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Abstract. Let Lnð3Þ be the ð2nþ 1Þ-dimensional standard lens space mod 3 and let

n denote the normal bundle associated to an immersion of Lnð3Þ in the Euclidean

ð4nþ 3Þ-space. In this paper we obtain a theorem on stable unextendibility of R-vector

bundles over Lnð3Þ improving some results in [5] and [6], and study relations between

stable extendibility and span of vector bundles over Lnð3Þ. Furtheremore, we prove

that cn is extendible to Lmð3Þ for every m > n if and only if 0a na 5, and prove that

cðnn nÞ is extendible to Lmð3Þ for every m > n if and only if 0a na 13 or n ¼ 15,

where c stands for the complexification and n denotes the tensor product.

1. Introduction

Let ðX ;AÞ be a pair of spaces. A t-dimensional F -vector bundle z over A

is said to be extendible (respectively stably extendible) to X if and only if there

is a t-dimensional F -vector bundle over X whose restriction to A is equivalent

(respectively stably equivalent) to z, where F is either the real number field R or

the complex number field C (cf. [9] and [2]).

Let hn be the canonical C-line bundle over the mod 3 standard lens space

Lnð3Þ of dimension 2nþ 1, and rhn its real restriction.

For positive integers l and t, define an integer Sðt; lÞ as follows.

Sðt; lÞ ¼ minf j j bt=2c < j and bt=2cþlCj 2 0 mod 3g;

where bxc denotes the largest integer s with sa x, and kCr denotes the

binomial coe‰cient k!=ðr!ðk � rÞ!Þ. Clearly, bt=2c < Sðt; lÞa bt=2c þ l. We

obtain

Theorem 1. Let l, n and t be positive integers with bt=2c þ l < 3bn=2c and

let z be a t-dimensional R-vector bundle over Lnð3Þ which is stably equivalent to
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ðbt=2c þ lÞrhn. Then n < 2Sðt; lÞ and z is not stably extendible to Lmð3Þ for

any mb 2Sðt; lÞ.

For an F -vector bundle z, spanF z stands for the maximum number of

linearly independent cross-sections of z, where F is R or C. Let n, h and t be

positive integers with t < 2h. Consider the condition

Cðm; a; cÞ : spanRfða3bn=2c þ hÞrhm l cgb 2ða3bn=2c þ hÞ � tþ c

for some integer m with m > n and some non-negative integers a and c, where

l denotes the Whitney sum.

For R-vector bundles over Lnð3Þ, we have

Theorem 2. Let n, h and t be positive integers, and let z be a t-dimensional

R-vector bundle over Lnð3Þ which is stably equivalent to hrhn.

(i) Suppose that tb 2h. Then z is stably extendible to Lmð3Þ for every

m > n.

(ii) Suppose that t < 2h. Then, for any m > n, z is stably extendible to

Lmð3Þ if and only if the condition Cðm; a; cÞ holds for some non-negative integers

a and c.

Let n and t be positive integers, let h and k be non-negative integers with

t < hþ k. Consider the condition

Cðm; a; b; cÞ : spanCfða3bn=2c þ hÞhm l ðb3bn=2c þ kÞh2m l cg

b a3bn=2c þ hþ b3bn=2c þ k � tþ c

for some integer m with m > n and some non-negative integers a, b and c,

where h2m denotes the tensor product hm n hm.

For C-vector bundles over Lnð3Þ, we have

Theorem 3. Let n and t be positive integers, let h and k be non-negative

integers, and let z be a t-dimensional C-vector bundle over Lnð3Þ which is stably

equivalent to hhn l kh2n . Then

(i) Suppose tb hþ k. Then z is stably extendible to Lmð3Þ for every

m > n.

(ii) Suppose t < hþ k. Let m be any integer with m > n. Then, if z is

stably extendible to Lmð3Þ, the condition Cðm; a; b; cÞ holds for some non-negative

integers a, b and c.

Moreover, in the case (ii) we have the following necessary and su‰cient

condition:

(iia) Let n be even. Then, for any m > n, z is stably extendible to Lmð3Þ
if and only if the condition Cðm; a; b; cÞ holds for some non-negative integers a, b

and c.
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(iib) Let n be odd. Then, for any m > n, z is stably extendible to Lmð3Þ if
and only if the condition Cðm; a; b; cÞ holds for some non-negative integers a, b

and c such that a1 b1 0 mod 3.

Next, we have

Theorem 4. Let cn be the complexification of the normal bundle n

associated to an immersion of Lnð3Þ in the Euclidean ð4nþ 3Þ-space R4nþ3.

Then cn is extendible to Lmð3Þ for every m > n if and only if 0a na 5.

Finally, we have

Theorem 5. Let cn2 be the complexification of the square n2ð¼ nn nÞ of

the normal bundle n associated to an immersion of Lnð3Þ in R4nþ3. Then cn2 is

extendible to Lmð3Þ for every m > n if and only if 0a na 13 or n ¼ 15.

This paper is arranged as follows. In Section 2 we recall the known

results that are used for our proofs. In Sections 3, 4 and 5 we prove Theorems

1, 2 and 3, respectively. By complexifying the results obtained in the previous

papers [6] and [5], we prove Theorems 4 and 5 in Sections 6 and 7, respectively.

Some examples are shown in corresponding sections. The authors wish to

express sincere thanks to the referee for valuable suggestions.

2. Known results

Let Ln
0 ð3Þ denote the 2n-skeleton of the CW-decomposition of Lnð3Þ. The

ring structure of the reduced Grothendieck ring ~KKRðLnð3ÞÞ is determined in [3]

as follows (cf. [4] and [7]).

Theorem 2.1 (cf. [3, Theorem 2] and [4, Proposition 2.11]).

