (LB)-space is barreled. We refer the reader
to [12] and [23] for more information about barreled spaces.

As usual, ω denotes the countable product KN of copies of the scalar field,
endowed with the product topology, and ϕ stands for the space of sequences with
finite support. A sequence space Λ is an LCS which contains ϕ and is continuously
included in ω. Note that Λ is said to be solid if x = (xi)i ∈ Λ, and |yi| ≤ |xi| for
all i ∈ N implies that y = (yi)i ∈ Λ.

Definition 1.1. Given a sequence space Λ, its β-dual space is defined as

Λβ :=
{
(yi)i ∈ ω :

∞∑
i=1

xiyi converges for every (xi)i ∈ Λ
}
.

Clearly, (Λ,Λβ) is a dual pair. Under additional assumptions, we also have the
relation given in the next essentially known lemma.

Lemma 1.2. Let Λ be a barreled sequence LCS for which the canonical unit vec-
tors (ei)i form a Schauder basis. Then its topological dual Λ′ can be algebraically
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identified with its β-dual Λβ, and the canonical unit vectors (ei)i are a basis for
(Λβ, µ(Λβ,Λ)). Moreover, if we consider on Λβ the system of seminorms given by

pB
(
(yi)i

)
:= sup

x∈B

∣∣∣∑
i

xiyi

∣∣∣,
where B runs on the bounded subsets of Λ, then (Λβ, (pB)B) is topologically iso-
morphic to (Λ′, β(Λ′,Λ)).

Proof. The map

ψ : Λ′ → Λβ, h→
(
h(ei)

)
i

is a linear bijection. In fact, for every h ∈ Λ′ and x = (xi)i ∈ Λ, we have
h(x) =

∑
i xih(ei), which implies that ψ is well defined and obviously linear

and injective. The barreledness of Λ and the Banach–Steinhaus theorem give the
surjectivity.

If K ⊂ Λ is σ(Λ,Λβ)-compact, then, given y ∈ Λβ and ε > 0, there is n0 such
that, for n ≥ n0, ∣∣∣ ∞∑

i=n

yixi

∣∣∣ < ε

for all x ∈ K from where y =
∑

i yiei in the Mackey topology µ(Λβ,Λ).
As for each bounded subset B of Λ, we have

pB
((
h(ei)

)
i

)
= sup

x∈B

∣∣h(x)∣∣,
and the topological identity follows. �

From now on, if the sequence space Λ satisfies the assumption in Lemma 1.2,
then we identify Λ′ with Λβ and use always Λ′.

2. General results

Definition 2.1. Let E be an LCS, and let Λ be a sequence space.

(1) (gi)i ⊂ E ′ is called a Λ-Bessel sequence for E if the analysis operator

U(gi)i : E −→ Λ,
x 7−→

(
gi(x)

)
i

is well defined and continuous.
(2) (gi)i ⊂ E ′ is called a Λ-frame for E if the analysis operator U = U(gi)i

is an isomorphism into its image. If, in addition, the range U(E) of the
analysis operator is complemented in Λ, then (gi)i is said to be a frame
for E with respect to Λ. In this case there exists S : Λ → E such that
S ◦ U = id|E.

For simplicity, when (gi)i is clear from the context, the analysis operator will
be denoted by U . Also, we can write Λ-Bessel sequence or Λ-frame instead of
Λ-Bessel sequence for E or Λ-frame for E.

Definition 2.1 is motivated by Definitions 1.2 and 1.3 in [10]. More precisely,
we had in mind Theorems 2.1 and 2.4 in [10] that give the right idea on how
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to extend the definitions to the locally convex setting. Λ-frames and frames with
respect to Λ are called pre-frames and frames in [4].

Clearly, given an LCS E, each sequence (gi)i ⊂ E ′ is an ω-Bessel sequence. On
the other hand, if Λ is a Hilbert space and E is complete, then each Λ-frame is a
frame with respect to Λ. Obviously, an LCS space has a Λ-frame if and only if it
is isomorphic to a subspace of Λ, and it has a frame with respect to Λ if and only
if it is isomorphic to a complemented subspace of Λ. Therefore, the property of
having a Λ-frame is inherited by subspaces, whereas having a frame with respect
to Λ is inherited by complemented subspaces.

Remark 2.2. Let E be an LCS, let Λ1, Λ2 be sequence spaces, let (gi)i ⊂ E ′ be
a Λ1-Bessel sequence, and let (hi)i ⊂ E ′ be a Λ2-frame. We define (fk)k ⊂ E ′ as
fk = gi for k = 2i− 1 and fk = hi when k = 2i. Consider the sequence space

Λ :=
{
(αk)k : (α2k−1)k ∈ Λ1, and (α2k)k ∈ Λ2

}
with the topology given by the seminorms

‖α‖p,q := p
(
(α2k−1)k

)
+ q

(
(α2k)k

)
, where p ∈ CS(Λ1), q ∈ CS(Λ2).

Then (fk)k is a Λ-frame for E. In the case that Λ1 = Λ2 is one of the spaces c0
or `p, then Λ = Λ1 = Λ2.

Let E be an LCS, let (xi)i ⊂ E, and let (x′i)i ⊂ E ′. We recall that ((x′i)i, (xi)i)
is said to be a Schauder frame for E if

x =
∞∑
i=1

x′i(x)xi for all x ∈ E,

the series converging in E. A Schauder frame for E with the additional property
that ((xi)i, (x

′
i)i) is a Schauder frame for E ′

β is called a shrinking Schauder frame
(see [8]). The associated sequence space is

Λ :=
{
α = (αi)i ∈ ω :

∞∑
i=1

αixi is convergent in E
}
.

Endowed with the system of seminorms

Q :=
{
qp
(
(αi)i

)
:= sup

n
p
( n∑

i=1

αixi

)
, for all p ∈ CS(E)

}
,

Λ is a sequence space, and the canonical unit vectors form a Schauder basis.
There is a close connection between Λ-frames and Schauder frames.

