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The purpose of this paper is to present a general method of axiomatizing
fragments of first order theories. Smorynski [6] presented a new semi-model-
theoretic method of axiomatizing fragments. Our method in this paper is proof-
theoretic. For the sake of contrast, we prove several results in [6] by our
method. The method in this paper is a generalization of one in [9], and a
development of one in [3] and [4]. Motohashi [4] introduced approximation
theory of uniqueness conditions by existence conditions, and gave an axiomatiza-
tion theorem for intuitionistic theories with equality which are axiomatized by
uniqueness conditions and existence conditions. We modify the notion of appro-
ximations in [4], and give an axiomatization theorem for any intuitionistic
theories with equality. We introduce the notion of inference forms, which plays
an important role in our discussion. Inference forms are figures expressing
inference rules such that first order logistics are formalized by sets of inference
forms. For a given fragment of a theory, by choosing a suitable set of inference
forms which formalizes the theory, we can construct a series of axioms which
axiomatizes the fragment.

\S 1 is a preliminary section in which we introduce several basic notations
and notions. In \S 2, we introduce the notion of inference forms, and give a cut
elimination theorem for logistics formalized by sets of inference forms. The
proofs in the following sections are based on the cut elimination theorem. In
\S 3, first. we introduce the notion of approximations which is a modification of
one in [4]. Then, we give several theorems for axiomatizing fragments by
approximations. In \S 4, we prove several axiomatization results, some of which
are proved in [6]. \S 5 is preparatory to axiomatization theorems in \S 6. In
\S 6, we give an axiomatization theorem for classical theories with equality and
an axiomatization theorem for intuitionistic theories with equality.

\S 1. Preliminary.

We are concerned with Gentzen-type systems: A logistic (or a theory) con-
sists of initial sequents and inference figures. In intuitionistic logistics, the suc-
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cedent of each sequent consists of at most one formula.
We use the propositional symbols $\backslash$( and )$\backslash$ , that say the true sentence and

the false sentence, resPectively, and every logistic concerned has the following
inference figures:

$\frac{\backslash (,\Gammaarrow\Delta}{\Gammaarrow\Delta}$ $\frac{\Gammaarrow\Delta,)\backslash }{\Gammaarrow\Delta}$

In [2], variables are distinguished into two kinds: free variables and bound
variables. However, in this paper, variables are not to be so. The adjectives
“free” and “bound” modify not variables, but occurrences of variables.

Each variant of a formula is identified with the formula (for variant, see
[5] p. 35).

A substitution is a figure of the form $(x_{1}t_{1} x_{n}t_{n})$ , where $x_{1},$ $\cdots$ , $x_{n}$ are pair-

wise distinct variables and $t_{1},$ $\cdots$ , $t_{n}$ are arbitrary terms. For each figure $A$ ,

$A(x_{1}t_{1} x_{n}t_{n})$ denotes the figure which results from replacing all free occurrences
of $x_{1},$ $\cdots$ , $x_{n}$ in $A$ by $t_{1},$ $\cdots$ , $t_{n}$ , respectively. We agree that whenever

$A(xt_{1}\cdots x\cdot)$ aPpears, all the variables occurring in terms $t_{1},$ $\cdots$ , $t_{n}$ are free at

the places of the free occurrences of $x_{1},$ $\cdots,$ $x_{n}$ , respectively, in $A$ . For each
figure $A$ and for each substitution $\theta$ , the figure $A\theta$ is called an instance of $A$ .

An n-ary predicate is a figure of the form $\lambda x_{1}\cdots x_{n}$ .or, where ut is a
formula and $x_{1},$

$\cdots$ , $x_{n}$ are pairwise distinct variables. A predicate $\lambda x_{1}\cdots x_{n}$ . ut
is closed if no other variables than $x_{1},$

$\cdots$ , $x_{n}$ occur free in $\mathfrak{U}$ . A predicate
$\lambda x_{1}\cdots x_{n}$ . ut is atomic if the formula $\mathfrak{U}$ is atomic.

If $A$ is an $n$ -ary predicate of the form $\lambda x_{1}$
$x_{n}$ . $\mathfrak{U}$ , then $A(t_{1}, \cdot , t_{n})$ denotes

the formula $\mathfrak{A}(x_{1}t_{1} x_{n}t_{n})$ .

For a sequence $\overline{x}$ of pairwise distinct $n$ variables of the form $x_{1},$ $\cdots$ , $x_{n}$ ,
$\forall\overline{x}$ and $\exists\overline{x}$ denote $\forall x_{1}$ $\forall x_{n}$ and $\exists x_{1}$ ... $\exists x_{n}$ , respectively. If $n=0$ then $\forall\overline{x}$

and $\exists\overline{x}$ are empty.
If $\overline{s}$ and $\overline{t}$ are sequences of terms $s_{1},$ $\cdots,$ $s_{n}$ and $t_{1},$ $\cdots$ , $t_{n}$ , respectively, then

$\overline{s}=\overline{t}$ denotes the conjunction $s_{1}=t_{1}\wedge\cdots As_{n}=t_{n}$ .
For a set $S$ of symbols, a figure is $S$-free if it has no occurrences of

symbols in 8. For a set $B$ of predicate symbols, a formula is $q$-atomic if it is
an atomic formula whose predicate symbol belongs to $q$ . A formula is $arrow cP$-Posi-
tive if it has no negative occurrences of $q$-atomic formulas. A formula is if-
negative if it has no positive occurrences of 9-atomic formulas. For a trio
(if, $\Re,$ $\mathscr{F}$ ) of mutually disjoint sets of predicate symbols, a formula is a $(if, 7l, \mathscr{F})_{+}-$

formula if it is 9-positive, $\Re$-negative, and $\mathscr{F}$-free. A formula is a $(9, \Re, \mathscr{F})_{-}-$

formula if it is a $($ SU, !?, $\mathscr{F})_{+}$-formula. A sequent is a $(B, 3l, \mathscr{F})$-clause if the
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antecedent consists of $9\cup \mathscr{F}$ -atomic formulas and the succedent consists of
$\Re\cup \mathscr{F}$-atomic formulas. A sequent is (9) $\Re,$ $\mathscr{F})$-sequent if the antecedent consists
of $9\cup \mathscr{F}$ -atomic formulas and $($9, Sr, $\mathscr{F})_{-}$ -formulas, and the succedent consists of
$\Re\cup \mathscr{F}$ -atomic formulas and $(9, 3l, \mathscr{F})_{+}$ -formulas. A (9, Su, $\mathscr{F}$ )-sequent is simple
if the succedent consists of only $(9, \Re, \mathscr{F})_{+}$-formulas. A $(\emptyset, \emptyset, \mathscr{F})$-clause is
called an $\mathscr{F}$ -clause, and a $(\emptyset, \emptyset, \mathscr{F})$-sequent is called an $\mathscr{F}$ -sequent.

For a set $\mathcal{H}$ of formulas, the $\mathcal{H}$ -Part of a theory $T$ is the set of all the T-
provable formulas belonging to $\mathcal{H}$ . If $\mathcal{H}$ is the set of all the $S$-free formulas,
then the $\mathcal{H}$ -part of a theory $T$ is called the $S$-free part of $T$ . If $\mathcal{H}$ is the set
of all the $(B, \Re, \mathscr{F})_{+}$-formulas, then the $\mathcal{H}$ -part of a theory $T$ is called the
$(9, \Re, \mathscr{F})_{+}$-Part of $T$ . The $\mathcal{H}$ -part of a theory $S$ is axiomatized by a series of
axioms $\mathfrak{A}_{0},$ $\mathfrak{U}_{1}$ , Ut2, $\cdot$ .. in a theory $T$ if $\mathfrak{A}_{0},$ $\mathfrak{A}_{1}$ , Ut2, $\cdot$ .

in $\mathcal{H}$ and the $\mathcal{H}$-part of $S$ is identical with the $\mathcal{H}$-part of the theory obtained
from $T$ by adding the axioms $\mathfrak{A}_{0},$ $\mathfrak{A}_{1}$ , Ut2, $\cdots$

For a logistic $L$ , a quasi-L-Proof figure is a proof figure whose inference
figures are some in $L$ and whose initial sequents are arbitrary.

\S 2. Inference forms.

A universal condition is a figure of the form $\forall\overline{x}(\Gammaarrow\Delta)$ , where $\Gammaarrow\Delta$ is a
sequent. An existensial conditzon is a figure of the form $\exists\overline{y}(\Pi)$ , where $\Pi$ is a
finite sequence of formulas. Note that $\forall\overline{x}$ and $\exists\overline{y}$ may be empty.

For each universal condition $\forall\overline{x}(\mathfrak{A}_{1}$ , $\cdot$ .. , $\mathfrak{A}_{m}arrow \mathfrak{B}_{1}$ , $\cdot$ .. , $\mathfrak{B}_{n}),$ $\forall\overline{x}(\mathfrak{A}_{1}$ , $\cdot$ .. , $\mathfrak{A}_{m}arrow$

$\mathfrak{B}_{1}$ , $\cdot$ , $\mathfrak{B}_{n}$ ) denotes the formula $)_{\backslash },$ $\forall\overline{x}(\mathfrak{B}_{1}\vee\cdots v\mathfrak{B}_{n}),$ $\forall\overline{x}7$ ( $\mathfrak{A}_{1}\Lambda\cdots$ A $\mathfrak{A}_{m}$ ), or
$\forall\overline{x}$ ( $\mathfrak{A}_{1}\Lambda\cdots$ A $\mathfrak{U}_{m}\supset \mathfrak{B}_{1}\vee\cdots v\mathfrak{B}_{n}$ ), according as $m=0$ and $n=0,$ $m=0$ and $n\neq 0$ ,
$m\neq 0$ and $n=0$ , or $m\neq 0$ and $n\neq 0$ . For each existensial condition $\exists\overline{y}(\mathfrak{C}_{1}, \cdots , \mathfrak{C}_{k})$ ,
$\exists\overline{y}(\mathfrak{C}_{1}, , \mathfrak{C}_{k})^{\mathfrak{q}}$ denotes the formula $\backslash$( or $\exists\overline{y}(\mathfrak{C}_{1}\Lambda \Lambda \mathfrak{C}_{k})$ , according as $k=0$ or
not. If $\Sigma$ is a sequence $F_{1},$ $\cdots$ , $F_{n}$ of conditions, then $\Sigma$ a denotes the sequence
$F_{1}^{\mathfrak{h}},$ $\cdots$ , $F_{n}^{\mathfrak{h}}$ .