~KKRðLnð3ÞÞG
~KKRðLn

0 ð3ÞÞ þ Z=2 for n1 0 mod 4;

~KKRðLn
0 ð3ÞÞ otherwise;

(

where þ denotes the direct sum. The group ~KKRðLn
0 ð3ÞÞ is isomorphic to the

cyclic group Z=3bn=2c of order 3bn=2c and is generated by rsnð¼ rhn � 2Þ.
Moreover, the ring structure is given by

ðrsnÞ2 ¼ �3rsn; namely ðrhnÞ
2 ¼ rhn þ 2; and ðrsnÞbn=2cþ1 ¼ 0:

The ring structure of the reduced Grothendieck ring ~KKCðLnð3ÞÞ is de-

termined in [3] as follows (cf. [4] and [7]).

Theorem 2.2 (cf. [3, Theorem 1] and [4, Lemma 2.4]).

~KKCðLnð3ÞÞG ~KKCðLn
0 ð3ÞÞGZ=3bðnþ1Þ=2c þ Z=3bn=2c
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The first summand is generated by sn ¼ hn � 1 and the second summand is

generated by s2
n . Moreover, the ring structure is given by

s3
n ¼ �3s2

n � 3sn; namely h3n ¼ 1; and snþ1
n ¼ 0:

Let d ¼ 1 or 2 according as F ¼ R or C, and, for a real number x, let dxe
denote the smallest integer s with xa s. The following two results are well-

known.

Theorem 2.3 (cf. [1, Theorem 1.2, p. 99]). Let m ¼ dðnþ 1Þ=d � 1e.
Then each t-dimensional F-vector bundle over an n-dimensional CW-complex X

is equivalent to al ðt�mÞ for some m dimensional F-vector bundle a over X if

ma t.

Theorem 2.4 (cf. [1, Theorem 1.5, p. 100]). Let m ¼ dðnþ 2Þ=d � 1e.
Then two t-dimensional F-vector bundles over an n-dimensional CW-complex

which are stably equivalent are equivalent if ma t.

Corollary 2.5. Let X be a finite CW-complex and A its subcomplex

and let z be an F-vector bundle over A such that dðdim Aþ 2Þ=d � 1ea dim z.

Then z is extendible to X if and only if z is stably extendible to X.

Proof. The ‘‘only if ’’ part is clear. We prove the ‘‘if ’’ part. Suppose

that z is stably equivalent to i�a for some F -vector bundle a over X , where

i : A ! X is the inclusion. If dðdim Aþ 2Þ=d � 1ea dim z, then z is equiv-

alent to i�a by Theorem 2.4. r

The following is due to [8].

Theorem 2.6 (cf. [8, Theorem 1.7]). Let p be an odd prime and let LmðpÞ
denote the ð2mþ 1Þ-dimensional standard lens space mod p. Assume that x is

any ð2rþ 1Þ-dimensional R-vector bundle over LmðpÞ satisfying

psðxÞ ¼ 0; psþ1ðxÞ ¼ 0; . . . ; prðxÞ ¼ 0

for an integer s with 1a sa r, where pjðxÞ A H 4jðLmðpÞ;ZÞ is the j-th

Pontrjagin class of x. Then

spanR xb 2r� 2sþ 2

if p > m� 2sþ 2, and if spanR p�xb 2r� 2sþ 2, where p : S2mþ1 ! LmðpÞ is

the projection.

On stable unextendibility of C-vector bundles over LnðpÞ, we have

Theorem 2.7 (cf. [6, Theorem 4.5]). Let p be a prime and let l, n and t be

positive integers with
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tþ l < pbn=ðp�1Þc:

Assume that z is any t-dimensional C-vector bundle over LnðpÞ which is stably

equivalent to a sum of tþ l non-trivial C-line bundles. Then n < tþ l and z is

not stably extendible to LmðpÞ for every mb tþ l.

Let p be a prime. For calculations of the binomial coe‰cients mod p, the

following is useful.

Lemma 2.8 (cf. [10, Lemma 2.6, p. 5]). Let p be a prime and let

a ¼
P

0aiam aðiÞpaðiÞ and b ¼
P

0aiam bðiÞpbðiÞ ð0a aðiÞ, bðiÞ < pÞ. Then

aCb 1
Y

0aiam

aðiÞCbðiÞ mod p:

3. Proof of Theorem 1

Proof of Theorem 1. Since z is stably equivalent to ðbt=2c þ lÞrhn, the
total Pontrjagin class pðzÞ of z is given by

pðzÞ ¼ pððbt=2c þ lÞrhnÞ ¼ pðrhnÞ
bt=2cþl ¼ ð1þ z2nÞ

bt=2cþl;

where zn is the generator of H 2ðLnð3Þ;ZÞ ¼ Z=3. Suppose that 2Sðt; lÞa n.

Then pSðt;lÞðzÞ ¼ bt=2cþlCSðt;lÞz
2Sðt;lÞ
n 0 0 by the definition of Sðt; lÞ. On the

other hand, pSðt;lÞðzÞ ¼ 0, since z is t-dimensional and bt=2c < Sðt; lÞ. This is

a contradiction. Hence we have n < 2Sðt; lÞ.
Next, suppose that z is stably extendible to Lmð3Þ for m > n. Then z

is stably extendible to the 2m-skeleton Lm
0 ð3Þ of Lmð3Þ and there is a

t-dimensional R-vector bundle a over Lm
0 ð3Þ such that z is stably equivalent to

i�a, where i : Lnð3Þ ! Lm
0 ð3Þ is the standard inclusion. By Theorem 2.1, there

is an integer q such that a� t ¼ qrsm. Hence

z� t ¼ i�ða� tÞ ¼ i�ðqrsmÞ ¼ qrsn:

