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Abstract. In the Hilbert-space version of classical mechanics, scattering
theory for iV-particle systems is developed in close analogy to the quantum case.
Asymptotic completeness is proved for forces of finite range. Infinite-range forces
lead to the problem of stability of bound states and can be dealt with only in some
simple cases.

1. Introduction

For obvious reasons, collision phenomena have been studied mostly
in the framework of quantum mechanics. Our aim is to show that the
concepts and even some mathematical methods of the quantum theory
of scattering are equally applicable to classical ^-particle systems [1].

To make the analogy as close as possible, we work with the Hilbert-
space formulation of classical mechanics. Using a suitable definition of
bound states, time-dependent scattering theory is then simply copied
from the quantum case. For forces of finite range, it is shown that bound
states and scattering states span the entire Hilbert-space (asymptotic
completeness), which implies that the ̂ -matrix is unitary.

Compared with the quantum case, the restricions we put on the
(two-body-) forces are much more severe. This is inevitable since already
the existence of solutions to the equations of motion is established only
for a smaller class of interactions. And in scattering theory again, we
have to impose stronger conditions on the behaviour of the forces at
infinity: in general we can construct scattering states (or the wave-
operators) only if the forces are strictly zero beyond a finite range. The
obstacle here is the lack of information on the stability of multiparticle
bound states. In some cases where this problem does not arise or can be
handled (i.e. for the channels in which only free particles or two-body
bound states are present for t -> ± oo), infinite-range force decreasing
faster than the Coulomb-force are admitted.

I t is a pleasure to thank Prof. L. MOTCHANE for his kind hospitality at the
I.H.E.S., where most of this work was done, and where the author profited from
discussions with D. RUELLE and O. E. LANFOBD.
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2. General Remarks on Dynamics

We consider a system of N particles interacting via two-body forces,
characterized by the Hamiltonian

f ^ + Σ i,Λi *) o + V .

Its states are taken as elements of the Hilbert-space Jί? = L2(Γ),
Γ = phase space. The evolution in time of a state ψ is then to be deter-
mined from the equation of motion

where { , } is the Poisson-braeket, defining the Liouville-operator L.
Explicitly,

L=LO + LV,

L _ y Vi 3 y B τ a ά V I d - S ) t1)

If the forces are locally square-integrable, Lo and Lv are well-defined
and skew-symmetric on the dense domain Oj (JΓ). It is less trivial to decide
whether L has a (preferably unique) skew-adjoint extension which then
generates a one-parameter unitary group describing the dynamics of the
system. The analogous question in quantum mechanics has a positive
answer for a large class of interactions, for example if (the operator) V is
relatively small with respect to Ho (i.e. if || Vψ\\ ̂  a \\Hoψ\\ + b \\ψ\\ for
some a < 1, b < oo and all ψ ζ D(H0). Then Ho + V is self adjoint [2]).
This kind of argument fails in the classical case, since Ly cannot possibly
be estimated in terms of Lo, regardless of how wellbehaved V is1. To
define the dynamics of the system, we better start from the canonical
equations

z - f — (2)

where (z1 . . . zβN) = (x1 . . . xN, px . . . pN) and where ε is the matrix of
the transformation (xi3 p{) -^ (pif—x{). Throughout this paper we shall
assume that the potentials satisfy the following conditions:

(A) Vik(x) is a continuous function R3 -> [b, + oo] with b > — oo.
(B) For any W < oo, Vik(x) is twice continuously differentiable, with

uniformly bounded derivatives, in the region {x: Vilc{x) < W}.
The phase space of the system is then the open subset

1 This is also the reason why the resolvent equations, which form the basis
of time-independent scattering theory in quantum mechanics, are not likely to be
useful in the classical case.
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of RQN, and the right-hand side of (2) is uniformly Lipshitz (in the sense
of the Euclidean norm on B6N) in any region of bounded energy. Since
energy is conserved, we conclude that (2) has a unique global solution
z (t, z0) for any initial value z0 £ Γ. Furthermore, z (t, z0) is once con-
tinuously differentiable with respect to z0 and the derivatives satisfy the
familiar exponential estimate

dz
e*W, (3)

where the left-hand side is the norm of the matrix dzildzolc, considered
as an operator on the Euclidean space RδN, and where K is a Lipshitz-
constant for the region {z: H(z) < H(z0) -f 1}. In fact, the mappings

