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Abstraet. In the Hilbert-space version of classical mechanics, scattering
theory for N-particle systems is developed in close analogy to the quantum case.
Asymptotic completeness is proved for forces of finite range. Infinite-range forces
lead to the problem of stability of bound states and can be dealt with only in some
simple cases.

1. Introduction

For obvious reasons, collision phenomena have been studied mostly
in the framework of quantum mechanics. Our aim is to show that the
concepts and even some mathematical methods of the quantum theory
of scattering are equally applicable to classical N-particle systems [1].

To make the analogy as close as possible, we work with the Hilbert-
space formulation of classical mechanics. Using a suitable definition of
bound states, time-dependent scattering theory is then simply copied
from the quantum case. For forces of finite range, it is shown that bound
states and scattering states span the entire Hilbert-space (asymptotic
completeness), which implies that the S-matrix is unitary.

Compared with the quantum case, the restricions we put on the
(two-body-)forces are much more severe. This is inevitable since already
the existence of solutions to the equations of motion is established only
for a smaller class of interactions. And in scattering theory again, we
have to impose stronger conditions on the behaviour of the forces at
infinity: in general we can construct scattering states (or the wave-
operators) only if the forces are strictly zero beyond a finite range. The
obstacle here is the lack of information on the stability of multiparticle
bound states. In some cases where this problem does not arise or can be
handled (i.e. for the channels in which only free particles or two-body
bound states are present for {-> + oo), infinite-range force decreasing
faster than the Coulomb-force are admitted.
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discussions with D. RurLLE and O. E. LANFORD.
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2. General Remarks on Dynamies

We consider a system of N particles interacting via two-body forces,
characterized by the Hamiltonian
N o

H=)] 1:;1‘?21717» —a) =Hy+ V.

1=1 1<k

Its states are taken as elements of the Hilbert-space # = L2(I),
I' = phase space. The evolution in time of a state y is then to be deter-
mined from the equation of motion
dw
={H yy=1Ly,

where { , } is the Poisson-bracket, defining the Liouville-operator L.
Explicitly,

L=1Ly+ Ly,
F 2 (1)
=“_2 TE ’LV*E,Ggdefk(a—p‘"a—pk)'

If the forces are locally square-integrable, L, and Ly are well-defined
and skew-symmetric on the dense domain C3 (I"). Ttis less trivial to decide
whether L has a (preferably unique) skew-adjoint extension which then
generates a one-parameter unitary group describing the dynamics of the
system. The analogous question in quantum mechanics has a positive
answer for a large class of interactions, for example if (the operator) V is
relatively small with respect to H, (ie. if |Vy| < a |Hy| + b|y| for
some a < 1, b < oo and all y € D(H,). Then Hy+ V is selfadjoint [2]).
This kind of argument fails in the classical case, since Ly cannot possibly
be estimated in terms of L, regardless of how wellbehaved V ist. To
define the dynamics of the system, we better start from the canonical

equations

oH
R; = Sika—zk, (2)

where (2;...255) = (%1 ... 2%y, Py - . - py) and where ¢ is the matrix of
the transformation (z;, p;) — (p;, —;). Throughout this paper we shall
assume that the potentials satisfy the following conditions:

(A) V,;(x) is a continuous function R3— [b, + cc] with b > — co.

(B) For any W < oo, V() is twice continuously differentiable, with
uniformly bounded derivatives, in the region {z: V,;(x) < W}.

The phase space of the system is then the open subset

I'={z:H(z) < o}

! This is also the reason why the resolvent equations, which form the basis
of time-independent scattering theory in quantum mechanics, are not likely to be
useful in the classical case.
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of R%¥ and the right-hand side of (2) is uniformly Lipshitz (in the sense
of the Euclidean norm on R¥) in any region of bounded energy. Since
energy is conserved, we conclude that (2) has a unique global solution
z(t, z,) for any initial value z, ¢ I'. Furthermore, z(¢, z,) is once con-
tinuously differentiable with respect to z, and the derivatives satisfy the

familiar exponential estimate
dz

zo

< eKltl (3)

where the left-hand side is the norm of the matrix 9z,/0z,;, considered
as an operator on the Euclidean space R®Y, and where K is a Lipshitz-
constant for the region {z: H (z) < H (z,) + 1}. In fact, the mappings

Stizg—>z(t,2), —oo<t<+ o0

form a one-parameter group of canonical transformations of I" onto I,
which in turn induces a strongly continuous unitary group exp(Lt) on

L) by (eFt ) () = p(S*2)

The Liouville-operator L is now defined as the generator of this group.
Then we have

Lemma 1. (a) C3(I) is invariant under the group eL?.

