Lifting Seminormality

Raymond C. Heitmann

Suppose R is a local Noetherian ring and y is a regular element contained in the maximal ideal of R. If R satisfies some nice property (\star) then $R / y R$ frequently does not satisfy (\star), although there are exceptions-for example, when (\star) is the Cohen-Macaulay property. On the other hand, many theorems state that (\star) can be lifted from $R / y R$ to R. If $R / y R$ is an integral domain, respectfully reduced, then so is R. If (\star) is regularity, the result is trivial. If (\star) is normality, the result is well known and easy to prove; we will include a proof here simply to illustrate the relative levels of difficulty of this and our main result. However, when David Jaffe asked what happened when (\star) was seminormality, a quick answer was not forthcoming. The purpose of this article is to show that seminormality can be lifted.

We should remark that the requirement for R to be a local Noetherian ring is important for this result and virtually all results of this type. There are non-Noetherian rings with a single maximal principal ideal $y R$ and all kinds of pathological behavior, and the fact that $R / y R$ is a field yields little. Likewise, if R has more than one maximal ideal, then passing to $R / y R$ can "improve" R by removing maximal ideals P from the prime spectrum when R_{P} fails to satisfy (\star).

Throughout this article, all rings are commutative with unity. Local rings are always Noetherian. The total quotient ring of R will be denoted by $Q(R)$, and the integral closure of R in $Q(R)$ will be denoted by R^{\prime}. We will primarily be concerned with Noetherian rings, but excellence is not assumed and so R^{\prime} need not be Noetherian. We begin with a quick proof of the well-known result that normality lifts. Here we consider only the domain case, but allowing $R / y R$ to be reduced merely makes the proof slightly longer; the ideas in the proof remain the same. The same is true of the proof of our main theorem: restricting to the domain case does not make the problem any easier.

Theorem. If R is a local integral domain, $y R$ is a prime ideal in R, and $R / y R$ is normal, then R is normal.

Proof. We will show R to be normal by showing that it satisfies the Serre conditions (R1) and (S2). Suppose P is a height-1 prime ideal of R. If $P=y R$, then P principal implies R_{P} regular. If $P \neq y R$, then there exists a height-2 prime ideal Q of R that contains P and $y R$. Since $R / y R$ satisfies (R1), it follows that

[^0]$(Q / y R)(R / y R)_{Q / y R}$ is principally generated and so $Q R_{Q}$ requires only two generators. Thus R_{Q} is regular and so is its localization R_{P}.

Next suppose P is a prime ideal of R of height >1. If $y \in P$, the facts that y is regular and $P \notin \operatorname{Ass}(y R)$ imply depth $P \geq 2$. If $y \notin P$, there exists a $Q \in \operatorname{Spec}(R)$ that is minimal over $P+y R$. Since ht $(Q / y R) \geq 2$ and $R / y R$ satisfies (S2), we have depth $(Q / y R) \geq 2$. Thus depth $Q \geq 3$. Since ht $(Q / P)=1$, it follows that depth $Q \leq \operatorname{depth} P+1$ and so depth $P \geq 2$ as desired.

Next we review the notion of seminormality. In [T], Traverso defined a ring R to be seminormal if $R=\left\{x \in R^{\prime} \mid \bar{x} \in R_{P}+J\left(R_{P}^{\prime}\right)\right.$ for each $\left.P \in \operatorname{Spec}(R)\right\}$, where $J\left(R_{P}^{\prime}\right)$ is the Jacobson radical of $\left(R^{\prime}\right)_{R-P}$. The major results in this area were developed for rings with finite integral closure by Schanuel (see [Ba]), Traverso, and Hamann [Ha]. The restrictive hypothesis was removed in [GH], [BC], and [S].

Theorem. The following statements are equivalent for a reduced Noetherian ring R.
(1) Pic $R \cong \operatorname{Pic} R[X]$ for an indeterminate X.
(2) Pic $R \cong \operatorname{Pic} R[X]$ for a family of indeterminates X.
(3) If $x \in Q(R)$ and $x^{2}, x^{3} \in R$, then $x \in R$.
(4) R is seminormal.

