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Abstract. The usual finite population model—where information provided
by a subset of units is used to reduce uncertainty about functions of the com-
plete population list of values—is explored from a predictivistic point of view.
Under this approach, only operationally meaningful quantities (operational
parameters) are considered and therefore no superpopulation parameters are
involved. This paper addresses the estimation of both population total and
maximum based on uniformity and/or exchangeability judgments on finite
sequences of random variables. A central point of this paper is that there are
contexts in which the superpopulation approach cannot be employed in in-
ferential problems in finite populations. There are circumstances in which
the prior distributions for the operational parameters cannot be obtained from
any superpopulation model. Conditions for the extendibility to infinite popu-
lations are also established for some models, as this approach may ease the
inferential problem.

1 Introduction

In this paper, a finite population of known size N is understood as a set of clearly
labeled units, P = {1,2, . . . ,N}. To each unit there is associated a real-valued
number or vector, so that we have the set of unknowns X = (X1,X2, . . . ,XN) ∈
X N . The sample space set X is known. Each Xi becomes known after unit i is
(possibly) inspected. Statistical inference on some operational parameter T is to be
made incorporating the information provided by a sample y. The parameter T is a
function T = T (X1,X2, . . . ,XN) and a sample of n < N units becomes available.
The sample is composed of the labels of inspected units and their values xi . In
other words, a sample y is the pair of collections y = (s, (xi : i ∈ s)), where s ⊂ P .
Associated to each set of labels s = {i1, i2, . . . , in}, there is the operator S defined
by S(X1,X2, . . . ,XN) = (Xi1,Xi2, . . . ,XiN ). For simplicity it is assumed that s =
{1,2, . . . , n} which is not a restriction under the assumption of an exchangeable
prior distribution for X.
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A main point of this note is that such a population is not only finite in
its size, but also closed, that is, it should be protected against the introduc-
tion of models possessing unobservable (and therefore lacking operational mean-
ing) quantities. The sole existing randomness is due to the ignorance of (some)
of the xi ’s, and the probability statements ought to refer exclusively to X.
This approach to inference is known as operational Bayesian or predictivis-
tic approach and was introduced by de Finetti (1937, 1975). See Daboni and
Wedlin (1982) for a very detailed work on predictivistic methodology of Statis-
tical Inference. See also Mendel (1994) and Wechsler (1993) for further discus-
sion.

It is well known that most approaches do not keep the population closed:

(a) Frequentist, Cochran-style sampling models (Cochran (1977)): First of all,
this approach is non-Bayesian—it does not allow true probability for X and it
violates the Likelihood Principle. Even among frequentist statisticians, it makes
some trouble, as the sole source of randomness is induced by the sampling
plan. This, in turn, generates likelihood functions which are flat on their sup-
port.

(b) Frequentist superpopulation models: Essentially, there is now a probabil-
ity distribution FX(·|θ) on X N and inference concentrates on θ ∈ �. This is again
non-Bayesian, as opposed to

(c) Bayesian superpopulation models: There is a formal Bayesian update of
densities for θ , allowing computation of predictive densities

fT (t |y) =
∫
�

f (θ |y)fT (t |y, θ) dθ.

This note proposes a return to basic subjectivistic reasoning by considering strict
predictivistic, de facto Bayesian models. Under the predictivistic approach, the
inference problem is reduced to eliciting the prior fT (t) for T and updating it by
Bayes’s formula, yielding

fT (t |y) ∝ ft (t)f (y|T = t).

This could also be implemented by assessing first fX(x1, x2, . . . , xN), as such
marginal distribution decomposes on

fX(x1, x2, . . . , xN) =
∫
T (X)

fX(x|T = t)fT (t) dt.

It should be noticed that under the predictivistic point of view, there is no dis-
tinction between prior and likelihood—both are equally natured components of
fX(x) and are implied by the judgments about quantities to be actually ob-
served.

The predictivistic approach for finite populations has been considered by many
authors. The use of operational parameters in Engineering and Physics problems
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is discussed by Mendel and Kempthorne (1996); Barlow and Mendel (1992) build
appropriate models for aging beginning from the judgment of exchangeability for
units with respect to lifetime (see also Mendel (1994)); Irony and Pereira (1994)
examine the justification for the use of discrete distributions in the area of quality
assurance; Bolfarine, Gasco and Iglesias (2003) focus on the prediction of finite
population regression coefficients considering certain invariance distributional as-
sumptions. A detailed review on finite population models can be found in Bolfarine
and Zacks (1992).