Proposition 2.3. (1) Let ((x′i)i, (xi)i) be a Schauder frame for a barreled and
complete LCS E, and let Λ be the associated sequence space. Then (x′i)i ⊂
E ′ is a frame for E with respect to Λ. Moreover, if Λ is barreled, then
(xi)i ⊂ E is a frame for E ′ with respect to Λ′.

(2) If (x′i)i ⊂ E ′ is a frame for E with respect to a sequence space Λ, and if
Λ has a Schauder frame, then E also admits a Schauder frame.
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Proof. (1) According to the proof of [8, Theorem 1.4], the operators U : E → Λ
and S : Λ → E given by U(x) := (x′i(x))i and S((αi)i) :=

∑∞
i=1 αixi, respectively,

are continuous and S ◦U = idE. Consequently, (x
′
i)i is a frame for E with respect

to Λ. Under the additional assumption that Λ is barreled, we have that Λ′ = Λβ

is a sequence space. Moreover, S ′(x′) := (x′(xi))i for each x′ ∈ E ′, and from
U ′ ◦ S ′ = idE′ we conclude that (xi)i is a frame for E ′ with respect to Λ′.

Statement (2) follows from the fact that having a Schauder frame is inherited
by complemented subspaces. �

The barreledness of the sequence space Λ naturally associated to a Schauder
frame follows, for instance, if E is a Fréchet space. Observe that the dual space
E ′ need not be separable, in which case neither need Λ′ be separable.

The following two concepts were introduced by Korobeinik (see, for instance,
[15]).

Definition 2.4. A representing system in an LCS E is a sequence (xi)i in E such
that each x ∈ E admits a representation

x =
∑
i

cixi,

the series converging in E.

The coefficients in the representation need not be unique; that is, one can have

0 =
∑
i

dixi

for a nonzero sequence (di)i. Moreover, we do not assume that it is possible to
find a representation of this type with coefficients depending continuously on the
vectors.

Clearly, each topological basis is a representing system. Given a Schauder frame
((x′i)i, (xi)i), the sequence (xi)i is a representing system. However, there are rep-
resenting systems that are not a basis or coming from a Schauder frame. In fact,
each separable Fréchet space has a representing system (see [15] and [13, Theo-
rem 1]), but only those separable Fréchet spaces with the bounded approximation
property admit a Schauder frame (see [8, Corollary 1.5]).

Definition 2.5. A Λ-representing system in a LCS E is a sequence (xi)i in E such
that each x ∈ E admits a representation x =

∑
i cixi with (ci)i ∈ Λ.

Proposition 2.6. Let E be a barreled LCS, and let Λ be a barreled sequence LCS
for which the canonical unit vectors (ei)i form a Schauder basis. Then we have
the following.

(1) (a) (gi)i ⊂ E ′ is a Λ-Bessel sequence if and only if the operator

T :
(
Λ′, µ(Λ′,Λ)

)
→

(
E ′, µ(E ′, E)

)
, (di)i 7→

∞∑
i=1

digi

is well defined and continuous.
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(b) (gi)i ⊂ E ′ is Λ′-Bessel for E if and only if the operator

T : Λ →
(
E ′, β(E ′, E)

)
, (di)i 7→

∞∑
i=1

digi

is well defined and continuous.
(2) If (gi)i ⊂ E ′ is a Λ-frame for E, then (gi)i is a Λ′-representing system for

(E ′, µ(E ′, E)). Moreover, if E is reflexive, then (gi)i is a Λ′-representing
system for (E ′, β(E ′, E)).

(3) If (gi)i ⊂ E ′ is a Λ-Bessel sequence which is also a Λ′-representing system
for (E ′, µ(E ′, E)), then (gi)i is a (Λ, σ(Λ,Λ′))-frame for (E, σ(E,E ′)).

(4) If in addition E and Λ are Fréchet spaces, then (gi)i ⊂ E ′ is a Λ-frame
for E if and only if (gi)i is Λ-Bessel and a Λ′-representing system for
(E ′, µ(E ′, E)).

Proof. (1)(a) Let us assume that (gi)i is a Λ-Bessel sequence and consider T = U ′

the transpose map of the analysis operator U : E → Λ, U(x) = (gi(x))i. Then
T : (Λ′, µ(Λ′,Λ)) → (E ′, µ(E ′, E)) is continuous and T (ei) = gi. As the canonical
unit vectors are a basis for (Λ′, µ(Λ′,Λ)), we conclude that T ((di)i) =

∑∞
i=1 digi.

Conversely, if T is a well-defined and continuous map, then its transpose T ′ :
E → Λ is also continuous, which means that (gi)i is a Λ-Bessel sequence. (1)(b)
is proved similarly considering that the dual (Λ′, β(Λ′,Λ)) is a sequence space.

(2) If (gi)i is a Λ-frame, then U is a topological isomorphism into its image;
hence T = U ′ is surjective. In particular, (gi)i is a Λ′-representing system in
(E ′, µ(E ′, E)).

(3) From (1), the map T : (Λ′, µ(Λ′,Λ)) → (E ′, µ(E ′, E)), (di)i 7→
∑∞

i=1 digi,
is well defined, continuous, and surjective. Consequently, T ′ : (E, σ(E,E ′)) →
(Λ, σ(Λ,Λ′)) is an isomorphism into its image [12, Proposition 9.6.1]; hence (gi)i
is a (Λ, σ(Λ,Λ′))-frame for (E, σ(E,E ′)).

(4) Necessity follows from (2) and sufficiency follows from the closed-range
theorem [12, Theorem 9.6.3] and (3). �

Relevant consequences of Proposition 2.6 for spaces of analytic functions are
given later in Theorem 4.4, which is due to Abanin and Khoi [2] and Corol-
lary 4.10.

The next result is the extension in our context of [10, Corollary 3.3].