On the other hand, by the assumption,

z� t ¼ ðbt=2c þ lÞrhn � 2ðbt=2c þ lÞ ¼ ðbt=2c þ lÞrsn:
Thus, in ~KKRðLnð3ÞÞ, fq� ðbt=2c þ lÞgrsn ¼ 0. So, by Theorem 2.1,

q� ðbt=2c þ lÞ1 0 mod 3bn=2c. Hence there is an integer a such that

q ¼ a3bn=2c þ bt=2c þ l. Here, taking q su‰ciently large, we may assume that

a is non-negative. Since bt=2c þ l < 3bn=2c by the assumption, qCj 1

bt=2cþlCj
mod 3 for bt=2c < ja bt=2c þ l. Therefore

pðaÞ ¼ ð1þ z2mÞ
q, and

pSðt;lÞðaÞ ¼ qCSðt;lÞz
2Sðt;lÞ
m ¼ bt=2cþlCSðt;lÞz

2Sðt;lÞ
m 0 0

for 2Sðt; lÞam. On the other hand, pSðt;lÞðaÞ ¼ 0, since a is t-dimensional

and bt=2c < Sðt; lÞ. This is a contradiction. r
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In [6, Theorem B], we have proved that the normal bundle nð fnÞ associated
to an immersion fn : L

nð3Þ ! R4nþ3 is extendible to Lmð3Þ for every mb n if

and only if 0a na 5. For n ¼ 6, we have

Example 3.1. nð f6Þ is not stably extendible to L18ð3Þ.

Proof. By (3.2) of [6], nð f6Þ ¼ 20rh6 � 26. Putting n ¼ 6 and t ¼ 14,

we have bt=2c ¼ 7 ¼ 2 � 3þ 1, bt=2c þ l ¼ 20 ¼ 2 � 32 þ 2 and l ¼ 13. Hence

Sðt; lÞ ¼ 32 ¼ 9 by Lemma 2.8. So it follows from Theorem 1 that nð f6Þ is

not stably extendible to L18ð3Þ. r

This example is an improvement of Example 3.4 of [6] which states that

nð f6Þ is not stably extendible to L40ð3Þ.
In [5, Theorem 6], we have proved that the square nð fnÞ2 of the normal

bundle nð fnÞ associated to an immersion fn : L
nð3Þ ! R4nþ3 is extendible to

Lmð3Þ for every mb n if and only if 0a na 13 or n ¼ 15. For n ¼ 14, we

have

Example 3.2. nð f14Þ2 is not stably extendible to L972ð3Þ.

Proof. By Theorem 5.2 of [5], nð f14Þ2 ¼ 612rh14 � 324. Putting n ¼ 14

and t ¼ 302 ¼ 900, we have bt=2c ¼ 450 ¼ 35 þ 2 � 34 þ 33 þ 2 � 32, bt=2c þ l ¼
612 ¼ 2 � 35 þ 34 þ 33 þ 2 � 32 and l ¼ 162. Hence Sðt; lÞ ¼ 2 � 35 ¼ 486 by

Lemma 2.8. So it follows from Theorem 1 that nð f14Þ2 is not stably extendible

to L972ð3Þ. r

This example is an improvement of the former part of Corollary 5.4 of [5]

which states that nð f14Þ2 is not stably extendible to L1224ð3Þ. For n ¼ 16, we

have

Example 3.3. nð f16Þ2 is not stably extendible to L4374ð3Þ.

Proof. By Theorem 5.2 of [5], nð f16Þ2 ¼ 4358rh16 � 7920. Putting n ¼ 16

and t ¼ 342 ¼ 1156, we have bt=2c ¼ 578 ¼ 2 � 35 þ 34 þ 32 þ 2, bt=2c þ l ¼
4538 ¼ 2 � 37 þ 2 � 34 þ 2 and l ¼ 3960. Hence Sðt; lÞ ¼ 37 ¼ 2187 by Lemma

2.8. So it follows from Theorem 1 that nð f16Þ2 is not stably extendible to

L4374ð3Þ. r

This example is an improvement of the latter part of Corollary 5.4 of [5]

which states that nð f16Þ2 is not stably extendible to L9076ð3Þ.

4. Proof of Theorem 2

Proof of Theorem 2. (i) By the assumption z� t ¼ hrhn � 2h in
~KKRðLnð3ÞÞ. If tb 2h, z ¼ hrhn l ðt� 2hÞ ¼ i�ðhrhm l ðt� 2hÞÞ in KRðLnð3ÞÞ
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for every m > n, where i : Lnð3Þ ! Lmð3Þ is the standard inclusion. So z is

stably equivalent to i�ðhrhm l ðt� 2hÞÞ, and hence z is stably extendible to

Lmð3Þ.
(ii) Suppose that t < 2h and that m is any integer with m > n. If z is

stably extendible to Lmð3Þ, then z is stably extendible to the 2m-skeleton Lm
0 ð3Þ

of Lmð3Þ and there is a t-dimensional R-vector bundle a over Lm
0 ð3Þ such that z

is stably equivalent to i�a, where i : Lnð3Þ ! Lm
0 ð3Þ is the standard inclusion.

By Theorem 2.1, there is an integer p such that a� t ¼ prsm. Hence

z� t ¼ i�ða� tÞ ¼ i�ðprsmÞ ¼ prsn:

On the other hand, by the assumption,

z� t ¼ hrhn � 2h ¼ hrsn:

Therefore ðp� hÞrsn ¼ 0 in ~KKRðLnð3ÞÞ. So, by Theorem 2.1, we have

p� h1 0 mod 3bn=2c. Hence there is an integer a such that p� h ¼ a3bn=2c.

Here, taking p su‰ciently large, we may assume that a is non-negative.

Therefore, in ~KKRðLm
0 ð3ÞÞ,

a� t ¼ ða3bn=2c þ hÞrsm ¼ ða3bn=2c þ hÞðrhm � 2Þ;

and so, in KRðLm
0 ð3ÞÞ,

ða3bn=2c þ hÞrhm ¼ f2ða3bn=2c þ hÞ � tgl a;

where 2ða3bn=2c þ hÞ � t > 0 since 2h > t. If we take p so large that

dimfða3bn=2c þ hÞrhmg ¼ 2ða3bn=2c þ hÞb dð2mþ 1þ 2Þ � 1e ¼ 2mþ 2, we have

the equality above of R-vector bundles by Theorem 2.4. This implies

spanRfða3bn=2c þ hÞrhm l cgb 2ða3bn=2c þ hÞ � tþ c

for any non-negative integer c. So the condition Cðm; a; cÞ holds.

