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Abstract

In this paper we investigate amenability, and essential amenability of the
convolution Banach algebra A(K) for a compact hypergroup K together with
their applications to convolution Banach algebras Lp(K) (1 < p ≤ ∞), and
C(K).

Introduction

In [2] F. Ghahramani and R. J. Loy proved that for a compact group G, the con-
volution Banach algebras (Lp(G), ∗) (1 < p < ∞) are essentially amenable. Their
given proof heavily depends on the amenability of the group algebra L1(G) (see
Theorem 7.1 and Corollary 7.1(1),(2) of [2]). In the present paper by a quite dif-
ferent technique we generalize this result to compact hypergroups. Note that we
do not know whether L1(K) is amenable for a compact hypergroup K. Vrem ([9])
gave a definition of A(K) for a compact hypergroup K and proved that A(K) is a
Banach algebra with convolution product. This Banach algebra plays a key role
throughout the paper.

The organization of this paper is as follows. The preliminaries and notations
are given in section 1. In section 2 we state and prove a basic result on essential
amenability of general Banach algebras that is needed for the rest of the paper. In
the main theorem of this section (Theorem 2.1) we introduce a class of essentially
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amenable Banach algebras. In section 3, through a different technique, we gen-
eralize Lemma 28.1 of [4] from compact groups to compact hypergroups. Indeed

we prove that for an infinite compact hypergroup K, K̂ is infinite. As an appli-
cation we prove that L1(K) for a locally compact hypergroup K is contractible if
and only if K is finite. Furthermore, we prove that the convolution Banach al-
gebra A(K) on a compact hypergroup K is essentially amenable. Moreover this
Banach algebra is amenable if and only if K is finite. In section 4 we prove that for
a compact hypergroup K, the convolution Banach algebras Lp(K) (1 < p ≤ ∞),
and C(K) are essentially amenable. Also, we prove such Banach algebras are
amenable if and only if K is finite.

1 Preliminaries

For a Banach algebra A, an A-bimodule will always refer to a Banach A-bimodule
X, that is a Banach space which is algebraically an A-bimodule, and for which
there is a constant CX ≥ 0 such that ‖a.x‖, ‖x.a‖ ≤ CX‖a‖‖x‖ (a ∈ A, x ∈ X).
A bounded linear map D : A → X is called an X-derivation, if for each a, b ∈ A,
D(ab) = D(a).b + a.D(b). For every x ∈ X, we define adA

x by adA
x (a) = a.x − x.a

(a ∈ A). It is easily seen that adA
x is a derivation. Derivations of this form are

called inner derivations.
Let A be a Banach algebra and X be a Banach A-bimodule. Then the Banach

space X∗ with the dual module multiplications given by

( f a)(x) = f (ax), (a f )(x) = f (xa) (a ∈ A, f ∈ X∗, x ∈ X),

defines a Banach A-bimodule called the dual Banach A-bimodule X∗.
A Banach algebra A is called amenable if for each Banach A-bimodule X, every

continuous derivation from A into X∗ is inner. An A-bimodule X is neo-unital if
X = A.X.A. Recall from [2], a Banach algebra A is called essentially amenable if
for any neo-unital A-bimodule X, every continuous derivation D : A → X∗ is
inner (See also [6]). A Banach algebra A is called contractible if for each Banach
A-bimodule X, every continuous derivation D : A → X is inner.

Throughout this paper K is a (measured) locally compact hypergroup with
involution x 7→ x̄ and the identity e as defined by Jewett ([5]). By the term mea-
sured we mean that K admits a left Haar measure ωK. Let M(K) be the space of
all bounded regular Borel measures on K. For 1 ≤ p ≤ ∞, let Lp(K) = Lp(K, ωK).
For x, y ∈ K we define x ∗ y as the set supp(εx ∗ εy). For Borel functions f
and g, at least one of which is σ-finite, we define the convolution f ∗ g on K by
( f ∗ g)(x) =

∫
K f (x ∗ y)g(ȳ)dωK(y) (x ∈ K), where f (x ∗ y) =

∫
K f d(εx ∗ εy).