A universal condition $\forall x_{1}\cdots\forall x_{n}(\Gammaarrow\Delta)$ , is a variant of a universal condition

$\forall y_{1}\cdots\forall y_{n}(\Gamma‘arrow\Delta‘)$ if $\Gammaarrow\Delta$ is $(\Gamma’arrow\Delta’)(y_{1}x_{1} y_{n}x_{n})$ , and $x_{1},$
$\cdots$ , $x_{n}$ do not occur

free in $\Gamma’arrow\Delta$ ‘. An existensial condition $\exists x_{1}\cdots\exists x_{n}(\Pi)$ is a variant of an exist-

ensial condition $\exists y_{1}$ $\exists y_{n}(\Pi’)$ if $\Pi$ is $(\Pi’)(_{\chi_{1}}^{y_{1}}$ $y_{n}x_{n})$ , and $x_{1}$ , , $x_{n}$ do not

occur free in $\Pi’$ . Each variant of a condition is identified with the condition.
An inference form is a figure of the form $[\Phi;\Sigmaarrow\Theta;\Psi]$ , where $\Phi$ and $\Psi$

are finite sequences of formulas, $\Sigma$ is a finite sequence of universal conditions,
and $\Theta$ is a finite sequence of existensial conditions. An inference form
$[\Phi;\forall\overline{x}_{1}(\Gamma_{1}arrow\Delta_{1}), \cdots , \forall\overline{x}_{m}(\Gamma_{m}arrow\Delta_{m})arrow\Theta;\Psi]$ is intuitionistic if each $\Delta_{i}$ consists of
at most one formula, $\Psi$ consists of at most one formula, and whenever $0$ is
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not emPty, $\Psi$ is empty.
For a trio $(9, \Re, \mathscr{F})$ of mutually disjoint sets of predicate symbols, an in-

ference form

$[\Phi;\forall\overline{x}_{1}(\Gamma_{1}arrow\Delta_{1}), \cdots, \forall\overline{x}_{m}(\Gamma_{m}arrow\Delta_{m})arrow\exists\overline{y}_{1}(\Pi_{1}), \cdots, \exists\overline{y}_{n}(\Pi_{n});\Psi]$

is a $(9, \Re, \mathscr{F})$-inference form if each formula in $\Phi$ is atomic or $9U\Re U\mathscr{F}$ -free,
each formula in $\Gamma_{1}$ , $\cdot$ .. , $\Gamma_{m},$ $\Pi_{1}$ , $\cdot$ ..

2
$\Pi_{n}$ is $9\cup \mathscr{F}$ -atomic or $9\cup\Re\cup \mathscr{F}$ -free, each

formula in $\Delta_{1},$ $\cdots$ , $\Delta_{m}$ is SUVS-atomic or $9\cup X\cup \mathscr{F}$-free, and $\Psi$ is empty. More-
over, if each formula in $\Delta_{1}$ , $\cdot$ .. , $\Delta_{m}$ is $B\cup\Re\cup \mathscr{F}$ -free, then the $(9, \Re, \mathscr{F})$-infer-
ence form is said to be simple.

A $(\emptyset, \emptyset, \mathscr{F})$-inference form is called an $\mathscr{F}$ -inference form.
Let $I$ be an inference form of the following form:

$[\Phi;\forall\overline{x}_{1}(\Gamma_{1}arrow\Delta_{1}), \cdots \forall\overline{x}_{m}(\Gamma_{m}arrow\Delta_{m})arrow\exists\overline{y}_{1}(\Pi_{1}), \cdots \exists 5^{i_{n}}(\Pi_{n});\Psi]$ .

Then an $I$-rule is an inference figure of the form

$\frac{\Gamma_{1},\Gammaarrow\Delta,\Delta_{1}\cdots\Gamma_{m},\Gammaarrow\Delta,\Delta_{m}\Pi_{1},\Piarrow\Lambda}{\Phi,\Gamma,\Piarrow\Delta,\Lambda,\Psi}$

... $\Pi_{n},$ $\Piarrow\Lambda$

where each variable in $\overline{x}_{1}$ , $\cdot$ . , $\overline{x}_{m},\overline{y}_{1}$ , , $\overline{y}_{n}$ is not free in the lower sequent,
$i.e$ . it satisfies the eigenvariable condition. When we are concerned with an
intuitionistic logistic, $I$ is intuitionistic and $\Delta$ is empty, and then the $I$-rule is
called an intuitionistic $I$-rule. Each occurrence of a formula in $\Phi$ or $\Psi$ in the
$I$-rule is called a principal formula of the $I$-rule. If an occurrence of a formula
ut is a principal formula of the $I$-rule, then the formula ut itself also called a
principal formula of the $I$-rule. Similarly, when we mention a cut formula, it
means a formula or an occurrence of a formula according to the context. Note
that if $I$ is a (re, $X,$ $\mathscr{F}$ )-inference form, then all the upper sequents of an I-rule
are $(\ovalbox{\tt\small REJECT})\Re,$ $\mathscr{F})$-sequents if and only if the lower sequent is a $(q, \Re, \mathscr{F})$-sequent,
and if $I$ is simple, then all the upper sequents of an $I$-rule are simple (9, S7, $\mathscr{F}$ )

sequents if and only if the lower sequent is a simple $(B, 3l, \mathscr{F})$-sequent.
For a set 8 of inference forms, an $S$-rule is an $I$-rule for some instance $I$

of an inference form in $S$ .
We confuse often a universal condition of the form $(arrow \mathfrak{A})$ and an existensial

condition of the form (8) with the formula wr and the formula 8, respectively.
For example, we may write $[\mathfrak{A}\supset \mathfrak{B};\mathfrak{A}arrow \mathfrak{B}; ]$ instead of [Ut $\supset \mathfrak{B};(arrow \mathfrak{A})arrow(\mathfrak{B})$ ; ].

For a classical logistic $L$ and a set 8 of inference forms, $L[S]$ denotes the
classical logistic obtained from $L$ by adding all the $S$-rules. For an intuitionistic
logistic $L$ and a set $S$ of inference forms, $L[S]$ denotes the intuitionistic logistic
obtained from $L$ by adding all the intuitionistic S-rules.

Let $\mathcal{E}$ be the set of all the inference forms

$[ ; arrow s=s; ]$ , $[ ; s=t, A(s)arrow ; A(t)]$ and $[A(s);s=tarrow A(t): ]$
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such that $s$ and $t$ are terms and $A$ is an atomic unary predicate. For each
logistic $L,$ $L_{e}$ denotes the logistic $L[\mathcal{E}]$ .

An inference figure holds in a logistic $L$ if whenever all the upper sequents

are $L$-provable, the lower sequent is $L$-provable. An inference form $I$ holds in
a logistic $L$ if all $I$-rules hold in $L$ .

Let $L$ be the logistic $LK,$ $LJ,$ $LK_{e}$ or $LI_{e}$ . Let 8 be a set of inference
forms, and $P$ an $L[S]$ -proof figure. An occurrence $\hat{\mathfrak{U}}$ of a formula $\mathfrak{U}$ in $P$ is
$S$-free if there is no bundle through et and an occurrence of or which is a
principal formula of an $S$-rule (for bundle, see [8] p. 78). A cut in $P$ is S-free
if both cut formulas are $S$-free. A cut is atomic if the cut formula is atomic.

By the same way as Gentzen’s proof of Hauptsatz, we have the following
cut elimination theorem:

THEOREM 2.1. Let $L$ be the logistic $LK,$ $LJ,$ $LK_{e}$ , or $LJ_{e}$ . Let 8 be a set

of $(B\cup X\cup \mathscr{F})$-inference forms. Then each $L[S]$ -Provable sequent is $L[S]$ -provable
without $S$-free cut, and atomic cut.

\S 3. Approximations.

Let 9, $yl$ and $\mathscr{F}$ be mutually disjoint sets of predicate symbols.
A function $A$ from the set of $(B, \Re, \mathscr{F})$-clauses to the set of $(B, \Re, \mathscr{F})_{-}-$

formulas is a $(B, ’ 17, \mathscr{F})$-aPProximation if all the variables occurring free in
$A(\Gammaarrow\Delta)$ occur in $\Gammaarrow\Delta$ for each $(9, \Re, \mathscr{F})$-clause $\Gammaarrow\Delta$ , and the outer most
logical symbol of $A(\Gammaarrow)$ is 7 for each finite sequence $\Gamma$ of $B\cup \mathscr{F}$ -atomic
formulas. If the formula $A(\Gammaarrow)$ has the form $7\mathfrak{U}$ , then we write the formula
ut $A(\Gamma)$ . $A(\emptyset, \emptyset, \mathscr{F})$-approximation is called an $\mathscr{F}- approximation$ .

Let $A$ be a $(B, \Re, \mathscr{F})$-approximation, and $S$ and $T$ theories.
$A$ satisfies the initial condition in $T$ if, for each 9-atomic formula Ut, each

$Tl$ -atomic formula $\mathfrak{B}$ , and each $\mathscr{F}$ -atomic formula $\mathfrak{C}$ , the sequents $A(\mathfrak{A})arrow \mathfrak{A}$ ,
$\mathfrak{B}arrow A(arrow \mathfrak{B})$ , and $arrow A(\mathfrak{C}arrow \mathfrak{C})$ are T-provable.

$A$ is commutative for substitution on $T$ if, for each substitution $\theta$ , and for
each (SZP, S7, $\mathscr{F}$ )-clause $\Gammaarrow\Delta$ , the formulas $A(\Gammaarrow\Delta)\theta\equiv A(\Gamma\thetaarrow\Delta\theta)$ and $A(\Gamma)\theta\equiv$

$A(\Gamma\theta)$ are T-provable.
$A$ is monotone on $T$ if the sequents $A(\Gammaarrow\Delta)arrow A(\Piarrow\Lambda),$ $A(\Pi)arrow A(\Gamma)$ and

$A(\Gamma)\supset A(\Piarrow\Lambda)arrow A(\Piarrow\Lambda)$ are $T$-provable for each pair of $(B)$ Sr, $\mathscr{F}$ )-clauses
$\Gammaarrow\Delta$ and IZ– $\Lambda$ such that all the formulas in $\Gamma$ occur in II and all the formulas
in $\Delta$ occur in $\Lambda$ .

$A$ is transitive on $S$ if the sequents $\Gamma,$ $A(\Gammaarrow\Delta)arrow\Delta$ and $\Gammaarrow A(\Gamma)$ are S-
provable for each $(9, X, \mathscr{F})$-clause $\Gammaarrow\Delta$ .

$A$ is adequate for $(S, T)$ if $A$ satisfies the initial conditions in $T$ , and is
commutative for substitution on $T$ , monotone on $T$ and transitive on $S$.
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The (EP, $\Re,$ $\mathscr{F}$ )-aPproximation $B$ defined below is said to be basic: For each
( $B$ , S7, $\mathscr{F}$ )-clause $\Gammaarrow\Delta$ ,

$B(\Gammaarrow\Delta)=\{$

$\backslash$( if there is an $\mathscr{F}$ -atomic formula
occurring in both $\Gamma$ and $\Delta$ ,

$(\Gamma’arrow\Delta’)^{q}$ otherwise,

where $\Gamma’$ and $\Delta’$ are the subsequences obtained from $\Gamma$ and $\Delta$ , respectively, by
deleting all the $\mathscr{F}$ -atomic formulas.

Immediately, we have the following corollary:

COROLLARY 3.1. Let $L$ be the logistic $LK$ or $LJ$. Let $B$ be the basic
(if, $yl,$ $\mathscr{F}$ )-approximation. Then $B$ is adequate for $(L, L)$ .

