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Shortest Axiomatizations of
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Abstract Shortest possible axiomatizations for the strict implicational frag-
ments of the modal logics S4 and S5 are reported. Among these axiomatizations
is included a shortest single axiom for implicational S4—which to our knowl-
edge is the first reported single axiom for that system—and several new shortest
single axioms for implicational S5. A variety of automated reasoning strategies
were essential to our discoveries.

1 Background and Conventions

The implicational fragments of the modal logics S4 and S5 have been studied exten-
sively over the years.1 Following tradition, we use the labels ‘C4’ and ‘C5’ to denote
the strict implicational fragments of S4 and S5, respectively. Prior [14, Appendix I]
reports a variety of Hilbert-style axiomatizations for C4 and C5. All such axiomati-
zations presuppose condensed detachment as their sole rule of inference (as do ours).
We also follow the convention of writing implicational formulas in Polish notation
(e.g., instead of the infix ‘p → q’, we use the Polish ‘Cpq’). When we report our
deductions, we use Meredith’s D-notation (as explained in [14, Appendix II]). That
is, the notation ‘D.a.b’ (appearing to the left of each line in our deductions) is used
to denote the most general possible result of detachment (i.e., condensed detachment
(Kalman [6])) with a, or some substitution in a, for the major premise Cαβ, and with
b, or some substitution in b, for the minor premise α. All proofs reported here were
discovered with the assistance of the automated reasoning program Otter (McCune
[9]). The extensive role of automated reasoning in the present research is discussed
in Section 4.
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2 Axiomatic C4

We begin with appropriate background to place the question we answer in perspec-
tive.

2.1 A brief history of axiomatic C4 The axiomatization of C4 has an interesting
history. As far as we can tell, the first time an axiomatization for C4 appeared ex-
plicitly in print was in Anderson and Belnap’s 1962 paper [1]. Anderson and Belnap
report the following 3-axiom basis for C4 which we adopt as our reference C4 ax-
iomatization (the condensed detachment rule, as always, is presupposed to be the
sole rule of inference of the systems).

Cpp

CCpqCrCpq (1)
CCpCqrCCpqCpr

Anderson and Belnap credit Kripke’s 1959 discussion Kripke [7] with providing the
original insight on how to axiomatize C4. According to Curry [3] and Hacking [5],
however, similar work was concurrently being done independently across the At-
lantic by Hacking and Smiley. The work of Hacking and Smiley [5] was not pub-
lished until 1963, but their work on C4 was available in mimeograph form several
years before this [3].

Other 3-axiom bases were later discovered for C4 (see [14, Appendix I]), each
containing 25 symbols (total) and 11 occurrences of the implication connective C .
But as far as we know, no 2-axiom bases for C4 were ever reported in the literature.
Moreover, no single axiom for C4 had been discovered; indeed, this is stated as an
open problem in Anderson and Belnap [2, p. 83]. Ulrich [16] has shown that C4
is also the strict implicational fragment of each modal logic between S4 and S4.3;
hence, our bases are new and shortest bases for the strict implicational fragments of
these extensions of S4 as well.

2.2 Shortest axiomatizations of C4 Using a variety of automated reasoning
strategies (see Section 4 for more on these strategies), we have discovered many new
2-axiom bases for C4. The shortest of these include the following 2-basis, which
contains only 20 symbols and 9 occurrences of C .

CpCqq

CCpCqrCCpqCsCpr (2)

So far, we have found six such 2-bases, and we know that there exist at most eight.
In fact, we suspect that there exist exactly six. We have eliminated all other 2-bases
of this complexity except for the following two candidates, whose status remains
open: {CpCqCrr , CCpqCCqCqrCpr} and {CpCqq, CCpqCrCCqCqsCps}.
We suspect these are not bases for C4.2

Moreover, we have been able to show that these are the shortest possible bases
for C4. That is, no other basis for C4 (with any number of axioms) contains fewer
symbols (or occurrences of C) than the cited 2-basis. The proof of this result (omit-
ted because of space limitations), which proceeds by exhaustive search of all other
possible candidate bases, requires the use of only 20 distinct logical matrices of size
≤ 4. In Section 4, we say a bit more about how this exhaustive search was conducted
and how the matrices and bases were discovered.
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Our automated reasoning strategies also yielded the following new 21-symbol
(10-C) single axiom for C4:

CCpCCqCrrCpsCCstCuCpt (3)

As noted earlier, the question of the existence of a single axiom for C4 had been
a long-standing open question in the axiomatics of modal logic [2, p. 83]. We have
ruled out all shorter single axiom candidates (see Section 4 for more on the strategies
used to eliminate and discover single-axiom candidates). Therefore, (3) is a shortest
possible single axiom for C4. In fact, (3) is the shortest C4 single axiom (all other
21-symbol candidates have been eliminated).