Conversely, suppose that the condition Cðm; a; cÞ holds for some non-

negative integers a and c. Then there is a t-dimensional R-vector bundle b

over Lmð3Þ such that

ða3bn=2c þ hÞrhm l c ¼ f2ða3bn=2c þ hÞ � tþ cgl b:

Let i : Lnð3Þ ! Lmð3Þ be the standard inclusion. Then, applying i� to the

both sides of the equality above, we have, in KRðLnð3ÞÞ,

hrhn ¼ ð2h� tÞl i�b;

since 3bn=2cðrhn � 2Þ ¼ 0 in ~KKRðLnð3ÞÞ by Theorem 2.1. Thus z� t ¼
hrhn � 2h ¼ i�b � t in ~KKRðLnð3ÞÞ. So z is stably equivalent to i�b, and hence z

is stably extendible to Lmð3Þ. r
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Let nð fnÞ be the normal bundle associated to an immersion fn of Lnð3Þ in

R4nþ3 and nð fnÞ2 its square. The following are applications of Theorem 2(ii).

Example 4.1. nð f6Þ is extendible to L14ð3Þ.

Proof. By (3.2) of [6], nð f6Þ ¼ 20rh6 � 26. Put n ¼ 6, t ¼ 14, h ¼ 20,

m ¼ 14, a ¼ 0 and c ¼ 1 in Theorem 2(ii). Then t < 2h and it su‰ces to prove

spanRð20rh14 l 1Þb 27ð¼ 2h� tþ cÞ:

The total Pontrjagin class and the 7-th Pontrjagin class of 20rh14 l 1

are as follows: pð20rh14 l 1Þ ¼ pð20rh14Þ ¼ pðrh14Þ
20 ¼ ð1þ z214Þ

20, and

p7ð20rh14 l 1Þ ¼ 20C7z
14
14 ¼ 0, since 20C7 1 0 mod 3 by Lemma 2.8, where zm

is the generator of H 2ðLmð3Þ;ZÞ ¼ Z=3. Putting p ¼ 3, m ¼ 14, r ¼ 20, x ¼
20rh14 l 1 and s ¼ 7 in Theorem 2.6, we have psðxÞ ¼ 0, psþ1ðxÞ ¼ 0; . . . ; prðxÞ
¼ 0 and p > m� 2sþ 2. Hence

spanRð20rh14 l 1Þb 28ð¼ 2r� 2sþ 2Þ:

We therefore obtain the result by Theorem 2(ii) and Corollary 2.5. r

Example 4.2. nð f14Þ2 is extendible to L900ð3Þ.

Proof. By Theorem 5.2 of [6], nð f14Þ2 ¼ 612rh14 � 324. Put n ¼ 14,

t ¼ 302 ¼ 900, h ¼ 612, m ¼ 900, a ¼ 0 and c ¼ 1 in Theorem 2(ii). Then

t < 2h and it su‰ces to prove

spanRð612rh900 l 1Þb 325ð¼ 2h� tþ cÞ:

The total Pontrjagin class and the 450-th Pontrjagin class of 612rh900 l 1 are as

follows: pð612rh900 l 1Þ ¼ pð612rh900Þ ¼ ð1þ z2900Þ
612, and p450ð612rh900 l 1Þ

¼ 612C450z
900
900 ¼ 0, since 612C450 1 0 mod 3 by Lemma 2.8. (Note 612 ¼

2 � 35 þ 34 þ 33 þ 2 � 32, 450 ¼ 35 þ 2 � 34 þ 33 þ 2 � 32.) Putting p ¼ 3, m ¼
900, r ¼ 612, x ¼ 612rh900 l 1 and s ¼ 450 in Theorem 2.6, we have psðxÞ ¼ 0,

psþ1ðxÞ ¼ 0; . . . ; prðxÞ ¼ 0 and p > m� 2sþ 2. Hence

spanRð612rh900 l 1Þb 326ð¼ 2r� 2sþ 2Þ:

We therefore obtain the result by Theorem 2(ii) and Corollary 2.5. r

Example 4.3. nð f16Þ2 is extendible to L1156ð3Þ.

Proof. By Theorem 5.2 of [6], nð f16Þ2 ¼ 4538rh16 � 7920. Put n ¼ 16,

t ¼ 342 ¼ 1156, h ¼ 4538, m ¼ 1156, a ¼ 0 and c ¼ 1 in Theorem 2(ii). Then

t < 2h and it su‰ces to prove

spanRð4538rh1156 l 1Þb 7921ð¼ 2h� tþ cÞ:
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The total Pontrjagin class and the 578-th Pontrjagin class of 4538rh1156 l 1

are as follows: pð4538rh1156 l 1Þ ¼ pð4538rh1156Þ ¼ ð1þ z21156Þ
4538, and

p578ð4538rh1156 l 1Þ ¼ 4538C578z
1156
1156 ¼ 0, since 4538C578 1 0 mod 3 by Lemma

2.8. (Note 4538 ¼ 2 � 37 þ 2 � 34 þ 2, 578 ¼ 2 � 35 þ 34 þ 32 þ 2.) Putting

p ¼ 3, m ¼ 1156, r ¼ 4538, x ¼ 4538rh1156 l 1 and s ¼ 578 in Theorem 2.6, we

have psðxÞ ¼ 0, psþ1ðxÞ ¼ 0; . . . ; prðxÞ ¼ 0 and p > m� 2sþ 2. Hence

spanRð4538rh1156 l 1Þb 7922ð¼ 2r� 2sþ 2Þ:

We therefore obtain the result by Theorem 2(ii) and Corollary 2.5. r

5. Proof of Theorem 3

Proof of Theorem 3. (i) By the assumption z� t ¼ hhn l kh2n � ðhþ kÞ
in ~KKCðLnð3ÞÞ. If tb hþ k, z ¼ hhn l kh2n þ ðt� h� kÞ ¼ i�ðhhm l kh2m þ
ðt� h� kÞÞ in KCðLnð3ÞÞ for every m > n, where i : Lnð3Þ ! Lmð3Þ is the

standard inclusion. So z is stably equivalent to i�ðhhm l kh2m þ ðt� h� kÞÞ,
and hence z is stably extendible to Lmð3Þ.