Let $A$ be a (if, $\Re,$ $\mathscr{F}$ )-approximation. Let $\Gammaarrow\Delta$ be a $(9, \Re, \mathscr{F})$-sequent of
the form

$\Gamma_{1},$ $\mathfrak{U}_{1},$ $\Gamma_{2},$ $\mathfrak{A}_{2},$ $\cdots$ $\Gamma_{m},$ $\mathfrak{U}_{m},$ $\Gamma_{m+1}arrow\Delta_{1},$ $\mathfrak{B}_{1},$ $\Delta_{2},$ $\mathfrak{B}_{2},$ $\Delta_{n},$ $\mathfrak{B}_{n},$ $\Delta_{n+1}$ ,

where $\Gamma_{1},$ $\Gamma_{2}$ , , $\Gamma_{m},$ $\Gamma_{m+1}$ are sequences of $9\cup \mathscr{F}$ -atomic formulas, $\Delta_{1},$ $\Delta_{2}$ , ,
$\Delta_{n},$ $\Delta_{n+1}$ are sequences of $\Re\cup \mathscr{F}$ -atomic formulas, $\mathfrak{A}_{1},$ $\mathfrak{A}_{2}$ , , $\mathfrak{U}_{m}$ are $(B, \Re, \mathscr{F})_{-}-$

formulas, and $\mathfrak{B}_{1},$ $\mathfrak{B}_{2}$ , , $\mathfrak{B}_{n}$ are $(9, \Re, \mathscr{F})_{+}$-formulas. Then $A(\Gammaarrow\Delta)$ denotes
the formula

$(\mathfrak{A}_{1}, \mathfrak{A}_{2}, \cdots \mathfrak{U}_{m}arrow A(\Gamma_{1}, \Gamma_{2}, \cdots \Gamma_{m+1}arrow\Delta_{1}, \Delta_{2}, \Delta_{n+1}), \mathfrak{B}_{1}, \mathfrak{B}_{2}, \cdots \mathfrak{B}_{n})^{\}1}$ ,
or

$(\mathfrak{A}_{1}, \mathfrak{A}_{2}, \cdots , \mathfrak{A}_{m}, A(\Gamma_{1}, \Gamma_{2}, \cdots , \Gamma_{m+1})arrow \mathfrak{B}_{1}, \mathfrak{B}_{2}, \cdots, \mathfrak{B}_{n})^{\mathfrak{h}}$

according as some $\Delta_{j}$ is not emPty, or all $\Delta_{j}$ are empty. Moreover, $A(\Gamma)$ de-
notes the formula

$\mathfrak{U}_{1}\Lambda \mathfrak{U}_{2}$ A ... $\wedge \mathfrak{U}_{m}\wedge A(\Gamma_{1}, \Gamma_{2}, \cdots , \Gamma_{m+1})$ .
We have the following corollary:

COROLLARY 3.2. Let $A$ be a $(9, \Re, \mathscr{F})$-approximation which is commutative
for substitution on T. Then for each (9, S7, $\mathscr{F}$ )-sequent $\Gammaarrow\Delta$ and each pair of
terms $s$ and $t$ , the sequents $A(\Gamma(\begin{array}{l}xs\end{array}))arrow\exists xA(\Gamma),$ $\forall xA(\Gamma)arrow A(\Gamma(\begin{array}{l}xt\end{array})),$ $A(\Gamma(\begin{array}{l}xs\end{array})arrow$

$\Delta(\begin{array}{l}xs\end{array}))arrow\exists xA(\Gammaarrow\Delta)$ and $\forall xA(\Gammaarrow\Delta)arrow A(\Gamma(\begin{array}{l}xt\end{array})arrow\Delta(\begin{array}{l}xt\end{array}))$ are $T$-provable. More-

over, if $T$ satisfies equality axioms, then the sequents $s=t,$ $A(\Gamma(\begin{array}{l}xs\end{array})arrow\Delta(\begin{array}{l}xs\end{array}))arrow$

$A(\Gamma(\begin{array}{l}xf\end{array})arrow\Delta(\begin{array}{l}xt\end{array}))$ and $s=t,$ $A(\Gamma(\begin{array}{l}xs\end{array}))arrow A(\Gamma(\begin{array}{l}xt\end{array}))$ are T-provable.

Let $\overline{A}$ be a series $A_{0},$ $A_{1},$ $A_{2},$ $\cdots$ of (EP, $yl,$ $\mathscr{F}$ )-approximations, and let $S$ and
$T$ be theories.

$\overline{A}$ satisfies the initial condition in $T$ if each $A_{k}$ satisfies the initial condition
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in $T$ .
$\overline{A}$ is commutative for substitution on $T$ , if each $A_{k}$ is commutative for sub-

stitution on $T$ .
$\overline{A}$ is monotone on $T$ if $A_{k}$ is monotone on $T$ , and the sequents $A_{k}(\Gammaarrow\Delta)arrow$

$A_{k+1}(\Gammaarrow\Delta)$ and $A_{k+1}(\Gamma)arrow A_{k}(\Gamma)$ are $T$-provable for each number $k$ and for each
$(9, \Re, \mathscr{F})$-clause $\Gammaarrow\Delta$ .

$\overline{A}$ is transitive on $S$ if each $A_{k}$ is transitive on $S$.
$\overline{A}$ is adequate for $(S, T)$ if $\overline{A}$ satisfies the initial condition in $T$ , and is

commutative for substitution on $T$ , monotone on $T$ and transitive on $S$.
For a set $S$ of $(9, \Re, \mathscr{F})$-inference forms, $\overline{A}$ satzsfies $S$-rules in $T$ if for

each number $h$ and each S-rule

$\frac{\Gamma_{1},\Gammaarrow\Delta,\Delta_{1}\cdots\Gamma_{m},\Gammaarrow\Delta,\Delta_{m1}\Pi,\Piarrow\Lambda\cdots\Pi_{n},\Piarrow\Lambda}{\Phi,\Gamma,\Piarrow\Delta,\Lambda}$

such that the upper sequents are (SZ‘, $y],$ $\mathscr{F}$ )-sequents, there is a number $k$ such
that the following inference figure holds in $T$ :

$\frac{arrow A_{h}(\Gamma_{1},\Gammaarrow\Delta,\Delta_{1})\cdotsarrow A_{h}(\Gamma_{m},\Gammaarrow\Delta,\Delta_{m})arrow A_{h}(\Pi_{1},\Piarrow\Lambda)\cdotsarrow A_{h}(\Pi_{n},\Piarrow\Lambda)}{arrow A_{k}(\Phi,\Gamma,\Piarrow\Delta,\Lambda)}$

THEOREM 3.1. Let $L$ be the logistic $LK,$ $LJLK_{e}$ or $LJ_{e}$ . Let $T$ be a
theory on L. Let $S$ be a set of (EP, $\Re,$ $\mathscr{F}$ )-inference forms such that the theory
$L[S]$ is an extension of T. Let $A_{0},$ $A_{1},$ $A_{2}$ , be a series of (SP, $X,$ $\mathscr{F}$ )-aPProxi-

mations which is adequate for $(L[S], T)$ , and satisfies $S$-rules in T. Then the
$(if, yl, \mathscr{F})_{+}$-Part of $L[S]$ is axiomatized by the series of axioms $A_{0}(\epsilon),$ $A_{1}(\epsilon),$ $A_{2}(\epsilon),$ $\cdots$

in $T$, where $\epsilon$ is the empty sequence of $\Xi^{)}\cup \mathscr{F}$ -atomic formulas.

PROOF. For each number $k$ , the $(9, \Re, \mathscr{F})$-approximation $A_{k}$ is transitive
on $L[S]$ , hence $A_{k}(\epsilon)$ is $L[S]$ -provable. On the other hand, $L[S]$ is an exten-
sion of $T$ . Therefore the theory $L[S]$ is an extension of the theory $T$ with
$A_{0}(\epsilon),$ $A_{1}(\epsilon),$ $A_{2}(\epsilon),$ $\cdots$ Thus, it sufficies to show that, for each $L[S]$ -provable
(if, $7l,$ $\mathscr{F}$ )-sequent $\Piarrow\Lambda$ , the formula $A_{k}(\Piarrow\Lambda)$ is $T$-provable for some number
$k$ . NOW let $II-\Lambda$ be an $L[S]$ -provable $(9, \Re, \mathscr{F})$-sequent. By Theorem 2.1,
there is an $L[S]$ -proof figure of $\Piarrow\Lambda$ such that it is $S$-free cut free and atomic
cut free. Let $P$ be such a proof-figure. Then each sequent in $P$ is $(9, \Re, \mathscr{F})-$

sequent. The series of approximations is commutative for substitution and
monotone on $T$ , and satisfies $S$-rule and the initial condition in $T$ , hence, by
induction on the number of inference figures in $P$ , we can show that $A_{k}(\Piarrow\Lambda)$

is $T$-provable for some $k$ .
A function $A$ from the set of finite sequences of $B\cup \mathscr{F}$ -atomic formulas to

the set of $(if, 7l, \mathscr{F})_{+}$-formulas is a simple $(9, \Re, \mathscr{F})$-aPProximation if all variables
occurring free in $A(\Gamma)$ occur in $\Gamma$ for each finite sequence $\Gamma$ of $\Phi\cup \mathscr{F}$ -atomic
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formulas. $A$ simple $(\emptyset, \emptyset, \mathscr{F})$-approximation is called a simple $\mathscr{F}$ -approximation.
From a $(9, \Re, \mathscr{F})$-approximation $A$ , we induce the simple $(9, \Re, \mathscr{F})$-appro-

ximation $A_{+}$ such that $A_{+}(\Gamma)=A(\Gamma)$ for each finite sequence $\Gamma$ of $9U\mathscr{F}$ -atomic
formulas. The induced simple $(9, X, \mathscr{F})$-approximation $A_{+}$ is called the simple
$p_{ort}$ of $A$ .

The notions for $(9, \Re, \mathscr{F})$-approximations defined above are redefined for
simple (if, J7, $\mathscr{F}$ )-approximations by restricting to the simple parts.

The simple $(B, \Re, \mathscr{F})$-approximation $B$ defined below is said to be basic:
For each sequence $\Gamma$ of $B\cup \mathscr{F}$ -atomic formulas, $B(\Gamma)=(\Gamma’)^{\mathfrak{h}}$ , where $\Gamma’$ is the
subsequence obtained from $\Gamma$ by deleting all the $\mathscr{F}$ -atomic formulas.

COROLLARY 3.3. Let $L$ be the logistic $LK$ or $LJ$. Let $B$ be the basic simple
(SZ‘, $\Re,$ $\mathscr{F}$ )-approximation. Then $B$ is adequate for $(L, L)$ .