Bayesian inference for operational parameters will be considered based on uni-
formity and/or exchangeability judgments on sequences of random variables. In-
terest centers on both the population total and maximum. Some of the distri-
butional results presented have been obtained by other authors. This paper also
shows that there are contexts in which the superpopulation approach cannot be
employed in inferential problems in a finite population. That is, there are circum-
stances in which the prior for the operational parameters cannot be obtained from
any superpopulation model. In some cases the extension to an infinite popula-
tion eases the inferential problem. Conditions for extendibility to infinite popu-
lations are established for some models. (For further discussion on extendibility,
see Bernardo and Smith (1994), Diaconis, Eaton and Lauritzen (1992) and many
others.)

This paper is organized as follows. Sections 2–4 deal with the estimation of
population totals for discrete and continuous cases and establish conditions to ex-
tendibility in almost all situations. Section 5 is devoted to the estimation of popu-
lation maxima and provides conditions for the extendibility to infinite populations
in this case.

2 Estimation of the population total (0–1 case)

Consider the situation where X = {0,1} and T = T (X) = ∑N
i=1 Xi . Suppose that

a sample y is available. Let the prior distribution for T be represented by

Prob{T = t} = at , for t = 0,1,2, . . . ,N. (2.1)

The specification of the distribution of X, given T = t , yields the posterior dis-
tribution for T , given y, as

P{T = t |y} ∝ atP{y|T = t}
= at

∑
z:S(z)=(x1,...,xn)

P{X = z|T = t}. (2.2)

It should be emphasized that the sample y is “available”, that is, it is not nec-
essarily obtained by a lottery—or, if it is, its sampling plan is irrelevant. That is,
sampling plans here play no role. All the randomness present is due to uncertainty
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about the xi -values. The use of Bayes’s formula is the coherent way of updat-
ing static probabilities derived from the original prior distribution fX(x1, . . . , xN).
(See Loschi and Wechsler (2002) for discussion on coherence in the temporal
context.) It should be noted that the specification of this prior is given by at and
PX{x1, . . . , xN |T = t}.

As the judgment of exchangeability leads to a conditional uniform distribution
on the appropriate set for X, given T = t , if at = (N +1)−1 the following posterior
is obtained:

P{T = t |y} ∝

(
N − n

t − ∑n
i=1 xi

)
(

N

t

) 1

{
t ≥

n∑
i=1

xi

}
. (2.3)

This model corresponds to the Bose–Einstein model (Mendel and Kempthorne
(1996)). One should notice that the “hypergeometric” term on the posterior in (2.3)
results exclusively from the exchangeability assumption. There is no assumption
of a “draw without replacement” whatsoever.

It should be noticed, however, that the posterior is exactly the same obtained
by assuming X1,X2, . . . ,XN extendible to a sequence of exchangeable random
quantities with uniform de Finetti’s measure on the interval (0,1). In fact, if
X1,X2, . . . ,XN are exchangeable, the conditional distribution of X, given T = t ,
is uniform. Furthermore, if X1,X2, . . . ,XN are extendible, de Finetti’s Represen-
tation theorem (de Finetti (1937)) yields a probability measure μ on [0,1] such
that

P{T = t} =
∫ 1

0

(
N

t

)
θ t (1 − θ)N−t dμ(θ), (2.4)

for each t = 0,1, . . . ,N . If μ is uniform on � = (0,1), Prob{T = t} = (N + 1)−1.
In conclusion, there is a return to a superpopulation Bernoulli model with uni-

form de Finetti measure for θ on (0,1) when the prior at is discrete uniform.
However, suppose now that Prob{T = 0} = 0, and that Prob{T = t} > 0, for t �= 0,
that is, 0 is removed from the prior support of T . In this case, there is no super-
population model yielding the posterior distribution for T given in (2.3) as can be
observed in the sequel.

Suppose that there is a superpopulation model yielding the same posterior dis-
tribution. In other words, assume the existence of a nondegenerate distribution G

on [0,1] such that

P{T = t} =
∫ 1

0

(
N

t

)
θ t (1 − θ)N−t dG(θ),

for each t = 0,1, . . . ,N . Then,

0 = P{T = 0} =
∫ 1

0
(1 − θ)N dG(θ),
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implying that G is degenerate on 1 and P(T = N) = 1.
In conclusion, there are prior distributions Prob{T = t} which do not correspond

to any coherent superpopulation model in the sense that the posteriors do not cor-
respond to any one attainable from such a model. There are examples where the
support of T is preserved.

In general the problem of establishing which priors do correspond to superpopu-
lation models can be restated in terms of the following question: What prior values
at satisfy

at =
∫ 1

0

(
N

t

)
θ t (1 − θ)N−t dμ(θ) ∀t = 0,1, . . . ,N,

for some nondegenerate measure μ on [0,1]? This is actually Hausdorff’s reduced
moment problem (Shohat and Tamarkin (1943)) the solution of which character-
izes extendible exchangeable sequences (see Iglesias (1993), Feller (1991) and
also de Finetti (1937) for the proof of the representation theorem for exchangeable
0–1 variables).