Conditions (3) and (4) both imply that R is reduced and so are fully equivalent in the Noetherian case. If R is not reduced, then conditions (1) and (2) will hold precisely when $R_{\text {red }}$ is seminormal. As it happens, in the non-Noetherian case, the equivalence of (1) and (4) fails for reduced rings with infinitely many minimal prime ideals [GH; S]. Swan [S] addressed this problem by offering a new definition of seminormality that is always equivalent to (1) and (2) for reduced rings. This new definition was a modification of (3), not of Traverso's original definition. (Swan deleted the hypothesis $x \in Q(R)$ from (3) and then rephrased it so it would make sense.) In this article, we will use condition (3) rather than Traverso's original definition of seminormality.

Main Theorem. If (R, M) is a local ring, y is a regular element in M, and $R / y R$ is seminormal, then R is seminormal.

The theorem will be proved by contradiction starting with a sequence of lemmas. Throughout, R will be a local ring with maximal ideal M. Elements denoted by Greek letters will always be elements of R. We will assume $R / y R$ is seminormal and R is not seminormal, the incompatible assumptions that will lead to our contradiction. The seminormal ring $R / y R$ is of course reduced and so $y R$ is a radical ideal. Since R is not seminormal, there must exist an element $x \in R^{\prime}-R$ such that $x^{2}, x^{3} \in R$.

Lemma 1. We may assume that $\left(R:_{R} x\right)=Q$ is a prime ideal of R and that M is minimal over $Q+y R$.

Proof. Let Q be any prime divisor of $\left(R:_{R} x\right)$. Then $Q=\left(R:_{R} r x\right)$ for some regular $r \in R$ and, since $(r x)^{2},(r x)^{3} \in R$, we may harmlessly replace x by $r x$.

Furthermore, if P is any minimal prime divisor of $Q+y R$, then $x \notin R_{P}$ and $R_{P} / y R_{P}$ is seminormal. Hence we may replace R by R_{P}.

Lemma 2. We may assume R is complete in the $y R$-adic topology.
Proof. Let S be the $y R$-adic completion of R. Trivially, $S / y S$ is isomorphic to $R / y R$ and so is seminormal. This isomorphism also tells us that S is local. Certainly $x^{2}, x^{3} \in S$, and x cannot be in S because it is not even an element of the full completion; hence S is not seminormal. Finally, if Q_{1} is a prime ideal of S such that $Q_{1} \cap R=Q$, then Q_{1} is a minimal prime divisor of $\left(S:_{S} x\right)$ and so $Q_{1}=$ ($S:_{S} s x$) for some regular $s \in S$. Thus we may harmlessly replace R by S, x by $s x$, and Q by Q_{1}, so the lemma holds.

Let $B=\left\{t \in R^{\prime} \mid Q t \subset R\right\}$. Because B is integral over R, any element of $Q B$ has a power contained in Q. Since Q is a prime ideal in R, this gives $Q B=Q$ and so B is a subring of R^{\prime}. Since B is isomorphic to $q B$ for any regular $q \in Q$, it follows that B is a finite R-module. (If Q did not contain a regular element, x would not be an element of $Q(R)$.)

Lemma 3. Let K be the quotient ring of $R / y R$. Then we have a commutative diagram of ring homomorphisms with injective rows:

$$
R / y R \longrightarrow B / y B \longrightarrow K
$$

Proof. The injection $R \subset B$ induces the commutative square on the left. Since $Q=\left(R:_{R} B\right)$ contains a regular element and is not a minimal prime divisor of the radical ideal $y R$, there exists an element $c \in Q$ that is regular on both R and $R / y R$. Thus we have $R \subset B \subset B\left[c^{-1}\right]=R\left[c^{-1}\right] \rightarrow(R / y R)\left[\bar{c}^{-1}\right] \subseteq K$ and hence a map $\theta: B \rightarrow K$. Moreover, under this map $y B \rightarrow y R\left[c^{-1}\right] \rightarrow 0$ and so θ factors through $B / y B$, yielding the entire diagram.

It remains only to see that the upper maps are injective. Since the composition is injective, the left map certainly is and so $y B \cap R=y R$. If $\bar{b} \in \operatorname{Ker}(B / y B \rightarrow$ $K)$ then so is $\bar{c} \bar{b}$. However, this gives $c b \in \operatorname{Ker}(R \rightarrow K)=y R \subset y B$. Hence the right map is injective if (and only if) c is regular on $B / y B$.