8*: zo->z(t, z0) , — oo < t < + oo

form a one-parameter group of canonical transformations of Γ onto Γ,
which in turn induces a strongly continuous unitary group exip(Lt) on

The Liouville-operator L is now defined as the generator of this group.
Then we have

Lemma 1. (a) CQ(Γ) is invariant under the group eLt.
(b) CJ(Γ) CD(L) and on OJ(Γ), L is given by {I).
(c) For any ψ ζC^(Γ) there exists a constant K < oo such that

\e"ψ\D < e*IΊ \\ψ\\D , (4)

ivhere, for any φ ζ CJ(JP), we define

II .12 „ y d(P

\\Ψ\\D - L

We remark that, by (a), (b) and by a lemma due to NELSON [3], we
can now give an affirmative answer to the original problem: if (A, B) are
satisfied, then L is the closure of the operator defined by (1) on CQ(Γ).
NELSON'S lemma: on a Banach-space X, let P* be a strongly continuous
semigroup with generator A. Then ECΏ[A), Έ = X and PtEcE for all
t > 0 imply that A is the closure of its restriction to E.

For the rest of this paper we adopt the following conventions: first,
we fix the CM (= center-of-mass) of the iV-particle system, so that Γ
reduces to the invariant subset characterized by

N

ZJ miXi = ^
i= 1

N
y

' ZJ
i = 1

which will again be denoted by JΓ. This requires no changes in the
foregoing analysis. Secondly, we assume the potentials to be bounded.
This is not a real restriction, since we can always confine the discussion
to states of bounded energy. On the other hand, we then have Γ =
independent of F, which simplifies the notation.
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3. Bound States and Scattering States

Clearly, the concept of bound states must be linked to boundedness
of orbits in configuration space {(x1 . . . xN): Σmixi = 0}. To describe
this, any norm in this space may serve. We choose

^ή\ (5)
and define:

N(z) = sup NiSh),
-oo<t< + co ^

Bn = {z : N(z) £ n} , n = 1, 2, . . .

Since N (Stz) is continuous in z, Bn is closed, therefore
CO

B = U Bn = {z:N(z)<oo\

is measurable. The bound states are now defined as the elements of

The elements of the spaces L2(Bn) are called compact bound states. They
are dense in 3FB since B = U Bn and Bn C Bm for n ^ m implies

= U

It is clear that Bn and 5 are invariant under the group Sι, hence L2(Bn)
and L2(B) are invariant under exip(Lt). In contrast to quantum me-
chanics, however, the part of L in M"B generally has a continuous spec-
trum (already in the case N = 2), but this is of no consequence in the
following2.

We now use the terminology of the quantum theory of scattering [5]
to define scattering states. A "channel", α, is a partition of the set of
particles (1 . . . N) into subsets F1 . . . Fn (called the "fragments" in
channel α), subject to the condition that each Fk is either a single particle
or a composite subsystem possessing nontrivial bound states. The
"channel Hamiltonian" Hu is obtained from H by dropping all inter-
actions between different fragments, it generates a Liouville-operator La.
A motion of non-interacting, bound fragments is then described by
exp(Lj) ψx, with

ψx(z) = φiX, ...Xn,P1...Pn)Π ψΛ^), (7)

2 In fact, one should define quantum mechanical bound states similarly by a
suitable condition of "boundedness" in configuration space. For nonrelativistic
multiparticle systems, the discreteness of the spectrum of H in 2tfB is then a con-
sequence of the special form of H [4], but this need not be so in other theories.
20 Commun. math. Phys., Vol. 8
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where Xk = coordinates of the CM of Fk, Pk = total momentum of
FkJ zk = coordinates and momenta of the particles forming Fk (in the
CM-system of Flΰ), φ £ L2(Γσ) where ΓΛ is the phase space of n particles
with masses M1 . . . Mn (Mk = mass of Fk) with fixed CM, and ψk ζ 2/ff.
= space of bound states of the (isolated) system Fk. We define φ = 1 if
n = 1 and ^fc = 1 if .Ffc is a single particle. The states ψx span a subspace
D α C ^ which may be written as

where jB7ΰ is the bound-state region in the phase space of Fk. Since όα is
invariant under the group 8l

u generated by H^, D κ is invariant under
ex^(Lj). In fact, for a state ^ α of type (7) we have

where lk = Liouville-operator describing the internal motion of Fk. An
ingoing or outgoing scattering state ψf in channel α is defined by the
requirement that exp (Lt) ψ^ -> exp (LΛt) ψx as t -> T °°5 with ^ α £ Dα. To
assert the existence of scattering states, we now assume

(C) There exists a < oo such that Vik(x) — 0 if \x\ > a.
Then we have
Theorem 1. Under the hypothesis (A, B, C),

w J = lim e~Lt eL*1 xpx
t->± oo

exists for all ψa ζ Ώa.