(b) CYI")C D(L) and on CY(I"), L is given by (1).

(¢c) For any p ¢ OY(I") there exists a constant K < oo such that

leftylp = 1 ylp, 4)

where, for any @ ¢ O (1), we define
op |2
A

We remark that, by (a), (b) and by a lemma due to NELsoN [3], we
can now give an affirmative answer to the original problem: if (A, B) are
satisfied, then L is the closure of the operator defined by (1) on C§(I").
NELsoN’s lemma: on a Banach-space X, let P! be a strongly continuous
semigroup with generator 4. Then EC D(A), E = X and P*E C E for all
t > 0 imply that 4 is the closure of its restriction to £.

For the rest of this paper we adopt the following conventions: first,
we fix the CM (= center-of-mass) of the N-particle system, so that I"
reduces to the invariant subset characterized by

N N
2 may=0, 3} p;=0,

i=1 i=1
which will again be denoted by I'. This requires no changes in the
foregoing analysis. Secondly, we assume the potentials to be bounded.
This is not a real restriction, since we can always confine the discussion
to states of bounded energy. On the other hand, we then have I"'= R ¥ =1,
independent of V, which simplifies the notation.

lel :i;
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3. Bound States and Scattering States

Clearly, the concept of bound states must be linked to boundedness
of orbits in configuration space {(z,...xy): 2 m;x, = 0}. To describe
this, any norm in this space may serve. We choose

N = (g Zmat) )
and define: _
N (z) = sup N (Stz),
—00 <<+ 00 (6)

Br={::N@E)=n}, n=12...

Since N (Stz) is continuous in 2z, B” is closed, therefore
B:nl=JlB":{z:N(z) < oo}

is measurable. The bound states are now defined as the elements of
HB=I2(B)CH .

The elements of the spaces L?(B") are called compact bound states. They
are dense in 8 since B = U B* and B*C B™ for n = m implies

L2(B)= U L*(B").

It is clear that B” and B are invariant under the group S¢, hence L?(B")
and L?(B) are invariant under exp(Lt). In contrast to quantum me-
chanics, however, the part of L in #F generally has a continuous spec-
trum (already in the case N = 2), but this is of no consequence in the
following?.

We now use the terminology of the quantum theory of scattering [5]
to define scattering states. A ‘‘channel”, «, is a partition of the set of
particles (1...N) into subsets F,...F, (called the “fragments” in
channel &), subject to the condition that each F'), is either a single particle
or a composite subsystem possessing nontrivial bound states. The
“channel Hamiltonian” H, is obtained from H by dropping all inter-
actions between different fragments, it generates a Liouville-operator L,.
A motion of non-interacting, bound fragments is then described by
exp (L) p,, with

Val(2) = $(Xy ... X Py P”)k]]1 P (zn) » (7)

2 In fact, one should define quantum mechanical bound states similarly by a
suitable condition of “boundedness” in configuration space. For nonrelativistic
multiparticle systems, the discreteness of the spectrum of H in 2 is then a con-
sequence of the special form of H [4], but this need not be so in other theories.
20 Commun, math. Phys., Vol. 8
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where X, = coordinates of the CM of F,, P, = total momentum of
F,, z;, = coordinates and momenta of the particles forming I, (in the
CM-system of F), ¢ € L*([,) where I', is the phase space of # particles
with masses M, ... M, (M, = mass of F}) with fixed CM, and ¢, € S#F
= space of bound states of the (isolated) system F,. We define ¢ = 1 if
n=1and ¢, =1if I is a single particle. The states y, span a subspace
D, A which may be written as

D,=1L%J,), b6.,=1,9B,® - ®B,,

where By, is the bound-state region in the phase space of F;. Since 4§, is
invariant under the group 8% generated by H,, D, is invariant under
exp (L,t). In fact, for a state y, of type (7) we have
n

(@) () = ¢ (K=t Xt P P) I ) (), (8)
where [;, = Liouville-operator describing the internal motion of . An
ingoing or outgoing scattering state y¥ in channel « is defined by the
requirement that exp (L) y} — exp(Lqt) p,as t - F oo, with y, € D,. To
assert the existence of scattering states, we now assume

(C) There exists a < oo such that V,;;(z) = 0 if |z| > «.