Adding the assumption $S$ is a set of simple $(9, \Re, \mathscr{F})$-inference forms” to
Theorem 3.1, we have the following version:

THEOREM 3.2. Let $L$ be the logistic $LK,$ $LJLK_{e}$ or $LJ_{e}$ . Let $T$ be a
theory on L. Let $S$ be a set of simple $(9, X, \mathscr{F})$-inference forms such that the
theory $L[S]$ is an extension of T. Let $A_{0},$ $A_{1},$ $A_{2},$ $\cdots$ be a series of simple
$(9, X, \mathscr{F})$-approximations which is adequate for $(L[S], T)$ , and satisfies $S$-rules in
T. Then the $(9, \Re, \mathscr{F})_{+}$-part of $L[S]$ is axiomatized by the series of axioms
$A_{1}(\epsilon),$ $A_{2}(\epsilon),$ $A_{3}(\epsilon),$ $\cdots$ in $T$ .

\S 4. Axiomatizing results.

4.1. APartness vs. equality (cf. [10], [6]). Let $\#$ be a binary predicate
symbol, and $\mathcal{A}_{0}$ the set of the simple $\{\#\}$ -inference forms $[x\# x : arrow; ]$ , [ $x\# y$ ;
$arrow y\# x$ ; ], $[x\# z;arrow x\# y, y\# z; ]$ , and $[ ; (x\# yarrow)arrow x=y; ]$ . For each posi-
tive number $n$ , let $\mathcal{A}_{n}$ be the union of the set $\mathcal{A}_{0}$ and the singleton set of the
$\{\#\}$ -inference form

$[ ; arrow\exists x_{0}\cdots\exists x_{n}(x_{0}\# x_{1}, -- , x_{0}\# x_{n}, x_{1}\# x_{2}, \cdot.. , x_{1}\# x_{n}, \cdot.. , x_{n-1}\# x_{n}) ; ]$ .

Let $\mathcal{A}_{\omega}$ be the union $\mathcal{A}_{0}\cup \mathcal{A}_{1}\cup \mathcal{A}_{2}\cup\cdots$ , and $AP_{n}$ the intuitionistic theory $LJ_{e}[\mathcal{A}_{n}]$

for each $n$ with $n\leqq\omega$ . Note that $AP_{0}$ is a conservative extension of the theory
$LJ[\mathcal{A}_{0^{-}}\{[ ; (x\# yarrow)arrow x=y; ]\}]$ without equality.

Let $S_{0}$ be the set of the following inference forms:

$[7 x\neq_{0}y;arrow ; x=y]$ ,

$[7 x\neq_{1}y;arrow ; x=y]$ ,

$[7 x\neq_{2}y;arrow ; x=y]$ ,
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where $x\neq_{n}y(n=0,1, 2, )$ are the abbreviations as follows:
$x\neq_{0}y$ : 7 $x=y$ .
$x\neq_{m+1}y:\forall z(x\neq_{m}zz\neq_{m}y)$ .

For each positive number $n$ , let $S_{n}$ be the set of the union of the set $S_{0}$ anid
the set of the inference forms

$[$ $;arrow;\exists x_{0}$ ... $\exists x_{n}(x_{0}\neq_{h}x_{1}\wedge\cdots\wedge x_{0}\neq_{h}x_{n}\Lambda x_{1}\neq_{h}x_{2}\wedge\cdots$

A $x_{1}\neq_{h}x_{n}\wedge\cdots\wedge x_{n-1}\neq_{h}x_{n}$ )],

such that $h<\omega$ . Let $S_{\omega}$ be the union $S_{0}\cup S_{1}\cup S_{2^{\backslash }arrow/}\cdots$ , and $SEQ_{n}^{\omega}$ the intui-
tionistic theory $LJ_{e}[S_{n}]$ for each $n\leqq\omega$ .

THEOREM (van Dalen and Statman [11]). $AP_{n}$ is conservative over SEQX

for each $n$ with $1\leqq n\leqq\omega$ .

PROOF. For each natural number $k$ , let $A_{k}$ be the simple $\{\#\}$ -approxima-
tion such that $A_{k}(u_{1}\# v_{1}, , u_{m}\# v_{m})$ is the formula $(u_{1}\neq_{k}v_{1}, \cdot.. , u_{m}\neq_{k}v_{m})^{\mathfrak{h}}$ .
Then, for each number $n$ , we can check the following facts:

(1) $AP_{n}$ is an extension of $SEQ_{n}^{\omega}$ .
(2) The series $A_{1},$ $A_{2},$ $A_{3},$ $\cdots$ of simple $\{\#\}$ -approximations is adequate for

( $AP_{n}$ , SEQX), and satisfies $\mathcal{A}_{n}$ -rules in SEQX.
Therefore, by Theorem 3.2, for each number $n$ and each $\{\#\}$ -free formula

$\mathfrak{U}$ , ut is $AP_{n}$-provable if and only if $A_{k}(\epsilon)arrow \mathfrak{A}$ is SEQn-provable for some $k$ .
On the other hand, $A_{k}(\epsilon)$ is the true sentence for each $k$ . Thus $AP_{n}$ is con-
servative over SEQX for each $n$ .

4.2. Apartne$ssvs$ . linear order (cf. [6]). Let $<$ be a binary predicate
symbol. Let $X_{0}$ be the union of $\mathcal{A}_{0}$ and the set of the inference forms
$[x<x;arrow;]$ , $[x<y, y<z;arrow x<z;]$ , $[x<y;arrow x<z, z<y;]$ , $[x\# y;arrow x<y$ ,
$y<x$ ;] and $[x<y;arrow x\# y; ]$ . Let $LO_{0}$ be the intuitionistic theory $LJ_{e}[\mathcal{L}_{0}]$ .
Moreover, let $9^{-}$ be the set of inference forms $[ ; arrow\exists x_{1}\exists x_{2}(x_{1}<x_{2});]$ and
$[x<y;arrow\exists z(x<z, z<y); ]\}$ , and $DLO^{-}$ the intuitionistic theory $LO_{0}[9^{-}]$ .

THEOREM (Smorynski [6]). $LO_{0}$ is conservative over $AP_{0}$ , and $DLO^{-}$ is
conservative over $AP_{\omega}$ .

PROOF. Let $A$ be the simple $\{<\}$ -approximation such that $A(\epsilon)$ is the
sentence $\forall x(x=x)$ , and, for each nonempty finite sequence $\Sigma$ of $\{<\}$ -atomic
formulas, $A(\Sigma)$ is the conjunction of all the disjunctions $\mathfrak{D}$ of $\{\#\}$ -atomic formulas
such that each variable in SE) occurs in $\Sigma$ , and the sequent $\Sigmaarrow \mathfrak{D}$ is $LO_{0}$-provable.
Then $A$ is adequate for $(LO_{0}, AP_{0})$ . The sequents $A(x<x)arrow$ and $A(x<y$ ,
$y<z,$ $\Sigma)arrow A(x<z, \Sigma)$ are $AP_{0}$-provable for each finite sequence $\Sigma$ of $\{<\}$ -atomic
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formulas. Moreover, the sequents $A(x<y, \Sigma)arrow A(x<z, \Sigma)A(z<y, \Sigma)$ and $x\# y$ ,
$A(\Sigma)arrow A(x<y, \Sigma)VA(y<x, \Sigma)$ are $AP_{0}$-provable for each finite sequence $\Sigma$ of
$\{\#\}$ -atomic formulas. Now let $A_{k}$ be $A$ for each $k$ . Then the series $A_{0},$ $A_{1}$ ,
$A_{2},$ $\cdots$ of simple $\{<\}$ -approximations satisfies $X_{0}$-rules in $AP_{0}$ , and so Theorem
3.2 says that $LO_{0}$ is conservative over $AP_{0}$ .

If $\Sigma$ is a finite sequence of $\{<\}$ -atomic formulas, and $z$ is a variable occur-
ring in neither $\Sigma$ nor $x<y$ , then the sequent

$z\# x,$ $z\# y,$ $z\# u_{1},$ $z\# u_{2},$ $z\# u_{k},$ $A(\Sigma, x<y)arrow A(\Sigma, x<z, z<\gamma)$

is $AP_{0^{-}}provable$ , where $u_{1},$ $u_{2},$ $\cdots$ , $u_{k}$ are all the variables occurring in $\Sigma$ .
Therefore the sequent $A(\Sigma, x<y)arrow\exists zA(\Sigma, x<z, z<y)$ is $AP_{\omega}$-provable. Thus
the series of simple $1<$ }-approximations satisfies $9^{-}$-rules in $AP_{\omega}$ , and so $DLO^{-}$

is conservative over $AP_{\omega}$ .

4.3. The equality parts of $DLO^{+}$ . Let $g+$ be the pair of the inference
forms $[ ; arrow\exists x_{1}\exists x_{2}(x_{1}<x_{2});]$ and $[$ $;arrow\forall x\forall y\exists z((x<y\supset x<z\wedge z<y)\wedge(y<x\supset$

$y<z\wedge z<x)\wedge(x=y\supset x=z\wedge z=y))$ ; ], and let $DLO^{+}$ be the intuitionistic theory
$LO_{0}[9^{+}]$ .

Let $B$ be a ternary predicate symbol. Let $9^{*}$ be the set of the following
simple $\{B, <\}$ -inference forms:

$[B(x, z, y), x<y;arrow(x<z, z<y);]$

$[B(x, z, y), y<x;arrow(y<z, z<x);]$

$[B(x, z, y), x=y;arrow(x=z, z=y);]$

$[ ; arrow\exists zB(x, z, y);]$ .

Then $LO_{0}[9^{*}]$ is conservative over $DLO^{+}$ .
For each finite sequence $\Sigma$ of $\{B, <, \#\}$ -atomic formulas and for each $\{=\}-$

clause $\Gammaarrow\Delta$ , the formula $(\Gammaarrow\Delta)^{\eta}$ is called a $\{=\}$ -section of $\Sigma$ if each variable
in $\Gammaarrow\Delta$ occurs in $\Sigma$ , no formula occur twice in $\Gamma$ or in $\Delta$ , and the sequent
$\Sigma*_{arrow(\Gammaarrow\Delta)^{\mathfrak{h}}}$ is $LO_{0}$-provable, where $\Sigma*$ is the sequence obtained from $\Sigma$ by
replacing all $\{B\}$ -atomic formulas $B(x, z, y)$ with $(x<z\wedge z<y)(x=z\Lambda z=y)$

$\langle y<z\wedge z<x)$ .
Let $E_{0},$ $E_{1},$ $E_{2},$ $\cdots$ be the series of the simple $\{B, <, \#\}$ -approximations as

follows:
$E_{0}(\epsilon)$ is the sentence $\forall xx=x$ , and $E_{0}(\Sigma)$ is the conjunction of all the $\{=\}-$

section of $\Sigma$ for each nonempty sequence $\Sigma$ of $\{B, <, \#\}$ -atomic formulas. For
each number $n$ and each sequence $\Sigma$ of $\{B, <, \#\}$ -atomic formulas, $E_{n+1}(\Sigma)$ is
the conjunction of the formulas $\forall x\forall y(7E_{n}(x\# y, \Sigma)\supset x=y),$ $\forall x\forall y\exists zE_{n}(B(x,$ $z$ ,
$y),$ $\Sigma),$ $E_{n}(u\# v, \Sigma)$ such that $u<v$ occurs in $\Sigma$ , and $E_{n}(u<v, \Sigma)E_{n}(v<u, \Sigma)$
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such that $u\# v$ occurs in $\Sigma$ .
Then the series $E_{0},$ $E_{1},$ $E_{2},$ $\cdots$ of simple $\{B, <, \#\}$ -approximations is ad-

equate for $(LO_{0}[O^{*}], LJ_{e})$, and satisfies $x_{0}\cup e*$-rules in $LJ_{e}$ .
Therefore, we have the following theorem:

THEOREM 4.3. The equality part of $DLO^{+}$ is axiomatized by the series of
axioms $E_{0}(\epsilon),$ $E_{1}(\epsilon),$ $E_{2}(\epsilon),$ $\cdots$ in $LJ_{e}$ .