Corollary. The mappings Ω^ :ψa->ψ^ (uwave-operators") are iso-
metric from Dx into ffi and satisfy

Hence the ranges R^ of Ω^ reduce the groiip exp (Lt) and the parts of L
in R^ are unitarily equivalent to the part of Lx in Da.

Proof. It suffices to prove convergence on a dense set inDα . Such a set
is spanned by the states of type (7) with the additional properties

a) ψ(X1... Xn, P1...Pn)= F(XX ...Xn) G(P1 . . . P n ) , w i t h i ^ 7 a n d
G of compact support, and supp G such that it does not intersect the
planes p. p

b) φk — compact bound state of Fk.
Then there exist constants R < QO, σ > 0, depending on F, G, φ1 . . . φn,
such that z ζ supp exp(Lα£) yα implies

P P
Ύ ι ϊ Ύ j _ fe f <r 7?

I Z i — ^ | ^ JR, (9)
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for all i φ k, where j is any particle in Fit Let I be a particle in Fk, k 4= ί.
Then (9) implies

\χi-xι\^a\t\-ZR, (10)

hence supp exp(Lj) ψ«C{z : H{z) = #«(z)} for |ί| ^ T === (α + 3i?)/σ.
Consequently,

for ± ί ^ T, which shows that the limits ψJ exist trivially, in the sense
that they are already attained at the finite times ± T.

The second ingredient for the construction of the $-matrix is the
orthogonality of scattering states in different channels:

Theorem 2. // the assertion of theorem 1 holds, then

R± LBf (α φ β) .

Proof. I t is enough to show that

Km (eVVα,eVvv>) = 0

for α φ ^ and for ψa (ψβ) in the dense subset of Dx (Dβ) used in the proof
of theorem 1. Now oc 4= β implies that there are two particles j , I which
belong to the same fragment in one channel (say α) but to different ones
in the other. The inequalities (9) (10) then show that

— xt\ -^ 2R if z ζ supp eLocι ψx ,

— Xι\ ^ β \t\ — 3R if z ζ supp eLβι ψβ .

Therefore, the two supports do not intersect for \t\ > 5R/σ, which
proves (11).

By theorems 1 and 2 we can now construct the $-matrix as in quan-
tum mechanics [5]. We introduce

α

which in general cannot be viewed as a subspace of Jf, since as subspaces
of ffl the Da are not mutually orthogonal. Then we define two operators
Ω^ from ffi" into Jf7 by

where ψx is the component in Dx of Ψ ζ $?'. By virtue of theorems 1
and 2, Ω^1 is isometric, with range

The adjoint Ω± * then maps 3tf onto 3%" (OnR^, β ± * is the inverse of
Ω^, while it annihilates (iϋ^) 1), and the /S-operator is defined as an
operator on M" by

S = Ω+*Ω~ .
20*
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S is unitary if and only if ^ + _ „ _ ,-. „.

and then has the following interpretation: given any Φ = {φa} ζ^r,
there exists a state ψ ζ E~(namely ψ = Ω~Φ) such that

eLtψ-+Σ eL«t(P* (t-> — oo) (13)
α

in the sense of the norm. By (12), we also have ψ ξ 2?+, hence there exists
a state Ψ = {̂ α} £ Jf' (namely ϊ 7 = Ω+*ψ) such that

eMψ-*ΣeL«tψ« ( ί - > + o o ) , (14)
α

and the relation between the asymptotic behaviour in the past and the
asymptotic behaviour in the future is precisely given by S:

In the next section we shall prove not only (12) but

R+=R- = je (15)

(Asymptotic completeness), which says that for any ψ ζ^> exp(Lί) ψ
has the asymptotic behaviour (13) and (14) for t -> =F oo.

4. Asymptotic Completeness

If the jV-particle system possesses bound states, there is a channel
oc = 0 = trivial partition into one fragment, for which Do = B^ = M"B.
So far there was no reason to treat this channel differently, but from
now on we shall distinguish between bound states £ ffiB and scattering-
states (in the proper sense) ζ 8±

) where

αφO

The assertion (15) then takes the following form:
Theorem 3. // the potentials satisfy (A, B, G), then

/ ΰ 0 ^ = cf. (16)

In the remainder of this section, we shall prove (16) for S+; the
statement for S~ then follows by time-inversion. Proceeding by induction
in N, we assume N Ξ> 2 and that (16) holds for all systems with less than
N particles, which is obvious for N = 2.