Proof With a circle of three deductions, we now establish that each of (2) and (3)
is necessary and sufficient for (1). It follows that both (2) and (3) are bases for C4.
First, we prove (1) ⇒ (3):

1. Cpp
2. CCpqCrCpq
3. CCpCqrCCpqCpr

D.3.3 4. CCCpCqrCpqCCpCqrCpr
D.2.3 5. CpCCqCrsCCqrCqs
D.3.5 6. CCpCqCrsCpCCqrCqs
D.6.2 7. CCpqCCr pCrq
D.3.7 8. CCCpqCr pCCpqCrq
D.7.2 9. CCpCqrCpCsCqr
D.7.8 10. CCpCCqrCsqCpCCqrCsr
D.7.9 11. CCpCqCrsCpCqCtCrs
D.9.2 12. CCpqCrCsCpq
D.12.1 13. CpCqCrr
D.9.13 14. CpCqCrCss
D.4.13 15. CCpCCqqrCpr
D.4.14 16. CCpCCqCrrsCps
D.6.16 17. CCpCCqCrrCstCCpsCpt
D.15.17 18. CCpCCqCrrCpsCps
D.9.18 19. CCpCCqCrrCpsCtCps
D.10.19 20. CCpCCqCrrCpsCCstCpt
D.11.20 21. CCpCCqCrrCpsCCstCuCpt∗

Next, we prove that (3) ⇒ (2):

1. CCpCCqCrrCpsCCstCuCpt
D.1.1 2. CCCpCqqrCsCCpCCtCuuCpvr
D.2.1 3. CpCCqCCrCssCqtCCCuuvCwCqv

D.3.3 4. CCpCCqCrrCpsCCCttuCvCpu
D.1.3 5. CCCpCqrsCtCCCuurs
D.5.1 6. CpCCCqqCrsCCstCuCrt
D.6.6 7. CCCppCqrCCrsCtCqs
D.4.6 8. CCCppqCrCCstq
D.1.6 9. CCCpCqrsCtCCqrs
D.1.8 10. CCpqCrCCCsspq
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D.9.7 11. CpCCqrCCrsCtCqs
D.7.10 12. CCCCCppqqrCsCtr
D.7.11 13. CCCCpqCrCsqtCuCCspt
D.1.12 14. CCpqCrCCCCCssttpq
D.12.14 15. CpCqCrCCCCCssttCCuuvv

D.15.15 16. CpCqCCCCCrrssCCttuu
D.16.16 17. CpCCCCCqqrrCCsstt
D.17.17 18. CCCCCppqqCCrrss
D.13.18 19. CpCCqCCrrsCqs
D.18.12 20. CpCqq∗

D.19.19 21. CCpCCqqrCpr
D.21.13 22. CCCCpqCrCsqtCCspt
D.21.1 23. CCpCCqCrrCpsCtCps
D.22.21 24. CCpqCCqrCpr
D.24.24 25. CCCCpqCrqsCCr ps
D.25.25 26. CCpCqrCCsqCpCsr
D.24.26 27. CCCCpqCrCpstCCrCqst
D.27.21 28. CCCppCqrCCsqCsr
D.25.28 29. CCpqCCr pCrq
D.28.7 30. CCpCqrCpCsCqr
D.24.30 31. CCCpCqCrstCCpCrst
D.31.23 32. CCpCpqCrCpq
D.29.32 33. CCpCqCqrCpCsCqr
D.27.33 34. CCpCqrCCpqCsCpr ∗

Finally, we prove that (2) ⇒ (1), which completes the circle:

1. CpCqq
2. CCpCqrCCpqCsCpr

D.1.1 3. Cpp∗

D.2.2 4. CCCpCqrCpqCsCCpCqrCtCpr
D.2.1 5. CCpqCrCpq∗

D.4.1 6. CpCCqCqrCsCqr
D.6.6 7. CCpCpqCrCpq
D.7.7 8. CpCCqCqrCqr
D.2.8 9. CCpCqCqrCsCpCqr
D.9.2 10. CpCCqCrsCCqrCqs
D.10.10 11. CCpCqrCCpqCpr ∗

�

This circle of proofs (1) ⇒ (3) ⇒ (2) ⇒ (1) has the additional property of being
pure—in the sense of Wos [19] and [20]. That is, (i) the proof of (1) ⇒ (3) does not
make use of (2), (ii) the proof of (3) ⇒ (2) does not make use of (1), and (iii) the
proof of (2) ⇒ (1) does not make use of (3). We believe this circle of pure proofs
provides an especially elegant demonstration that (2) and (3) are bases of C4.