Suppose we have $b \in B$ with $c b \in y B$. Since $c b \in R$ and $y B \cap R=y R$, we actually have $c b \in y R$. Thus $(c b)^{n} \in y^{n} R$ for every positive integer n. But $(c b)^{n}=$ $c^{n-1}\left(c b^{n}\right), c b^{n} \in R$, and c is regular on $R / y R$. Hence $c b^{n} \in y^{n} R$ for every n, which implies $b / y \in R^{\prime}$. Finally, $Q b \subset R$ and $c Q b \subset y R$ yield $Q b \subset y R$. So $Q(b / y) \subset R$ and $b \in y B$, demonstrating the desired regularity of c on $B / y B$.

Lemma 4. $\quad M B=M+y B$. If $b \in B$ with $b^{m}, b^{m+1} \in R$ for some positive integer m, then $b \in R+y B$.

Proof. We prove the second statement first. Let \bar{b} denote the image of b in $B / y B$. By Lemma 3, we may regard \bar{b} as an element of K. We have $\bar{b}^{m}, \bar{b}^{m+1} \in R / y R$ and so, by seminormality, $\bar{b} \in R / y R$. Thus $b \in R+y B$.

For the first statement, it is clear that $M+y B \subseteq M B$. To prove the reverse inequality, we first note that $M^{k} \subseteq Q+y R$ for some positive integer k. Then, for any $b \in M B$, we have $b^{k}, b^{k+1} \in(Q+y R) B \subset R+y B$. By the second statement, $b \in R+y B$. Because b and y are both in the Jacobson radical of B, necessarily $b \in M+y B$ as desired.

Remark. In this argument, proving $b \in M+y B$ required only that b be in the radical of $M B$. Thus $M B=M+y B$ is in fact the Jacobson radical of B and $B / M B$ is a direct sum of fields.

Lemma 5. Suppose $u, s \in B$ and $\delta \in R$ are such that $x u=\delta+y^{e} s$ and $x s \in R$. Then $s \in M B$.

Proof. Multiply the given equation by x. Since $x^{2} \in Q$ and $x s \in R$, we obtain $\delta x \in R$ and so $\delta \in Q$. Then, because $y^{e} s=x u-\delta$, for any $k>1$ we have $\left(y^{e} s\right)^{k} \in$ Q. Now $y B \cap R=y R$ gives $s^{k} \in R$ and so $s^{k} \in Q$. Thus s is in the Jacobson radical of B and, by the previous remark, $s \in M B$.

We now prove the theorem.
Proof of Main Theorem. Let $B_{i}=R+x M B+y^{i} B$. Clearly we have a descending chain of R-modules $B \supseteq B_{1} \supseteq B_{2} \supseteq \cdots \supseteq R+x M B$. Since $B /(R+x M B)$ is a finite R-module and $y \in M$, we have $\bigcap B_{i}=R+x M B$ by the Krull intersection theorem. Let $U_{i}=\left\{t \in B \mid x t \in B_{i}\right\}$ and $U=\bigcap U_{i}=\{t \in B \mid x t \in R+x M B\}$. Again we have a descending chain $B \supseteq U_{1} \supseteq U_{2} \supseteq \cdots \supseteq U$. Moreover, for any $t \in B, x^{2} t^{2}, x^{3} t^{3} \in R$ because $x^{2}, x^{3} \in Q$. Thus $x t \in R+y B$ by Lemma 4 and so $U_{1}=B$. Also, because $M B \subseteq U$, it follows that B / U is Artinian and $U=U_{m}$ for some m.