Then we have

Theorem 1. Under the hypothesis (A, B, C),

Ve = Jm et elat p,
extists for all p, € D,.

Corollary. The mappings QF :y,—yT (“wave-operators”) are iso-
metric from D, into J# and satisfy

elt QF — QF plat

Hence the ranges RE of QF reduce the group exp (Lt) and the parts of L
in R¥ are unitarily equivalent to the part of L, in D,.

Proof. It suffices to prove convergence on a dense set in D,. Such a set
is spanned by the states of type (7) with the additional properties

a) ¢(X;...X,, P,...P)=F(X;...X,) G(P,...P,),with Fand
G of compact support, and supp G such that it does not intersect the

lanes

! Tr=Thish,

b) ¢, = compact bound state of F.
Then there exist constants R < oo, ¢ > 0, depending on F, G, ¢ . . . ¢,
such that z € supp exp (L,t) p, implies

Pi PL
Xi—a| = R, 9)
lP; P;




The S-Matrix in Classical Mechanics 287

for all 4 == k, where j is any particle in F';. Let I be a particle in F;, k == <.
Then (9) implies
|w;—ay = ot — 3R, (10)

hence supp exp(L,f) p,C{z: H(z) = H,(2)} for |{| = T = (a + 3R)/o.
Consequently,
elat = PUT D LT g
for 4t = T, which shows that the limits wf exist trivially, in the sense
that they are already attained at the finite times + 7.
The second ingredient for the construction of the S-matrix is the
orthogonality of scattering states in different channels:
Theorem 2. If the assertion of theorem 1 holds, then
RE L RF  (x+p).
Proof. Tt is enough to show that
Jim (6T, %! ) = O (1)
for o == f and for y,(ys) in the dense subset of D, (Dg) used in the proof
of theorem 1. Now o == § implies that there are two particles 4, ! which

belong to the same fragment in one channel (say «) but to different ones
in the other. The inequalities (9) (10) then show that

o, — x| < 2R if  z¢suppelely,,
lv;— x| = o || — 3R if  z¢suppelply,.
Therefore, the two supports do not intersect for |t| > 5R/g, which
proves (11).
By theorems 1 and 2 we can now construct the S-matrix as in quan-
tum mechanics [5]. We introduce

H'=EPD,,

which in general cannot be viewed as a subspace of 52, since as subspaces
of o the D, are not mutually orthogonal. Then we define two operators
0* from A into # by

QEP =3 0%y,

where v, is the component in D, of ¥ € #'. By virtue of theorems 1
and 2, Q% is isometric, with range

R*— (P RE.

The adjoint 2+* then maps 5 onto S’ (On R*, Q+* is the inverse of
0%, while it annihilates (R*)1), and the S-operator is defined as an
operator on ' by

S = Q+x0Q-,

20*
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8§ is unitary if and only if Rt — R- (12)

and then has the following interpretation: given any @ = {gp,} € #,
there exists a state p € B~(namely p = 2~ @) such that

ity > X elal g, (t—— ) (13)

in the sense of the norm. By (12), we also have y € B+, hence there exists
a state ¥ = {y,} € A’ (namely ¥ = Q+*yp) such that

elty > M elaly, (t— + ), (14)

and the relation between the asymptotic behaviour in the past and the
asymptotic behaviour in the future is precisely given by S:

Y=80.
In the next section we shall prove not only (12) but
Rt=R-= (15)
(Asymptotic completeness), which says that for any p € #, exp(Lt) p
has the asymptotic behaviour (13) and (14) for ¢ — F co.

4. Asymptotic Completeness

If the N-particle system possesses bound states, there is a channel
o = 0 = trivial partition into one fragment, for which D, = RFf = #°5.
So far there was no reason to treat this channel differently, but from
now on we shall distinguish between bound states € #Z and scattering
states (in the proper sense) ¢ S*, where

S% D RE.
=0
The assertion (15) then takes the following form:
Theorem 3. If the potentials satisfy (4, B, C), then
HB@ S+ =0 . (16)

In the remainder of this section, we shall prove (16) for S*; the
statement for S~ then follows by time-inversion. Proceeding by induction
in N, we assume N = 2 and that (16) holds for all systems with less than
N particles, which is obvious for NV = 2.