Theorem 4.3 and Theorem in [9] are solutions of Problem 1 in [6].

4.4. Equality parts of intuitionistic theory of torsion free groups (cf.

[6] $)$ . Let $\Phi$ be a sequence of sentences of theory of groups with the binary
function symbol $*$ . Let $P$ be a ternary predicate symbol. For a finite sequence
$\Sigma$ of $\{P\}$ -atomic formulas, and for a pair of sequences $\Gamma$ and $\Delta$ of $\{*\}$ -free
$\{=\}$ -atomic formulas, the formula $(\Gammaarrow\Delta)^{\mathfrak{h}}$ is called a $t=$ }-section of $\Sigma$ with
resPect to $\Phi$ if each variable in $\Gammaarrow\Delta$ occurs in $\Sigma$ , no formula occurs twice in
$\Gamma$ or in $\Delta$ , and the sequent $\Phi,$ $\Sigma*_{arrow(\Gammaarrow\Delta)^{\mathfrak{h}}}$ is $LJ_{e}$-provable, where $\Sigma*is$ the
sequence obtained from $\Sigma$ by replacing all $\{P\}$ -atomic formulas $P(x, y, z)$ with
$x*y=z$ .

Let $\Gamma_{*}$ be the sequence of the formulas $VxVyVz((x*y)*z=x*(y*z))$ ,
$\forall x\forall y\forall u\forall v(x=x*u\Lambda y=y*v\supset u=v)$ and $\forall x\forall y(x*y=y*x)$ . For each number $n$ ,

let El; be the formula $\forall x(x^{n+1}=x\supset x^{2}=x)$ . Then $\Gamma_{*},$ $\forall x\forall y\exists u(x*u=y),$ $\mathfrak{T}_{*}^{1},$ $\mathfrak{T}_{*}^{2},$ $\cdots$

is the series of axioms of theory of torsion free groups.
Let $TF$ be the simple $\{P\}$ -apProximation such that $TF(\epsilon)$ is the sentence

$\forall xx=x$ , and for each nonempty sequence $\Sigma$ of $\{P\}$ -atomic formulas, $TF(\Sigma)$ is
the conjunction of all the $\{=\}$ -section of $\Sigma$ with respect to $\Gamma_{*},$ $\forall x\forall y(x*y=y*x)$,
%‘‘, where $n$ is the length of the sequence $\Sigma$ .

Theory of torsion free groups is formalized by the set of the simple $\{P\}-$

inference forms $[P(x, y, u), P(u, z, s), P(y, z, v), P(x, v, t);arrow s=t; ]$ , $[P(x,$ $u$ ,
$x),$ $P(y, v, y);arrow u-v$ ; ], $[P(x, y, u), P(y, x, v);arrow u=v; ]$ , $[P(x_{1}, x_{1}, x_{2}),$ $P(x_{2}$ ,
$x_{1},$ $x_{3}),$ $\cdots$ , $P(x_{n}, x_{1}, x_{n+1});x_{n+1}=x_{1}arrow x_{2}=x_{1};](n=2, 3, )$ , and [ ; $\frac{>}{}\exists u\exists v$

$(P(x, u, y), P(x, y, v))$ ; ].
Then, by the same way as 4.3, we have the following theorem:

THEOREM 4.4. The equality part of the intuitionistic theory of torsion free
groupes is axiomatized in $LJ_{e}$ by the series of the following axioms:

$\forall x_{1}\forall y_{1}\exists u_{1}\exists v_{1}\forall x_{2}\forall y_{2}\exists u_{2}\exists v_{2}\cdots\forall x_{k}\forall y_{k}\exists u_{k}\exists v_{k}TF(P(x_{1}, u_{1}, y_{1}),$ $P(x_{1}, y_{1}, v_{1})$ ,

$P(x_{2}, u_{2}, y_{2}),$ $P(x_{2}, y_{2}, v_{2}),$ $\cdots$ , $P(x_{k}, u_{k}, y_{k}),$ $P(x_{k}, y_{k}, v_{k}))$ $(k=1,2, \cdots)$ .
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Theorem 4.4 is a partial solution of Problem 2 in [6].

4.5. A generalized Minc’s theorem (cf. [7], [4], [1]). The following
theorem is a generalized form of the theorems for the existence of choice func-
tion by Minc (unpublished), Smorynski [7] and Motohashi [4]:

THEOREM (Akaboshi [1]). Let $f_{1},$ $\cdots$ , $f_{n}$ be function symbols which are not
necessarily mutually distinct. Let $A$ be a closed predicate in which none of the

function symbols $f_{1},$ $\cdots$ , $f_{m}$ occurs. Let $T$ be the intuitionistic theory

$LJ_{e}[\{[ ; arrow ; \forall\overline{x}_{1}\cdots\forall\overline{x}_{m}A(\overline{x}_{1}, f_{1}(\overline{x}_{1}), \cdots \overline{x}_{m}, f_{m}(\overline{x}_{m}))]\}]$ .
Then $\{f_{1}, \cdots , f_{m}\}$ -free part of $T$ is axiomtized in $LJ_{e}$ by the series of the fol-
lowing axioms:

$\forall\overline{x}_{1}^{1}$ . .. $\forall\overline{x}_{m}^{1}\exists y_{1}^{1}\cdots\exists y_{m}^{1}\forall\overline{x}_{1}^{2}\cdots\forall\overline{x}_{m}^{2}\exists y_{1}^{2}\cdots\exists y_{m}^{2}\cdots\forall\overline{x}_{1}^{k}\cdots\forall\overline{x}_{m}^{k}\exists y_{1}^{k}\cdots\exists y_{m}^{k}$

( $A\{A(\overline{x}_{1}^{n_{1}}, y_{1}^{n_{1}}, \cdot .. \overline{x}_{m}^{n_{m}}, y_{m^{m}}^{n})|1\leqq n_{1}\leqq k, \cdot. . 1\leqq n_{m}\leqq k\}$ A
$1A\{\overline{x}_{i}^{n}-\overline{x}_{j}^{n’}\supset y_{i}^{n}=y_{j}^{n’}|f_{i}$ is the same symbol as $f_{j},$ $1\leqq n\leqq n’\leqq k$ ,

$1\leqq i\leqq j\leqq m\})$ $(k=1,2, )$ .

PROOF. Let $R_{1},$ $\cdots$ $R_{m}$ be new predicate symbols such that $R_{i}$ is the same
symbol as $R_{j}$ according as $f_{i}$ is the same symbol $J_{as}f_{j}$ . Set $\mathscr{F}=\{f_{1}, , f_{m}\}$

and $R=\{R_{1}, \cdots , R_{m}\}$ . Let $S$ be the set of the following simple 9-inferene
forms:

$[R_{1}(\overline{x}_{1}, y_{1}), \cdots R_{m}(\overline{x}_{m}, y_{m});arrow A(\overline{x}_{1}, y_{1}, \cdots \overline{x}_{m}, y_{m});]$

$[R_{1}(\overline{x}_{1}, y), R_{1}(\overline{x}_{1}, z);arrow y=z;]$

:
$[R_{m}(\overline{x}_{m}, y), R_{m}(\overline{x}_{m}, z);arrow y=z;]$

$[ |arrow\exists y_{1}\cdots\exists y_{m}(R_{1}(\overline{x}_{1}, y_{1}), \cdots R_{m}(\overline{x}_{m}, y_{m}));]$ .
Then the $\mathscr{F}\cup R$-free part of $LJ_{e}[S]$ is the $\mathscr{F}$ -free part of $T$ . Let $\overline{A}$ be the
series of simple Sl-approximations $A_{0},$ $A_{1},$ $A_{2},$ $\cdots$ defined as follows:

For each sequence $\Sigma$ of $R$-atomic formulas, $A_{0}(\Sigma)$ is the conjunction of the
formula $\forall x(x=x)$, the formulas $A(\overline{s}_{1}, t_{1}, , \overline{s}_{m}, t_{m})$ such that all $R_{1}(\overline{s}_{1}, t_{1})$ , $\cdot$ .. ,
$R_{m}(\overline{s}_{m}, t_{m})$ occur in $\Sigma$ , and the formulas $\overline{s}=\overline{s}’\supset t=t’$ such that both $R(\overline{s}, t)$ and
$R(\overline{s}’, t’)$ occur in $\Sigma$ for some $R$ in Yl, and $A_{n+1}(\Sigma)$ is the formula

$\forall\overline{x}_{1}\cdots\forall\overline{x}_{m}\exists y_{1}\cdots\exists y_{m}A_{n}(R_{1}(\overline{x}_{1}, y_{1}),$ $\cdots$ $R_{m}(\overline{x}_{m}, y_{m}),$ $\Sigma)$ ,

where no variable in $\overline{x}_{1},$ $\cdots$ , $\overline{x}_{m},$ $y_{1},$
$\cdots$ , $y_{m}$ occurs in $\Sigma$ .

Then the series of simple Sl-approximations $A_{0},$ $A_{1},$ $A_{2},$ $\cdots$ is adequate for
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$(LIe[S], LJe)$ , and satisfies $S$-rules in $LJ_{e}$ . Thus, by Theorem 3.2, the $\mathscr{F}$ -free
part of the theory $T$ is axiomatized by the series of axioms $A_{0}(\epsilon),$ $A_{1}(\epsilon),$ $A_{2}(\epsilon),$ $\cdots$

in $LJ_{e}$ . On the other hand, each $A_{k}(\epsilon)$ is equivalent to the following sentence
in $LJ_{e}$ :

$\forall$ St ... $\forall\overline{x}_{m}^{1}\exists y_{1}^{1}\cdots\exists y_{m}^{1}\forall\overline{x}_{1}^{2}$ ... $\forall\overline{x}_{m}^{2}\exists y_{1}^{2}\cdots\exists y_{m}^{2}$ ,. . $\forall\overline{x}_{1}^{k}$ .. . $\forall\overline{x}_{m}^{k}\exists y_{1}^{k}$ . .. $\exists y_{m}^{k}$

$(/X\backslash \{A(\overline{x}_{1}^{n_{1}}, y_{1}^{n_{1}}, \cdots \overline{x}_{7n}^{n_{m}}, y_{m^{m}}^{n})|1\leqq n_{1}\leqq k, \cdots 1\leqq n_{m}\leqq k\}\wedge$

$/X\backslash \{\overline{x}_{i}^{n}=\overline{x}_{j}^{n^{r}}\supset y_{i}^{n}=y_{j}^{n’}|f_{i}$ is the same symbol as $f_{j}$ ,

$1\leqq n\leqq n’\leqq k,$ $1\leqq i\leqq_{J}\leqq m\})$ .
This completes the proof.