3 Estimation of the population total (discrete case)

Here X = Z+ (the nonnegative integers) and T = T (X) = ∑N
i=1 Xi . Suppose

again that a sample y is available and let

Prob{T = t} = at for t ∈ Z+,

so that

P{T = t |y} ∝ at

∑
z:S(z)=(x1,...,xn)

P{X = z|T = t}.

Suppose also that the distribution of X given T = t is uniform on the set
{(x1, . . . , xN) ∈ Z N+ : ∑N

i=1 xi = t}. This assumption is stronger than mere ex-
changeability. Standard results from Probability Calculus (Feller (1968), for in-
stance) yield

P{T = t |y} ∝ at

(
N − n − t − ∑n

i=1 xi − 1
t − ∑n

i=1 xi

)
(

N − t − 1
t

) 1

{
t ≥

n∑
i=1

xi

}
. (3.1)

It can be seen from (3.1) that the likelihood is the same when a geometric
Bayesian superpopulation model is used. Furthermore, if there is a nondegener-
ate probability measure μ on [0,1] such that

at =
∫ 1

0

(
N − t − 1

t

)
(1 − θ)Nθt dμ(θ) for each t ∈ Z+, (3.2)
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then the posterior distribution is exactly the same obtained by assuming X1,X2,

. . . ,XN , given θ , conditionally independent and geometrically distributed with
parameter θ with de Finetti’s measure μ for θ .

That is a condition of extendibility for a class of finite exchangeable sequences.
The existence of a nondegenerate measure μ satisfying the equations (3.2) can be
verified by Hausdorff’s theorem (Shohat and Tamarkin (1943)). This can be seen
by noticing that the equations in (3.2) have a solution if, and only if, the moment
problem

ct =
∫ t

0
θ t dν(t) for t ∈ Z+

has a solution for ν, a probability measure on [0,1], with ct satisfying the relation(
N − t − 1

t

)−1
at =

N∑
r=0

(
N

r

)
(−1)rcr+t = �Nct .

Hausdorff’s theorem shows that the sequence is extendible (in the sense previ-
ously defined) if, and only if,

�kat =
k∑

r=0

(
k

r

)
(−1)rat+r ≥ 0 for k = 1,2, . . . , t = 0,1, . . . .

It is easy to find prior distributions for T which satisfy these conditions. On
the other hand, it is not simple to find the de Finetti’s measure for which these
inequalities are satisfied. Consequently, it is not clear what the advantages are of
verifying extendibility, once a prior at has been elicited.

The condition of extendibility established is not restricted to judgments of uni-
form distributions of X, given T = t . If, given t , the random variables possess
conditional Multinomial(t;1/N, . . . ,1/N) distribution, that is, if the sequence
X1,X2, . . . is Poissonian (see Wechsler (1993), for instance), a similar condition
for at can be obtained.

4 Estimation of the population total (continuous case)

Consider X = R+ and T = T (X) = ∑N
i=1 Xi . Let f (t) be the prior density for

T and suppose that the distribution of X, given T = t , is uniform on the set
{(x1, . . . , xN) ∈ RN+ :

∑N
i=1 xi = t}. This assumption is again stronger than ex-

changeability. It is known that if X1, . . . ,XN are independent random quantities
with common exponential (θ) distribution, then the distribution of X1, . . . ,XN ,
given T = t , is uniform on the appropriate set. Using this fact, the posterior den-
sity of T , given y, is obtained as

f (t |y) ∝
(

1 −
∑n

i=1 xi

t

)N−n−1(∑n
i=1 xi

t

)n−1 1

t
f (t)1

{
t ≥

n∑
i=1

xi

}
. (4.1)
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This same approach is considered by Barlow and Mendel (1992) in a lifetime
analysis context.

If f (t) = ama
0

ta+1 1{t ≥ m0}, that is, if T has a Pareto prior distribution with param-
eters (a,m0), the following posterior density is obtained:

f

(
t
∣∣∣ n∑

i=1

xi

)
∝

(
1 −

∑n
i=1 xi

t

)N−n−1(∑n
i=1 xi

t

)n+a 1

t
1{t ≥ M}, (4.2)

where M = max{m0,
∑n

i=1 xi}. This posterior does not correspond to any density
obtained from an exponential superpopulation model, as the Pareto distribution
places mass zero for all t < m0.

For situations in which m0 <
∑n

i=1 xi , a probability interval for T , given y, can
be constructed by using tables of the Beta distribution with parameters n + a + 2
and N − n to obtain quantiles B

Prob

{
[B1−α/2]−1

n∑
i=1

xi < T < [Bα/2]−1
n∑

i=1

xi

∣∣∣ y

}
= 1 − α.