First, we reformulate the induction hypothesis. Let D label all parti-
tions (O}, Cy) of (1...N) into two non-empty subsets Cp, 0y, and let
Hp = H minus all interactions linking C; and C,, and Lp = Liouville
operator generated by Hj. Since each of the subsystems C; and C, is
asymptotically complete, the same is true for the composite system
(Cy, Oy) characterized by H ;. This means that, for any v € 5, exp (Lpt)yp
behaves for ¢ — + oo like a motion of non-interacting fragments of the
system H p, in the sense of (14) Since these fragments are also fragments
of the fully interacting system characterized by H, we have.
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Lemma 2. Let p* € # and suppose that there exist states @, € A such
that, in the sense of the norm,

elty” = Y el
D
as t — + co. Then p* € 8*.

Given any y € 2, we shall first use this lemma to split off a scat-
tering state p* from y and then prove that the remainder (yp — ™) is
a bound state.

For any D = (Cy, Cy) we define

opl?) = min o —a, (17)
Ap={2:0p(S'2) = afor 0 =t < oo},

where a is the upper bound on the range of the forces. 4 is closed and
“absorbing”, ie. S*Ap,C 4, for all ¢ > 0, and represents a region in
phase space where the system is and remains separated into the two
non-interacting subsystems €, Cy,. The set of all z whose trajectories
{Stz} will reach one of these regions A4; in the future is

ot= U 8-tA, with A:%AD.

0=i<o

Since A4 is absorbing, we have

StACShA i = t,, (18)
hence we can write ¢ as a countable union
o = U S-n4 (19)
n=0,1,2...

which shows that ¢ is measurable, since A4 is closed. In view of lemma 2
and of the significance of 4 we now expect

Lemma 3. For any vy € o, let w* be the part of y on o (i.e. the product
of v with the characteristic function of o). Then p* ¢ S*.
Proof. Defining y,, = part of v on §-74, we have
lim iy, — " =0
n-—>0o

by (18), (19) and the dominated convergence theorem. Since S is closed,
it therefore suffices to prove w, € 8™ for all n. By definition of v,
supp exp (Ln) p, C 4, hence we can write

eLan = 2 ®p
D
with supp ¢pC Ap, which by the properties of 47 implies

6“% = 3 elot—m *p
D

for ¢ = n. Hence v, satisfies the hypothesis of lemma 2, which asserts
that v, € S™.
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It remains to prove y — ¢* € #°B. To prepare this, we first note that
the bound states can be characterized by their behaviour for ¢ > 0 only:

Lemma 4 [6]:

Let N*(z) = sup N(St2)and B" = {z: N*(2) < «}. Then (B* — B)

0=t <o

s of measure zero, hence HB — [2(BY).

Proof. Let C be any compact C I" and
o*F = S-iC .

T 0sdt<w
C#* is compact and

SiC+= N 8¢

—t=T <

is shrinking as ¢ increases (i.e. S"CTC S:C* if t, < t,), but of constant
measure p(C"). Therefore

p@ = (M 8570 =p (L A 5710)=p0"nCD), 20)

i.e. almost all trajectories {S?z} which stay in C for ¢ > 0 also stay there
for ¢t < 0 (“capture is a process of zero probability’’). We now apply this
to the sequence of compacts

Co={:N@e =n, Hk=n},
n=1,2,...Then we have, by (20)

plOF —(CFnO)1=0

and also, by the definition of B and BT,

B+=‘;;|O;f, Bzg(ijO;[).
Therefore,

BT —BC U[C —(C; nCy)]

is of measure zero.

By lemma 4 it now suffices to prove  — »* € L2(B") or, in terms of
phase space, that the complement of ¢* is contained in B*. This is
achieved by

Lemma 5. For any z, € I there exists C C I such that

(a‘) 20 E 07

(b) the projection of C onto configuration space is compact,

() if the trajectory {Stzy} leaves C as ¢ increases, it reaches A.

By (c) and by the definition of o, z, ¢ 0" implies Stz, ¢ C for all
t > 0, hence z, € B* by (b).