Next consider the map $B \rightarrow B / M B$ and let \bar{U}, \bar{U}_{i} denote the images under this map. Then we have an ascending chain $\bar{U}=\bar{U}_{m} \subseteq \bar{U}_{m-1} \subseteq \cdots \subseteq \bar{U}_{1}=\bar{B}$. Now we arbitrarily choose a basis for the R / M vector space \bar{B} that contains a basis for \bar{U}_{i} for each i. We lift this basis to a generating set for B in the following manner. Let \bar{b} be an element of the basis and let b^{\prime} be a particular lifting of \bar{b} to B. If $b^{\prime} \in U$ (independent of lifting, since $M B \subseteq U$), we have $x b^{\prime} \in R+x M B$. Since adding an element of $M B$ to a lifting gives another lifting, we may lift \bar{b} to an element b so that $x b \in R$. If $b^{\prime} \notin U$, let j be the largest integer such that $b^{\prime} \in U_{j}$ (again independent of lifting). Here we have $x b^{\prime} \in R+x M B+y^{j} B$ and, as before, we may choose our lifting b so that $x b \in R+y^{j} B$. We enumerate the elements in our generating set $u_{1}, u_{2}, \ldots, u_{n}$ so that, if $\operatorname{dim} \bar{U}_{j}=n-k_{j}>0$, then $\bar{u}_{k_{j}+1}, \ldots, \bar{u}_{n}$ is a basis for \bar{U}_{j}. In particular, if $\operatorname{dim} \bar{U}=n-k \geq 0$ then $\bar{u}_{k+1}, \ldots, \bar{u}_{n}$ is a basis for \bar{U}. For each $i \leq k$ we have a generator u_{i} with $u_{i} \in U_{e_{i}}-U_{e_{i}+1}$. We may write $x u_{i}=\alpha_{i}+y^{e_{i}} s_{i}$. Since $u_{i} \notin U_{e_{i}+1}$, it follows that $s_{i} \notin R+y B$ and so $s_{i} \notin M B$ by Lemma 4. By this process we construct a sequence of elements s_{1}, \ldots, s_{k}. Each s_{i} is unique only up to an element of R. We claim that $\overline{1}, \bar{s}_{1}, \ldots, \bar{s}_{k}$ is a linearly independent set. If not, choose j minimal so that $\overline{1}, \bar{s}_{1}, \ldots, \bar{s}_{j}$ is linearly dependent. Then we have elements $\rho_{i} \in R$ such that $s_{j}-\sum_{i<j} \rho_{i} s_{i} \in R+M B$. Next let $f_{i}=e_{j}-e_{i} \geq 0$ for $i \leq j$ and set $u=u_{j}-\sum_{i<j} y^{f_{i}} \rho_{i} u_{i}$. Then

$$
\begin{aligned}
x u & =\left(\alpha_{j}-\sum_{i<j} y^{f_{i}} \rho_{i} \alpha_{i}\right)+y^{e_{j}}\left(s_{j}-\sum_{i<j} \rho_{i} s_{i}\right) \in R+y^{e_{j}}(R+M B) \\
& =R+y^{e_{j}}(R+y B)=R+y^{e_{j}+1} B .
\end{aligned}
$$

However, this implies that $u \in U_{e_{j}+1}$ and so $\bar{u}_{1}, \ldots, \bar{u}_{j}$ are not linearly independent modulo $\bar{U}_{e_{j}+1}$, contradicting our choice of generating set. Thus the claim holds: $\overline{1}, \bar{s}_{1}, \ldots, \bar{s}_{k}$ is a linearly independent set. We have shown that if $C=\left\{1, s_{i}\right\} R$ then \bar{C} is a $(k+1)$-dimensional subspace of $B / M B$. Next we point out how we shall take advantage of the nonuniqueness in the choice of the s_{i}. Suppose $s \in C$ is a fixed element such that $\bar{s} \notin R / M$, so $s=\gamma+\sum_{i \leq k} \gamma_{i} s_{i}$ with some $\gamma_{j} \notin M$. Then, altering our choice of s_{j} to $s_{j}+\gamma / \gamma_{j}$ yields $s=\sum_{i \leq k} \gamma_{i} s_{i}$.

The remainder of the proof is a bit technical, so we give an overview of the idea behind it. If $s_{i}=u_{j}$ for some i, j, then the element $s=s_{i}$ would yield a contradiction to Lemma 5. It is, in fact, possible to create this situation. Define $T=\{t \in B \mid$ $x t \in R\}$. Since $u_{k+1}, \ldots, u_{n} \in T$, we know that $\bar{T}=\bar{U}$ is an $(n-k)$-dimensional vector space. By a dimension argument, \bar{C} must intersect \bar{T} nontrivially. We will find s as a lifting to $C \cap T$ of an element in that nontrivial vector space intersection. We shall also see that $\bar{s} \notin R / M$, allowing us to write s as a linear combination of the s_{i}. It should be mentioned that we do not lift an arbitrary element of the intersection; we show only that some element can be lifted.

