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Abstract. We formulate reflection positivity for meromorphic functions and for
1-forms on a Riemann surface. This construction yields representations of the
Heisenberg algebra on a Riemann surface.

I. Introduction

Conformal field theories on a Riemann surface with genus ^ 1 have interesting
features which are absent in the case of genus zero. One example of such a
phenomenon is the nonuniqueness of basic representations of global chiral
algebras. The simplest example of such an algebra is the Heisenberg algebra. Study
of this algebra yields the theory of a free chiral field on a Riemann surface.

Krichever and Novikov understood the fact that the ordinary Heisenberg
algebra, suitable for surfaces of genus zero, has to be extended [KN]. We study the
resulting algebra in Sects. II and III; ultimately in Sect. V we describe global
representations for such an algebra.

We restrict attention to Riemann surfaces S which are Schottky doubles of an
open Riemann surface T. On such a Riemann surface there is a natural notion of
Osterwalder-Schrader positivity. In other words, there is an antiholomorphic
involution 9 which we can interpret as time reflection. We study a space 21 of
meromorphic functions on S. We use Θ, the lift of S to 21, and a symplectic form
( , ) on 2ί we then define an inner product < , > = (<9 , ) on a subalgebra 2ϊ + of
2Ϊ. The existence of an inner product allows us to construct representations of 21 on
a Fock-type Hubert space. Our method uses certain ideas in [DVV].

Riemann surfaces which are Schottky doubles exist for any genus. In
conformal field theory one has developed methods to compute arbitrary
correlation functions once the operator formalism is known for certain simple
surfaces. Here we do not use such sewing procedures, but rather give a direct,
global construction.

* Supported in part by the Department of Energy under Grant DE-FG02-88ER25065



422 A. Jaffe, S. Klimek, and A. Lesniewski

Although our primary concern here is the Heisenberg algebra, one could
investigate the representation theory for the integrated form of the algebra, namely
for the global Weyl group, along the lines of [BKS].

II. Reflection Positivity on a Schottky Double

Let S denote a compact Riemann surface which arises as a Schottky double of a
bordered Riemann surface T with boundary dT. Recall that the Schottky double S
of T is defined in terms of its mirror image % and S is the union of T with T glued
on dT. The Schottky double S of T has an antiholomorphic involution θ:S-»S
such that $T=T, and such that dTis the set of fixed points of 9. See [A] for details.
Let PoeT denote a point in general position and define P^ = 5(P0) The points Po

and P^ provide reference points on the Riemann surface, which are interchanged
by θ, see Fig. 1.

The standard case of a real, two-dimensional, toroidal Euclidean space-time S1

x R can be understood as follows. For t eIR, x e S1, let (ί, x) denote a space-time
point. The map

z = exp[i(x + ίί)] (II. 1)

takes values in the Riemann sphere S, with the half-space t ̂  0 mapping into the
unit disc T around the origin. Time reflection (t, *)-•( — ί, x) in the Euclidean space-
time maps into a reflection 9 on the Riemann sphere. In local coordinates,

ί>(z)=-*. (11.2)

We identify T as the unit disc about infinity. Note that the Riemann sphere is the
Schottky double of the unit disc, with S given by (II.2). A convenient choice for P o is
P o = 0, so Poo = oo, and this comes from Euclidean space-time points at t = + oo. In
particular, the operator 5 on the Riemann sphere can be thought of as a reflection
through the unit circle |z| = l. This toroidal space-time arises e.g. in the "radial
quantization" of string theory.