Proposition 2.7. Let E be a reflexive space, and let Λ be a reflexive sequence
space for which the canonical unit vectors (ei)i form a Schauder basis. If either

(1) E and Λ are Fréchet spaces
or

(2) E is the strong dual of a Fréchet Montel space and Λ is an (LB)-space,

then (gi)i ⊂ E ′ is a Λ-frame for E if and only if (gi)i is Λ-Bessel and a Λ′-repre-
senting system for (E ′, β(E ′, E)).

Proof. The case (1) is Proposition 2.6(4). Only the sufficiency in case (2) has to
be proved. Let us assume that (gi)i is Λ-Bessel and a Λ′-representing system for
(E ′, β(E ′, E)) and consider the continuous map U : E → Λ, U(x) = (gi(x))i.
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Then T = U ′ : Λ′ → E ′ is a well-defined, continuous and surjective map. Since
E ′ is a Fréchet Montel space, the map T lifts bounded sets; that is, for every
bounded set B in E ′, we can find a bounded set C in Λ′ such that B ⊂ T (C).
Hence U : E → Λ is a topological isomorphism into its image, which means that
(gi)i is a Λ-frame for E. �

The following result is the version in the locally convex context of Propositions
2.2 and 3.4 of [10]. It relates Λ-Bessel sequences with frames with respect to Λ
when Λ is a barreled sequence space for which the canonical unit vectors (ei)i
form a Schauder basis. Note that, if (gi)i ⊂ E ′ is a frame with respect to Λ,
then, by definition, U(E) is complemented in Λ; this means that the operator
U−1 : U(E) → E can be extended to a continuous linear operator S : Λ → E.

Proposition 2.8. Let E be a barreled and complete LCS, and let Λ be a barreled
sequence space for which the canonical unit vectors (ei)i form a Schauder basis.
If (gi)i ⊂ E ′ is Λ-Bessel for E, then the following conditions are equivalent:

(1) (gi)i ⊂ E ′ is a frame with respect to Λ.
(2) There exists a sequence (fi)i ⊂ E such that

∑∞
i=1 cifi is convergent for

every (ci)i ∈ Λ and x =
∑∞

i=1 gi(x)fi for every x ∈ E.
(3) There exists a Λ′-Bessel sequence (fi)i ⊂ E ⊆ E ′′ for E ′ such that x =∑∞

i=1 gi(x)fi for every x ∈ E.

If the canonical unit vectors form a basis for both Λ and Λ′
β, then (1)–(3) are also

equivalent to the following:

(4) There exists a Λ′-Bessel sequence (fi)i ⊂ E ⊆ E ′′ for E ′ such that x′ =∑∞
i=1 x

′(fi)gi for every x′ ∈ E ′ with convergence in the strong topology.

If each of the cases (3) and (4) hold, then (fi)i is actually a frame for E ′ with
respect to Λ′. Moreover, ((gi)i, (fi)i) is a shrinking Schauder frame.

Proof. The equivalence among (1), (2), and (3) can be obtained as in [10].
(3) ⇒ (4) If (3) is valid, there exists (fi)i ⊂ E ⊆ E ′′ that is Λ′-Bessel for

E ′ such that x =
∑∞

i=1 gi(x)fi. Observe that, as (x′(fi))i belongs to Λ′, then
(x′(fi))i =

∑∞
i=1 x

′(fi)zi is in (Λ′, β(Λ′,Λ)), where (zi)i are the canonical unit
vectors of Λ′. Given a bounded set B ⊂ E, then C = {(gi(x)) : x ∈ B} is
a bounded set in Λ. If pB ∈ CS(E ′

β) is the continuous seminorm defined by
pB(u

′) := supx∈B |u′(x)|, then

pB

(
x′ −

n∑
i=1

x′(fi)gi

)
= sup

x∈B

∣∣∣x′(x)− n∑
i=1

x′(fi)gi(x)
∣∣∣

= sup
x∈B

∣∣∣x′( ∞∑
i=1

gi(x)fi

)
−

n∑
i=1

x′(fi)gi(x)
∣∣∣

= sup
x∈B

∣∣∣ ∞∑
i=n+1

x′(fi)gi(x)
∣∣∣ = sup

φ∈C

∣∣∣φ( ∞∑
i=n+1

x′(fi)zi

)∣∣∣
= qC

( ∞∑
i=n+1

x′(fi)zi

)
,
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where qC ∈ CS(Λ′) is given by qC(α) := supφ∈C |φ(α)| for every α ∈ Λ′
β. Then

qC(
∑∞

i=n+1 x
′(fi)zi) converges to 0 as n goes to infinity since (x′(fi))i =∑∞

n=1 x
′(fi)zi in Λ′

β.
(4) ⇒ (3) If (4) is valid, then there exists (fi)i a Λ′-Bessel sequence for E ′ such

that x′ =
∑∞

i=1 x
′(fi)gi. Given a bounded subset B′ ⊂ E ′, then C ′ = {(x′(fi)) :

x′ ∈ B′} is a bounded set in Λ′
β. If pB′ ∈ CS(E) is the continuous seminorm

defined by pB′(x) := supx′∈B′ |x′(x)|, then

pB′

(
x−

n∑
i=1

gi(x)fi

)
= sup

x′∈B′

∣∣∣x′(x)− n∑
i=1

x′(fi)gi(x)
∣∣∣

= sup
x′∈B′

∣∣∣ ∞∑
i=n+1

x′(fi)gi(x)
∣∣∣ = sup

φ′∈C′

∣∣∣φ′
( ∞∑
i=n+1

gi(x)ei

)∣∣∣
= q

( ∞∑
i=n+1

gi(x)ei

)
,

where q is a continuous seminorm in Λβ. Then q(
∑∞

i=n+1 gi(x)ei) converges to 0
as n goes to infinity due to the fact that (gi(x))i =

∑∞
i=1 gi(x)ei in Λ.