Let K be a compact hypergroup. By Theorem 1.3.28 of [1], K admits a left Haar
measure. Throughout the present paper we use the normalized Haar measure ωK

on the compact hypergroup K (i.e. ωK(K) = 1). If π ∈ K̂ (where K̂ is the set of
equivalence classes of continuous irreducible representations of K, c.f. [1], 11.3
of [5], and [9]), then by Theorem 2.2 of [9], π is finite dimensional. Furthermore
by the proof of Theorem 2.2 of [9], there exists a constant cπ such that for each
ξ ∈ Hπ with ‖ξ‖ = 1 ∫

K
|〈π(x)ξ, ξ〉|2 dωK(x) = cπ.
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Let kπ = c−1
π . By Theorem 2.6 of [9], kπ ≥ dπ. Moreover if K is a group then

kπ = dπ. For each π ∈ K̂, let Hπ be the representation space of π and dπ =
dim Hπ. The ∗-algebra ∏π∈K̂ B(Hπ) (B(Hπ) is the space of all linear operators on

Hπ) will denoted by E(K̂); scalar multiplication, addition, multiplication, and the
adjoint of an element are defined coordinate-wise. Let E = (Eπ) be an element

of E(K̂). We define ‖E‖p :=
(

∑π∈K̂ kπ‖Eπ‖
p
ϕp

) 1
p

(1 ≤ p < ∞), and ‖E‖∞ =

supπ∈K̂ ‖Eπ‖ϕ∞ (recall from Definition D.37 and Theorem D.40 of [4] that for Eπ ∈

B(Hπ), ‖Eπ‖ϕ∞ = max1≤i≤dπ
|λi|, and ‖Eπ‖ϕp =

(
∑

dπ
i=1 |λi|

p
) 1

p
(1 ≤ p < ∞),

where (λ1, . . . , λdπ
) is the sequence of eigenvalues of the operator |Eπ|, written

in any order). For 1 ≤ p ≤ ∞, Ep(K̂) is defined as the set of all E ∈ E(K̂)
for which ‖E‖p < ∞. By Theorems 28.25, 28.27, and 28.32(v) of [4], the spaces

(Ep(K̂), ‖.‖p) (1 ≤ p ≤ ∞) are Banach algebras. Let µ ∈ M(K). The set of

all E ∈ E(K̂) such that {π ∈ K̂ : Eπ 6= 0} is finite is denoted by E00(K̂). The

Fourier transform of µ at π ∈ K̂ is denoted by µ̂(π) and defined as the operator

µ̂(π) =
∫

Kπ(x̄) dµ(x) on Hπ. Define µ̂ ∈ E(K̂) by µ̂π = µ̂(π) ∈ B(Hπ) (for more

details see Theorem 3.2 of [9]). If π ∈ K̂, Tπ(K) is defined as the set of all finite
complex linear combinations of functions of the form x 7→ 〈π(x)(ξ), η〉, where
ξ, η ∈ Hπ. Define T(K) =

⋃
π∈K̂ Tπ(K). Functions in T(K) are called trigonometric

polynomials on K. Clearly { f̂ : f ∈ T(K)} = E00(K̂) (see also Theorem 28.39 of

[4] for the case of groups). If f ∈ L1(K), and ∑π∈K̂ kπ‖ f̂ (π)‖ϕ1
< ∞, we say f

has an absolutely convergent Fourier series. The set of all functions with absolutely
convergent Fourier series is denoted by A(K) and called the Fourier space of K.

For f ∈ A(K) we define ‖ f‖ϕ1
= ‖ f̂ ‖1. By Proposition 4.2 of [9], A(K) with

the convolution product is a Banach algebra and isometrically isomorphic with

E1(K̂). Moreover each function f ∈ A(K) can be regarded as the continuous

function ∑π∈K̂ kπtr( f̂ (π)π(x)). Also ‖ f‖∞ ≤ ‖ f‖ϕ1
. However, A(K) may not

form a Banach algebra under point-wise product (see Example 4.12 of [9]).

2 Essential amenability of a class of Banach algebras

The following is the main result of this section.

