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1. Introduction

Let L be a Lie algebra over a field. It is well known that if / is a nilpotent

ideal of L and L//2 is nilpotent, then L is nilpotent. In group theory a theorem

asserting that for a normal nilpotent subgroup N of a group G a property of GfN'

passes to G is termed one of Hall's type, and it has been shown for several proper-

ties including the nilpotency ([5], [6, p. 57]). In connection with these, it seems

interesting for us to investigate the Lie-theoretic analogue of a theorem of Hall's

type. The aim of this paper is to show the following extension theorem in Lie

algebras: Let 3£ be one of the classes 3> ®> L9l> 3fc 95, ©r of Lie algebras. If
/ is a nilpotent ideal of L and L//2 lies in 3E, then L lies in 36.

2. Notations

Throughout this paper we consider Lie algebras over an arbitrary field Φ

which are not necessarily finite-dimensional.

Let L be a Lie algebra and H be a subalgebra of L. We use the following

notations as usual.

H si L: H is a subideal of L.

H asc L: H is an ascendant subalgebra of L, i.e., there exists an ascending

series {Hβ: O^β^α} of subalgebras of L, indexed by ordinals β^α, such that

H0 = H, HΛ = L, Hβ^Hβ+ί for all /?<«, and Hλ=\jHβ for all limit ordinals

ζα(L): the α-th term of the upper central series of L (α: an ordinal). In

particular d(L) is the center of L.

ζ*(L) : the hypercenter of L.

We say that x e L is a right Engel element if for each y e L there exists a

non-negative integer n = n(x, y) such that [x, πy]=0.

r(L): the set of right Engel elements of L.

Let us recall several classes of Lie algebras.

91 : the class of nilpotent Lie algebras.

3 : the class of hypercentral Lie algebras.
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L^l: the class of locally nilpotent Lie algebras.

5t : the class of Lie algebras which are the sum of nilpotent ideals.
23 : the class of Lie algebras L such that x e L implies <x> si L.
(Sr : the class of Lie algebras L such that x e L implies < x > asc L.
(£ : the class of Lie algebras L satisfying the condition that for every x,

y eL there exists a positive integer n = n(x, y) such that [x, wy]=0.
When L 6 gt (resp. 53, (Sr, (£), L is called a Fitting (resp. a Baer, a Gruenberg,

an Engel) algebra.
It is to be noted that we defined (Sr for an arbitrary base field Φ, though it is

defined only for a field of characteristic zero in [I, Chap. 6].
Any notation not explained here may be found in [1].

3. The case of 3

This case is the Lie-theoretic analogue of a result of Betten [2].

LEMMA 3.1. If Le$ and I is a non-zero ideal of L, then I Π

PROOF. Let {ζβ(L): Ogβ^α} be the upper central series of L with L =
ζα(L). Denote by 5 the set of all ordinals ^^α for which / Π ζβ(L)^Q. Clearly
S^φ. Let y = minS'. It is easily seen that γ is neither 0 nor a limit ordinal.

Hence / Π ζγ - 1 (L) = 0 and / n ζγ(L) Φ 0. So we have

[/ n ίy(L),L]g7 Π Cy_1(L) = 0,

which means that 0 Φ I n ζγ(L) <* ζt(L). Therefore 7 Π ζι(L) Φ 0.

If H is a subalgebra of a Lie algebra L, then the centralizer of H in L is
CL(H) = {y e L : [//, y] = 0} . Evidently, if //<α L then CL(//)-α L.

LEMMA 3.2. Lei L be a Lie algebra and I be an ideal of L. If

and L/d(/)e3, fhen /2 Π d(L)^0 αnJ in particular

PROOF. By Lemma 3.1 we have 7/^(7) n d(L/Ci(/))7^0. Hence we can
find xe7\Cι(7) such that [x, ZJsdί/). It is easy to see that d(7)+ <x><ιL.
From the remark above CL(Cι(7)+ <x>)<ιL and therefore 7 n CL(£1(/)+ <x>)
<]L. We also have 7 n CL(<x>) = 7 n CL(d(7)+ <x>), whence 7nCL(<x>)
<]L. Since x e7, we have ^(7)^7 n CL(<x>). By the assumption that L/£x(7)

e3, we have L/(7 n CL(<x>))eq3 = 3. From the fact that x<£ d(7) it follows
that 7nCL(<x>)^7, i.e., that 7/(7 n CL( < x > )) is a non-zero ideal of L/(7 Π
CL( < x > )). By Lemma 3.1 we now obtain 7/(7 n CL( < x > )) n ζι(L/(I n
CL(<x>)))^0. Hence there exists ye7\CL(<x>) such that [y, L]g7n
CL(<x>). Evidently [x, y] ^0. Owing to the Jacobi identity,
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[[x, yl L] £ [[x, L], y] + [x, [>, L]]

= 0.

Namely [x, y] e d(L). Therefore I2 n dCL^O. This proves the lemma.

By making use of Lemma 3.2, we shall prove the following

THEOREM 3.1. Let L be a Lie algebra and I be an ideal of L. If I is
nilpotent and L/l2 is hypercentral, then L is hypercentral.