First, we reformulate the induction hypothesis. Let D label all parti-
tions (Gv C2) of (1 . . . N) into two non-empty subsets Cv Oa, and let
HD = H minus all interactions linking C1 and G2, and LD = Liouville
operator generated by HD. Since each of the subsystems C1 and C2 is
asymptotically complete, the same is true for the composite system
(Cv C2) characterized by HD. This means that, for any ψ ζ jtf*, exp{LDt)ψ
behaves for t -> + °° like a motion of non-interacting fragments of the
system HD, in the sense of (14) Since these fragments are also fragments
of the fully interacting system characterized by H, we have.
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Lemma 2. Let ψ+ ζ Jti? and suppose that there exist states φD ζ Jt? such
that, in the sense of the norm,

eLtψ+->Σ eLl)tψD
D

as t -> -f oo. Then ψ+ ζ 8+.

Given any ψ ζ J^, we shall first use this lemma to split off a scat-
tering state ψ+ from ψ and then prove that the remainder (ψ — ψ+) is
a bound state.

For any D = (Cv C2) we define

= min \Xi — xh\ , (17)
eckec
Sh) ^ a for 0 ^ t < oo} ,

where a is the upper bound on the range of the forces. AD is closed and
"absorbing", i.e. 8tADCAD for all t > 0, and represents a region in
phase space where the system is and remains separated into the two
non-interacting subsystems O1; C2. The set of all z whose trajectories
{Stz} will reach one of these regions AD in the future is

σ+ = U £-* A, with A=ϋAD.
O^t <oo Ό

Since A is absorbing, we have

tf'AcS^A if ί ! ^ ί 2 J (18)

hence we can write σ+ as a countable union

σ+ = U £ - M , (19)
w = 0 , 1 , 2 . . . ? v y

which shows that σ+ is measurable, since A is closed. In view of lemma 2
and of the significance of A we now expect

Lemma 3. For any ψ £ ̂ , £e£ ψ+ be the part of ψ on σ+ (i.e. the product
of ψ with the characteristic function of σ+). Then ψ+ ζS+.

Proof. Defining ψn = part of ψ on S~nA, we have

lim | | ^ - ^ | | = 0
n—>oo

by (18), (19) and the dominated convergence theorem. Since S+ is closed,
it therefore suffices to prove ψn £ S+ for all n. By definition of ψn,
supp exp(Ln) ψnCA, hence we can write

eLnψn = Σ ΨD
Ώ

with supp φD C A^, which by the properties of AD implies

Σ
D

for t ^ n. Hence ψn satisfies the hypothesis of lemma 2, which asserts
that ipn£S+.
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It remains to prove ψ — ψ+ ζ Jή?B. To prepare this, we first note that
the bound states can be characterized by their behaviour for t > 0 only:

Lemma 4 [6]:
Let N+ (z) = sup N(Sh) and B+ = {z : N+ (z) < oc}. Then (B+ — B)

O^ί <co

is of measure zero, hence β T2(τ>+\
tyC — J-J y -D ) .

Proof. Let C be any compact C Γ and

c f ±= n s-w.
C^ is compact and

8tC+== Π >S-r(7

is shrinking as t increases (i.e. S*1 C+ C ̂ 2 C+ if t2 ^ ^), but of constant
measure μ(G+). Therefore

( Π S-tC+) = μ ( Π ^ ^ ) ^ ^ ( O + n ^ ) } (20)
ί<oo / r \_oo<ί<-foo J Γ\ n \ )

i.e. almost all trajectories {Stz} which stay in C for t > 0 also stay there
for t < 0 ("capture is a process of zero probability"). We now apply this
to the sequence of compacts