Theorem 2.1. Let (A, ‖.‖A) be a Banach algebra. Suppose that there exists a subalgebra
B of A such that

(i) There is a norm ‖.‖B on B such that (B, ‖.‖B) is a Banach algebra and there
exists C > 0 such that for each b ∈ B, ‖b‖A ≤ C‖b‖B.

(ii) there exists m ∈ N such that Am = {∏
m
i=1 ai : a1, . . . , am ∈ A} ⊆ B.

(iii) (B, ‖.‖B) is essentially amenable.
Then A is essentially amenable.

Proof. Let X be a neo-unital Banach A-bimodule, and D be a derivation from A

into X∗. For each b ∈ B, ‖b.x‖X ≤ CX‖b‖A‖x‖X ≤ CCX‖b‖B‖x‖X . Similarly
‖x.b‖X ≤ CCX‖b‖B‖x‖X . Hence X is a B-bimodule. Now

X = A.X.A = A.(A.X.A).A = (A.A).X.(A.A) = A
2.X.A2,
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and so by induction X = A
m.X.Am. Therefore

X = A
m.X.Am ⊆ B.X.B ⊆ X,

and so X is a neo-unital Banach B-bimodule. Since

‖D(b)‖ ≤ ‖D‖‖b‖A ≤ C‖D‖‖b‖B (b ∈ B),

so the mapping
D : B → X∗, b 7→ D(b),

is a continuous derivation. By essential amenability of B, D is inner. Hence there

exists ξ ∈ X∗ such that D = adB
ξ . Define D̃ = D − adA

ξ . Clearly D̃ ∈ Z(A, X∗)

and D̃(B) = {0}. Let a ∈ A and x ∈ X. Since X = Am.X.Am, so there exists
b ∈ Am and y ∈ X such that x = b.y. Now, since b, ab ∈ Am, we have

D̃(a)(x) = D̃(a)(b.y) =
(

D̃(a).b
)

(y) =
(

D̃(ab) − a.D̃(b)
)

(y) = 0.

Hence D̃ = 0 and so D = adA
ξ . Therefore A is essentially amenable.

Corollary 2.2. Let A be a Banach algebra and B be a closed subalgebra of A containing
A.A. If B is essentially amenable, then so is A.

3 Amenability and essential amenability of the convolution Ba-

nach algebra A(K) on the compact hypergroup K

Before starting the first result of this section, we note that by Lemma 28.1 of [4] a

compact group G is finite if and only if Ĝ is finite. In the following lemma, by a
different technique, we generalize this result to compact hypergroups.

Lemma 3.1. A compact hypergroup K is finite if and only if K̂ is finite.

Proof. If K is finite, then clearly K̂ is finite. Conversely, if K̂ is finite, then E1(K̂) is

finite-dimensional. Since T̂(K) = E00(K̂), so T(K) is finite-dimensional. By The-
orem 2.13 of [9], T(K) is uniformly dense in C(K). Since each finite dimensional
subspace of a Banach space is closed, it follows that T(K) = C(K). Therefore
C(K) is finite-dimensional. Now, by the comment on page 57 of [7] K is finite.

As an application of the above lemma, we have the following result.
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Proposition 3.2. Let K be a locally compact hypergroup. Then L1(K) is contractible if
and only if K is finite.

Proof. If K is a finite hypergroup, then L1(K) = ℓ1(K) = C(K) = A(K), and K̂ is
finite. Hence

ℓ
1(K) ∼= Â(K) = E1(K̂) ∼= ℓ

∞ −⊕
π∈K̂Mdπ

(C),

and so by Exercise 4.1.3 of [8], L1(K) is contractible.
Suppose L1(K) is contractible. By Examples C.1.2(c) and 3.1.12(b) of [8], the

Banach space L1(K) has the approximation property (c.f. Definition C.1.1(i) of
[8]). Now, by Theorem 4.1.5 of [8], L1(K) is finite-dimensional. Since A(K) ⊆
L1(K), so A(K) is finite-dimensional. Hence by Lemma 4.1, K is finite.

The following theorem is adapted from Theorem 2.3 of [6].

Theorem 3.3. If K is compact, then the convolution Banach algebra A(K) is essentially
amenable. Moreover the convolution Banach algebra A(K) is amenable if and only if K
is finite.