The corresponding "infinite volume" space-time (ί, xjeΊR2 can also be studied.
A compactification is given by the map

_
Z~

Fig. 1. The Schottky double S of a bordered Riemann surface T with boundary dT
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Here the unit disc about the origin T is the image of the positive time subspace
while Tis the image of the negative time subspace. The unit circle dT, which is the
image of t = 0, is invariant under 3. The points (t = ± 1, x = 0) are mapped into P o ,

On a general Schottky double 5, the involution # can also be interpreted as
reflection in a unit circle. The notion of a radius (modulus) function for S was
introduced in [KN]. For every Riemann surface (not necessarily a Schottky
double) there is a modulus function R(z) taking values in [0, oo] such that
R(P0) = 0 and R(Pao) = oo. The existence of R follows from the existence of a unique
meromorphic form η on S with the following properties: (i) η is holomorphic on
S^PoiP^}; ordp0ιj = ord P o o f/=-l, (ii) ResPoιj = l, (iii) R e J ^ = 0, for every
1-cycle C, see Sect. II.5 of [FK]. For P^dT, set [KL] c

R(z): = Qxp Re J η . (113)

\ Pi /

Proposition 11.1. With the above definitions,

R(z)R(9(z)) = l. (II.4)

In particular R(z) = l, for zedT.

Proof. The meromorphic form — &*ή has the properties (iHiϋ) By uniqueness it
must coincide with η. Since θ(P1) = P 1 , we have

Thus

and (II.3) follows. Since θ(z) = zϊorzedT, R{z) = lJorzedT,to complete the proof.
Let us now introduce 91 as the space of meromorphic functions on S which are

holomorphic on S\{P0?Poo} We write

9I = 9Ϊ_Θ9I 1 Θ9Ϊ + , (Π.5)

where 9ί_ is the subspace of functions /e9ί with o r d P o / ^ 1. Likewise 9ί+ is the
subspace of functions /e9I with ord P o o /^ 1. The space 211 is (g + l)-dimensional
and consists of functions / G 9 I with o r d P o / ^ 0 and ord P o o /^0.

The space SI, or more precisely, the space SI/[1], carries a natural symplectic
form

Hz)

P i

z

Re j" η + R
P i

&(z)
f Q

HPi)

e J fj =
P i

•*η= —
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R e f (fί
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ή) = 0

(/,g): = ResPo(d/ g). (IL6)

Note that

(f g)=-
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where C is any cycle separating Po from P^. This form vanishes on 91 + x 91+ and
on9l_x9l_.

We define an antilinear involution (9:91-* 91 by

Clearly

and
(11.10)

The map Θ provides the Osterwalder-Schrader reflection on a Schottky double. In
fact, we establish below that Θ gives rise to a natural inner product on 91+. We
define

Theorem II.2. The form (11.11) defines an inner product on 9Ϊ + .

/ We verify that (11.11) is positive on 9Ϊ+. We compute for / e 9 I + ,

2πι or 2τrz $τ

By Stokes' theorem, and the fact that / is holomorphic on %

^ ^ 2

{ T ) ^ O . (11.12)

If <y;/> = o, then / = const; but ordP / > 0 , so / = 0.

III. The Heisenberg Algebra

The space 91 can be given the structure of an infinite-dimensional Lie algebra with
the bracket

[/,g]=(i,g)i ( n i l )

We call this algebra the Heisenberg algebra on S and denote it, by abuse of
notation, 91. We study representations of 91.

We can also interpret 91 in terms of the Krichever-Novikov basis {/M

(0)} [KN,
KL]. The function /0

(0) = 1, while 9ί _ is spanned by the /n

(0)'s with n ̂  1. The space
91 + is spanned by /n

(0) with n^—(g + 1). The (g + l)-dimensional space 911 is
spanned by /n

(0)'s with — g ̂  n ̂  0. We can interpret 91 + as creation operators and
91 _ as annihilation operators. The interpretation of 91 x is subtler and will be
studied in the next two sections.