(ii) Suppose that t < hþ k and that m is any integer with m > n. If z is

stably extendible to Lmð3Þ, then there is a t-dimensional C-vector bundle a over

Lmð3Þ such that z is stably equivalent to i�a, where i : Lnð3Þ ! Lmð3Þ is the

standard inclusion. By Theorem 2.2, there are integers p and q such that

a� t ¼ pðhm � 1Þ þ qðh2m � 1Þ in ~KKCðLmð3ÞÞ. Hence

z� t ¼ i�ða� tÞ ¼ pðhn � 1Þ þ qðh2n � 1Þ:

On the other hand, by the assumption,

z� t ¼ hhn l kh2n � ðhþ kÞ ¼ hðhn � 1Þ þ kðh2n � 1Þ:

Therefore, in ~KKCðLnð3ÞÞ, ðp� hÞðhn � 1Þ þ ðq� kÞðh2n � 1Þ ¼ 0, namely

fðp� hÞ þ 2ðq� kÞgsn þ ðq� kÞs2
n ¼ 0:

So, by Theorem 2.2, we have q� k1 0 mod 3bn=2c and p� h1 0 mod 3bn=2c.

Hence there are integers a and b such that p ¼ a3bn=2c þ h and q ¼ b3bn=2c þ k.

Here, taking p and q su‰ciently large, we may assume that a and b are non-

negative. Therefore, in ~KKCðLmð3ÞÞ,

a� t ¼ ða3bn=2c þ hÞðhm � 1Þ þ ðb3bn=2c þ kÞðh2m � 1Þ;

and so, in KCðLmð3ÞÞ,

ða3bn=2c þ hÞhm l ðb3bn=2c þ kÞh2m ¼ ða3bn=2c þ hþ b3bn=2c þ k � tÞl a;

where a3bn=2c þ hþ b3bn=2c þ k � t > 0 since hþ k > t. If we take p and q so

large that dimfða3bn=2c þ hÞhm l ðb3bn=2c þ kÞh2mg ¼ a3bn=2c þ hþ b3bn=2c þ kb
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dð2mþ 1þ 2Þ=2� 1e ¼ mþ 1, we have the equality above of C-vector bundles

by Theorem 2.4. This implies

spanCfða3bn=2c þ hÞhm l ðb3bn=2c þ kÞh2m l cgb a3bn=2c þ hþ b3bn=2c þ k � tþ c

for any non-negative integer c. So the condition Cðm; a; b; cÞ holds.

(iia) Let n be even and let m be any integer with m > n. To prove the

‘‘if ’’ part, suppose that the condition Cðm; a; b; cÞ holds for some non-negative

integers a, b and c. Then there is a t-dimensional C-vector bundle b over

Lmð3Þ such that

ða3n=2 þ hÞhm l ðb3n=2 þ kÞh2m l c ¼ ða3n=2 þ hþ b3n=2 þ k � tþ cÞl b:

Let i : Lnð3Þ ! Lmð3Þ be the standard inclusion. Then, applying i� to the

both sides of the equality above, we have, in KCðLnð3ÞÞ,

ða3n=2 þ hÞhn l ðb3n=2 þ kÞh2n ¼ ða3n=2 þ hþ b3n=2 þ k � tÞl i�b:

In case n is even, the equalities 3n=2hn ¼ 3n=2 and 3n=2h2n ¼ 3n=2 hold in

KCðLnð3ÞÞ by Theorem 2.2. Hence we have, in KCðLnð3ÞÞ,

hhn l kh2n ¼ ðhþ k � tÞl i�b:

Thus z� t ¼ hhn l kh2n � ðhþ kÞ ¼ i�b � t in ~KKCðLnð3ÞÞ. So z is stably

equivalent to i�b, and hence z is stably extendible to Lmð3Þ.
(iib) Let n be odd and let m be any integer with m > n. To prove the

‘‘if ’’ part, suppose that the condition Cðm; a; b; cÞ holds for some non-negative

integers a, b and c such that a1 b1 0 mod 3. Then a3bn=2chn ¼ a3bn=2c and

b3bn=2ch2n ¼ b3bn=2c by Theorem 2.2. Hence we have the result in the way

similar to the proof of (iia). r

Let cnð fnÞ be the complexfication of the normal bundle nð fnÞ associated to

an immersion fn of Lnð3Þ in R4nþ3 and cnð fnÞ2 its square. The following are

applications of Theorem 3(iia).

Example 5.1. cnð f6Þ is extendible to L14ð3Þ.

Proof. Complexifying the both sides of the equality in the proof of

Example 3.1 and using the equality crh6 ¼ h6 þ h26 , we have cnð f6Þ ¼ 20h6 þ
20h26 � 26. Put n ¼ 6, z ¼ cnð f6Þ, t ¼ 14, h ¼ k ¼ 20, m ¼ 14, a ¼ b ¼ c ¼ 0 in

Theorem 3(iia). Then t < hþ k and it su‰ces to prove

spanCð20h14 l 20h214Þb 26ð¼ hþ k � tÞ:

In fact, dimð20h14 l 20h214Þ ¼ 40 and dðdim L14ð3Þ þ 1Þ=2� 1e ¼ 14. Hence,

by Theorem 2.3, the inequality above holds. Thus we have the result. r
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Example 5.2. cnð f14Þ2 is extendible to L900ð3Þ.

