HIROSHIMA MATH. J. 9 (1979), 157–162

Extension Theorems on Some Generalized Nilpotent Lie Algebras

Toshiharu IKEDA and Yoshimi KASHIWAGI (Received September 14, 1978)

1. Introduction

Let L be a Lie algebra over a field. It is well known that if I is a nilpotent ideal of L and L/I^2 is nilpotent, then L is nilpotent. In group theory a theorem asserting that for a normal nilpotent subgroup N of a group G a property of G/N'passes to G is termed one of Hall's type, and it has been shown for several properties including the nilpotency ([5], [6, p. 57]). In connection with these, it seems interesting for us to investigate the Lie-theoretic analogue of a theorem of Hall's type. The aim of this paper is to show the following extension theorem in Lie algebras: Let \mathfrak{X} be one of the classes $\mathfrak{Z}, \mathfrak{S}, \mathfrak{LR}, \mathfrak{Ft}, \mathfrak{B}, \mathfrak{Gr}$ of Lie algebras. If I is a nilpotent ideal of L and L/I^2 lies in \mathfrak{X} , then L lies in \mathfrak{X} .

2. Notations

Throughout this paper we consider Lie algebras over an arbitrary field Φ which are not necessarily finite-dimensional.

Let L be a Lie algebra and H be a subalgebra of L. We use the following notations as usual.

H si L: H is a subideal of L.

H asc *L*: *H* is an ascendant subalgebra of *L*, i.e., there exists an ascending series $\{H_{\beta}: 0 \leq \beta \leq \alpha\}$ of subalgebras of *L*, indexed by ordinals $\beta \leq \alpha$, such that $H_0 = H$, $H_{\alpha} = L$, $H_{\beta} \lhd H_{\beta+1}$ for all $\beta < \alpha$, and $H_{\lambda} = \bigcup_{\beta < \lambda} H_{\beta}$ for all limit ordinals $\lambda \leq \alpha$.

 $\zeta_{\alpha}(L)$: the α -th term of the upper central series of L (α : an ordinal). In particular $\zeta_1(L)$ is the center of L.

 $\zeta_*(L)$: the hypercenter of L.

We say that $x \in L$ is a right Engel element if for each $y \in L$ there exists a non-negative integer n = n(x, y) such that [x, y] = 0.

r(L): the set of right Engel elements of L.

Let us recall several classes of Lie algebras.

 \mathfrak{N} : the class of nilpotent Lie algebras.

3: the class of hypercentral Lie algebras.

L \mathfrak{N} : the class of locally nilpotent Lie algebras.

 $\mathfrak{F}t$: the class of Lie algebras which are the sum of nilpotent ideals.

 \mathfrak{B} : the class of Lie algebras L such that $x \in L$ implies $\langle x \rangle$ si L.

Gr: the class of Lie algebras L such that $x \in L$ implies $\langle x \rangle$ asc L.

 \mathfrak{E} : the class of Lie algebras L satisfying the condition that for every x,

 $y \in L$ there exists a positive integer n = n(x, y) such that [x, y] = 0.

When $L \in \mathfrak{Ft}$ (resp. \mathfrak{B} , \mathfrak{Gr} , \mathfrak{E}), L is called a Fitting (resp. a Baer, a Gruenberg, an Engel) algebra.

It is to be noted that we defined \mathfrak{Gr} for an arbitrary base field Φ , though it is defined only for a field of characteristic zero in [1, Chap. 6].

Any notation not explained here may be found in [1].

3. The case of 3

This case is the Lie-theoretic analogue of a result of Betten [2].

LEMMA 3.1. If $L \in \mathfrak{Z}$ and I is a non-zero ideal of L, then $I \cap \zeta_1(L) \neq 0$.

PROOF. Let $\{\zeta_{\beta}(L): 0 \leq \beta \leq \alpha\}$ be the upper central series of L with $L = \zeta_{\alpha}(L)$. Denote by S the set of all ordinals $\beta \leq \alpha$ for which $I \cap \zeta_{\beta}(L) \neq 0$. Clearly $S \neq \phi$. Let $\gamma = \min S$. It is easily seen that γ is neither 0 nor a limit ordinal. Hence $I \cap \zeta_{\gamma-1}(L) = 0$ and $I \cap \zeta_{\gamma}(L) \neq 0$. So we have

$$[I \cap \zeta_{\gamma}(L), L] \subseteq I \cap \zeta_{\gamma-1}(L) = 0,$$

which means that $0 \neq I \cap \zeta_{\gamma}(L) \leq \zeta_{1}(L)$. Therefore $I \cap \zeta_{1}(L) \neq 0$.