IV. The Extended Heisenberg Algebra

In studying representations of 91 we encounter the problem that the form < , >
does not have a definite sign on 9IX. To overcome this difficulty, we extend 91 to a
larger Lie algebra Ω for which the positivity problem has an easy solution. This is
the extended Heisenberg algebra.
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In Sect. Ill we defined the Heisenberg algebra 21 as the space of meromorphic
functions on S which are holomorphic on S^Γ^P^}, equipped with the Lie
bracket (III.l). Here we define the extended Heisenberg algebra Ω and an
embedding of 91 into Ω. The algebra Ω is a space of meromorphic 1-forms on S with
a Lie bracket

[ω,ι ί]=(ω,f/)#τ. (IV. 1)

Here ( , -^ is given in (IV. 12) and τ is a central element of Ω. We define an
embedding i.SΆ^Ω and extend the construction of a reflection positive inner
product to Ω.

Let the Schottky double S of T have dT consisting of n connected components
Γl9..., Γn. With g0 = genus T, we observe that genus S = 2g0 + (n — 1). We choose a
symmetric homology basis for S in a standard way, see [F]. The basis {al9 ...,ag,
bu...,bg} has 2g0 generators in T, 2g0 generators in the reflection T=ST, and
2(n — 1) generators which link T and T. Specifically, let

{au...,ago,bu...,bgo}cT, (IV.2)

and choose

α, = iϊ-,0, b^-Sbi, for i =

Furthermore, let

for i=l,2,...,g 0 .
Now we choose Ω as the space of meromorphic one-forms ωon-S such that

(i) ω is holomorphic on
and

(ii) f ω = 0, j = l,2,...,g.

ResPoτ = i.

Furthermore, let τ e Ώ be the unique one-form with first order poles and such that

We can now write

and for ω e Ω there is a unique decomposition

Here Ωγ is spanned by τ, λeC, and

ordP oω_;>0, for ω_eί2_, (IV.7)

ord P o o ω + ^0, for ω+eΩ+. (IV.8)

It follows that

Res P o ω ± =0,
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and that

J ω ± = O , ; = l,2,...,g. (IV.10)

In this way we obtain for Ω a decomposition of the form (II.5), but with Ωί one-
dimensional. Let

. (IV.ll)

We define a quadratic form on Ωf x Ω' by

dT Pi

Theorem IV.l. The form (IV. 12) is symplectic on Ω' x Ω'. Furthermore, it vanishes
on Ω+ x Ω+ and Ω_ x Ώ_.

Proof. Note that (IV. 12) is well-defined, since the integral of η around a cycle is a
z

constant. Thus, even though J η is multivalued, as a consequence of (IV.9), (ω, η)^
Pi

is unaffected. We choose the path from Px to z to lie in T and not to intersect any
cycle α£ or bb i = l,2,...,g0.

Let us now verify that (ω, η)% = —(η, ω)^. Because of our choice above, we can
represent the integral in (IV. 12) as follows: Let Tbe a representation of Γas shown
in Fig. 2, obtained by cutting T along the 2g0 cycles al9 bu ..., ago, bgo. Hence T is a
polygon with 4g0 sides and n holes, these holes bounded by Γl5 ...,Γn.

Although T is not simply connected, the functions

z z

J ω and J η
Pi Pi

are single-valued, meromorphic functions on T. Here we use (IV.9) and J ω = 0, for
Λ z z

ω e Ω\ namely assumption (ii) for forms in Ω. It follows that the product j ω f ^
has no logarithmic singularity and therefore P l P l

R e s , o d J ω f f / = 0 . (IV.13)

Fig. 2. An example of T when g0 = 2 and rc = 3. Here θT is the set (al9 bu aλ

 1,b1 \ a2, b2,
Γl9 Γ2, Γ3)



Representations of the Heisenberg Algebra on a Riemann Surface 427

Let us compute

2πι dT \ Pi Pi

Introduce a cycle Γo about Po, and let

T=T\IntΓ 0, with df=dTκjΓ0. (IV. 15)

By Stokes' theorem we can write

1 / *
9ω)t=— \d [ω J η + η J ω

2πι t \ Pi Pi .