Gn = {z:N{z) < n , H(z) ̂  n) ,

rc = 1, 2, . . . Then we have, by (20)

and also, by the definition of B and B+,

B+ = U C+, £ = U (G+ n C-).
n n

Therefore,

B+-BC U [ σ + - ( C + n ί 7 - ) ]

is of measure zero.
By lemma 4 it now suffices to prove ψ — ψ+ ζ L2 (B+) or, in terms of

phase space, that the complement of σ+ is contained in B+. This is
achieved by

Lemma 5. For any z0 ζ Γ there exists C C Γ such that
(a) z0 £ C,
(b) the projection of C onto configuration space is compact,
(c) if the trajectory {Stz0} leaves C as t increases, it reaches A.
By (c) and by the definition of σ+, z0 $ σ+ implies Stz0 ζC for all

t > 0, hence zQ ζ JB+ by (b).
Proof. To construct C, we define for any D — (Cv O2)
dD (z) = distance between the CM of Gλ and the CM of C2, in the state z,

d{z) = max dD(z),
and we shall call a decomposition D maximal (for a given z) if ί^ (2) = d(z).
With ρ^ defined by (17) we then have
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Proposition 1. There exists a constant λ depending only on the masses,
with 0 < λ < 1, such that dn(z) ^ λd(z) implies QE>(Z) Ξ> (1 — λ) d(z).

The proof will be given at the end of this section. The set C of lemma 5
is now defined by ,

<7 = {2 : (1 — Λ) d(z) < a} ,

where a is again an upper bound on the range of the forces, but chosen
so large that (1 — λ) d(z0) ^ a. (a) is then satisfied by construction. For
(b), consider the decomposition D = (Cv G2) where C1 consists of particle ί
only. Then it is evident that z ζ C implies

for all i, which proves (b). The proof of (c) is obtained in several steps
(propositions 2—4 below), based on proposition 1 and on the fact that
the distance between two freely moving particles is a convex function
of t (J{t) is called convex in the interval r ^ t ^ s if, in any subinterval
tλ< t ^ t2, f(t) < linear interpolation of f(t) between tτ and t2). We study
the functions d(t) and dD(t) along the trajectory {StzQ}:

Proposition 2. There exists a constant v < ex), independent of D and t,
such that

\dD(t)\ < v (21)
and therefore, for all t, t0,

\d(t)-d(to)\ ^v\t-to\.

Proof. Let 3ΪV M2 be the masses of the subsystems Clf C2 in the
decomposition D. Then

2 (M, + Mz)
 dD ~ λ ~ U (Z°} ~ ° '

where T is the kinetic energy and h a lower bound on V(x1 . . . ̂
τ )

Hence (21) is satisfied for

V =

with M = total mass of the system, m = smallest particle-mass.
Proposition 3. d(t) is convex in any interval I: r ^ t ^ s in which

(1 — A) 5(ί) ^ a.

Corollary. d(t) = Zβ/ί derivative of d(t) exists for r < t < s, is non-

decreasing as t increases, and satisfies d(t) ̂  v.
Proof. Let t0 £ / and let Z) be maximal at time t0. Then, by pro-

for \l — to\ ^ ε = a/2v. In the interval

J n p o - β , ί o + β ] (22)



292 W. HTOZIKER:

we then have Qn(t) = a> ^y proposition 1, i.e. no interaction between
(?! and C2, which implies that dD(t) is convex. Therefore, for any t0 ζ /,
there exists an interval (22) in which d(t) is bounded below by a convex
function taking the same value at t = t0. Since ε is independent of t0, it
follows that d(t) is convex in /.

We now assume that the trajectory {Stz0} leaves C as t increases and
prove that it reaches A. By assumption,

(l — λ)d(t1)>a (23)

for some tλ > 0 and also 5(^) > 0, since otherwise the inequality (23)
would persist, by convexity, for all t < tv in contradiction to
(1 — λ) d(0) ^ a. Therefore d(t) is convex and strictly increasing for all
t Ξ> £3, which implies

(1 — λ)~1a ^

and also, by the corollary of proposition 3,

A(t) -> 5(oo) ^ v , (24)

for tx ^ ί-> oo.

Proposition 4. Xeί ί2 ^ ίx δe so Zαr̂ e that S(t2) > λ j(oo), αmZ Zeί i )
δe maximal at time t2. Then ρu(t) > a for all t ^ t2, i.e. StzzQ ζA.

Proof. Assume the contrary, i.e. ρj)(t) < a for some t > t2. Then, by
proposition 1, dD(t) g λ d(t). Let tz be the smallest time ^ t2 for which
dD{t3) = λJ(ί3). Then

3 , (25)

since ^ ( ί ) ^ λd(t) for t2 ^ t ^ t3. For the same reason, ρχ>(0 = a m

this interval, by proposition 1, so that dD(t) is convex and therefore

dD(t2)< dΏ(t3). (26)

Finally, since D is maximal at time ί2, we have d(t2) = dp(t2) and

d(t) Ξ> ĉ 2)(0 f° r ^ = 2̂» which implies

3(t2)^ dD(t2). (27)

Combining (25), (26), (27) we find

in contradiction to (24).