If H is a subalgebra of a Lie algebra L, then the centralizer of H in L is $C_L(H) = \{y \in L : [H, y] = 0\}$. Evidently, if $H \lhd L$ then $C_L(H) \lhd L$.

LEMMA 3.2. Let L be a Lie algebra and I be an ideal of L. If $I/\zeta_1(I) \neq 0$ and $L/\zeta_1(I) \in \mathcal{J}$, then $I^2 \cap \zeta_1(L) \neq 0$ and in particular $\zeta_1(L) \neq 0$.

PROOF. By Lemma 3.1 we have $I/\zeta_1(I) \cap \zeta_1(L/\zeta_1(I)) \neq 0$. Hence we can find $x \in I \setminus \zeta_1(I)$ such that $[x, L] \subseteq \zeta_1(I)$. It is easy to see that $\zeta_1(I) + \langle x \rangle \lhd L$. From the remark above $C_L(\zeta_1(I) + \langle x \rangle) \lhd L$ and therefore $I \cap C_L(\zeta_1(I) + \langle x \rangle)$ $\lhd L$. We also have $I \cap C_L(\langle x \rangle) = I \cap C_L(\zeta_1(I) + \langle x \rangle)$, whence $I \cap C_L(\langle x \rangle)$ $\lhd L$. Since $x \in I$, we have $\zeta_1(I) \leq I \cap C_L(\langle x \rangle)$. By the assumption that $L/\zeta_1(I)$ $\in 3$, we have $L/(I \cap C_L(\langle x \rangle)) \in Q3 = 3$. From the fact that $x \notin \zeta_1(I)$ it follows that $I \cap C_L(\langle x \rangle) \leq I$, i.e., that $I/(I \cap C_L(\langle x \rangle))$ is a non-zero ideal of $L/(I \cap C_L(\langle x \rangle))$. By Lemma 3.1 we now obtain $I/(I \cap C_L(\langle x \rangle)) \cap \zeta_1(L/(I \cap C_L(\langle x \rangle))) \neq 0$. Hence there exists $y \in I \setminus C_L(\langle x \rangle)$ such that $[y, L] \subseteq I \cap C_L(\langle x \rangle)$. Evidently $[x, y] \neq 0$. Owing to the Jacobi identity,

$$[[x, y], L] \subseteq [[x, L], y] + [x, [y, L]]$$
$$\subseteq [\zeta_1(I), y] + [x, C_L(\langle x \rangle)]$$
$$= 0.$$

Namely $[x, y] \in \zeta_1(L)$. Therefore $I^2 \cap \zeta_1(L) \neq 0$. This proves the lemma.

By making use of Lemma 3.2, we shall prove the following

THEOREM 3.1. Let L be a Lie algebra and I be an ideal of L. If I is nilpotent and L/I^2 is hypercentral, then L is hypercentral.

PROOF. We use induction on the nilpotency class k of I. If k=1, then $I^2=0$ and the assertion is trivial. Let k>1 and assume that the assertion is true for k-1. Let $I \in \mathfrak{N}_k$ and $I \notin \mathfrak{N}_1$. Then $I/\zeta_1(I) \in \mathfrak{N}_{k-1}$ and

$$(L/\zeta_1(I))/(I/\zeta_1(I))^2 \simeq L/(I^2 + \zeta_1(I)) \simeq (L/I^2)/((I^2 + \zeta_1(I))/I^2) \in Q_3^2 = 3.$$

By induction hypothesis it follows that $L/\zeta_1(I) \in \mathfrak{Z}$. Since $I \notin \mathfrak{N}_1$, $I/\zeta_1(I)$ is a non-zero ideal of $L/\zeta_1(I)$. Hence by Lemma 3.2 we have $\zeta_1(L) \neq 0$. Now, suppose that $L \neq \zeta_*(L)$. Since I is an \mathfrak{N}_k -ideal of L, $(I + \zeta_*(L))/\zeta_*(L)$ is also an \mathfrak{N}_k -ideal of $L/\zeta_*(L)$ and

$$(L/\zeta_*(L))/((I+\zeta_*(L))/\zeta_*(L))^2 \simeq (L/I^2)/((I^2+\zeta_*(L))/I^2) \in \mathbf{Q}_3^2 = 3.$$