- I T - ί \ ( θ \ η + η\ω . (IV.16)
zπi at\aτ \ Pi PI /

Clearly, the first term on the right-hand side of (IV. 16) vanishes. We claim that the
second term also vanishes. To verify this, let us write

z

ω J η = ωf,
Pi

where / is a holomorphic function on t. Then
90 ,J ωf= \ωf+ Σ / j ω / + j ω / + J ωf+ J ωf). (IV.17)

dt\dT Γo ί = l \«i bi af1 bf1

Observe that

af1 ai \ bi

Thus the integrals over a( and a^ι cancel, as J ω = 0. Likewise, the integrals over bt

and bfx cancel. Hence

J ωf=-2πiResPo(ωf).
δf

Similarly we obtain

1 / z z \ / z

- y - τ J ω J • η + η J ω =Res P o [ω J ?/ + ̂  J ω
lnι dt\dτ \ Pi Pi / \ Pi Pi

= ResP od(f ω f ^ = 0 , (IV.18)
\Pi Pi /

where we used (IV. 13) to conclude that (IV. 18) is zero. Thus we have verified that

Furthermore, as a consequence of Theorem IV.2 below, we find that ( , )% is
nondegenerate. We conclude that ( , ^ is symplectic.
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We now check that ( , - ^ vanishes on Ω_xί2_. We repeat the above
computation to obtain

/ z \

(IV.20)

If ω, η E ί2_, they are holomorphic at P o so the residue vanishes. Similarly, for ω,
ηeΩ+ we obtain a representation on the reflection of f, and we conclude that
(ω, η)% also vanishes. This completes the proof of the theorem.

We note that the form ( , ),,. has not been defined on Ω x Ω. We extend the
definition to this case by setting

(τ9ω)+: = 0, ωeΩ.

Let us also define an antilinear involution Θ on Ω by

Θω: = $*ω, (IV.22)

where #* is the lift of 9 from S to 1-forms. With this definition

Θ:Ω±^ΩT and 6>τ = τ . (IV.23)

We now define a sesquilinear form < , >Jj{ on Ω x Ω by

<ω, ?7 > ̂ : = (<9ω, η)^. (I V.24)

Theorem IV.2. The form <•, > # defines a Hermitian inner product on Ω + .

Proof We compute as in the proof of Theorem II. 1. Then

1 * 1
<ω,ω>H ί = (6>ω,ω)5 j 5= —-—: J ω f 9 * ω = — —- J ω J ω , (IV.25)

27iϊ er Pi ΊMX OT Pi

using the invariance of dT under θ. Cutting θ T as explained in the proof of
Theorem IV. 1 and using Stokes' theorem we find

z _ 1 / _ z \ 1
7 f ω f ω = ^ - 7 [ d\ω [ ω]= ^— f

1 _ 1 / _ \ 1
<ω, ω ) * = —-7 f ω f ω = ^-7 [ d\ω [ ω]= ^— f ω Λ ω. (IV.26)

Other terms arising from the boundary of ST do not contribute, as in the proof of
Theorem IV. 1. The positivity of (IV.26) follows as does the positivity of (11.12),
namely

< « , « > * = ^ | | ω | | £ 2 ( Γ ) 2 ϊ 0 . (IV.27)

Furthermore, it is clear that <ω, ω}^ = 0, if and only if ω = 0.
We now consider the embedding

i\SΆ->Ω. (IV.28)

Let / e « l ± . We define

i(f): = dfeΩ±. (IV.29)
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In fact, since / is single-valued and meromorphic, the integral of df on a cycle
vanishes. We choose a point Pή=P0, P^ PzdT and set for /e9l 1 ?

i(f): = df + f(P)τ. (IV.30)

Theorem IV.3. With these definitions, i is an injective homomorphism of Lie
algebras. In particular,

(f,g)=(i(f)Λg%.

Moreover,

Θi = iΘ. (IV.32)

Proof. We use the representation (IV.20) ΐor f,ge'H±. Then

=ResPo(d/ g), (IV.32)

since as / is meromorphic, df has no residue at Po. But this agrees with definition
(II.6). For fe 9tx or g e 9I1? we must add f(P)τ or g(P)τ to /(/) or i(g). But this does
not contribute to (i(f), iig))^ so (IV.31) holds in all cases. The remaining statements
are clear.