Proof. Complexifying the both sides of the equality in the proof

of Example 3.2 and using the equality crh14 ¼ h14 þ h214, we have cnð f14Þ2 ¼
612h14 þ 612h214 � 324. Put n ¼ 14, z ¼ cnð f14Þ2, t ¼ 900, h ¼ k ¼ 612, m ¼
900, a ¼ b ¼ c ¼ 0 in Theorem 3(iia). Then t < hþ k and it su‰ces to prove

spanCð612h900 l 612h2900Þb 324ð¼ hþ k � tÞ:

In fact, dimð612h900 l 612h2900Þ ¼ 1224 and dðdim L900ð3Þ þ 1Þ=2� 1e ¼ 900.

Hence, by Theorem 2.3, the inequality above holds. Thus we have the result.

r

Example 5.3. cnð f16Þ2 is extendible to L1156ð3Þ.

Proof. Complexifying the both sides of the equality in the proof

of Example 3.3 and using the equality crh16 ¼ h16 þ h216, we have cnð f16Þ2 ¼
4538h16 þ 4538h216 � 7920. Put n ¼ 16, z ¼ cnð f16Þ2, t ¼ 1156, h ¼ k ¼ 4538,

m ¼ 1156, a ¼ b ¼ c ¼ 0 in Theorem 3(iia). Then t < hþ k and it su‰ces to

prove

spanCð4538h1156 l 4538h21156Þb 7920ð¼ hþ k � tÞ:

In fact, dimð4538h1156 l 4538h21156Þ ¼ 9076 and dðdim L1156ð3Þ þ 1Þ=2� 1e ¼
1156. Hence, by Theorem 2.3, the inequality above holds. Thus we have the

result. r

6. Proof of Theorem 4

On the complexification of the normal bundle associated to an immersion

of Lnð3Þ in R4nþ3 for 0a na 5, we have

Theorem 6.1. Let cnð fnÞ be the complexification of the normal bundle nð fnÞ
associated to an immersion fn : L

nð3Þ ! R4nþ3. Then

cnð f0Þ ¼ 2; cnð f1Þ ¼ 4; cnð f2Þ ¼ 6;

cnð f3Þ ¼ 2h3 l 2h23 l 4; cnð f4Þ ¼ 4h4 l 4h24 l 2;

cnð f5Þ ¼ 3h5 l 3h25 l 6;

Proof. Complexifying the both sides of the equalities in Theorem 3.1

of [6] and using the equality crhn ¼ hn þ h2n , we obtain the equalities above

in KCðLnð3ÞÞ. Since dðdim Lnð3Þ þ 2Þ=2� 1e ¼ nþ 1a 2nþ 2 ¼ dim cnð fnÞ,
these equalities hold as C-vector bundles by Theorem 2.4. r

Lemma 6.2. Let z be a C-vector bundle over LnðqÞ, where q is an

integer > 1, and let mb n. Then z is extendible (respectively stably extendible)
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to LmðqÞ if and only if zn hn is extendible (respectively stably extendible) to

LmðqÞ.

Proof. If z is extendible (respectively stably extendible) to LmðqÞ, there
is a C-vector bundle x over LmðqÞ such that the equality i�x ¼ z holds as

C-vector bundles over LnðqÞ (respectively in KCðLnðqÞÞÞ, where i : LnðqÞ !
LmðqÞ is the standard inclusion. Hence i�ðxn hmÞ ¼ zn hn holds as C-vector

bundles over LnðqÞ (respectively in KCðLnðqÞÞ). Therefore zn hn is extendible

(respectively stably extendible) to LmðqÞ.
Conversely, if zn hn is extendible (respectively stably extendible) to LmðqÞ

for mb n, so is zn ðhr
nÞ for any rb 1 by the argument above inductively.

Since hq
n ¼ 1 (cf. [7, Proposition 4.1, p. 198]), zð¼ zn ðhq

n ÞÞ is extendible

(respectively stably extendible) to LmðqÞ. r

Theorem 6.3. If nb 6, cnð fnÞ is not stably extendible to Lmð3Þ for some

m > n. More precisely, the following hold.

(i) cnð f6Þ is not stably extendible to L21ð3Þ.
(ii) cnð f7Þ is not stably extendible to L24ð3Þ.
(iii) If n is even and nb 8, cnð fnÞ is not stably extendible to Lmð3Þ for any

mb 3n=2 � qðnþ 1Þ, where q is an integer satisfying 1a q < 3n=2=f4ðnþ 1Þg.
(iv) If n is odd and nb 9, cnð fnÞ is not stably extendible to Lmð3Þ for

any mb 3ðn�1Þ=2 � qðnþ 1Þ, where q is an integer satisfying 1a q < 3ðn�1Þ=2=

f4ðnþ 1Þg.

Proof. (i) We have the equality nð f6Þ ¼ 28� 7rh6 by the equality in (3.2)

for n ¼ 6 of [6]. Complexifying the both sides and using the equality crh6 ¼
h6 þ h26 , we have cnð f6Þ ¼ 28� 7h6 � 7h26 . Then, multiplying them by h6, we

obtain

cnð f6Þn h6 ¼ 28h6 � 7h26 � 7 ¼ h6 l 20h26 � 7;

since h36 ¼ 1, 27ðh6 � 1Þ ¼ 0 and 27ðh26 � 1Þ ¼ 0 in KCðL6ð3ÞÞ by Theorem 2.2.

Put p ¼ 3, n ¼ 6, z ¼ cnð f6Þn h6 and t ¼ 14 in Theorem 2.7. Then l ¼ 7 and

tþ l ¼ 21 < 27 ¼ 33. Hence cnð f6Þn h6 is not stably extendible to L21ð3Þ,
and so is cnð f6Þ by Lemma 6.2.