To conclude, observe that, if (3) and (4) hold, then ((gi)i, (fi)i) and ((fi)i, (gi)i)
are Schauder frames for E and E ′, respectively. By [8, Proposition 2.3] we obtain
that ((gi)i, (fi)i) is a shrinking Schauder frame. �

A locally convex algebra is an LCS which is an algebra with separately contin-
uous multiplication. The spectrum of the algebra is the set of all nonzero multi-
plicative linear functionals. The following remark will be useful in Section 4.2.

Remark 2.9. (1) In many cases E is continuously included in a locally convex
algebra A with nonempty spectrum, Λ is a solid sequence space, (gi)i is a Λ-frame,
and every gi is the restriction to E of a continuous linear multiplicative functional
on A. Let us assume that, for some a ∈ A, the operator

T : E → E(⊂ A), x 7→ ax

is well defined and it is a topological isomorphism into its image, and that α :=
(gi(a))i defines by pointwise multiplication a continuous operator on Λ. Then
(hi)i, where

hi :=

{
gi if gi(a) 6= 0,

0 if gi(a) = 0,

is a Λ-frame. In fact, since U ◦ T is a topological isomorphism into its image,
then, for every continuous seminorm p on E, there is a continuous seminorm q
on Λ such that

p(x) ≤ q
((
gi(ax)

)
i

)
= q

((
gi(a)gi(x)

)
i

)
= q

((
gi(a)hi(x)

)
i

)
.

Finally, since the pointwise multiplication with (gi(a))i is a continuous operator
on Λ, we find a continuous seminorm r on Λ with

p(x) ≤ r
((
hi(x)

)
i

)
, x ∈ E.
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(2) If E is a locally convex algebra with a nonempty spectrum, Λ is a barreled
sequence space, and (gi)i is a Λ-frame consisting of continuous linear multiplica-
tive functionals on E, then U(E) is a locally convex algebra under pointwise
multiplication. Hence, if E has no zero-divisors, then the analysis map U cannot
be surjective. In fact, if there are x, y ∈ E such that U(x) = e1 and U(y) = e2,
then

U(x · y) =
(
gi(x · y)

)
i
=

(
gi(x)gi(y)

)
i
= 0

and the injectivity of U implies x ·y = 0, which is a contradiction. Since the range
of U is a topological subspace of Λ, the nonsurjectivity of U implies the nonin-
jectivity of the transpose map U ′. Consequently, the expression of any element in
E ′ as a convergent series ∑

i

αigi

with α ∈ Λ′ is never unique.

3. Λ-frames for (LB)-spaces

Let E = indn(En, ‖ · ‖n) and Λ = indn(Λn, rn) be complete (LB)-spaces, and
let (gi)i ⊂ E ′ be a Λ-Bessel sequence. Let U : E → Λ be the continuous and
linear map of Definition 2.1, and, for each n ∈ N, consider the seminormed space
(Fn, qn), where

Fn =
{
x ∈ E : U(x) ∈ Λn

}
and qn(x) := rn(U(x)). Let us consider the topologies on E,

(E, τ1) = indn

(
En, ‖ · ‖n

)
, (E, τ2) = indn(Fn, qn).

Finally, denote by τ3 the topology on E given by the system of seminorms x 7→
p(U(x)) when p runs in CS(Λ). Then

τ1 ≥ τ2 ≥ τ3,

but observe that τ2 and τ3 need not be even Hausdorff. This notation will be kept
through all this section.

We observe that (gi)i ⊂ E ′ is a Λ-frame if and only if the former three topologies
coincide.

The coincidence τ1 = τ2 is easily characterized under the mild additional
assumption that the closed unit ball of Λn is also closed in ω. This is the case for
all (weighted) `p spaces, 1 ≤ p ≤ ∞, but not for c0.

Applications of the results in this section for weakly sufficient sets will be given
in Section 4. We refer to [23, Section 8.5] for the behavior of bounded sets and
convergent sequences in (LB)-spaces.

Proposition 3.1. Assume that the closed unit ball of Λn is closed in ω for each
n ∈ N. Then τ1 = τ2 if and only if (Fn, qn) is a Banach space for each n ∈ N.

Proof. Assume that τ1 = τ2, which in particular implies that τ2 is Hausdorff. Since
(Fn, qn) is continuously injected in (E, τ2), qn is a norm. Moreover, if x ∈ E, x 6= 0,
then there is n such that x ∈ Fn; hence qn(x) > 0. We have 0 < qn(x) = rn(U(x)),
which implies U(x) 6= 0. Thus U is injective. Let (xj)j be a Cauchy sequence in
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(Fn, qn). Then it converges to a vector x in the complete (LB)-space E, and
therefore its image under the analysis map (U(xj))j is convergent to U(x) in Λ.
Now, given ε > 0, we can find j0 such that rn(U(xj) − U(xk)) ≤ ε whenever
j, k ≥ j0; that is, for k ≥ j0,

U(xk) ∈ U(xj) +
{
α ∈ Λn : rn(α) ≤ ε

}
,

and then

U(x) ∈ U(xj) +
{
α ∈ Λn : rn(α) ≤ ε

}ω

for all j ≥ j0. By hypothesis, we get U(x) ∈ Λn and rn(U(x − xj)) ≤ ε for all
j ≥ k0. Hence (Fn, qn) is a Banach space.

The converse holds since by the open mapping theorem two comparable (LB)-
topologies must coincide. �

The next result depends on Grothendieck’s factorization theorem (see [23, The-
orem 1.2.20]).

Corollary 3.2. Assume that the closed unit ball of Λn is closed in ω. Then τ1 = τ2
if and only if for each n there are m and C such that Fn ⊂ Em and

‖x‖m ≤ Cqn(x)

for each x ∈ Fn.

Proposition 3.3. If E is Montel and τ1 = τ2, then (gi)i is a Λ-frame for E.