Proposition IV.4. The space ί2/z(9I) is g-dimensional.

Proof Let A be the space of meromorphic 1-forms ξ on S such that ordP£ ̂ 0, for P
ΦP^, and ordPooξέi—(g + l). It follows immediately from the Riemann-Roch
theorem that dirndl = 2g. Now, for any meromorphic 1-form ω which is
holomorphic on S^P&P^}, there is a function /e9I such that ω — i(f)eΛ.
Therefore, dim(ΩnΛ) = 2g — g = g, as claimed.

We remark that the functional λ defined on s/1 by λ(f) = f(P) satisfies

(IV 33)

This functional is a parameter of our embedding of 91 into Ω.

V. Representations

We construct representations Φ of the algebra 91 by unbounded operators on a
Hubert space Jf. We require

(i) Φ is a homomorphism of 91 into a Lie algebra of unbounded operators on
3/e, withΦ(l) = J.

(ii) 3) is a common, dense, invariant domain for the operators Φ(/), /e9I.
(Hi) The Φ satisfy Φ(/)* = Φ(Θ/) on ®.
(iv) ^ contains a unique vector υ which is cyclic for Φ(9I), and

Φ(9ί_)*;=:0. (V.I)

We first construct a corresponding representation for the extended algebra Ω.
In that case we have:

(i~) Φ is a homomorphism of Ω into an algebra of operators on Jf with
Φ(τ) = L
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(ii~)-(iv~) as above, with Ω replacing 91.
The conditions (i-iv~) characterize a representation uniquely, and the

representation can be constructed as follows. Let S(Ω+) be the symmetric tensor
algebra over Ω+. That is

S(fl+)= Θ ® ^ + (V.2)

Let Jf be the Hilbert space obtained by completion of S(Ω+) in the norm
defined by < , >* of (IV.24). Let k: S(Ω+)-+ Jf be the natural embedding, and
define @ = k(S(Ω+)). Let

,0,...)). (V.3)

For ω l 5 ...,ωMeΩ+, define

υJiωl9..., ωn) = fc((0,0,..., ω±®s... ®sωM, 0,...)). (V.4)

These vectors span Jίf and there is a Fock type construction

Γ ι;n + 1(ω,ω1,...,ωπ), ωeΩ+,

ί ( ω ) φ 1 , )ωJ= j " , x , A x n
[ Σ (ω>ωj)*vn-i(<»i> ~><»j> - » ω π ) 5 ω e Ω _ ,

where α> denotes the omission of α>. Also, we set Φ(τ) = L Then (i~-iv~) follow by
standard arguments.

We construct a representation Φ of 91 from the representation Φ of Ω as
follows: for /e9ί, let

(V.6)

Thus for / G 9 I ± , Φ(f) = Φ(df). If / e 9 ί l 5 then

i(/) = α / + c / + λ(/)τ, (V.7)

where afeΩ_, cfeΩ+ and

ί 3! (V.8)

Theorem V.I. Tte quadruple (J-f, ®, Φ, ϋ) is α representation of 9Ϊ ow ί/ie Hilbert
space J f w/iic/i satisfies (i-iv).

/ We verify only that

Φ(f)* = Φ(θf), /e9I, (V.9)

and

leaving the rest of the proof to the reader.
From (IV.32) θί(J) = i(θf)9 and thus

which is (V.9).
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To prove (V.10) we use (IV.31):

[Φ( A Φfe)] = Wi(f)l <?(%))] = (i(/), i(g»* = (/, g),

as claimed.

Remark. Note that as a consequence of (IV.32) and the uniqueness of the
decomposition (V.7),

Θaf = cΘf. (V.ll)

Note also that the vacuum expectation value of Φ(f) is nonzero, if fe 31 v In fact,

<v,Φ(f)v)^ = λ(f). (V.12)
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