Proo/ o/ Proposition 1. We consider a fixed configuration (xx . . . xN)
and a partition D = (Cl9 C2). Notation: Mi = mass of Gi9 M = total mass
of the system, m = smallest particle-mass, 8t = CM of C^
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In RB we choose a f-axis with origin $x and with the positive part
through 82. Let ξ1 be the ξ-coordinate of a particle of mass m1 belonging
to Cv We now consider the decomposition Dr = (C[, G'2) obtained from
D by transferring this particle from Cx to G2. The ^-coordinates of the
CM 8'i of G\ are then\

+ ξx mx) (M2 + mj-1,

and from dist (#ί, $2) = ^ we obtain

d ^ dDM2{M2 + mi)-1 + ^ m i l f [(Jfi —mj) (Jf2 + ^ i ) ] " 1 ,
or

ξ1 ^ (Mx — mx) (If2 + m2) (m^f J-1 [5— Jf 2 (if 2 + w^- 1 ^ ] . (28)

Note that this also holds if Cx consists of only one particle (then ξ1 = 0
and M1 = mx) in spite of the fact that the derivation does not. Similarly,
considering a particle of mass m2 belonging to C2, we obtain for its
ξ- coordinate:

f2 ^ dD - ( J f a - ma) (ϋfx + m2) (m aif)-i [ 3 - Jf^Jfi + m2)-i ί j . (29)

In particular, (28) and (29) hold for the two particles with distance ρD,
hence we obtain

^ —dim^M)-1 [m1(M1 + m2) (ilf2 —m 2)

+ m a ( M 2 + TWi) (Jfi — mx)]

+ ^ { 1 + (m1m2M)-1 [m1M1(M2 — m2) + m2M2{M1 — m1)]} .

Dividing by {. . .}, one finds after some manipulations and by using

^D = x̂> + doc(oc + mx + m2)~1 ,
with

α = m^"1 (If2 — m2) ( ^ + m2) + mfx (ifx — mx) (if 2 + m2) .

Since a -\- b = M implies ab 5g Jf2/4, we have α ^ M2ίj2m and therefore

α(α + mx + m^- 1 ^ M*{M2 + 4m 2)- 1 ,
which yields

d/> ^ QD + dM*{M2 + 4m 2)- 1 .

This proves the assertion of proposition 1 for

λ = (Jf2 + 2m2) (If2 + 4m 2)- 1 .

Remark: The proof actually shows that dΏ^λd implies not only
ρ D ^ (l — λ)d b u t
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i.e. that there exist two parallel planes (orthogonal to the £-axis) with
distance ^ (1 — λ) d which both separate G1 and <72. This shows, for
example, that the convexity argument also works for repulsive forces of
infinite range.

5. Infinite-range Forces

Let us attempt to prove the existence of scattering states as in quan-
tum mechanics [7]. Differentiating exp(—Lt) exj)(LΰCt) y)a with respect
to t and integrating again from 0 to I we formally obtain

t

e~Lt eLJ ψΛ = ψκ—f dτe~Lτ (L — LΛ) eL«T ψa , (30)
o

with

(£±) (31)
where the sum is restricted to the pairs linking different fragments of
channel α. One then tries to prove the convergence of the left-hand side
of (30) (for a dense set of states \pa ζ Dv) by showing that the integral
on the right converges absolutely for I = ± °o, i.e. that

']dtHL—La)c* *trpΛ\<oo. (32)
0

Recalling (31) and the explicit form (8) of eχ-p(Lj) ψa we see that we
need a dense set of differentiable bound states for each fragment (dense
in M?B). But such a set exists only if the boundary (B— int B) of B is
of measure zero. Actually we shall assume slightly more, namely that

μ{B— UintBη - 0 . (33)

Technically, this means that we can approximate bound states by smooth,
compact bound states. Physically, (33) is a stability assumption, for
z ζ_ U int Bn means that there exists n < oo and ε > 0 such that
N(z') < n if \zf — z\ < ε, i.e. that, for sufficiently small perturbations of
the initial data z, all perturbed orbits stay in some compact of configura-
tion space. (33) then requires that almost all bounded orbits are stable
in this sense. Whether this is true or not seems at present to be open.