Proof. As in Proposition 3.1, U is injective and each (Fn, qn) is a normed space.
By Baernstein’s lemma (see [23, Theorem 8.3.55]), as E is a Montel space and
Λ is a complete (LB)-space, it suffices to show that, for each bounded subset B
of Λ, the pre-image U−1(B) is bounded in (E, τ2). As Λ is regular, because it is
complete, there is n such that B is contained and bounded in Λn; hence U

−1(B)
is contained and bounded in Fn, and therefore bounded in E. �

Our next result is an abstract version of [1, Theorems 2 and 3]. Recall that a
(DFS)-space is an (LB)-space E = indn(En, ‖ · ‖n) such that, for each n, there
is m > n such that the inclusion map En ↪−→ Em is compact.

Theorem 3.4. Let E = indn(En, ‖ · ‖n) be a (DFS)-space, and let Λ = indn(Λn,
rn) be a complete (LB)-space. Assume that the closed unit ball of Λn is closed in ω.
If (gi)i ⊂ E ′ is a Λ-Bessel sequence, then the following conditions are equivalent:

(1) (gi)i is a Λ-frame,
(2) The map U : E → Λ, U(x) = (gi(x))i, is injective, and for every n ∈ N

there exists m > n such that Fn ⊂ Em.

Proof. If (1) is satisfied, then τ1 = τ2 = τ3. The injectivity of U follows as in the
proof of Proposition 3.1, and the rest of (2) follows by Corollary 3.2.

We prove that (2) implies (1). Without loss of generality, we can assume that
En ⊂ En+1 with compact inclusion, En ⊂ Fn, qn(x) ≤ ‖x‖n, and ‖x‖n+1 ≤ ‖x‖n
for all x ∈ En and for every n. It suffices to show that, under condition (2), the
inclusion Fn ⊂ Em+2 is continuous. In fact, this implies the coincidence of the
topologies τ1 = τ2, and hence the Λ-frame property by Proposition 3.3.
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Fix n ∈ N and define

B =
{
x ∈ Fn : qn(x) ≤ 1, ‖x‖m+1 > 1

}
and

A =
{
y =

x

‖x‖m+1

: x ∈ B
}
.

We can assume B is an infinite set since otherwise the inclusion Fn ⊂ Em+1 is
continuous and we are done. Let (pj)j denote a fundamental system of seminorms
for the Fréchet space ω. We claim that there are j0 ∈ N and C > 0 such that

‖x‖m+1 ≤ Cpj0
(
U(x)

)
for every x ∈ B. Otherwise there is a sequence (yj)j ⊂ A such that

pj
(
U(yj)

)
≤ 1

j!
. (1)

Assume that (yj)j is bounded in Em. Then it would be relatively compact in
Em+1. Therefore, there is a subsequence (ys)s of (yj)j that converges to y in
Em+1. Hence U(ys) → U(y) in Λ, and hence in ω. We can apply (1) to conclude
that U(y) = 0, and hence y = 0 since U is injective. This contradicts ‖ys‖m+1 = 1
for all s. Consequently, (yj)j is unbounded in Em. Hence, for j1 = 1, there exists
j2 > j1 such that

1

6 · 22
‖yj2‖m > 3‖yj1‖m.

There is ψ in the unit ball BE′
m
of E ′

m such that

1

6 · 22
∣∣ψ(yj2)∣∣ > 3‖yj1‖m > 2

∣∣ψ(yj1)∣∣.
Since U : Em → ω is a continuous and injective map, then U ′ : ω′ → E ′

m has
σ(E ′

m, Em)-dense range, and we can find ϕ2 ∈ ω′ such that

max
k=1,2

∣∣(ϕ2 ◦ U − ψ)(yjk)
∣∣

is so small that

1

6 · 22
∣∣ϕ2

(
U(yj2)

)∣∣ > 3‖yj1‖m > 2
∣∣ϕ2

(
U(yj1)

)∣∣.
By condition (1) there is j′2 such that∣∣ϕ2

(
U(yj)

)∣∣ < ∣∣ϕ2

(
U(yj2)

)∣∣, j > j′2.

Proceeding by induction, it is possible to obtain a sequence (ϕ`)` ⊂ ω′ and an
increasing sequence (j`)` of indices such that ϕ` ◦ U ∈ BE′

m
and

1

`(`+ 1)2`
∣∣ϕ`

(
U(yj`)

)∣∣ > 3
`−1∑
k=1

‖yjk‖m > 2
`−1∑
k=1

∣∣ϕ`

(
U(yjk)

)∣∣
while ∣∣ϕ`

(
U(yjk)

)∣∣ < ∣∣ϕ`

(
U(yj`)

)∣∣ ∀k > `.
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We now consider

y =
∞∑
k=1

1

k2k
yjk ∈ Em+1.

Then

ϕ`

(
U(y)

)
=

∞∑
k=1

1

k2k
ϕ`

(
U(yjk)

)
,

and hence∣∣ϕ`

(
U(y)

)∣∣ ≥ 1

`2`
∣∣ϕ`

(
U(yj`)

)∣∣−∑
k<`

1

k2k
∣∣ϕ`

(
U(yjk)

)∣∣− ∞∑
k>`

1

k2k
∣∣ϕ`

(
U(yjk)

)∣∣
≥

( 1

`2`
−

∑
k>`

1

k2k

)∣∣ϕ`

(
U(yj`)

)∣∣−∑
k<`

1

k2k
∣∣ϕ`

(
U(yjk)

)∣∣
≥ 1

`(`+ 1)2`
∣∣ϕ`

(
U(yj`)

)∣∣− 3

2

∑
k<`

‖yjk‖m

≥
∑
k<`

‖yjk‖m ≥
∑
k<`

‖yjk‖m+1 = `− 1.