Since $L/\zeta_*(L) \notin \mathfrak{Z}$, $(I + \zeta_*(L))/\zeta_*(L) \notin \mathfrak{N}_1$. By the fact shown above, we have $\zeta_1(L/\zeta_*(L)) \neq 0$, which contradicts the definition of $\zeta_*(L)$. Therefore we conclude that $L = \zeta_*(L)$. Thus the proof is complete.

4. The cases of E and LN

THEOREM 4.1. Let L be a Lie algebra and I be an ideal of L. If I is nilpotent and L/I^2 is Engel, then L is Engel.

PROOF. We use induction on the nilpotency class k of I. If k=1, then the assertion is trivial. Let k>1 and suppose that the assertion is true for k-1. Let $I \in \mathfrak{R}_k$. Then $I/\zeta_1(I) \in \mathfrak{R}_{k-1}$ and

$$(L/\zeta_1(I))/(I/\zeta_1(I))^2 \simeq (L/I^2)/((I^2 + \zeta_1(I))/I^2) \in Q\mathfrak{E} = \mathfrak{E}.$$

By induction hypothesis we have $L/\zeta_1(I) \in \mathfrak{E}$.

Now we claim that $I^2 \subseteq \mathfrak{r}(L)$. In fact, let $x, y \in I$ and $z \in L$. Since $L/\zeta_1(I) \in \mathfrak{E}$, we can find positive integers m and n such that $[x, {}_m z] \in \zeta_1(I)$ and $[y, {}_n z] \in \zeta_1(I)$. By the Jacobi identity,

$$[[x, y], _{m+n}z] = \sum_{i+j=m+n} \binom{m+n}{i} [[x, _iz], [y, _jz]] = 0.$$

Hence $[x, y] \in \mathfrak{r}(L)$. Therefore $I^2 \subseteq \mathfrak{r}(L)$, as claimed.

Let $v, w \in L$. Since $L/I^2 \in \mathfrak{E}$, there exists a positive integer p such that $[v, {}_pw] \in I^2$. Since $I^2 \subseteq \mathfrak{r}(L)$, we can find a positive integer q such that $[[v, {}_pw], {}_qw]=0$. It follows that $[v, {}_{p+q}w]=0$. Hence $L \in \mathfrak{E}$. This completes the proof.

Although L \mathfrak{N} is not E-closed in general, it is known [1, p. 336] that with respect to \mathfrak{E} L \mathfrak{N} is E-closed. Namely, we have

LEMMA 4.1. Let $L \in \mathfrak{E}$ and I be an ideal of L. If I and L/I are locally nilpotent, then L is locally nilpotent.

Now we have the following theorem as a consequence of Theorem 4.1:

THEOREM 4.2. Let L be a Lie algebra and I be an ideal of L. If I is nilpotent and L/I^2 is locally nilpotent, then L is locally nilpotent.

PROOF. Since $L\mathfrak{N} \leq \mathfrak{E}$, it follows from Theorem 4.1 that $L \in \mathfrak{E}$. Hence by Lemma 4.1 we have $L \in L\mathfrak{N}$.

5. The cases of Ft, B and Gr

LEMMA 5.1. Let L be a Lie algebra and I be an ideal of L. If I and L/I^2 are nilpotent, then L is nilpotent.

PROOF. See [3, Theorem 2] (or [1, Proposition 7.1.1 (c)]).

LEMMA 5.2. Let L be a Lie algebra.

(1) If I is a nilpotent ideal of L and H is a nilpotent subideal of L, then I+H is a nilpotent subideal of L.

(2) If I is a hypercentral ideal of L and H is an ascendant hypercentral subalgebra of L, then I + H is an ascendant hypercentral subalgebra of L.