Proof. To construct C, we define for any D = (C;, C,)

dp(z) = distance between the CM of C; and the CM of C,, in the state z,

d(z) = max dp (),

and we shall call a decomposition D maximal (for a given 2) if d (2) = d (2).
With gy, defined by (17) we then have
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Proposition 1. There exists a constant A depending only on the masses,
with 0 < 2 <1, such that dj(z) = Ad(z) implies op(z) = (1— 1) d(2).
The proof will be given at the end of this section. The set ' of lemma 5

is now defined by O fo:(1—2)d() = a),

where a is again an upper bound on the range of the forces, but chosen
so large that (1 — 1) d(2,) = a. (a) is then satisfied by construction. For
(b), consider the decomposition D = (C, C,) where C; consists of particle ¢
only. Then it is evident that z € ¢' implies

| < dp(z) = d(2) = a(l— )7

for all ¢, which proves (b). The proof of (c) is obtained in several steps
(propositions 2—4 below), based on proposition 1 and on the fact that
the distance between two freely moving particles is a convex function
of ¢ (f(t) is called convex in the interval » < ¢ < s if, in any subinterval
ty = t = ty, f(¢) = lincar interpolation of f(t) between ¢, and t,). We study
the functions d(f) and d(t) along the trajectory {Stzy}:

Proposition 2. There exists a constant v < oo, independent of D and t,
such that

()] = v (21)

and therefore, for all t, t,,

[d(t) — d(to)] < v |t —t, .

Proof. Let M;, M, be the masses of the subsystems (}, C, in the
decomposition D. Then

MM,
gv(M:;—A]V‘z)A d1 § T g H(ZO) — b s
where 7' is the kinetic energy and b a lower bound on V(z ...zy).
Hence (21) is satisfied for
2M 1/2
= [m”—(M_:ﬂ (H (o) — b)] ,
with M = total mass of the system, m = smallest particle-mass.
Proposition 3. d(t) is convex in any interval I:r <t < s in which
(1 —2)d@) = a.
Corollary. d(t) = left derivative of d(t) exists for r <t = s, is non-
decreasing as t increases, and satisfies d(t) = v.
Proof. Let t, €I and let D be maximal at time ¢,. Then, by pro-
ition 2 -
POSTHOR 2, dp(t) —d(t) = a—2v |t — 1, = 0
for |l —t,| < ¢ = a/2v. In the interval

INt,—e ty+ €] (22)
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we then have gj(f) = a, by proposition 1, i.e. no interaction between
C, and C,, which implies that dp(t) is convex. Therefore, for any ¢, € I,
there exists an interval (22) in which d(¢) is bounded below by a convex
function taking the same value at ¢ = #,. Since ¢ is independent of £, it
follows that d(t) is convex in I.

We now assume that the trajectory {Stz,} leaves C as ¢ increases and
prove that it reaches A. By assumption,

A—2Adt) >a (23)

for some ¢, > 0 and also d (t;) > 0, since otherwise the inequality (23)
would persist, by convexity, for all f<¢, in contradictionto
(1 —2) d(0) = a. Therefore d(f) is convex and strictly increasing for all
t = t;, which implies

(1—2)la<dlt)—> o

and also, by the corollary of proposition 3,
d(t) > d () = v, (24)

d@ = deo)
for ¢ < t— .

Proposition 4. Let t, = t, be so large that d(ty) > A d(cc), and let D
be maximal at time ty. Then op(t) > a for all t = &, t.e. Stz € 4.

Proof. Assume the contrary, i.e. op(f) = a for some ¢ > £,. Then, by
proposition 1, dj,(¢) < A d(¢). Let £, be the smallest time = ¢, for which
dp(ts) = Ad(t;). Then

dp(ts) = 2d(ty) (25)
since dj(f) = Ad(t) for t, =t < t,. For the same reason, o5 (t) = @ in
this interval, by proposition 1, so that dp(¢) is convex and therefore

dp(ty) = dp(ty) . (26)

Finally, since D is maximal at time t,, we have d(t,) = dp(t;) and
d(t) = dp(t) for ¢ < t,, which implies

dity) < dp(ty) . (27)

in contradiction to (24).