Proof. By Proposition 4.2 of [9], the mapping f 7→ f̂ is an isometric algebra iso-

morphism from the convolution Banach algebra A(K) onto E1(K̂).

Clearly E0(K̂) = c0 −⊕π∈K̂B(Hπ), where B(Hπ) is equipped with the norm

‖.‖ϕ∞ . By Remark D.42 of [3] and Example 2.3.16 of [8], for each π ∈ K̂, the
Banach algebra B(Hπ) with the norm ‖.‖ϕ∞ is 1-amenable. So by Corollary 2.3.19

of [8], E0(K̂) is amenable. For each finite subset F of K̂ define EF by

(EF)π =

{
idHπ for π ∈ F
0 otherwise,

where idHπ is the identity operator of B(Hπ). It is easy to show that (EF)F is an

approximate identity for both Banach algebras E0(K̂) and E1(K̂). By Theorems

28.32(ii,iii) of [3] and 7.1 of [2], E1(K̂) is essentially amenable. So (A(K), ∗) is
essentially amenable.

If (Eα)α is an approximate identity for E1(K̂), then for each finite subset F of I

Card(F) ≤ ∑
π∈F

kπ‖idHπ‖ϕ1

= ‖EF‖1 = lim
α

‖EFEα‖1

= lim
α

∥∥∥
(
(EF)π(Eα)π

)

π

∥∥∥
1

≤ lim inf
α

‖Eα‖1.

So for infinite set I, limα ‖Eα‖1 = ∞, and hence E1(K̂) does not have a bounded
approximate identity. Therefore by Proposition 2.2.1 of [8], this Banach algebra is

not amenable. Now, E1(K̂) is amenable if and only if K̂ is finite. By Lemma 3.1, K̂
is finite if and only if K is finite.
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4 Essential amenability of certain convolution Banach algebras

on compact hypergroups

We start this section with the following lemmas.

Lemma 4.1. Let K be a compact hypergroup. Then the following statements are equiva-
lent:

(i) K is finite.
(ii) A(K) is finite dimensional.
(iii) The convolution Banach algebra A(K) has an identity.
(iv) A(K) ∗ A(K) = A(K).
(v) The linear span of A(K) ∗ A(K) is equal to A(K).

Proof. (i)⇒(ii)⇒(iii)⇒(iv)⇒(v) is obvious.

(v)⇒(i): If K is infinite, then by Lemma 3.1 K̂ is infinite. Let E ∈ E(K̂) be such
that

∑
π∈K̂

kπ ‖Eπ‖ϕ1
< ∞, and ∑

π∈K̂

kπ ‖Eπ‖
1
2
ϕ1

= ∞.

For example let {πn}n∈N be an infinite countable set of distinct elements of K̂,

and define E ∈ E(K̂) as follows: Eπn = 1
kπn dπn n2 idHπn

for n ∈ N and Eπ = 0 for

all other π’s in K̂. Since E ∈ E1(K̂), so there exists a unique f ∈ A(K) such that

f̂ = E. If E = ∑
m
i=1 E1,iE2,i for some m ∈ N and E1,i, E2,i ∈ E(K̂) (1 ≤ i ≤ m), then

m

∑
i=1

(
‖E1,i

π‖ϕ1
+ ‖E2,i

π‖ϕ1

)
≥ 2

m

∑
i=1

(
‖E1,i

π‖ϕ1
‖E2,i

π‖ϕ1

) 1
2

≥ 2
( m

∑
i=1

‖E1,i
π‖ϕ1

‖E2,i
π‖ϕ1

) 1
2

≥ 2
∥∥∥

m

∑
i=1

E1,i
πE2,i

π

∥∥∥
1
2

ϕ1

= 2‖Eπ‖
1
2
ϕ1

.