On the other hand, rn(U(yjk)) ≤ 1 for every k ∈ N, which implies that the series

∞∑
k=1

1

k2k
U(yjk)

converges in the Banach space Λn. Hence U(y) belongs to Λn, and y ∈ Fn ⊂ Em.
Since ϕ` ◦U ∈ BE′

m
, then |ϕ`(U(y))| ≤ 1, which is a contradiction. Consequently,

the claim is proved, and there are j0 ∈ N and C > 0 such that

‖x‖m+1 ≤ Cpj0
(
U(x)

)
for every x ∈ B. In order to conclude that the inclusion Fn ⊂ Em+2 is continuous,
it suffices to check that B is bounded in Em+2. To this end, we first observe that

1 ≤ ‖x‖m+1 ≤ Cpj0
(
U(x)

)
≤ C ′‖x‖m+2

for some C ′ > 0 and for all x ∈ B. Then{ x

‖x‖m+2

: x ∈ B
}
⊂ Em

is a bounded set in Em+1, and hence relatively compact in Em+2. We now proceed
by contradiction and assume that B is unbounded in Em+2. Then there exists a
sequence (xj)j ⊂ B with ‖xj‖m+2 ≥ j. Passing to a subsequence if necessary, we
can assume that

zj :=
xj

‖xj‖m+2

converges to some element z ∈ Em+2 such that ‖z‖m+2 = 1. Since the inclusion
Em+2 ⊂ Fm+2 is continuous, we get

lim
j→∞

qm+2(zj − z) = 0.
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From the injectivity of U we get qm+2(z) = rm+2(U(z)) = a > 0, and there is
j1 ∈ N such that qm+2(zj) ≥ a

2
whenever j ≥ j1, which implies qm+2(xj) ≥ a

2
j for

all j ≥ j1. This is a contradiction since (m > n)

qm+2(xj) ≤ qn(xj) ≤ 1.

The proof is complete. �

4. Examples

4.1. Weighted spaces of holomorphic functions. Let G be either an open
disc centered at the origin or C. A radial weight on G is a strictly positive contin-
uous function v on G such that v(z) = v(|z|), z ∈ G. Then the weighted Banach
space of holomorphic functions is defined by

Hv(G) :=
{
f ∈ H(G) : ‖f‖v := sup

z∈G
v
(
|z|

)∣∣f(z)∣∣ < +∞
}
.

The closed subspace of Hv(G) consisting of those f ∈ H(G) such that vf
vanishes at infinity on G is denoted H(v)0(G).

Let V = (vn)n be a decreasing sequence of weights on G. Then the weighted
inductive limit of spaces of holomorphic functions is defined by

V H(G) := indnHvn(G);

that is, V H(G) is the increasing union of the Banach spaces Hvn(G) endowed
with the strongest locally convex topology for which all the injections Hvn(G) →
V H(G) become continuous.

Similarly, given an increasing sequence of weights W = (wn)n on G, the
weighted projective limit of spaces of entire functions is defined by

HW (G) := projnHwn(G);

that is, HW (G) is the decreasing intersection of the Banach spaces Hwn(G)
whose topology is defined by the sequence of norms ‖ · ‖wn . It is a Fréchet space.

In both cases, when G = C we will simply write V H and HW .
Given any sequence S := (zi)i ⊂ G and a decreasing sequence of weights V on

G, put

νn(i) = vn(zi)

and

V `∞(S) = indn `∞(νn).

For an increasing sequence of weights W = (wn)n on G, put

ωn(i) := wn(zi)

and

`∞W (S) =
⋂
n

`∞(ωn).

Obviously, the restriction maps

R : V H(G) → V `∞(S), f 7→
(
f(zi)

)
i
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and

R : HW (G) → `∞W (S), f 7→
(
f(zi)

)
i

are well defined and continuous; that is, (δzi)i is a V `∞(S)-Bessel sequence for
V H(G) and a `∞W (S)-Bessel sequence for HW (G). As usual, δz denotes the
point evaluation at z. We want to analyze when these Bessel sequences are in
fact frames, that is, when the restriction map is an isomorphism into its image.

Let us first concentrate on the Fréchet case. Then (δzi)i is a `∞W (S)-frame if
and only if for every n there are m and C such that

sup
z∈G

∣∣f(z)∣∣wn(z) ≤ C sup
i

∣∣f(zi)∣∣wm(zi)

for every f ∈ HW (G). This is the same as saying that S is a sufficient set for
HW (G). The concept of sufficient set was introduced by Ehrenpreis in [11, pp. 3,
4, 13] (see Corollary 4.6 or Proposition 4.7 for some examples).

The (LB)-case is more delicate. Following the notation of Section 3, if En :=
Hvn(G), then the space Fn := {f ∈ V H(G) : R(f) ∈ `∞(νn)} is usually denoted
by A(S, vn) and the corresponding seminorm qn is denoted ‖ · ‖n,S; that is,

‖f‖n,S = sup
i∈N

∣∣f(zi)∣∣νn(i), f ∈ A(S, vn).

Then τ1 is the topology of the inductive limit V H(G), and τ2 is the one of
indnA(S, vn). We recall that S is said to be weakly sufficient for V H(G) when
V H(G) = indnA(S, vn) topologically; that is, τ1 = τ2. It should be mentioned
that this definition a priori is not restricted to discrete sets, but this is the most
interesting case. We obtain the following general results which have been formu-
lated in one way or another in concrete situations (see in particular [1], [16], [17],
[21], [22]).

Theorem 4.1 (see [1, Theorems 2, 3]). The following statements are equivalent:

(1) S := (zi)i is weakly sufficient,
(2) A(vn, S) is a Banach space for every n ∈ N,
(3) for each n there are m ≥ n and C > 0 such that, for every f ∈ V H(G),

one has

‖f‖m ≤ C‖f‖n,S.

Proof. Apply Proposition 3.1 and Corollary 3.2. �

Theorem 4.2 (see [1, Theorems 2, 3]). Let us assume that vn+1

vn
vanishes at

infinity on G for every n ∈ N. Then the following conditions are equivalent:

(1) S := (zi)i is weakly sufficient.
(2) The restriction map V H(G) → V `∞(S) is injective, and for each n there

are m ≥ n and C > 0 such that A(vn, S) ⊂ Hvm(G).