Proof of Proposition 1. We consider a fixed configuration (a; . .. zy)
and a partition D = (C;, C,). Notation: M, = mass of 0;, M = total mass
of the system, m = smallest particle-mass, S; = CM of C,.
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In R® we choose a &-axis with origin §; and with the positive part
through S,. Let & be the &-coordinate of a particle of mass m; belonging
to O;. We now consider the decomposition D’ = (Cy, C3) obtained from
D by transferring this particle from C) to C,. The &-coordinates of the
CM 8; of C} are then

Si —&my (M —my) ™
Syt (dp My + & mg) (My + my) =,
and from dist (87, S3) = d we obtain

d = dpMy(My+ my)= 4 Emy M [(My — my) (My + my)]-1,
or
£, = (My— my) (M, + my) (my M)y [d— My(My + my)1dy] . (28)

Note that this also holds if C; consists of only one particle (then & =0
and M, = m,;) in spite of the fact that the derivation does not. Similarly,
considering a particle of mass m, belonging to C,, we obtain for its
&-coordinate :

&y = dp — (My—my) (M + my) (my M)=1 [d— M, (M 4 my)~1dp] . (29)

In particular, (28) and (29) hold for the two particles with distance gp,
hence we obtain

op=&—6&
= — d(mymy M) [my (M, + my) (My— my,)
+ my (Mo + my) (My— my)]
+ dp{l + (mymyM)=1 [my My (My— my) + my My (My — my)]} .

Dividing by {...}, one finds after some manipulations and by using
{. . } =>1:
dp = op+ dafo+ my+ my) 7t
with
o= my H(My— my) (My + my) + my* (My—my) (My+ my) .

Since a + b = M implies ab < M?/4, we have oo < M2/2m and therefore

oc(or + my + my)~t < M2(M2 + 4m?)-1,
which yields
dp < op + dM2(M? + 4m?)-1.

This proves the assertion of proposition 1 for
A= (M?+ 2m?) (M2 + 4m?)~1.

Remark: The proof actually shows that dj = Ad implies not only
op= (1—24)d but

ein (Gi—&) = (1—Ad,
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i.c. that there exist two parallel planes (orthogonal to the &-axis) with
distance = (1 — A) d which both separate €, and C,. This shows, for
example, that the convexity argument also works for repulsive forces of
infinite range.

5. Infinite-range Forces

Let us attempt to prove the existence of scattering states as in quan-
tum mechanies [7]. Differentiating exp (— Lt) exp(L,t) y, with respect
to t and integrating again from 0 to ¢ we formally obtain

t
e~ Lt oly? Yo == waﬂgfdre_lﬁ (L_Loc) eL“de’ (30)
with
LTI, — Y grad V 9 _ a) 31
— L, =3 gra ”V(a]—)z ) (31)

where the sum is restricted to the pairs linking different fragments of
channel «. One then tries to prove the convergence of the left-hand side
of (30) (for a dense set of states y, € D,) by showing that the integral
on the right converges absolutely for ¢ = - «, i.e. that

;}]}u WL — L) cPatap,)) < oo . (32)

Recalling (31) and the explicit form (8) of exp(L.t) y, we see that we
need a dense set of differentiable bound states for each fragment (dense
in #°B). But such a set exists only if the boundary (B —int B) of B is
of measure zero. Actually we shall assume slightly more, namely that

p(B—Uint BY) = 0. (33)

Technically, this means that we can approximate bound states by smooth,
compact bound states. Physically, (33) is a stability assumption, for
z € Uint B® means that there exists #» <co and & >0 such that
N() = nif |2/ —z| < e, i.e. that, for sufficiently small perturbations of
the initial data z, all perturbed orbits stay in some compact of configura-
tion space. (33) then requires that almost all bounded orbits are stable
in this sense. Whether this is true or not seems at present to be open.

We now take y, of the same form as in the proof of theorem 1, but
with the additional property that F, G, ¢, . .. ¢, are once continuously
differentiable. By (33), these states still span a dense set in D,, and the
formal derivation of (30) is justified by lemma 1. In order to estimate the
integrand in (32), we express the differential operators in (31) as linear
combinations of 9/0 P;, and 0/dm,;, where P, = total momentum of the
fragment F, 77;, = internal momenta in /', and define

fin(r) = sup |grad V()| .