3 Axiomatic C5

We begin with appropriate background to place our study of C5 in perspective.
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3.1 A brief history of axiomatic C5 The problem of axiomatizing the implica-
tional fragment of S5 was solved in 1956 by Lemmon, Meredith, Meredith, Prior,
and Thomas. In their seminal paper, Lemmon et al. [8] report several bases for
C5, including 4-, 3-, 2-, and 1-axiom bases. We adopt the following 3-axiom basis
from [8] as our reference axiomatization of C5. (We note that (4) is basis (ii) from
Lemmon et al. [8, p. 227]. This basis is C. Meredith’s simplification of Lemmon’s
original 4-axiom basis for C5; see Meredith and Prior [11].)

CqCpp

CCpqCCqrCpr (4)
CCCCpqrCpqCpq

Since the late 1950s, the shortest known bases for C5 have been the 2-axiom bases
(v) and (vi) of Lemmon et al. [8, p. 227]. These bases contain 20 symbols (including
9 occurrences of C). Meredith was able to find the following 21-symbol (10-C)
single axiom for C5; and until now Meredith and Prior’s work [11] seems to have
been the last word on this matter.

CCCCCppqrCstCCtqCsCsq (5)

Especially in view of that success, it is interesting to note that—as far as we know—
Meredith failed to find a single axiom for C4. This is indeed surprising because
Meredith was responsible for finding (shortest) single axioms for almost every sys-
tem (that has one) that he studied. We sometimes wonder whether the 21-symbol
C4 single axiom we reported earlier had been previously discovered (but never pub-
lished) by Meredith.

3.2 Shortest axiomatizations of C5 Applying our automated reasoning strategies
to C5 (see Section 4), we have discovered several new (and shortest) 2-axiom bases
for C5, including the following 18-symbol, 8-C basis.

Cpp

CCpqCCCCqrsrCpr (6)

By examining all other possible shorter bases (with any number of axioms), we have
established that (6) is a shortest possible basis for C5. Furthermore, we have ruled
out all other 2-bases of this complexity. Therefore, (6) is the shortest basis for C5. A
corollary of this result (coupled with the appropriate exhaustive search) asserts that
there exists no single axiom for C5 shorter than Meredith’s (5). We have, however,
discovered the following six other single axioms of length 21:

CCCCpqrCCuuqCCqtCsCpt (7a)
CCCCpqrCCuuqCtCCqsCps (7b)
CCCCpqrCCuutCsCCqtCpt (7c)
CCCCCppqrCuqCCqtCsCut (7d)
CCCCCppqrCuqCCtuCsCtq (7e)
CCCCCppCqrurCCrtCsCqt (7f)

Of these six single axioms, we note that (7d) and (7e) are in the same resonator class
as Meredith’s previously-known single axiom (5). This means that they differ only
with respect to which variables occur in each position; they are identical in each
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position containing a connective. But in spite of the fact that these three formulas
are in the same resonator class, they are not trivial alphabetic variants of each other.
We also note that (7d) and (7e) are members of the same resonator class, but are not
trivial alphabetic variants.

Because of space constraints, we shall not give proofs that each of these six for-
mulas are single axioms for C5. Instead, we shall present a circle of three pure proofs
(this time using (4) as our reference basis) that together establish that (6) and (7a)
are each bases for C5 (and, of course, that their members are each tautologies). First,
we prove that (6) ⇒ (4):

Proof
1. CCpqCCCCqrsrCpr
2. Cpp

D.1.1 3. CCCCCCCCpqrqCuqtstCCupt
D.1.2 4. CCCCpqrqCpq
D.3.3 5. CCpCqrCCuqCpCur
D.5.2 6. CCpqCCqrCpr ∗

D.5.1 7. CCpCCCqrsrCCtqCpCtr
D.6.6 8. CCCCpqCrquCCr pu
D.6.8 9. CCCCpqrsCCCCqtCptrs
D.8.4 10. CCpCqCprCqCpr
D.7.9 11. CCpCqrCCCCuqtCurCpCur
D.6.10 12. CCCpCqrsCCqCpCqrs
D.12.7 13. CCCCpqrCuCCCpqrqCCtpCuCtq
D.4.13 14. CCpqCCr pCuCrq
D.14.2 15. CCpqCrCpq
D.15.2 16. CpCqq∗

D.11.16 17. CCCCpqrCpqCuCpq
D.6.17 18. CCCpCqrsCCCCqrtCqrs
D.17.18 19. CpCCCCqrsCqrCqr
D.19.19 20. CCCCpqrCpqCpq∗

Next, we show that (4) ⇒ (7a).