Proof. The hypothesis on the sequence (vn)n implies that V H(G) is a (DFS)-
space (see [6, Theorem 1.6]). Now it suffices to apply Theorem 3.4. �

The injectivity of the restriction map means that S is a uniqueness set for
V H(G). As a consequence of Proposition 3.3, we obtain the following theorem.
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Theorem 4.3. If V H(G) is Montel, S is weakly sufficient if and only if the
restriction map

R : V H(G) → V `∞(S), f 7→ f |S,
is a topological isomorphism into its image.

Theorem 4.3 asserts that, if the space V H(G) is Montel, the set of Dirac eval-
uations {δz | z ∈ S} ⊂ V H(G)′ is a V `∞(S)-frame if and only if S is weakly
sufficient.

If the sequence V reduces to one weight, then V = (v), (δzi)i is a `∞(ν)-frame
for Hv(G) if and only if S is a sampling set for Hv(G). If (vn)n is a decreasing
sequence of weights on G and S is a sampling set for Hvn(G) for each n, then
S is a weakly sufficient set for V H(G). However, Khoi and Thomas [14] gave
examples of countable weakly sufficient sets S = (zi)i in the space

A−∞(D) := indnHvn(D) with vn(z) =
(
1− |z|

)n
,

which are not sampling sets for any Hvn(D), n ∈ N. As A−∞(D) is Montel,
(δzi)i is a V `∞(S)-frame for A−∞(D) which is not a `∞(νn)-frame for Hvn(D)
for any n. Bonet and Domanski [7] studied weakly sufficient sets in A−∞(D) and
their relation to what they called (p, q)-sampling sets.

The dual of the space A−∞(D) can be identified via the Laplace transform
with the space of entire functions A−∞

D := HW (C) for the sequence of weights
W = (wn)n,

wn(z) =
(
1 + |z|

)n
e−|z|

(see [20] and also [2] for the several variables case). In [2] explicit constructions of
sufficient sets for this space are given. For instance, for each k take `k ∈ N, `k >
2πk2, and let zk,j := krk,j, 1 ≤ j ≤ `k, where rk,j are the `k-roots of the unity.
Then, with an appropriate order, (δzk,j : k ∈ N, 1 ≤ j ≤ `k) is a `∞W (S)-frame

for A−∞
D . More examples for nonradial weights can be found in [3].

Finally, from Proposition 2.6, we recover the following consequence about rep-
resenting systems. It should be compared with Corollary 4.10 below.

Theorem 4.4 (see [2, Proposition 4.2]). (1) (λk)k ⊂ C is sufficient for A−∞
D

if and only if every function f ∈ A−∞(D) can be represented as

f(z) =
∑
k

αke
λkz,

where ∑
k

|αk|
(
1 + |λk|

)−n
e|λk| <∞ for some n ∈ N.

(2) (λk)k ⊂ D is weakly sufficient in A−∞(D) if and only if each function
f ∈ A−∞

D can be represented as

f(z) =
∑
k

αke
λkz,



16 J. BONET ET AL.

where ∑
k

|αk|
(
1− |λk|

)−n
<∞ for every n ∈ N.

4.2. The Hörmander algebras. In this section we use Landau’s notation of
little o-growth and capital O-growth. A function p : C → [0,∞[ is called a growth
condition if it is continuous, subharmonic, radial, increases with |z|, and satisfies

(α) log(1 + |z|2) = o(p(|z|)) as |z| → ∞,
(β) p(2|z|) = O(p(|z|)) as |z| → ∞.

Given a growth condition p, consider the weight v(z) = e−p(|z|), z ∈ C, and
the decreasing sequence of weights V = (vn)n, vn = vn. We define the following
weighted spaces of entire functions (see, e.g., [5]):

Ap :=
{
f ∈ H(C) : there is A > 0 : sup

z∈C

∣∣f(z)∣∣ exp(−Ap(z)) <∞
}
;

that is, Ap = V H, endowed with the inductive limit topology for which it is a
(DFN)-algebra (see, e.g., [18]). Given any sequence S = (zi)i ⊂ C, we will denote
Ap(S) = V `∞(S); that is,

Ap(S) =
⋃
n

`∞(νn), νn(i) = e−np(|zi|).

If we consider the increasing sequence of weights W = (wn)n, wn = v1/n, then
we define

A0
p :=

{
f ∈ H(C) : for all ε > 0 : sup

z∈C

∣∣f(z)∣∣ exp(−εp(z)) <∞
}
;

that is, A0
p = HW , endowed with the projective limit topology for which it is

a nuclear Fréchet algebra (see, e.g., [19]). Clearly, A0
p ⊂ Ap. As before, given a

sequence S = (zi)i ⊂ C, we will denote A0
p(S) = `∞W (S); that is,

A0
p(S) =

⋂
n

`∞(ωn), ωn(i) = e−
1
n
p(|zi|).

Condition (α) implies that, for each a > 0, the weight va(z) := e−ap(|z|) is
rapidly decreasing, and, consequently, the polynomials are contained and dense
in H(va)0, and that for a < b the inclusion Hva ⊂ H(vb)0 is compact. Therefore,
the polynomials are dense in Ap and in A0

p. Condition (β) implies that both spaces
are stable under differentiation.

Weighted algebras of entire functions of this type, usually known as Hörmander
algebras, have been considered since the work of Berenstein and Taylor by many
authors (see, e.g., [5] and the references therein).

As an example, when pa(z) = |z|a, then Apa consists of all entire functions of
order a and finite type or order less than a, and A0

pa is the space of all entire
functions of order at most a and type 0. For a = 1, Ap1 is the space of all
entire functions of exponential type, also denoted Exp(C), and A0

p1
is the space

of entire functions of infraexponential type.
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As it is well known, the Fourier–Borel transform F : H(C)′ → Exp(C) defined
by F(µ) := µ̂, where µ̂(z) := µω(e

zω), is a topological isomorphism. As a con-
sequence, the dual space of Exp(C) can be identified with the space of entire
functions, H(C). In the same way, for a > 1 and b its conjugate exponent
(a−1 + b−1 = 1) via the Fourier–Borel transform F , we have the following identi-
fications [28]:

(Apa)
′ = A0

pb
and (A0

pa)
′ = Apb .