\S 5. Resolving trees of inference forms.

In 4.3, we gave the set $9^{*}$ which is a set of $\{B, <\}$ -inference forms such
that $LO_{0}[9^{*}]$ is conservative over $DLO^{+}$ . Generally, we have the following
theorems:

THEOREM 5.1. Let $\mathcal{L}$ be a language, $L$ the logistic $LJ$ or $LJ_{e}$ over $\mathcal{L},$ $T$

an intuitionistic theory on $L$ , and $\mathscr{F}$ a set of predicate symbols in $\mathcal{L}$ . Then there
are a set $\mathscr{F}_{0}$ of new predicate symbols and a set $S$ of $\mathscr{F}\cup \mathscr{F}_{0}$-inference forms
such that $L’[S]$ is a conservative extension of $T$ , where $L’$ is the extension of $L$

obtained by adding $\mathscr{F}_{0}$ to the language $\mathcal{L}$ .

THEOREM 5.2. Let $X$ be a language, $L$ the logistic $LK$ or $LK_{e}$ over $X,$ $T$

a classical theory on $L$ , and $(\Xi)\mathscr{F})$ a pair of disjoint sets of predicate symbols in
X. Then there are a set $\mathscr{F}_{0}$ of new predicate symbols and a set $S$ of simple
$(\Xi)\emptyset,$ $\mathscr{F}\cup \mathscr{F}_{0})$-inference forms such that $L’[S]$ is a conservative extension of $T$ ,
where $L’$ is the extension of $L$ obtained by adding $\mathscr{F}_{0}$ to the language $\mathcal{L}$ .

The aim of this section is to prove the above theorems.
NOW, let $X$ be a first order language, and let 9 and $\mathscr{F}$ be disjoint sets of

predicate symbols in $X$ . For each closed predicate $A$ in X, let $P_{A}$ be a new
predicate symbol with the same arity as $A$ . Let $\mathscr{F}_{X}$ be the set of all the new
predicate symbols $P_{A}$ . A $(B, \emptyset, \mathscr{F})$-resolving tree of an inference form $I$ is a
derivation tree with derivation rules for inference forms described below such
that its uppermost inference forms are (if, $\emptyset,$ $\mathscr{F}\cup \mathscr{F}_{1}$ )-inference forms and its
lowermost inference form is $I$. We admit only the following derivation rules:

$\frac{[\Gamma,\Pi^{\mathfrak{h}};arrow;\Delta^{\mathfrak{h}},\Lambda]}{[\Gamma;\Piarrow\Delta;\Lambda]}$

where $[\Gamma;\Piarrow\Delta;\Lambda]$ is an inference form in $X$ .
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$\frac{[\Gamma,\mathfrak{A},\mathfrak{B},\Pi,arrow;\Lambda]}{[\Gamma,\mathfrak{B},\mathfrak{U},\Pi;arrow,\Lambda]}$

$\frac{[\Gamma;arrow;\Delta,\mathfrak{U},\mathfrak{B},\Lambda]}{[\Gamma,arrow,\Delta,\mathfrak{B},\mathfrak{U},\Lambda]}$

$\frac{[7P_{A}(\overline{x}),\Gamma;arrow;\Lambda][P_{A}(\overline{x});arrow;A(\overline{x})]}{[7A(\overline{x}),\Gamma;arrow;\Lambda]}$ .

$\frac{[\mathfrak{A},\Gamma;arrow;]}{[\Gamma;arrow;7\mathfrak{A}]}$

$\frac{[\Gamma;arrow;\Lambda,P_{\lambda\overline{x}.7A(\overline{x})}(\overline{x})][A(\overline{x}),P_{\lambda 5.7A(\overline{x})}(\overline{x});arrow;]}{[\Gamma,arrow;\Lambda,7A(\overline{x})]}$ .

$\frac{[\mathfrak{U},\mathfrak{B},\Gamma;arrow;\Lambda]}{[\mathfrak{U}\wedge \mathfrak{B},\Gamma;arrow;\Lambda]}$

$\frac{[\Gamma;arrow;\Lambda,\mathfrak{U}][\Gamma;arrow;\Lambda,\mathfrak{B}]}{[\Gamma;arrow;\Lambda,\mathfrak{U},\mathfrak{B}]}$

$\frac{[\mathfrak{U},\Gamma,arrow;\Lambda][\mathfrak{B},\Gamma;arrow;\Lambda]}{[\mathfrak{A}\vee^{l}\mathfrak{B},\Gamma;arrow;\Lambda]}$ .

$- \frac{[\Gamma;arrow;\Lambda,\mathfrak{A},\mathfrak{B}]}{\Gamma;arrow;\Lambda,\mathfrak{A}\vee \mathfrak{B}]}[$

$\frac{[P_{A}(\overline{x})\supset \mathfrak{B},\Gamma,arrow,\Lambda][P_{A}(\overline{x});arrow;A(\overline{x})]}{[A(\overline{x})\supset \mathfrak{B},\Gamma;arrow;\Lambda]}$

$\frac{[\mathfrak{A}\supset P_{B}\langle\overline{x}),\Gamma;arrow;\Lambda][B(\overline{x});arrow;P_{B}(\overline{x})]}{[\mathfrak{U}\supset B(\overline{x}),\Gamma;arrow;\Lambda]}$

$\frac{[\mathfrak{U},\Gamma;arrow;\mathfrak{B}]}{[\Gamma;arrow j\mathfrak{U}\supset \mathfrak{B}]}$

$\frac{[\Gamma;arrow;\Lambda,P_{C}(\overline{x})][A(\overline{x}),P_{C}(\overline{x});arrow;B(\overline{x})]}{[\Gamma;arrow;\Lambda,A(\overline{x})\supset B(\overline{x})]}$

where $C$ is the predicate $\lambda\overline{x}.(A(\overline{x})\supset B(\overline{x}))$ .

$\frac{[\forall xP_{A}(x,\overline{x}),\Gamma_{j}arrow;\Lambda][A(x,\overline{x})_{i}arrow;P_{A}(x,\overline{x})]}{[\forall xA(x,\overline{x}),\Gamma;arrow;\Lambda]}$

$\frac{[\Gamma,arrow,\mathfrak{A}]}{[\Gamma;arrow;\forall x\mathfrak{U}]}$

where $x$ does not occur free in $\Gamma$.
$\frac{[\Gamma;arrow;\Lambda,P_{\lambda\overline{x}.\forall xACx.\overline{x})(\overline{x})][P_{\lambda_{i5.\forall xA(x.\overline{x})(\overline{x});\vdash;A(X,\overline{X})]}}}}{[\Gamma;arrow;\Lambda,\forall xA(x,\overline{x})]}$ .
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$\frac{[\mathfrak{U},\Gamma;arrow;\Lambda]}{[\exists x\mathfrak{A},\Gamma;arrow;\Lambda]}$

where $x$ does not occur free in $\Gamma$ and $\Lambda$ .

$\frac{[\Gamma;arrow;\Lambda,\exists xP_{A}(x,\overline{x})][P_{A}(x,\overline{x});arrow;A(x,\overline{x})]}{[\Gamma;arrow;\Lambda,\exists xA(x,\overline{x})]}$ .

$\frac{[\Gamma;\Piarrow\Delta;]}{[\Gamma,\Pi^{\eta};arrow;\Delta^{\mathfrak{h}}]}$

where $[\Gamma;\Piarrow\Delta; ]$ is a $(9, \emptyset, \mathscr{F}\cup \mathscr{F}_{X})$-inference form.
Immediately, we have the following lemma:

LEMMA 5.1. For each inference form in $\mathcal{L}$ , there is a $(B, \emptyset, \mathscr{F})$-resolving
tree of it.

LEMMA 5.2. Let $L$ be the logistic $LK,$ $LJ,$ $LK_{e}$ or $LJ_{e}$ over X. Let $s$ be
a set of inference forms in $\mathcal{L}$ . For each inference form I in $S$ , let $T_{I}$ be a
(SZ‘, $\emptyset,$ $\mathscr{F}$ )-resolving tree of $I$, and $\mathscr{F}_{I}$ the set of uppermost $(9, \emptyset, \mathscr{F}\cup \mathscr{F}_{X})-$

inference forms of $T_{I}$ . Then $L’[\cup\{\sigma\tau_{I}|I\in S\}]$ is a conservative extenston of
$L[S]$ , where $L’$ is the extension of $L$ obtained by adding $\mathscr{F}_{1}$ to the language -C.

PROOF. Set $f=\cup\{f_{I}|I\in S\}$ . For each inference form $J$ in $q$ , let $K$ be
the inference form obtained from $J$ by substituting all the new predicate sym-
bols $P_{A}$ in $J$ by $A$ , then $K$ holds in $L[S]$ . Therefore, each $L’[q]$ -provable
formula in $\tilde{\mathcal{L}}$ is $L[S]$ -provable. On the other hand, each inference form in $S$

holds in $L’[q]$ , and so $L’[\Psi]$ is an extension of $L[S]$ . Thus $L’[\sigma r]$ is a con-
servative extension of $L[S]$ .

If $L$ is $LJ$ or $LJ_{e}$ , then for each intuitionic theory $T$ on $L$ , there is a set
$S$ of inference forms such that $T$ is equivalent to $L[S]$ . Thus we have Theorem
5.1. If $L$ is $LK$ or $LK_{e}$ , then for each classical theory $T$ on $L$ , there is a set
$S$ of $\{\forall, \supset\}$ -free inference forms such that $T$ is equivalent to $L[S]$ . Thus we
have Theorem 5.2, by the following obvious lemma:

LEMMA 5.3. For each $\{\forall, \supset\}$ -free inference form, there is a $(9, \emptyset, \mathscr{F})-$

resolving tree such that all the uppermost (if, $\emptyset,$ $\mathscr{F}\cup \mathscr{F}_{1}$ )-inference forms are
simple.

\S 6. Axiomatization theorems.

From the discussions in the previous sections, we now reached to the con-
clusion that it suffices to choose a suitable series of apProximations for axio-
matizing a part of a given theory. In this section, we are concerned with
theories satisfying equality axioms, and define a canonical series of aPProxi-
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mations for a given theory with equality. Then we give axiomatization
theorems.