Next we will show by contradiction that $\overline{1} \notin \bar{T}$. If $t \in T$, then $x t \in R$ gives $(x t)^{2}=x^{2} t^{2} \in Q B=Q$ and so $x t \in Q$. Thus $T=\left(Q:_{B} \quad x\right)$, an ideal of B. If $\overline{1} \in \bar{T}$ then the ideal $T+M B$ is all of B and, by Nakayama's lemma, $T=B$, contradicting $x \notin R$; so $\overline{1} \notin \bar{T}$ as desired. Since $\bar{C}+\bar{T} \subseteq \bar{B}$ and $\operatorname{dim} \bar{B}=n$, the dimension of $\bar{C}+\bar{T}$ is $n-d$ for some $d \geq 0$. Now we compute the dimension of $\bar{C} \cap \bar{T}$ from the dimensions of \bar{T}, \bar{C}, and $\bar{C}+\bar{T}$ to be $(n-k)+(k+1)-(n-d)=$ $d+1>0$. Choose elements $r_{j} \in C$ for $j=1, \ldots, d+1$ that map to a basis of $\bar{C} \cap \bar{T}$. Let $E=\left\{r_{j}\right\} R$; hence $E \subset C$ and $\bar{E}=\bar{C} \cap \bar{T}$. Next we have a relatively long proof of a critical claim.

Claim. There exists an element $z \in E \cap(T+M+y C)$ that is not in $M B$.
Proof. Let $F=\left\{z_{1}, \ldots, z_{g}\right\}$ be a subset of E that satisfies the following properties:
(1) $\bar{z}_{1}, \ldots, \bar{z}_{g}$ is a linearly independent subset of $B / M B$;
(2) For each $i=1, \ldots, g$ we have $z_{i}=b_{i}+y^{e_{i}} i_{i}$, where $b_{i} \in T+M+y C, e_{i} \in \mathbf{Z}^{+}$, $t_{i} \in B$, and $\overline{\bar{t}}_{1}, \ldots, \overline{\bar{t}}_{g}$ is a linearly independent subset of $(B / M B) /(\bar{C}+\bar{T})$;
(3) $g \geq 0$ is maximal for sets satisfying (1) and (2);
(4) $\sum e_{i}$ is minimal among sets satisfying (1), (2), and (3);
(5) $e_{1} \leq e_{2} \leq \cdots \leq e_{g}$.

It is easy to see that we can choose such an F. Because the empty set satisfies (1) and (2), the collection of sets satisfying these two properties is nonempty. Since g is bounded, we can restrict to the subcollection with maximal g. Next we pick any set in this collection with minimal $\sum e_{i}$ and reorder the elements if necessary so that $e_{1} \leq e_{2} \leq \cdots \leq e_{g}$.

The dimension of $(B / M B) /(\bar{C}+\bar{T})$ is d, so $g \leq d<d+1=\operatorname{dim} \bar{E}$. We see that $\bar{z}_{1}, \ldots, \bar{z}_{g}$ has too few elements to span \bar{E}; hence we can find $v_{1} \in E$ such that $\bar{z}_{1}, \ldots, \bar{z}_{g}, \bar{v}_{1}$ is a linearly independent subset of \bar{E}.

Next we shall inductively find a sequence v_{1}, v_{2}, \ldots of elements in E such that, for all $i, \bar{z}_{1}, \ldots, \bar{z}_{g}, \bar{v}_{i}$ is a linearly independent subset of \bar{E} and $v_{i} \in T+M+y C+$ $y^{i} B$ while $v_{i+1}-v_{i} \in y^{i-e_{g}} B$ for $i>e_{g}$. (If $g=0$, set $e_{g}=0$.)

We have already chosen v_{1} such that $\bar{z}_{1}, \ldots, \bar{z}_{g}, \bar{v}_{1}$ is linearly independent. Since $\bar{E} \subseteq \bar{T}$, it follows that $v_{1} \in T+M B=T+M+y B$ as desired. Next suppose we have satisfactorily chosen v_{j}. We can write $v_{j}=a+y^{j} t$ with $a \in T+M+y C$ and $t \in B$. By the maximality of g in the choice of $F, \overline{\bar{t}}_{1}, \ldots, \overline{\bar{t}_{g}}, \overline{\bar{t}}$ is not a linearly independent subset of $(B / M B) /(\bar{C}+\bar{T})$. Moreover, by the minimality of $\sum e_{i}$, $\overline{\bar{t}}_{1}, \ldots, \overline{\bar{t}}_{h}, \overline{\bar{t}}$ is linearly dependent if $e_{h+1}>j$. Hence we may write $\overline{\bar{t}}=\sum_{i \leq h} \overline{\bar{\rho}}_{i} \overline{\bar{t}}_{i}$, This gives $t-\sum_{i \leq h} \rho_{i} t_{i} \in C+T+M B=C+T+y B$ since $M B=M+y B \subset$ $C+y B$. Now, the equation $v_{j}=a+y^{j} t$ does not uniquely determine a and t. We may therefore adjust t by an element of $C+T$ and correspondingly adjust a by an element of $y^{j}(C+T)$, thereby reducing to the case $t-\sum_{i \leq h} \rho_{i} t_{i} \in y B$. Now let $f_{i}=j-e_{i}$ and set