1. CCpqCCqrCpr
2. CCCCpqrCpqCpq
3. CpCqq

D.1.1 4. CCCCpqCrquCCr pu
D.1.3 5. CCCppqCrq
D.4.4 6. CCpCqrCCuqCpCur
D.4.2 7. CCpCpqCpq
D.6.4 8. CCpCqrCCCCrsCqstCpt
D.6.3 9. CCpqCrCpq
D.4.7 10. CCCpqpCCpqq
D.1.9 11. CCCpCqrsCCqrs
D.11.10 12. CCpqCCCpqrr
D.6.12 13. CCpCCqrsCCqrCps
D.1.5 14. CCCpqrCCCuuqr
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D.11.13 15. CCCpqrCCpqCur
D.1.13 16. CCCCpqCrstCCrCCpqst
D.16.2 17. CCpCCCpqrqCpq
D.14.17 18. CCCppCCCqrsrCqr
D.16.18 19. CCCCpqrCCuuqCpq
D.8.19 20. CCCCpqCrquCCCCr ptCCsspu
D.20.15 21. CCCCpqrCCuuqCCqtCsCpt∗

Finally, we complete the circle by showing that (7a) ⇒ (6).

1. CCCCpqrCCuuqCCqtCsCpt
D.1.1 2. CCCpCqrsCtCCqru
D.2.1 3. CpCCCqqrCCrsCtCus
D.3.3 4. CCCppqCCqrCuCtr
D.1.3 5. CCCCCppqCrCuqtCsCt6t
D.2.4 6. CpCCqrCCCqrsCtCsu
D.1.5 7. CCCpCqrsCtCCCuuru
D.4.6 8. CCCCpqCCCpqrCuCtrsCt6Ct7s
D.1.7 9. CCCCCppqqrCuCtr
D.1.8 10. CCCCCpqrCuCtrsCt6CCpqs
D.1.9 11. CCCpqrCuCCCttCpqr
D.1.10 12. CCCCpqCrstCuCCCpqst
D.9.11 13. CpCqCrCCCuuCCttss
D.12.1 14. CpCCCCqrsrCCrtCuCqt
D.13.13 15. CpCqCCCrrCCsstt
D.14.14 16. CCCCpqrqCCquCtCpu
D.15.15 17. CpCCCqqCCrrss
D.16.16 18. CCCCpqCrCuqtCsCCupt
D.17.17 19. CCCppCCqqrr
D.1.18 20. CCCCpqCprsCtCCqrs
D.19.19 21. Cpp∗

D.19.20 22. CCpqCCr pCrq
D.9.22 23. CpCqCCrCCsstCrt
D.19.23 24. CCpCCqqrCpr
D.22.24 25. CCpCqCCrrsCpCqs
D.25.16 26. CCCCpqrqCCquCpu
D.26.26 27. CCCCpqCrquCCr pu
D.24.26 28. CCCCpqrqCpq
D.27.27 29. CCpCqrCCuqCpCur
D.29.28 30. CCpqCCCCqrsrCpr ∗

�

4 The Role of Automated Reasoning in Our Research

Throughout our investigations into axiomatic C4 and C5, automated reasoning
strategies played a crucial role. In particular, we relied heavily on McCune’s auto-
mated reasoning program Otter [9], Zhang and Zhang’s model finder SEM [24],
and Slaney’s model finder MaGIC [15]. Here we outline the approach used to obtain
these results and briefly discuss some of the automated reasoning strategies.
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(1) First, we wrote computer programs to generate a large list of candidate formulas
that were to be tested as axioms. For most of the research, it was practical to generate
an exhaustive list of all formulas with as many as twenty-one symbols.

(2) All the formulas in the list were tested (by using matrices) to see which were
likely to be tautologies in the system in question. Nontautologies were eliminated
from the list of candidate formulas. We used finite matrices rather than decision
procedures or semantic arguments because testing for validity on small matrices is
very efficient, and those formulas that survived the filters could be subjected to more
conclusive tests later in the search.

(3) We immediately eliminated large numbers of formulas by applying known re-
sults about axiomatizations in the various systems. For example, as reported by
Lemmon et al. [8], every axiomatization for C5 must contain a formula with Cpp as
a (possibly improper) subformula. Another useful result is the Diamond-McKinsey
theorem that no Boolean algebra can be axiomatized by formulas containing fewer
than three distinct propositional letters [2, p. 83].