PROOF. (1) Obviously I+H si L. Let $I \in \mathfrak{N}_c$, $H \in \mathfrak{N}_d$ and $H \triangleleft^n L$. Put m = d + c(n+d) + 1. Then $(I+H)^m$ is the sum of all $[W_1, W_2, ..., W_m]$ with $W_i = I$ or H. Since $I \triangleleft L$ and $I \in \mathfrak{N}_c$, we may suppose that I appears in $[W_1, W_2, ..., W_m]$ at most c times. Noting that

 $[L, _{n+d}H] = [[L, _{n}H], _{d}H] \subseteq [H, _{d}H] = 0,$

we see that $[W_1, ..., W_m] = 0$. Hence $(I + H)^m = 0$.

(2) See [4, Proposition 3].

THEOREM 5.1. Let L be a Lie algebra and I be a nilpotent ideal of L.

Extension Theorems on Some Generalized Nilpotent Lie Algebras

- (1) If L/I^2 is Fitting, then L is Fitting.
- (2) If L/I^2 is Baer, then L is Baer.
- (3) If L/I^2 is Gruenberg, then L is Gruenberg.

PROOF. (1) By the definition of $\mathfrak{F}t$,

$$L/I^2 = \sum \{J/I^2 \colon J \lhd L, J/I^2 \in \mathfrak{N}\}.$$

By Fitting's Theorem (see [1, Theorem 1.2.5])

$$(J + I)/I^2 = J/I^2 + I/I^2 \in \mathfrak{N}.$$

By Lemma 5.1 we have $J + I \in \mathfrak{N}$ and therefore $J \in \mathfrak{N}$. Consequently

$$L = \sum \{H \colon H \vartriangleleft L, H \in \mathfrak{N} \}.$$

Therefore $L \in \mathfrak{Ft}$.

(2) Let $x \in L$. Then

$$(\langle x \rangle + I^2)/I^2$$
 si L/I^2 and $(\langle x \rangle + I)/I^2 = (\langle x \rangle + I^2)/I^2 + I/I^2$.

By Lemma 5.2 (1) we have $(\langle x \rangle + I)/I^2 \in \mathfrak{N}$ and $\langle x \rangle + I$ si L. Using Lemma 5.1 we obtain $\langle x \rangle + I \in \mathfrak{N}$, and hence $\langle x \rangle$ si $\langle x \rangle + I$. Therefore we have $\langle x \rangle$ si L. Thus $L \in \mathfrak{B}$.

(3) Let $x \in L$. Then

$$(\langle x \rangle + I^2)/I^2$$
 as L/I^2 and $(\langle x \rangle + I)/I^2 = (\langle x \rangle + I^2)/I^2 + I/I^2$.

By Lemma 5.2 (2) we have $(\langle x \rangle + I)/I^2 \in \mathfrak{Z}$ and $\langle x \rangle + I$ asc L. Using Theorem 3.1 we obtain $\langle x \rangle + I \in \mathfrak{Z}$. It follows that $\langle x \rangle$ asc $\langle x \rangle + I$, and therefore $\langle x \rangle$ asc L. Thus $L \in \mathfrak{Gr}$.

6. Remarks

All classes observed in the above theorems are subclasses of \mathfrak{E} . Let P be a vector space over Φ with basis e_0 , e_1 , e_2 ,... and regard P as an abelian Lie algebra. Let z be the identity transformation of P and let L be a split extension of P by $\langle z \rangle$. Let \mathfrak{X} be any class in the theorems. Then clearly $P \in \mathfrak{X}$, $P \triangleleft L$ and $L/P \in \mathfrak{X}$. But since $[e_i, {}_{n}z] = e_i$ for any positive integer $n, L \notin \mathfrak{E}$, and therefore $L \notin \mathfrak{X}$. This tells us that any class in the above theorems is not E-closed.

Acknowledgment

The authors would like to express their gratitude to Professor S. Tôgô for his encouragement.

References

- [1] R. K. Amayo and I. N. Stewart, Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
- [2] A. Betten, Hinreichende Kriterien f
 ür die Hyperzentralit
 ät einer Gruppe, Arch. Math., 20 (1969), 471–480.
- [3] C.-Y. Chao, Some characterizations of nilpotent Lie algebras, Math. Z., 103 (1968), 40-42.
- [4] T. Ikeda and Y. Kashiwagi, Some properties of hypercentral Lie algebras, to appear in this journal.
- [5] D. J. S. Robinson, A property of the lower central series of a group, Math. Z., 107 (1968), 225-231.
- [6] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups I, Springer, Berlin, 1972.

Department of Mathematics, Faculty of Science, Hiroshima University