Jol =7
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There are two essentially different types of contributions to the inte-
grand in (32):
a) Contribution from gradV,; 0/0 P;

t oF P P,
igradV,-k[ g (Bt X, ) 6Py Py
P P, oG ”
FE (Gt X t) g (Pa . P IT ) )
= const. (1 + [t]) f;z (o [t] —3R),
which is integrable over — co << ¢ << + oo if
[dr(1+7) fir(r) <co, (34)
0

i.e. if the forces decrease faster than the Coulomb force at infinity.

b) Contribution from gradV,, 0/dn;

Pl P,
o Xyt t)G(Pl...Pn)

lgrad V,, F (x,—1

|b
o 1 0 .
ot 0s) ) IT (@) (1) = comst fonlo [l —3R) |2 rp
7 F+i 1 97
Since, in general, we only have the exponential estimate (4) for the last
norm and since ¢ is arbitrarily small, we need

[dre*nf, . (r) <o  forany «>0
0

in order to assert that the contribution of this term to the integral (32)
is finite. Note, however, that if a linear estimate
.

o e,
is available, then again condition (34) is sufficient.

Having exhibited the difficulties arising from infinite-range forces,
we now discuss some simple cases in which these problems do not occur
or can be handled:

= const. (1 + |¢]) (35)

1. No composite fragments

For the channel « = decomposition of (1...XN) into N single par-
ticles, no information on bound states is needed and the wave operators
QF exist as strong limits on D, if only (34) is satisfied. In particular,
this suffices for NV = 2, and for arbitrary N if the forces are repulsive.
(To see that no bound states exist for repulsive forces, note that
N () = N (Stz) as defined by (5) satisfies

) =2T—2 (w;,—ax,) gradV;, = 2T =0,

1<k
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T being the kinetic energy. Hence N2(¢) is convex and therefore bounded
only if it is constant, which implies 7' = 0. Consequently, B is con-
tained in the null-set p; = py = -+ - = py = 0.)

2. Fragments consisting of two particles

For two-particle systems with a spherically symmetric potential, (33)
is easily verified and (35) can be proved as indicated below. In the case
of central forces (34) is therefore sufficient to assert the existence of
Q% for all channels in which only single particles and (or) two-body
bound states are present as f{-— -+ co. In particular, this should allow
a complete scattering theory for the case N = 3 with central forces
decreasing faster than the Coulomb force.

For simplicity, we shall sketch the proof of (35) for N =2 in one
dimension only, but the same argument also works in the 3-dimensional
case after separation of variables. In addition to (4, B) we assume that
V(x) takes only a finite number of values F;...E, on the set
{w:dV|dx(x) = 0}. Let O be the (open) part of B in the complement of
the energy-shells S, = {2: H(z) = E,}, n = 1...r. For each z € O, the
motion Sz is periodic with a period

b(z)
T(z)= [ ds[2u(H(z)— V(s)]¥*,
a(z)
(u = reduced mass, a, b = turning points) which is once continuously
differentiable with respect to z (but may diverge as z approaches one of
the energy-shells S,,). Therefore we can apply

Lemma 6. Let OC T be open and suppose that there exists a function
T (z) > 0 and once continously differentiable on O such that

ST@ 2=z

for all z € 0. Then, for any compact C C O, there exists a constant k(C) < co
such that (matriz norm)

d
¢
Iszz

= k(C) (1 + [¢])
forall z € C.

As a consequence, we see that (35) is satisfied in our 1-dimensional
example for the set C}(0) of compact bound states which is dense in #°5,
Proof. Differentiating
Stz = StETE;
with respect to z and using the equations of motion we obtain
oH orT
Ay () = Ay (£ T) & e, (£ T) 35—

7
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where A4,;(t) = 0(Stz),/0z;. Since C is compact, there exist constants
b; ... b, such that, umformly inz€dC,

(t) =< by <o forallé, (36)

! |
dz |

|
0<by< T() =< b, <o,

Wi
iT

T (37)

hence
[A@®)] = [A@E+T)] + byb,, (38)

where | | denotes the Euclidean norm in (36), (37) and the corresponding
matrix-norm in (38). For ¢t < 0 we iterate the appropriate inequality (38)
ntimes until [t = n 7| = T. Then |n| < |t|/byand |4 (¢ & nT)| < exp(Kb,)
by (3), hence we obtain the desired result:

A®)] < ko B0 (39)
3
Note that b, =0 if T(2) = constant (harmonic oscillator), then (39)
reduces to a ¢-independent estimate.