We now take ψa of the same form as in the proof of theorem 1, but
with the additional property that F, G, φ1 . . . φn are once continuously
differ entiable. By (33), these states still span a dense set in Dα, and the
formal derivation of (30) is justified by lemma 1. In order to estimate the
integrand in (32), we express the differential operators in (31) as linear
combinations of djdPh and djdπk, where Pk = total momentum of the
fragment Fk, πk = internal momenta in Fk, and define

fik(r)= sup |gradF ί fc(a;)| .
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There are two essentially different types of contributions to the inte-
grand in (32):

a) Contribution from gracl V\ ]c djd Pό

( P P \ dC 1 n

x1-Ί±t,...,xn—Ίf-ήTϊr(P1... Pn)\ m^ const. (1 + |ί|)/<3t(cr Jί| —312) ,

which is integrable over — oo < ί < + oo if

-r)fik(r)<°°, (34)
0

i.e. if the forces decrease faster than the Coulomb force at infinity.

b) Contribution from grad Vilc djdπό

- — e h l wΛ izΛ JJ (e>k (py) (Zj. g const. fik{σ \t\ — 3Λ) -?-

Since, in general, we only have the exponential estimate (4) for the last
norm and since a is arbitrarily small, we need

oo

/ drearfilc(r) < oo for any α > 0
o

in order to assert that the contribution of this term to the integral (32)
is finite. Note, however, that if a linear estimate

^ const. (1 + \t\) (35)

is available, then again condition (34) is sufficient.
Having exhibited the difficulties arising from infinite-range forces,

we now discuss some simple cases in which these problems do not occur
or can be handled:

1. No composite fragments

For the channel oc = decomposition of (1 . . . N) into N single par-
ticles, no information on bound states is needed and the wave operators
Ω j exist as strong limits on D α if only (34) is satisfied. In particular,
this suffices for N = 2, and for arbitrary N if the forces are repulsive.
(To see that no bound states exist for repulsive forces, note that
N(t) = N(Stz) as defined by (5) satisfies

Jo

iJc^ 2T^ 0 ,
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T being the kinetic energy. Hence N2 (t) is convex and therefore bounded
only if it is constant, which implies T — 0. Consequently, B is con-
tained in the null-set px — p2 = = pN = 0.)

2. Fragments consisting of two particles

For two-particle systems with a spherically symmetric potential, (33)
is easily verified and (35) can be proved as indicated below. In the case
of central forces (34) is therefore sufficient to assert the existence of
Ωf for all channels in which only single particles and (or) two-body
bound states are present as ί-> + oo. In particular, this should allow
a complete scattering theory for the case N = 3 with central forces
decreasing faster than the Coulomb force.

For simplicity, we shall sketch the proof of (35) for N = 2 in one
dimension only, but the same argument also works in the 3-dimensional
case after separation of variables. In addition to (A, B) we assume that
V(x) takes only a finite number of values E1 . . . Er on the set
{x : d Vjdx(x) = 0}. Let 0 be the (open) part of B in the complement of
the energy-shells Sn = {z : H (z) = En}, n — 1 . . . r. For each z ζ 0, the
motion Stz is periodic with a period

(μ = reduced mass, α, b = turning points) which is once continuously
diίferentiable with respect to z (but may diverge as z approaches one of
the energy-shells 8n). Therefore we can apply

Lemma 6. Let 0 C T be open and suppose that there exists a function
T (z) > 0 and once continously differentiate on 0 such that

for all z ζθ. Then, for any compact C CO, there exists a constant h(C) < oo
such that (matrix norm)

for all z ζC.

As a consequence, we see that (35) is satisfied in our 1-dimensional
example for the set C\(O) of compact bound states which is dense i

Proof. Differentiating
Stz = St±τ^z

with respect to z and using the equations of motion we obtain

dT
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where Aij{t) = d(Stz)ildzj. Since C is compact, there exist constants
bx . . . fr4 such that, uniformly in z ζ C,

< °° f o r a11 *>

δ* < °° ' (37)

0 < δ 3 ^ T(z) ^ 6 4 < o o ,
hence

μi( t) | ί£μ4(f±2 7 ) | + &A> (38)

where | | denotes the Euclidean norm in (36), (37) and the corresponding
matrix-norm in (38). For t § 0 we iterate the appropriate inequality (38)
n times until \t ± n T\ g J7. Then |n| ^ |ί|/63 and |̂ [ (ί ± n T)\ ^ exp(^64)
by (3), hence we obtain the desired result:

| 4 ( f ) | = £ e * » ' + | f | - ^ . (39)

Note that b2 — 0 if T(z) = constant (harmonic oscillator), then (39)
reduces to a ^-independent estimate.