Hence

m

∑
i=1

(
‖E1,i‖1 + ‖E2,i‖1

)
=

m

∑
i=1

(
∑

π∈K̂

kπ‖E1,i
π‖ϕ1

+ ∑
π∈K̂

kπ‖E2,i
π‖ϕ1

)

= ∑
π∈K̂

kπ

( m

∑
i=1

(‖E1,i
π‖ϕ1

+ ‖E2,i
π‖ϕ1

)
)

≥ 2 ∑
π∈K̂

kπ ‖Eπ‖
1
2
ϕ1

= ∞,

and so for some 1 ≤ i ≤ m, and j = 1, 2, Ej,i /∈ E1(K̂)). Therefore E is not in the

linear span of E1(K̂)E1(K̂), and so f is not in the linear span of A(K) ∗ A(K).
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Lemma 4.2. Let K be a compact hypergroup. Then the following statements are valid:

(i) For 1 < p < 2, Lp(K) ∗ Lp(K) ⊆ L
p

2−p (K).
(ii) For 2 ≤ p ≤ ∞, Lp(K) ∗ Lp(K) ⊆ L2(K) ∗ L2(K) = A(K).
(iii) C(K) ∗ C(K) ⊆ L2(K) ∗ L2(K) = A(K).
(iv) For f ∈ A(K), and 1 ≤ p ≤ ∞, ‖ f‖p ≤ ‖ f‖∞ ≤ ‖ f‖ϕ1

.

Proof. (i): Since for each x, y ∈ K, εx ∗ εy is a probability measure, so for f ∈ Lp(K)

| f (x ∗ y)|p =

∣∣∣∣
∫

K
f d(εx ∗ εy)

∣∣∣∣
p

≤

(∫

K
| f |d(εx ∗ εy)

)p

≤
∫

K
| f |pd(εx ∗ εy) = | f |p(x ∗ y),

and hence
∫

K| f (x ∗ y)|pdy ≤ ‖ f‖
p
p. Now, an exact method as the proof of Theorem

20.18 of [3], proves (i).
(ii),(iii): Since K is compact, so for each 2 ≤ p ≤ ∞, C(K) ⊆ Lp(K) ⊆ L2(K),

and by Theorem 4.9 of [9], A(K) = L2(K) ∗ L2(K). Hence (ii),(iii) are valid.
(iv): Since ωK(K) = 1 and A(K) ⊆ Lp(K) for 1 ≤ p ≤ ∞, so ‖ f‖p ≤ ‖ f‖∞ for

every f ∈ A(K). By Proposition 4.2 of [9], ‖ f‖∞ ≤ ‖ f‖ϕ1
( f ∈ A(K)).

Theorem 4.3. Let K be a compact hypergroup and A be any of Banach spaces (Lp(K), ∗)
(1 < p ≤ ∞), and (C(K), ∗). Then A is essentially amenable. Moreover A is amenable
if and only if K is finite.

Proof. Let 1 < p < 2 and A = Lp(K). There is m ∈ N such that

1 +
1

2m+1 − 1
≤ p < 1 +

1

2m − 1
.

So
p

2m−1−(2m−1−1)p
< 2 ≤

p
2m−(2m−1)p

. Now, by induction and using Lemma 4.2(i)

we have

A
2m

⊆ L
p

2m−(2m−1)p (K) ⊆ L2(K).

Hence
A

2m+1
= A

2m
∗A

2m
⊆ L2(K) ∗ L2(K) = A(K).

If A is any of Banach spaces (Lp(K), ∗) (2 ≤ p ≤ ∞), and (C(K), ∗), then by
Lemma 3.4(ii),(iii)

A
2 = A ∗A ⊆ L2(K) ∗ L2(K) = A(K).

Let B = (A(K), ∗). By Lemma 4.2(iv), ‖ f‖A ≤ ‖ f‖B ( f ∈ B). Since by
Theorem 3.3 B is essentially amenable, from Theorem 2.1 it follows that A is
essentially amenable.

If A is amenable, then by Proposition 2.2.1 of [8] and Cohn’s Factorization
Theorem A ∗A = A. Hence for each m ∈ N, A

m = A. But in the first paragraph
we proved that there exists m ∈ N such that Am ⊆ A(K). Therefore A ⊆ A(K).
Clearly A(K) ⊆ A. Hence A(K) = A, and so

A(K) ∗ A(K) = A ∗A = A = A(K).

Now, from Lemma 4.1, K is finite.
Conversely, if K is finite, then A is an essentially amenable Banach algebra

with the identity εe. Hence by Proposition 2.1.5 of [8], A is amenable.
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