For atomic formulas $P_{1}(\overline{t}_{1}),$ $\cdots$ , $P_{n}(\overline{t}_{n})$ and a sequence $\Gamma$ of atomic formulas,
let $E(P_{1}(\overline{t}_{1}), \cdots , P_{n}(\overline{t}_{n});\Gamma)$ denote the disjunction of the conjunctions $\overline{t}_{1}=\overline{s}_{1}\wedge\cdots$

$\wedge\overline{t}_{n}=\overline{s}_{n}$ such that $P_{1}(\overline{s}_{1}),$ $\cdots$ , $P_{n}(\overline{s}_{n})$ occur in $\Gamma$ .
Let $A$ be a $(9, \Re, \mathscr{F})$-approximation, and $I$ a $(9, fi, \mathscr{F})$-inference form

$[\Phi;\forall\overline{x}_{1}(\Gamma_{1}arrow\Delta_{1}), \cdots , \forall\overline{x}_{m}(\Gamma_{m}arrow\Delta_{m})arrow\exists\overline{y}_{1}(\Pi_{1}), \cdots , \exists\overline{y}_{n}(\Pi_{n}); ]$ . Let $\Phi^{*}$ be the
subsequence of $\Phi$ which consists of all the $B\cap \mathscr{F}$ -atomic formulas in $\Phi$ , and $\Phi\#$

the remainder. Let $\overline{w}$ be the sequence (lined up by a fixed order) of all the
variables occurring free in $I$. For each $(9, \Re, \mathscr{F})$-clause $\Gammaarrow\Lambda$ , let $A(\Gammaarrow\Lambda:I)$

be the $(SP, yl, \mathscr{F})_{-}$-formula

$\exists\overline{v}(E(\Phi^{*}\theta;\Gamma),$ $\Phi\#_{\theta},$ $\forall\overline{x}_{1}A(\Gamma_{1}\theta, \Gammaarrow\Lambda^{f}, \Delta_{1}\theta),$ $\cdots$ $\forall\overline{x}_{m}A(\Gamma_{m}\theta, \Gammaarrow\Lambda^{f}, \Delta_{m}\theta)$ ,

$\forall\overline{y}_{1}A(\Pi_{1}\theta, \Gammaarrow\Lambda),$ $\cdots$ $\forall\overline{y}_{n}A(\Pi_{n}\theta, \Gammaarrow\Lambda))^{\mathfrak{h}}$ ,

where $\theta$ is a substitution of the form $(\begin{array}{l}\overline{w}\overline{v}\end{array})$ such that $\overline{v}$ is a sequence of variables

without repetition none of which occur in $\Gammaarrow\Lambda$ and $I$, and $\Lambda^{f}$ denotes the
empty sequence or $\Lambda$ itself, according as the logistic concerned is intuitionistic
or classical. For each sequence $\Gamma$ of $f\cup \mathscr{F}$ -atomic formulas, let $A(\Gamma:I)$ be the
$(if, y\iota, \mathscr{F})_{+}$-formula

$\forall\overline{v}(E(\Phi^{*};\Gamma),$ $\Phi\#_{\theta},$ $\forall\overline{x}_{1}A(\Gamma_{1}\theta, \Gammaarrow\Delta_{1}\theta),$ $\cdots$ $\forall\overline{x}_{m}A(\Gamma_{m}\theta, \Gammaarrow\Delta_{m}\theta)$

$arrow\exists\overline{y}_{1}A(\Pi_{1}\theta, \Gamma),$ $\cdots$ $\exists\overline{y}_{n}A(\Pi_{n}\theta, \Gamma))^{\mathfrak{h}}$ ,

where $\theta$ is a substitution of the form $(\begin{array}{l}\overline{w}\overline{v}\end{array})$ such that $\overline{v}$ is a sequence of vari-

ables without repetition none of which occur in $\Gamma$ and $I$.
Let $A$ be a $(q, \Re, \mathscr{F})$-approximation, and $\sigma$ an enumerating function of a

set of $(9, \Re, \mathscr{F})$-inference forms. Then we define the series of $(B, \Re, \mathscr{F})-$

approximations $A_{0}^{\sigma},$ $A_{1}^{\sigma},$ $A_{2}^{\sigma},$ $\cdots$ as follows:
$A_{0}^{\sigma}$ is $A$ .
$A_{k+1}^{\sigma}(\Gamma)$ is the formula $A_{k}^{\sigma}(\Gamma:\sigma(0))\wedge\cdot$ .. $\Lambda A_{k}^{\sigma}(\Gamma:\sigma(k))\wedge A_{k}^{\sigma}(\Gamma)$ for each finite

sequence $\Gamma$ of $B\cup \mathscr{F}$ -atomic formulas.
$A_{k+1}^{\sigma}(\Gammaarrow\Lambda)$ is the formula $A_{k+1}^{\sigma}(\Gamma)\supset(A_{k}^{\sigma}(\Gammaarrow\Lambda:\sigma(0))\ldots A_{k}^{\sigma}(\Gammaarrow\Lambda:\sigma(k))$

$\vee A_{k}^{\sigma}(\Gammaarrow\Lambda))$ for each (9, Su, $\mathscr{F}$ )-clause $\Gammaarrow\Lambda$ such that $\Lambda$ is not empty.
The series of (if, $yl,$ $\mathscr{F}$ )-aPProximations $A_{0}^{\sigma},$ $A_{1}^{\sigma},$ $A_{2}^{\sigma},$ $\cdots$ is called the canonical

series of $(9, \Re, \mathscr{F})$-aPProximations on $A$ and $\sigma$ .

PROPOSITION 6.1. Let $S$ and $T$ be theories with equality. Let $A$ be a
(SZ), $\mathcal{J}l,$ $\mathscr{F})- approximation,$ $\sigma$ an enumerating function of a set $S$ of (EE‘, $7l,$ $\mathscr{F}$ ) $-$

inference forms, and $\overline{A}$ the canonical series of (SP, $\Re,$ $\mathscr{F}$ )-aPProximations $A_{0}^{\sigma},$ $A_{1}^{\sigma}$ ,
$A_{2}^{\sigma},$ $\cdots$ on $A$ and a.
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(1) If $A$ is commutative for substitution on $T$ , then so is $\overline{A}$ .
(2) If $A$ is monotone on $T$ , then so is $\overline{A}$ .
(3) If $A$ satisfies the initial condition in $T$ , then so does $\overline{A}$ .
(4) If $A$ is transitive on $S$, and if all $S$-rules hold in $S$, then $\overline{A}$ is transitive

on $S$.
(5) If $A$ is commutative for substitution and monotone on $T$ , the $\overline{A}$ satisfies

$S$-rules $mT$ .

PROOF. (1), (2) and (3) are straightforward.
(4) We prove that $A_{k}^{\sigma}$ is transitive on $S$ by induction on $k$ .
If $k=0$ then it is trivial. Suppose that $k>0$ . If suffices to show that the

sequents $\Gammaarrow A_{k-1}^{\sigma}(\Gamma:I)$ and $\Gamma,$ $A_{k-1}^{\sigma}(\Gammaarrow\Lambda : I)arrow\Lambda$ are $T[s]$ -provable for each $I$

in $S$ and for each (SP, $\Re,$ $\mathscr{F}$ )-clause $\Gammaarrow\Lambda$ . Let $I$ be an inference form
$[\Phi;\forall\overline{x}_{1}(\Gamma_{1}-\succ\Delta_{1}), \cdots , \forall\overline{x}_{m}(\Gamma_{m}arrow\Delta_{n\iota})arrow\exists\overline{y}_{1}(\Pi_{1}), \cdots , \exists\overline{y}_{n}(\Pi_{n}); ]$ in $S$ . Let $\theta$ be a

substitution of the form $(\begin{array}{l}\overline{w}\overline{v}\end{array})$ such that $\overline{w}$ is the sequence of all the variables

occurring free in $I$, and $\overline{v}$ is a sequence of variables without repetition none of
which occur in $\Gammaarrow\Lambda$ and $I$ . We may assume that no variable in $\overline{x}_{1}$ , , $\overline{x}_{m}$ ,
$\overline{y}_{1},$ $\cdots,\overline{y}_{n}$ occurs in $\Gammaarrow\Lambda$ . By induction hypothesis, the sequent $\Gamma_{i}\theta,$ $\Gamma$,
$A_{k-1}^{\sigma}(\Gamma_{t}\theta, \Gammaarrow\Delta_{i}\theta)-\succ\Delta_{i}\theta$ is $S$-provable, hence the sequent $\Gamma_{\iota}\theta,$ $\Gamma,$ $\forall\overline{x}_{i}A_{k-1}^{\sigma}$

$(\Gamma_{i}\theta, \Gammaarrow\Delta_{i}\theta)arrow\Delta_{i}\theta$ is $S$-provable, and so the sequent $\Gamma_{i}\theta,$ $\Gamma,$ $\forall\overline{x}_{1}A_{k-1}^{\sigma}(\Gamma_{1}\theta,$ $\Gammaarrow$

$\Delta_{1}\theta)$ , $\cdot$ . , $\forall\overline{x}_{m}A_{k-1}^{\sigma}(\Gamma_{m}\theta, \Gammaarrow\Delta_{m}\theta)-\succ\Delta_{i}\theta$ is $S$-provable for each $i$ with $1\leqq i\leqq m$ .
On the other hand, by induction hypothesis, the sequent $\Pi_{j}\theta,$ $\Gammaarrow A_{k-1}^{\sigma}(\Pi_{j}\theta, \Gamma)$

is $S$-provable, and so the sequent $\Pi_{j}\theta,$ $\Gammaarrow\exists\overline{y}_{1}A_{k-1}^{\sigma}(\Pi_{1}\theta, \Gamma)\cdots v\exists\overline{y}_{n}A_{k-1}^{\sigma}(\Pi_{n}\theta, \Gamma)$

is $S$-provable for each $j$ with l$j\leqq n. Consider the $quasi- LK[S]$ -proof figure

$I\theta- rule:\underline{\Gamma_{1}\theta,\Gamma,\Sigmaarrow\Delta_{1}\theta}$
...

$\Gamma_{m}\theta\Phi^{\frac{\Gamma,\Sigmaarrow\Delta_{m}\theta\Pi_{1}\theta,\Gammaarrow \mathfrak{D}}{\theta,\Gamma,\Sigma,\Gammaarrow \mathfrak{D}}}$

... $\Pi_{n}\theta,$ $\Gammaarrow \mathfrak{O}$

several exchainges, contractions, $\mathcal{E}$-rules, $(\wedgearrow )$-rules,
$(arrow )$-rules, and a $( arrow\supset)$-rule or a $( arrow 7)$-rule

$\Gammaarrow(E_{(}\Phi^{*}\theta;\Gamma),$ $\Phi\#_{\theta},$ $\Sigmaarrow \mathfrak{D})^{1\uparrow}$

where $\Sigma$ is the sequence $\forall\overline{x}_{1}A_{k-1}^{\sigma}(\Gamma_{1}\theta, \Gammaarrow\Delta_{1}\theta)$ , , $\forall\overline{x}_{m}A_{k-1}^{\sigma}(\Gamma_{m}\theta, \Gammaarrow\Delta_{m}\theta)$ , ED
is the disjunction $\exists\overline{y}_{1}A_{k-1}^{\sigma}(\Pi_{1}\theta, \Gamma)\cdots\vee\exists\overline{y}_{n}A_{k-1}^{\sigma}(\Pi_{n}\theta, \Gamma)$ , $\Phi*$ is the sub-
sequence of $\Phi$ which consists of all the $9\cup \mathscr{F}$ -atomic formulas in $\Phi$ , and $\Phi^{*}$ is
the remainder. Therefore, the sequent $\Gamma-\succ A_{k-1}^{\sigma}(\Gamma:I)$ is S-provable. Similarly,
the sequent $\Gamma,$ $A_{k-1}^{\sigma}(\Gammaarrow\Lambda : I)arrow\Lambda$ is S-provable.