(ii) We have the equality nð f7Þ ¼ 32� 8rh7 by the equality in (3.2)

for n ¼ 7 of [6]. Complexifying the both sides and using the equality crh7 ¼
h7 þ h27 , we have cnð f7Þ ¼ 32� 8h7 � 8h27 . Then i�ðcnð f7ÞÞ ¼ 32� 8h6 � 8h26 ,

where i : L6ð3Þ ! L7ð3Þ is the standard inclusion. Multiplying the both sides

of the equality above h6, we obtain

i�ðcnð f7ÞÞn h6 ¼ 32h6 � 8h26 � 8 ¼ 5h6 l 19h26 � 8;

since h36 ¼ 1, 27ðh6 � 1Þ ¼ 0 and 27ðh26 � 1Þ ¼ 0 in KCðL6ð3ÞÞ by Theorem 2.2.

Put p ¼ 3, n ¼ 6, z ¼ i�ðcnð f7ÞÞn h6 and t ¼ 16 in Theorem 2.7. Then l ¼ 8
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and tþ l ¼ 24 < 27 ¼ 33. Hence i�ðcnð f7ÞÞn h6 is not stably extendible to

L24ð3Þ, and so is cnð f7Þ by Lemma 6.2.

(iii) Clearly there is an integer q satisfying the inequalities 1a q <

3n=2=f4ðnþ 1Þg if nb 8.

We have the equality nð fnÞ ¼ 4ðnþ 1Þ � ðnþ 1Þrhn in (3.2) of [6].

Complexifying the both sides, using the equality crhn ¼ hn þ h2n and multiplying

them by any integer q, we obtain the equality

qcnð fnÞ ¼ �qðnþ 1Þhn � qðnþ 1Þh2n þ 4qðnþ 1Þ:ð*Þ

Then, adding the both sides of the equality ð*Þ by qðnþ 1Þh2n and using the

equality 3n=2ðhn � 1Þ ¼ 0 in KCðLnð3ÞÞ obtained from Theorem 2.2, we have

qcnð fnÞl qðnþ 1Þh2n ¼ f3n=2 � qðnþ 1Þghn þ 4qðnþ 1Þ � 3n=2:

Suppose that q satisfies the inequalities 1a q < 3n=2=f4ðnþ 1Þg and put p ¼ 3,

z ¼ qcnð fnÞl qðnþ 1Þh2n and t ¼ 3qðnþ 1Þ in Theorem 2.7. Then l ¼ 3n=2 �
4qðnþ 1Þ > 0 and tþ l ¼ 3n=2 � qðnþ 1Þ < 3n=2. Hence qcnð fnÞl qðnþ 1Þh2n
is not stably extendible to Lmð3Þ for any mb 3n=2 � qðnþ 1Þ, and so is cnð fnÞ.

(iv) Clearly there is an integer q satisfying the inequalities 1a q <

3ðn�1Þ=2=f4ðnþ 1Þg if nb 9.

Applying i� to the equality ð�Þ, where i : Ln�1ð3Þ ! Lnð3Þ is the standard

inclusion, adding the resulting equality by qðnþ 1Þh2n�1 and using the equality

3ðn�1Þ=2ðhn�1 � 1Þ ¼ 0 in KCðLn�1ð3ÞÞ obtained from Theorem 2.2, we have

i�qcnð fnÞl qðnþ 1Þh2n�1 ¼ f3ðn�1Þ=2 � qðnþ 1Þghn�1 þ 4qðnþ 1Þ � 3ðn�1Þ=2:

Suppose that q satisfies the inequalities 1a q < 3ðn�1Þ=2=f4ðnþ 1Þg and put

p ¼ 3, z ¼ i�qcnð fnÞl qðnþ 1Þh2n�1 and t ¼ 3qðnþ 1Þ in Theorem 2.7. Then

l ¼ 3ðn�1Þ=2 � 4qðnþ 1Þ > 0 and tþ l ¼ 3ðn�1Þ=2 � qðnþ 1Þ < 3ðn�1Þ=2. Hence

i�qcnð fnÞl qðnþ 1Þh2n�1 is not stably extendible to Lmð3Þ for any mb 3ðn�1Þ=2 �
qðnþ 1Þ, and so is cnð fnÞ. r

Now, we are ready to prove Theorem 4.

Proof of Theorem 4. Since hn, h2n and trivial C-vector bundles over

Lnð3Þ are extendible to Lmð3Þ for every mb n, the ‘‘if ’’ part follows from

Theorem 6.1.

The ‘‘only if ’’ part follows from Theorem 6.3. r

7. Proof of Theorem 5

On the complexification of the square of the normal bundle associated to

an immersion of Lnð3Þ in R4nþ3 for 0a na 13 and n ¼ 15, we have
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Theorem 7.1. Let cnð fnÞ2 be the complexification of the square of the

normal bundle nð fnÞ associated to an immersion fn : L
nð3Þ ! R4nþ3. Then

cnð f0Þ2 ¼ 4; cnð f1Þ2 ¼ 16; cnð f2Þ2 ¼ 36;

cnð f3Þ2 ¼ 2h3 l 2h23 l 60; cnð f4Þ2 ¼ 5h4 l 5h24 l 90;

cnð f5Þ2 ¼ 144; cnð f6Þ2 ¼ 8h6 l 8h26 l 180;

cnð f7Þ2 ¼ 11h7 l 11h27 l 234; cnð f8Þ2 ¼ 324;

cnð f9Þ2 ¼ 29h9 l 29h29 l 342; cnð f10Þ2 ¼ 125h10 l 125h210 l 234;

cnð f11Þ2 ¼ 207h11 l 207h211 l 162; cnð f12Þ2 ¼ 275h12 l 275h212 l 126;

cnð f13Þ2 ¼ 86h13 l 86h213 l 612; cnð f15Þ2 ¼ 395h15 l 395h215 l 234:

Proof. Complexifying the both sides of the equalities in Theorem 5.1 of

[5], we obtain the equalities above in the way similar to the proof of Theorem

6.1. r

Theorem 7.2. If n ¼ 14 or nb 16, cnð fnÞ2 is not stably extendible to

Lmð3Þ for some m > n. More precisely, the following hold.