$$
\begin{aligned}
v_{j+1} & =v_{j}-\sum_{i \leq h} y^{f_{i}} \rho_{i} z_{i} \\
& =\left(a-\sum_{i \leq h} y^{f_{i}} \rho_{i} b_{i}\right)+y^{j}\left(t-\sum_{i \leq h} \rho_{i} t_{i}\right) \in T+M+y C+y^{j}(y B) \\
& =T+M+y C+y^{j+1} B .
\end{aligned}
$$

Since $f_{i} \geq j-e_{g}$ for all i, we have $v_{j+1}-v_{j} \in y^{j-e_{g}} B$. Finally, since v_{j+1} is simply v_{j} plus a linear combination of $\left\{z_{1}, \ldots, z_{g}\right\}$, it follows that $\bar{z}_{1}, \ldots, \bar{z}_{g}, \bar{v}_{j+1}$ is linearly independent.

Next, since R is complete in the $y R$-adic topology, so is the finite R-module B. Thus the Cauchy sequence v_{1}, v_{2}, \ldots has a limit in B, a limit we designate as z. Clearly, for all i we have $z \in T+M+y C+y^{i} B$ and $z \in E+y^{i} B$; hence, by the Krull intersection theorem, $z \in(T+M+y C) \cap E$. Finally, $\bar{z}=\bar{v}_{e_{g}+1}$ gives $z \notin$ $M B$ and so the Claim is proved.

To complete the proof of the Main Theorem, we write $z=s+c$ with $s \in T$ and $c \in M+y C$. Because $z \in E-M B \subseteq C-M B$ and $c \in C \cap M B$, we have $s \in C \cap T-M B$. Since $\overline{1} \notin \bar{T}$, it follows that $\bar{s} \notin R / M$ and we may write $s=$ $\sum_{i \leq k} \gamma_{i} s_{i}$. Recall that $x u_{i}=\alpha_{i}+y^{e_{i}} s_{i}$ for each $i \leq k$. Let $f_{i}=e_{k}-e_{i} \geq 0$ and set $u=\sum_{i \leq k} y^{f_{i}} \gamma_{i} u_{i}$. Then $x u=\sum_{i \leq k} y^{f_{i}} \gamma_{i} \alpha_{i}+y^{e_{k}} s=\delta+y^{e_{k}} s$ for $\delta=$ $\sum_{i \leq k} y^{f_{i}} \gamma_{i} \alpha_{i} \in R$. These elements u, s, δ directly contradict Lemma 5 , so the theorem is proved.

Acknowledgments. I would like to thank Craig Huneke for a number of helpful conversations about this project and also to thank the referee for useful suggestions.

References

[Ba] H. Bass, Torsion free and projective modules, Trans. Amer. Math. Soc. 102 (1962), 319-327.
[BC] J. Brewer and D. Costa, Seminormality and projective modules over polynomial rings, J. Algebra 58 (1979), 208-216.
[GH] R. Gilmer and R. Heitmann, On Pic R [X] for R seminormal, J. Pure Appl. Algebra 16 (1980), 251-257.
[Ha] E. Hamann, The R-invariance of $R[X]$, J. Algebra 35 (1975), 1-16.
[S] R. Swan, On seminormality, J. Algebra 67 (1980), 210-229.
[T] C. Traverso, Seminormality and Picard group, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 24 (1970), 585-595.

Department of Mathematics
University of Texas
Austin, TX 78712
heitmann@math.utexas.edu

[^0]: Received April 26, 2007. Revision received August 10, 2007.
 The author was partially supported by NSF Grant no. DMS 0355486.