(5) Let $J$ be an instance $I\theta$ of a $(B, yl, \mathscr{F})$-inference form $I$ in $S$ . Suppose
that $I=\sigma(h_{0})$ and $I$ has the form

$[\Phi;\forall x_{1}(\Gamma_{1}arrow\Delta_{1}), \cdots \forall x_{m}(\Gamma_{m}arrow\Delta_{m})arrow\exists y_{1}(\Pi_{1}), \cdots, \exists y_{n}(\Pi_{n}):]$ .
Let
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$\Gamma_{1}\theta,$ $\Gammaarrow\Delta,$ $\Delta_{1}\theta$ ... $\Gamma_{m}\theta,$ $\Gammaarrow\Delta,$ $\Delta_{m}\theta$ $\Pi_{1}\theta,$ $\Piarrow_{\lrcorner}4$ ... $\Pi_{n}\theta,$ $\Piarrow\Lambda$

$\Phi\theta,$ $\Gamma,$ $\Piarrow\Delta,$ $\Lambda$

be a $J$-rule whose upper sequents are $(B, \Re, \mathscr{F})$-sequents. Suppose that the
formulas $A_{h}^{\sigma}(\Gamma_{1}\theta, \Gammaarrow\Delta, \Delta_{1}\theta),$ $\cdots$ , $A_{h}^{\sigma}(\Gamma_{m}\theta, \Gammaarrow\Delta, \Delta_{m}\theta),$ $A_{h}^{\sigma}(\Pi_{1}\theta, \Piarrow\Lambda),$ $\cdots$ ,
$A_{h}^{\sigma}(\Pi_{n}\theta, \Piarrow\Lambda)$ are $T$-provable for some number $h$ . Let $k$ be a number such
that $k>h$ and $k>h_{0}$ . By (2), $\overline{A}$ is monotone on $T$ . Therefore, the formulas
$A_{k}^{\sigma}(\Gamma_{1}\theta, \Phi\theta, \Gamma, \Piarrow\Delta, \Delta_{1}\theta),$

$\cdots,$
$A_{k}^{\sigma}(\Gamma_{m}\theta, \Phi\theta, \Gamma, \Piarrow\Delta, \Delta_{m}\theta),$ $A_{k}^{\sigma}(\Pi_{1}\theta,$ $\Phi\theta,$ $\Gamma,$ $\Pi$

$arrow\Delta,$ $\Lambda)$ , $\cdot$ .. , $A_{k}^{\sigma}(\Pi_{n}\theta, \Phi\theta, \Gamma, \Piarrow\Delta, \Lambda)$ are $T$-provable. Now let $\Gamma*$ be the sub-
sequence of the sequence $\Phi\theta,$ $\Gamma,$ $\Pi$ which consists of all the $f\cup \mathscr{F}$ -atomic
forlnulas in the sequence and $\Gamma^{\#}$ the remainder, and let $\Lambda^{*}$ be the subsequence
of the sequence $\Delta,$ $\Lambda$ which consists of all the $X\cup \mathscr{F}$ -atomic formulas in the
$s^{Q}quence\Delta,$ $\Lambda$ , and $\Lambda\#$ the remainder. Then $E(\Phi^{*}\theta;\Gamma^{*})$ is $T$-provable. By
(1), $\overline{A}$ is commutative for substitution on $T$ . Hence the sequent $\Gamma^{\#},$ $A_{k}^{\sigma}(\Gamma^{*} : I)$

$arrow\Delta,$ $\Lambda$ or the sequent $\Gamma\#-arrow A_{k}^{\sigma}(\Gamma^{*}arrow\Lambda^{*} : I),$ $\Lambda^{*}$ is $T$-provable, according as all
the formulas in $\Delta,$

$\Lambda$ are $(9, J^{c}1, \mathscr{F})_{+}$ or not. Thus, by the definition of $A_{k+1}^{\sigma}$ ,
$A_{k+1}^{\sigma}(\Phi\theta, \Gamma, \Piarrow\Delta, \Lambda)$ is T-provable.

THEOREM 6.1. Let $T$ be an intuitionistic theory with equality. Let $S$ be a
set of intuitionistic $\mathscr{F}$ -inference forms, and $a$ an enumerating function of $S$ .
Suppose that the theory $LJ_{e}[S]$ is an extension of T. Let $A$ be an S-approxi-
mation which is adequate on $(LJ_{e}[S], T)$ and $A_{0},$ $A_{1},$ $A_{2},$ $\cdots$ the canonical series
of $\mathscr{F}$ -approximations on $A$ and a. Then the $\mathscr{F}$ -free part of $LJ_{e}[S]$ is axiomatized
by the series of axioms $A_{0}(\epsilon),$ $A_{1}(\epsilon),$ $A_{2}(\epsilon),$ $\cdots$ in $T$ .

PROOF. By Proposition 6.1, the $canoni\vee^{\backslash }a1$ series of $\mathscr{F}$ -approximations is
adequate on $(LJ_{e}[S], T)$ and satisfies $S$-rules in $T$ . Hence Theorem 3.1 implies
the conclusion.

Corollary 3.1, Theorem 5.1 and Theorem 6.1 imply the following axiomati-
zation theorem for intuitionistic theories with equality:

THEOREM 6.2. Let $T$ be an infuitionistic theory with equality, and $\mathscr{F}$ a set
of predicate symbols. Then there are a set $\mathscr{F}_{0}$ of new predicate symbols and an
enumerating function $a$ of a set of $\mathscr{F}\cup \mathscr{F}_{0}$-inference forms such that the $\mathscr{F}$-free
part of $T$ is axiomatized by the series of axioms $B_{0}(\epsilon),$ $B_{1}(\epsilon),$ $B_{2}(\epsilon),$ $\cdots$ in $LJ_{e}$ ,
where $B_{0},$ $B_{1},$ $B_{2},$ $\cdots$ is the canonical series of $\mathscr{F}\cup \mathscr{F}_{0}$-approximations on the basic
$\mathscr{F}$ NY $\mathscr{F}_{0}$-approximation and the enumerating function a.

Let $A$ be a simple (EZ‘, $\Re,$ $\mathscr{F}$ )-approximation, and let $a$ be an enumerating
function of a set of simple (if, $\Re,$ $\mathscr{F}$ )-inference forms. Then we define the
series of simple $(9, \Re, \mathscr{F})$-approximations $A_{0}^{\sigma},$ $A_{1}^{\sigma},$ $A_{2}^{\sigma},$ $\cdots$ as follows:

$A_{0}^{\sigma}$ is $A$ ;
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$A_{k+1}^{\sigma}(\Gamma)$ is the formula $A_{k}^{\sigma}(\Gamma:\sigma(0))/\backslash$ $\Lambda A_{k}^{\sigma}(\Gamma:\sigma(k))\wedge A_{k}^{\sigma}(\Gamma)$ for each finite
sequence $\Gamma$ of $B\cup \mathscr{F}$ -atomic formulas.

Tbe series of simple $(_{-}cP, \mathcal{J}l, \mathscr{F})$-approximations $A_{0}^{\sigma},$ $A_{1}^{\sigma},$ $A_{2}^{\sigma},$ $\cdots$ is called the
canonical series of simple $(q, \Re, \mathscr{F})$-approximations on $A$ and $\sigma$ .

Then we have the simple part version of Proposition 6.1. Hence Theorem
3.2 implies the following theorem:

THEOREM 6.3. Let $T$ be a classical theory with equality. Let $S$ be a set
of simple $(9, \Re, \mathscr{F})$-inference forms, and $\sigma$ an enumerating function of S. Sup-
pose that the theory $LK_{e}[S]$ is an extension of T. Let $A$ be a simple $(9, \Re, \mathscr{F})-$

approximation which is adequate on $(LK_{e}[S], T)$ , and $A_{0},$ $A_{1},$ $A_{2},$ $\cdots$ the canonical
series of simple (EP, $7l,$ $\mathscr{F}$ )-approximations on $A$ and $\sigma$ . Then the $(9, \Re, \mathscr{F})_{+}$-part

of $LK[S]$ is axiomatfzed by the series of axioms $A_{0}(\epsilon),$ $A_{1}(\epsilon),$ $A_{2}(\epsilon),$ $\cdots$ in $T$ .

NOW, let $\mathfrak{U}^{:n}$ denote the formula obtained from a formula ut by replacing
all occurrences of $X$-atomic formulas 8 by 78. Then, it is obvious that a
formula ut is $(fL)\Re,$ $\emptyset,$ $\mathscr{F})_{+}$ if and only if the formula $\mathfrak{A}^{\mathfrak{R}}$ is $(B, \Re, \mathscr{F})_{+}$ , and
that a sequent $\mathfrak{A}_{1},$ $\mathfrak{A}_{2},$ $\cdots$ , $\mathfrak{A}_{m}arrow \mathfrak{A}$ is $LK_{e}$-provable if and only if the sequent
$\mathfrak{A}^{\prod_{1}}$ , wr $\eta 2’$ , $\mathfrak{A}_{n}^{\mathfrak{R}}arrow \mathfrak{A}^{7l}$ is $LK_{e}$-provable.

Thus Corollary 3.3, Theorem 5.2 and Theorem 6.3 imply the following
axiomatization theorem for classical theories with equality:

THEOREM 6.4. Let $T$ be a classical theory with equality, and $q$ $yl$ , and $\mathscr{F}$

mutually $di_{SJ^{0}}int$ sets of predicate symbols. Then there are a set $\mathscr{F}_{0}$ of new pre-
dicate symbols and an enumerating function $\sigma$ of a set of simple $(f\cup\Re, \emptyset, \mathscr{F}\cup \mathscr{F}_{0})-$

inference forms such that the $(cp, Y7, \mathscr{F})_{+}$-part of ? is axiomatized by the series
of axioms $B_{0}(\epsilon)^{n},$ $B_{1}(\epsilon)^{7l},$ $B_{2}(\epsilon)^{\square l}$ , in $LK_{e}$ , where $B_{0},$ $B_{1},$ $B_{2}$ , is the canonical
series of simple $(\varphi\cup X, \emptyset, \mathscr{F}\cup \mathscr{F}_{0})$-approximations on the basic simple
$(B\cup X, \emptyset, \mathscr{F}\cup \mathscr{F}_{0})$-approximation and the enumerating function $\sigma$ .
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