So far, we have discussed the problem of extending theorem 1 to
infinite-range forces. If this is possible, then the S-matrix can be con-
structed as before, since theorem 2 is of a purely kinematical nature
(no assumptions on the forces are needed in its proof). However, the
proof of asymptotic completeness was again based strongly on the finite
range of the forces, and we do not know at present if theorem 3 holds
in the cases where theorem 1 can be proved. An exception is the case
N = 2, where it is sufficient to require that the forces and their first
derivatives vanish with a higher power of 1/r for  — co than the corre-
sponding expressions for the Coulomb force.

6. Scattering in Terms of Phase-Space

Our description of collisions in terms of 5 = L?(I") was motivated
by the analogy to quantum mechanics, but everything can of course be
transcribed into the language of phase-space. In particular, we expect
that the wave-operators and the S-operator are induced by transforma-
tions in phase-space, just as exp (L¢) was induced by St We shall sketch
this briefly for the case of finite-range forces.

Instead of theorem 1 we have, in the notation of section 3:
Theorem I. Let d, be the subset of 8, where P;|M ;<= Py/M, (¢= k).

Then the limits
2= lLim S-tSiz

t— oo
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exist for all z € d,, and define the mappings oF: z — z¥ from d,, into I with
the following properties:

(a) w¥ is one-to-one and preserves measurability and measure. In par-
ticular, the ranges o of w¥ are measurable.

() Stwfz= Sz for all t and all z Cd,. Hence of is invariant
under the group St.

(c) For any v, € D, we have almost everywhere

ity P08 1 e

0 it zdoF
(Note that 1 (6,— d,) = 0). Hence
RE = I2(g¥) .
Proof. We have
d, = U dm
i =1,2,...

with

dn =1"@ Br® -+ ® B,
where the B% are defined by (6) for each fragmet Iy, and where

P, P 1.
TZC”:{(XI . .X,,,P] . P”)ijl/[?—ﬂz— >%‘ (Z:f:k)}
By the inequalities used in the proof of theorem 1 one then finds that,
for each m, there exists a finite time 7'(m) such that, on d”, w¥ coin-

%
cides with the canonical transformation
S-1T (m) Sz‘(m) .

The rest of the proof is obvious.
Instead of theorem 2 we have, with the same proof,
Theorem 1I.

0F N oF = emply if a f.
The definition of #’, 2% and S is parallelled by the following con-
struction: we have s#’ = L2(I"'), where

I" = {(z, ) : 2 € 0}

is the disjoint union of the sets J,, fitted with topology and measure
already defined for its components. Just as H#’ cannot be viewed as
a subspace of #, I"' is not a subset of I” since in I” the sets §, overlap.
We call I the “phase-space of asymptotes”, since each element
(2, o) € I defines an “asymptote” {S%z} representing a motion of non-
interacting bound fragments. We then define the mapping w* from I"
into I" by

0*(z, ) = wFz
its domain being the disjoint union of the domains d,, and its range

o= =Uor.
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+

Again, w® is one-to-one, measure preserving, and induces Q% by

D(wF)-1z] if zCp*

* _

(@ @)(z)_{ 0 itz o*

(a.e.) for any @ ¢ L2(I"). Since R* = L2(p*), theorem 3 now reads:
Theorem III. w('—0%)=0.

Finally, we consider the mapping
s= (wF)tw"
from [" into I”. Its domain and range are (w ) (o™ Nno ) and
(w*)2(o" N @), respectively, and for any z € (0" N ), s maps the
asymptote of the trajectory {S!z} for ¢ - — oo onto the asymptote for
t — -+ co. Furthermore, s is one-to-one and measure-preserving, and by
virtue of theorem III, both the domain and the range of s have com-
plements of measure zero in I". In terms of s, the S-operator is given by
(S®) (2, ) = @[Snl(% )]

for almost all (z, ) € I".

Remark: If (33) holds for all fragments of the system we modify
the definition of d, by taking

d, =

o

ay,
m=1,2,...
d?—=I"@int B @ -+ - @ int B .
This d, then differs from the previous one only by a set of measure zero,
and all the statements of this section remain valid. In addition, however,
dy 0, and the domains and ranges of w¥, w® and s are now open and

the mappings w¥, o* and s are canonical.

where now
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