The inference problems considered in Sections 2–4 refer to the estimation of
population totals for finite sequences which, in particular, satisfy the condition of
exchangeability. Under a further judgment of linearity of the posterior mean, that
is, assuming that

E

(
T

∣∣∣ n∑
i=1

xi

)
= a + b

n∑
i=1

xi,

Ericson’s theorem (Ericson (1969)) can be used to determine a and b, which de-
pend on the first and second prior moments of T only. In particular, for the problem
introduced in Section 2, if a and b are known, then the prior distribution of T is
completely determined. This can be proved by Ericson’s theorem and the rule of
succession for finite sequences (Zabell (1989); de Finetti (1937)). Diaconis and
Ylvisaker (1979) (page 279–280) obtain a similar result for infinite sequences.

Remark. The results presented in this section can be generalized to a more gen-
eral set in which X = Rd , d a fixed positive integer. Results from Diaconis and
Freedman (1990) yield

f (y|t) =
n∏

i=1

h(xi)
h(N−n)(t − ∑n

i=1 xi)

h(N)(t)
1

{
t ≥

n∑
i=1

xi

}
,

in which h is a nonnegative, finite and locally Borel-integrable function and h(j)

denotes the j -fold convolution of h with itself. Consequently, the posterior distri-
bution of T , given y, is given by

f (t |y) ∝ h(N−n)(t − ∑n
i=1 xi)

h(N)(t)
f (t)1

{
t ≥

n∑
i=1

xi

}
. (4.3)
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If the prior in (4.3) is f (t) ∝ [h(2)(t)]−11{t ≥ m0}, for instance, the posterior
does not correspond to any density obtained from a superpopulation model defined
for the exponential family by Diaconis and Freedman (1990).

For the situation discussed above, h(x) = 1{x ≥ 0} and the j -fold convolution
of h with itself becomes

h(j)(s) = sj−1

(j − 1)! .

5 Estimation of the population maximum (discrete case)

Consider X = Z+ and T = T (X) = X(N), the population maximum. A sample y

is available and let at denote the prior distribution for T with the distribution of X,
given T = t , uniform on the set {(x1, . . . , xN) ∈ Z N+ : max1≤i≤N {xi} = t}.

The posterior distribution is given by

Prob{T = t |y} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

(t + 1)n

{
1

1 + (t/(t + 1))N

}
at , if t = max

1≤i≤n
{xi},

1

(t + 1)n

{
1 − (t/(t + 1))N−n

1 − (t/(t + 1))N

}
at , if t > max

1≤i≤n
{xi}.

(5.1)
For details in the characterization of the likelihood and connections with de

Finetti-style theorems, see Iglesias, Pereira and Tanaka (1998) and Esteves, Wech-
sler and Iglesias (2004).

Extendibility is obtained if, and only if, there is a nondegenerate probability
measure μ on Z+ such that

at =
∫
θ≥t

(t + 1)N − tN

(t + 1)N
dμ(θ) for each t ∈ Z+. (5.2)

It can be noticed from equation (5.2) that the prior for T can be represented as
a mixture of discrete uniform distributions. Moreover, the measure μ exists if, and
only if, the function defined by

h(t) =
{

at (t + 1)N

(t + 1)N − tN
− at+1(t + 2)N

(t + 2)N − (t + 1)N

}
, t ∈ Z+,

defines a probability measure on Z+. Using this fact, it can be shown that if aM =
0 for some M ∈ N and at > 0 for each t �= M , the sequence is not extendible
for the uniform superpopulation model. There are examples which preserve the
support.
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6 Conclusion

This paper shows that Bayesian superpopulation models do not necessarily ex-
ist for every prior fX(x). The operational approach seems to be natural for
inference problems involving finite populations since the quantities associated
with such problems are potentially observable ones. According to Wechsler
(1993), the operational approach for inference removes both the metaphysical
character of the parameters and also the asymmetry usually perceived between
prior and likelihood as concepts—they are all implied by the prior judgment
on observable quantities (Mendel (1994); de Finetti (1937)). The predictivis-
tic approach provides a formal framework for inference also in the situation
under which information is provided by intentional samples. Strong advance-
ments in this area are given by Kadane (1996), Nagae (2007) and Diniz et al.
(2009).

Extendibility to superpopulation models is an interesting approach as long as
related inferential problems in finite populations become easy. Otherwise, ex-
tendibility is not justified. In this note, conditions for extendibility to infinite
populations are established for some models built under uniformity and/or ex-
changeability judgments. Some of these conditions are not easily verified as they
are associated with problems involving moments. A main contribution here is
to show that superpopulation models provide solutions to problems involving a
finite population only under particular circumstances. Consequently, the opera-
tional approach is suggested as the appropriate approach for finite population mod-
els.
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