So far, we have discussed the problem of extending theorem 1 to
infinite-range forces. If this is possible, then the ^-matrix can be con-
structed as before, since theorem 2 is of a purely kinematical nature
(no assumptions on the forces are needed in its proof). However, the
proof of asymptotic completeness was again based strongly on the finite
range of the forces, and we do not know at present if theorem 3 holds
in the cases where theorem 1 can be proved. An exception is the case
N = 2, where it is sufficient to require that the forces and their first
derivatives vanish with a higher power of 1/r for r -> cχ> than the corre-
sponding expressions for the Coulomb force.

6. Scattering in Terms of Phase-Space

Our description of collisions in terms of 3f = L2 (Γ) was motivated
by the analogy to quantum mechanics, but everything can of course be
transcribed into the language of phase-space. In particular, we expect
that the wave-operators and the ^-operator are induced by transforma-
tions in phase-space, just as exjy(Lt) was induced by 8*. We shall sketch
this briefly for the case of finite-range forces.

Instead of theorem 1 we have, in the notation of section 3:

Theorem I. Let da be the subset of δx where Piβli^PklMh (i^k).
Then the limits

z ± = lim 8-*8U
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exist for all z ζdu and deβne the mappings ω £: z ~> z J from dx into Γ with
the following properties:

(a) ω J is one-to-one and preserves measurability and measure. In par-
ticular', the ranges ρ J of ω^ are measurable.

(b) Sfω£z = OJ^S^Z for all t and all z ζda. Hence ρ j is invariant
under the group Sf.

(c) For any ψa ζ Dα we have almost everyivhere

± j ψ [ ( ω ± ) - i z ] i f z ί ρ f

ivJto = { o if zUf
dx) — 0). Hence(Note that

Proof. We have

with

U

where the Bf are defined by (6) for each fragmet Fk} and where

ίi~M>i (i + fc)
By the inequalities used in the proof of theorem 1 one then finds that,
for each m, there exists a finite time T(m) such that, on d™, ω^ coin-
cides with the canonical transformation

The rest of the proof is obvious.
Instead of theorem 2 we have, with the same proof,
Theorem II.

ρί ^ Qt = emPty tf x^ β

The definition of 34?', Ω^ and S is parallelled by the following con-
struction: we have 2tf" — L2(Γr), where

Γ = {(z, α) : 2 6 δα}

is the disjoint union of the sets όα, fitted with topology and measure
already defined for its components. Just as 3tf" cannot be viewed as
a subspace of Jf, Γ' is not a subset of Γ since in Γ the sets <5α overlap.
We call / " the "phase-space of asymptotes", since each element
(z, α) ζ V defines an "asymptote" {S^z} representing a motion of non-
interacting bound fragments. We then define the mapping ω^ from Γr

into Γ by
ω±(z, α) = ω^z

its domain being the disjoint union of the domains dΛi and its range
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Again, ω^ is one-to-one, measure preserving, and induces Ω^ by

>±)-iz] if zξiρ
±

0 if z ^ ρ ±

(a.e.) for any Φ ζ L2(Γf), Since 2 ^ = L^iρ^), theorem 3 noΛv reads:

Theorem III. / ί ( Γ - ρ ± ) = 0.

Finally, we consider the mapping

s = (ω+)~ιω~~

from V into JΓ'. Its domain and range are (ω )~λ{ρ+ r\ ρ~) and

(ω+)~1(ρ+ Γ\ ρ~), respectively, and for any z ζ (ρ+ Γ\ ρ~), s maps the

asymptote of the trajectory {Stz} for t -> — oo onto the asymptote for

t-> + °° Furthermore, 5 is one-to-one and measure-preserving, and by

virtue of theorem III, both the domain and the range of s have com-

plements of measure zero in Γ'. In terms of s, the ^-operator is given by

for almost all (z, α) ζ Γ".

Remark: If (33) holds for all fragments of the system we modify

the definition of da by taking

where now
d™ = Γ™ ® int J5f ® ® int J5»*.

This <iα then differs from the previous one only by a set of measure zero,

and all the statements of this section remain valid. In addition, however,

da, ρ^> and the domains and ranges of ω j , ω f and 5 are now open and

the mappings ω j , ω± and s are canonical.
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