PROOF. We use induction on the nilpotency class k of /. If fe = l, then
/2 = 0 and the assertion is trivial. Let k>l and assume that the assertion is true

for fc-1. Let /e9t f c and 1^91^ Then I/ζί(I)e<nk_ί and

/))2 * L/(/2 +

By induction hypothesis it follows that L/C1(/)e3 Since /^^j, //Cι(0 is a
non-zero ideal of L/d(/) Hence by Lemma 3.2 we have ^(L^O. Now,
suppose that L^ζ*(L). Since / is an 9ΐk-ideal of L, (/ + C#(L))/C#(L) is also an

9Videal of Lfc+(L) and

(L/UL))/((/ + ζ*(L))/C*(L))2 c, (L//2)/((/2 + ί,(L))//2) G Q3 = 3

Since L/ζ*(L)£3, (/ + C*(L))/ζ]|l(L)ί9l1. By the fact shown above, we have
ζ1(L/ζHe(L))τέO, which contradicts the definition of ζ*(L). Therefore we conclude
that L = ζHe(L). Thus the proof is complete.

4. The cases of £ and LΛU

THEOREM 4.1. Let L be a Lie algebra and I be an ideal of L. If I is nil-
potent and L/I2 is Engel, then L is Engel.

PROOF. We use induction on the nilpotency class k of L If fc=l, then the
assertion is trivial. Let k>\ and suppose that the assertion is true for k— 1.

Let / e 9ί*. Then //d(/) e 9tfc_ t and

By induction hypothesis we have L/d(/) eCB.
Now we claim that /2gr(L). In fact, let x, y e / and zeL. Since L/d(/)

6 (S, we can find positive integers m and n such that [x, wz] e d(/) and [y, wz]
e d(/). By the Jacobi identity,
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[[*, y], m+nz] = Σ
i+j=m+n

Hence [x, .y] er(L). Therefore /2gr(L), as claimed.
Let v, vv> e L. Since L/I2 e (£, there exists a positive integer ? such that

[y, pw] e/2. Since 72gr(L), we can find a positive integer q such that [[ι;, pw],

9vv] = 0. It follows that [y, p+^w] = 0. Hence Le(S. This completes the proof.

Although L$R is not E-closed in general, it is known [1, p. 336] that with

respect to (£ L91 is E-closed. Namely, we have

LEMMA 4.1. Let Le(£ and I be an ideal of L. If I and L/I are locally
nilpotent, then L is locally nilpotent.

Now we have the following theorem as a consequence of Theorem 4. 1 :

THEOREM 4.2. Let L be a Lie algebra and I be an ideal of L. If I is nil-
potent and L/I2 is locally nilpotent, then L is locally nilpotent.

PROOF. Since L9t^(£, it follows from Theorem 4.1 that Le(£. Hence by

Lemma 4.1 we have

5. The cases of gt, 23 and (δr

LEMMA 5.1. Let L be a Lie algebra and I be an ideal of L. If I and

L/I2 are nilpotent, then L is nilpotent.

PROOF. See [3, Theorem 2] (or [1, Proposition 7.1.1 (c)]).

LEMMA 5.2. Let L be a Lie algebra.
(1) /// is a nilpotent ideal of L and H is a nilpotent subideal of L, then

/ + // is a nilpotent subideal of L.
(2) If I is a hypercentral ideal of L and H is an ascendant hypercentral

subalgebra of L, then I + H is an ascendant hypercentral subalgebra of L.

PROOF. (1) Obviously I + H si L. Let /e9tc, HεMd and H^nL. Put
m = d + c(n + d) + l. Then (I + H)m is the sum of all [Wl9 W2,...9 Wm~\ with Wt = I

or H. Since J<αL and / e ϊlc, we may suppose that / appears in [Wί9 W2,...9 Wm]
at most c times. Noting that

IL, n+dR } = [[L, MH], d#] S [H, d#] = 0,

we see that [P^,..., ̂ J = 0. Hence (/ + #)'M = 0.
(2) See [4, Proposition 3].

THEOREM 5.1. Let L be a Lie algebra and I be a nilpotent ideal of L.
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(1) IfL/I2 is Fitting, then L is Fitting.
(2) IfL/I2 is Baer, then L is Baer.
(3) If LI I2 is Gruenberg, then L is Gruenberg.

PROOF. (1) By the definition of 3rt,

L//2 = Σ{J/I2' J^L9 J/I2 eft}.

By Fitting's Theorem (see [1, Theorem 1.2.5])

(J + 7)/72 = J/72 + 7/72eft.

By Lemma 5.1 we have J 4- / e ft and therefore J e ft. Consequently

L= Σ{H:H^L9He9l}.

Therefore L e gt.
(2) Let x e L. Then

(< x > + 72)//2 si L//2 and (< x > + I)/12 = (< x > + 72)/72 + I/I2.

By Lemma 5.2 (1) we have (<x> + 7)/72 eft and <x> +1 si L. Using Lemma
5.1 we obtain <x>+7eft, and hence <x> si <x>+7. Therefore we have
<x> si L. Thus Le93.

(3) Let x e L. Then

(< x > + 72)/72 asc L//2 and (< x > + I)/12 = ( < x > + 72)//2 + 7//2.

By Lemma 5.2 (2) we have (<x> +7)/72e3 and <x> -f 7 asc L. Using Theo-

rem 3.1 we obtain <x>+7e3- It follows that <x> asc <x> 4-7, and there-
fore < x > asc L. Thus L e (St.

6. Remarks

All classes observed in the above theorems are subclasses of (£. Let P be a

vector space over Φ with basis eθ9 eί9 e29... and regard P as an abelian Lie algebra.
Let z be the identity transformation of P and let L be a split extension of P by
<z>. Let £ be any class in the theorems. Then clearly Peϊ, PoL and
L/Pe£. But since [et, n^] = ̂ ί for any positive integer n, L^(S, and therefore
L^έ£. This tells us that any class in the above theorems is not E-closed.
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