(i) cnð f14Þ2 is not stably extendible to L1224ð3Þ.
(ii) If n is even and nb 16, cnð fnÞ2 is not stably extendible to Lmð3Þ

for any mb 3n=2 � 7sðnþ 1Þ2, where s is an integer satisfying 1a s < 3n=2=

f18ðnþ 1Þ2g.
(iii) If n is odd and nb 17, cnð fnÞ2 is not stably extendible to Lmð3Þ for

any mb 3ðn�1Þ=2 � 7sðnþ 1Þ2, where s is an integer satisfying 1a s < 3ðn�1Þ=2=

f18ðnþ 1Þ2g.

Proof. We have the equality nð fnÞ2 ¼ �7ðnþ 1Þ2rhn þ 18ðnþ 1Þ2 in the

proof of Theorem 5.1 of [5]. Complexifying the both sides and using the

equality crhn ¼ hn þ h2n , we obtain the equality

cnð fnÞ2 ¼ �7ðnþ 1Þ2hn � 7ðnþ 1Þ2h2n þ 18ðnþ 1Þ2:ð**Þ

On the other hand, complexifying the equality 3bn=2cðrhn � 2Þ ¼ 0 in

KRðLnð3ÞÞ obtained from Theorem 2.1, we have the equality 3bn=2cðhn þ h2n � 2Þ
¼ 0 in KCðLnð3ÞÞ. Adding the right-hand side of the equality ð**Þ by this

equality, we obtain

cnð fnÞ2 ¼ f3bn=2c � 7ðnþ 1Þ2ghn þ f3bn=2c � 7ðnþ 1Þ2gh2n

þ 18ðnþ 1Þ2 � 2 � 3bn=2c:

(i) Consider the equality above for n ¼ 14

58 Teiichi Kobayashi and Kazushi Komatsu



cnð f14Þ2 ¼ ð37 � 7 � 152Þh14 þ ð37 � 7 � 152Þh214 þ 18 � 152 � 2 � 37

¼ 612h14 þ 612h214 � 324:

Put p ¼ 3, n ¼ 14, z ¼ cnð f14Þ2 and t ¼ 302 ¼ 900 in Theorem 2.7. Then

l ¼ 324 and tþ l ¼ 1224 < 2187 ¼ 37. Hence cnð f14Þ2 is not stably extendible

to L1224ð3Þ.
(ii) Clearly there is an integer s satisfying the inequalities 1a s < 3n=2=

f18ðnþ 1Þ2g if nb 16.

Multiplying the equality ð**Þ by any integer s, we obtain the equality

scnð fnÞ2 ¼ �7sðnþ 1Þ2h2n � 7sðnþ 1Þ2hn þ 18sðnþ 1Þ2:ð***Þ

Then, adding the equality ð***Þ by 7sðnþ 1Þ2h2n and using the equality

3n=2ðhn � 1Þ ¼ 0 in KCðLnð3ÞÞ obtained from Theorem 2.2, we have

scnð fnÞ2 l 7sðnþ 1Þ2h2n ¼ f3n=2 � 7sðnþ 1Þ2ghn þ 18sðnþ 1Þ2 � 3n=2:

Suppose that s satisfies the inequalities 1a s < 3n=2=f18ðnþ 1Þ2g and put p ¼ 3,

z ¼ scnð fnÞ2 l 7sðnþ 1Þ2h2n and t ¼ 11sðnþ 1Þ2 in Theorem 2.7. Then l ¼
3n=2 � 18sðnþ 1Þ2 > 0 and tþ l ¼ 3n=2 � 7sðnþ 1Þ2 < 3n=2. Hence scnð fnÞ2 l
7sðnþ 1Þ2h2n is not stably extendible to Lmð3Þ for any mb 3n=2 � 7sðnþ 1Þ2,
and so is cnð fnÞ2.

(iii) Clearly there is an integer s satisfying the inequalities 1a s <

3ðn�1Þ=2=f18ðnþ 1Þ2g if nb 17.

Applying i� to the equality ð***Þ, where i : Ln�1ð3Þ ! Lnð3Þ is the

standard inclusion, adding the resulting equality by 7sðnþ 1Þ2h2n�1 and using

the equality 3ðn�1Þ=2ðhn�1 � 1Þ ¼ 0 in KCðLn�1ð3ÞÞ obtained from Theorem 2.2,

we have

i�scnð fnÞ2 l 7sðnþ 1Þ2h2n�1 ¼ f3ðn�1Þ=2 � 7sðnþ 1Þ2ghn�1

þ 18sðnþ 1Þ2 � 3ðn�1Þ=2:

Suppose that s satisfies the inequalities 1a s < 3ðn�1Þ=2=f18ðnþ 1Þ2g and put

p ¼ 3, z ¼ i�scnð fnÞ2 l 7sðnþ 1Þ2h2n�1 and t ¼ 11sðnþ 1Þ2 in Theorem 2.7.

Then l ¼ 3ðn�1Þ=2 � 18sðnþ 1Þ2 > 0 and tþ l ¼ 3ðn�1Þ=2 � 7sðnþ 1Þ2 < 3ðn�1Þ=2.

Hence i�scnð fnÞ2 l 7sðnþ 1Þ2h2n�1 is not stably extendible to Lmð3Þ for every

mb 3ðn�1Þ=2 � 7sðnþ 1Þ2, and so is cnð fnÞ2. r

Now, we are ready to prove Theorem 5.

Proof of Theorem 5. The ‘‘if ’’ part follows from Theorem 7.1 in the way

similar to that of Theorem 4. The ‘‘only if ’’ part follows from Theorem 7.2.

r
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