(4) An arbitrary set of formulas was selected from the list. Using either SEM or a
program we ourselves wrote, we found a matrix model that respects modus ponens,
invalidates a known axiom basis for the system, but validates the formulas selected
from the list. Such a model suffices to show that the formulas are not single axioms
for the system.
(5) All the remaining formulas in the list were tested against that matrix. Every
formula validated by that matrix was eliminated.

(6) Steps (4) and (5) were repeated until the list of candidate formulas was reduced
to a small number, or eliminated entirely.
(7) Finally, we used Otter to attempt to prove a known axiom basis from each of
the remaining candidates. Following the standard approach in automated reasoning,
we sought in each case a proof by contradiction and, therefore, assumed the con-
clusion to be false. By choosing the appropriate list from among those offered by
McCune’s program, the so-called denial of the conclusion was used only to detect
proof completion; any proof that was discovered relied solely on reasoning forward.
Regarding strategy to direct the program’s reasoning, we used the resonance strat-
egy, which enables the researcher to provide patterns (formulas or equations) that
are treated as attractive because of their functional shape (ignoring their variables)
(Wos [18]). For the same purpose, we used Veroff’s hints strategy in which the re-
searcher provides attractive patterns, patterns that are keyed upon themselves and
also on patterns that subsume or are subsumed by them (Veroff [17]). We restricted
the program’s reasoning by placing bounds on the complexity of retained conclu-
sions and on the number of distinct letters occurring in such. Purity (of the circles
of proofs) was achieved by instructing the program to immediately discard an un-
wanted specific deduction. With various methodologies based on offered strategies
that included the cramming strategy, we also sought proofs of minimal length. With
cramming, one instructs the program to rely heavily on chosen steps of a proof with
the objective of cramming most or all of them into another proof of interest (Wos
[21]).

Obvious changes were made when we searched for axiom bases with more than
a single formula. For example, in contrast to the study of a possible single axiom



Implicational S4 and S5 177

where its denial was placed in what is called the passive list, the study of a possible
basis with more than one member caused us to place its denial in a list called usable.
For a second example, when we sought a proof for a basis other than a single axiom,
we sometimes used (through the cramming strategy) the proof of one its members to
aid us in completing the proof for the entire basis.

Upon implementing the given procedure, we were surprised to discover that even
a small number of simple matrix models can eliminate a very large proportion of
candidate formulas. For example, by using ten (and possibly fewer) matrices, none
of which have more than five elements, one can show that no formula with nine-
teen symbols is a single axiom for C5. Because of the efficiency of this procedure,
we were able to complete all of our searches using a PC and occasionally a Linux
workstation.

We believe that this approach for finding axiom bases in Hilbert-style systems
could be used for a wide variety of logics, with equal success. For instance, we
have used this approach to discover the shortest known basis for the implicational
fragment of the logic RM (first axiomatized by Meyer and Parks [12], Parks [13],
Ernst et al. [4]). And McCune, Veroff, and Padmanabhan [10] have successfully
used a similar approach to find short single axioms in lattice theory.

Currently, however, an exhaustive search such as the one used in the present study
is prohibitively time consuming when applied to logics with a more complete vocab-
ulary of sentential connectives. The reason rests with the fact that the addition of
new connectives causes the number of candidate axiomatizations to increase expo-
nentially. Moreover, when additional connectives are added to the language, the
matrices and proofs tend to be larger and more complex. Currently, it is difficult, and
sometimes impossible, to discover large matrices for many such problems. Signifi-
cantly, however, methodologies now exist for using McCune’s program to discover
extremely complex and difficult proofs. For example, Otter has yielded proofs
consisting of 200 applications of condensed detachment for theorems of significant
depth. (See Wos and Pieper [23] and [22] for information on the solution of chal-
lenge problems using Otter, as well as for open questions.) We believe that further
results regarding axiomatizations for more complex logics await future advances in
automated reasoning.

Notes

1. See, for instance, Lemmon [8], Kripke [7], Anderson and Belnap [1], Hacking [5], and
Meredith and Prior [11].

2. An anonymous referee for this journal points out that this problem can be translated into a
problem in combinatory logic because the formulas “CpCqCrr and CCpqCqCqrCpr
correspond to the combinators BBK′ and BBB′WB′, respectively, and the question is
whether these suffice to define K ′, BBB′K′B′, and S.”
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of Sobociński’s three-valued logic,” Zeitschrift für mathematische Logik Grundlagen
Mathematik, vol. 18 (1972), pp. 291–95. Zbl 0261.02011. MR 50:9530. 177

[13] Parks, R. Z., “A note on R-Mingle and Sobociński’s three-valued logic,” Notre Dame
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