From every (weakly) sufficient set (zj)j for (Ap) A
0
p, we can remove finitely

many points (zj)
N
j=1 and still we have a (weakly) sufficient set (see [3, Corollary

to Proposition 4]). In fact, take Q as a nonconstant polynomial which vanishes
precisely at points (zj)

N
j=1. Since the multiplication operator

TQ(f)(z) = Q(z)f(z)

is a topological isomorphism from Ap (resp., A0
p) into itself and pointwise multi-

plication by (Q(zj))j is continuous on Ap(S) (resp., A0
p(S)), it suffices to apply

Remark 2.9(1).
Now, we give examples of frames of type (δzi)i in these algebras. We deal first

with the Fréchet case.

Theorem 4.5. Given a growth condition q, let S := (zn)n be a sequence in C
with limj |zj| = ∞, and assume that there is C > 0 such that the distance d(z, S)

satisfies d(z, S) ≤ C|z|/
√
q(|z|) for all z ∈ C. Then the sequence (δzj)j is a

A0
p(S)-frame for A0

p whenever p(r) = o(q(r)) as r → ∞.

Proof. We take V (r) = q(r). The family {ap, a > 0} satisfies (i), (ii), and (iii) in
[26, p. 178], and the conclusion follows after applying [26, Theorem 5.1]. �

In particular, if p(r) = o(r2) as r → ∞, then we may take q(r) = r2.

Corollary 4.6. If p(r) = o(r2), then for arbitrary α, β > 0 the regular lattice
{αn+ iβm : n,m ∈ Z} is a sufficient set for A0

p(C). In other words, if S = (zn,m)

with zn,m := αn+ iβm, then the sequence (δzn,m) is a A
0
p(S)-frame for A0

p(C).

The former result is also true in the limit case p(r) = r2. In fact, we have the
following.

Proposition 4.7. If p(r) = r2, then for arbitrary α, β > 0 the regular lattice
{αn+ iβm : n,m ∈ Z} is a sufficient set for A0

p(C). In other words, if S = (zn,m)

with zn,m := αn+ iβm, then the sequence (δzn,m) is a A
0
p(S)-frame for A0

p(C).

Proof. First, we observe that, in this case, A0
p(C) coincides algebraically and topo-

logically with the intersection ⋂
γ>0

F2
γ

of the Bargmann–Fock spaces

F2
γ :=

{
h ∈ H(C) : ‖f‖γ :=

∫
C

∣∣f(z)∣∣2e−γ|z|2 dz <∞
}
.
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Then, by [27], there is γ0 such that, for γ ≥ γ0, we find constants Aγ, Bγ such
that

Aγ‖f‖2γ ≤
∑
n,m

∣∣f(zn,m)∣∣2e−γ|zn,m|2 ≤ Bγ‖f‖2γ.

To finish, it is enough to observe that in the definition of A0
p(S) one can replace

the `∞-norms by `2-norms. �

According to [26] (see the comments after Corollary 4.9), there is an entire
function of order 2 and finite type which vanishes at the lattice points S =
{n+ im : n,m ∈ Z}. In the case r2 = o(p(r)), we have f ∈ A0

p, and the restriction

map defined on A0
p by f 7→ f |S is not injective. Consequently, the lattice points are

not a sufficient set for A0
p. Similarly, the lattice points are not a weakly sufficient

set for Ap in the case r2 = O(p(r)).
From [26, Proposition 8.1] and Theorem 4.2 we get the following.

Proposition 4.8. If p(r) = o(r2), then for arbitrary α, β > 0 the regular lattice
{αn + iβm : n,m ∈ Z} is a weakly sufficient set for Ap(C). In other words, if
S = (zn,m) where zn,m := αn + iβm, then the sequence (δzn,m) is a Ap(S)-frame
for Ap(C).

In particular, for the space Exp(C), the sequence (δn+im)n,m∈Z is a Ap(S)-frame
[29, Theorem 1]. Here p(z) = |z| and S = (n+ im)n,m∈Z.

By Proposition 2.6, if S = (zi)i ⊂ G is a discrete (weakly) sufficient set in
HW (G) (resp., in V H(G)), then each element in the dual space can be repre-
sented as a convergent series of type∑

i

αiδzi

with coefficients in a given sequence space. Since the spaces under consideration
are algebras, this representation is not unique by Remark 2.9(2). As in many
cases, the dual space can be identified with a weighted space of holomorphic
functions (via the Laplace or the Fourier–Borel transform) in such a way that
point evaluations δzi are identified with the exponentials eziz, and therefore we
get a representation of the elements in the dual space as Dirichlet series, thus
obtaining as a consequence several known results, for instance, the following.

Corollary 4.9 (see [29, Corollary, p. 208]). Every entire function f(z) can be
represented in the form

f(z) =
∞∑

n,m=−∞

an,me
(n+im)z,

where |an,m|ek(n
2+m2)1/2 → 0 as n2 +m2 → +∞ for every k > 0. Such expansion

of f is never unique.
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Corollary 4.10. For a ≥ 2, every function f ∈ Apa can be represented in the form

f(z) =
∞∑

n,m=−∞

an,me
(n+im)z

with coefficients (an,m) satisfying

|an,m| ≤ C exp
(
−ε(n2 +m2)b/2

)
(b the conjugate of a) for some constants ε, C > 0.

Proof. According to Corollary 4.6 and Proposition 4.7, we can see that
the sequence S = {e(n+im)z : n,m ∈ Z} ⊂ Apa is a A0

pb
(S)-frame for A0

pb
. Since

the dual space of Λ = A0
pb
(S) is

Λ′ =
{
(an,m) : |an,m| exp

(
ε(n2 +m2)b/2

)
<∞ for some ε > 0

}
,

it suffices to apply Proposition 2.6 to conclude. �
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