Shortest Axiomatizations of Implicational S4 and S5

Zachary Ernst, Branden Fitelson, Kenneth Harris, and Larry Wos

Abstract

Shortest possible axiomatizations for the strict implicational fragments of the modal logics $\mathbf{S 4}$ and $\mathbf{S 5}$ are reported. Among these axiomatizations is included a shortest single axiom for implicational S4-which to our knowledge is the first reported single axiom for that system-and several new shortest single axioms for implicational S5. A variety of automated reasoning strategies were essential to our discoveries.

1 Background and Conventions

The implicational fragments of the modal logics $\mathbf{S 4}$ and $\mathbf{S 5}$ have been studied extensively over the years. Following tradition, we use the labels 'C4' and ' $\mathbf{C 5}$ ' to denote the strict implicational fragments of $\mathbf{S 4}$ and $\mathbf{S 5}$, respectively. Prior [14, Appendix I] reports a variety of Hilbert-style axiomatizations for $\mathbf{C 4}$ and $\mathbf{C 5}$. All such axiomatizations presuppose condensed detachment as their sole rule of inference (as do ours). We also follow the convention of writing implicational formulas in Polish notation (e.g., instead of the infix ' $p \rightarrow q$ ', we use the Polish ' $C p q$ '). When we report our deductions, we use Meredith's D-notation (as explained in [14, Appendix II]). That is, the notation ' $D . a . b$ ' (appearing to the left of each line in our deductions) is used to denote the most general possible result of detachment (i.e., condensed detachment (Kalman [6])) with a, or some substitution in a, for the major premise $C \alpha \beta$, and with b, or some substitution in b, for the minor premise α. All proofs reported here were discovered with the assistance of the automated reasoning program Otter (McCune [9]). The extensive role of automated reasoning in the present research is discussed in Section 4.

Received November 20, 2001; accepted October 10, 2002; printed December 19, 2003 2001 Mathematics Subject Classification: Primary, 03B45; Secondary, 68T15
Keywords: axiomatization, single axiom, automated reasoning, implication, modal logic
(c)2003 University of Notre Dame

2 Axiomatic C4

We begin with appropriate background to place the question we answer in perspective.
2.1 A brief history of axiomatic C4 The axiomatization of $\mathbf{C 4}$ has an interesting history. As far as we can tell, the first time an axiomatization for $\mathbf{C 4}$ appeared explicitly in print was in Anderson and Belnap's 1962 paper [1]. Anderson and Belnap report the following 3-axiom basis for $\mathbf{C 4}$ which we adopt as our reference $\mathbf{C 4}$ axiomatization (the condensed detachment rule, as always, is presupposed to be the sole rule of inference of the systems).

$$
\begin{gather*}
C p p \\
C C p q C r C p q \tag{1}\\
C C p C q r C C p q C p r
\end{gather*}
$$

Anderson and Belnap credit Kripke's 1959 discussion Kripke [7] with providing the original insight on how to axiomatize C4. According to Curry [3] and Hacking [5], however, similar work was concurrently being done independently across the Atlantic by Hacking and Smiley. The work of Hacking and Smiley [5] was not published until 1963, but their work on C4 was available in mimeograph form several years before this [3].

Other 3-axiom bases were later discovered for $\mathbf{C 4}$ (see [14, Appendix I]), each containing 25 symbols (total) and 11 occurrences of the implication connective C. But as far as we know, no 2-axiom bases for $\mathbf{C 4}$ were ever reported in the literature. Moreover, no single axiom for $\mathbf{C 4}$ had been discovered; indeed, this is stated as an open problem in Anderson and Belnap [2, p. 83]. Ulrich [16] has shown that C4 is also the strict implicational fragment of each modal logic between $\mathbf{S 4}$ and $\mathbf{S 4 . 3}$; hence, our bases are new and shortest bases for the strict implicational fragments of these extensions of $\mathbf{S 4}$ as well.
2.2 Shortest axiomatizations of C4 Using a variety of automated reasoning strategies (see Section 4 for more on these strategies), we have discovered many new 2-axiom bases for $\mathbf{C 4}$. The shortest of these include the following 2-basis, which contains only 20 symbols and 9 occurrences of C.

$$
\begin{gather*}
C p C q q \\
C C p C q r C C p q C s C p r \tag{2}
\end{gather*}
$$

So far, we have found six such 2-bases, and we know that there exist at most eight. In fact, we suspect that there exist exactly six. We have eliminated all other 2-bases of this complexity except for the following two candidates, whose status remains open: $\{C p C q C r r, C C p q C C q C q r C p r\}$ and $\{C p C q q, C C p q C r C C q C q s C p s\}$. We suspect these are not bases for $\mathbf{C 4}$. ${ }^{2}$

Moreover, we have been able to show that these are the shortest possible bases for $\mathbf{C 4}$. That is, no other basis for $\mathbf{C 4}$ (with any number of axioms) contains fewer symbols (or occurrences of C) than the cited 2-basis. The proof of this result (omitted because of space limitations), which proceeds by exhaustive search of all other possible candidate bases, requires the use of only 20 distinct logical matrices of size ≤ 4. In Section 4, we say a bit more about how this exhaustive search was conducted and how the matrices and bases were discovered.

Our automated reasoning strategies also yielded the following new 21-symbol (10-C) single axiom for $\mathbf{C 4}$:
CCpCCqCrrCpsCCstCuCpt

As noted earlier, the question of the existence of a single axiom for $\mathbf{C 4}$ had been a long-standing open question in the axiomatics of modal logic [2, p. 83]. We have ruled out all shorter single axiom candidates (see Section 4 for more on the strategies used to eliminate and discover single-axiom candidates). Therefore, (3) is a shortest possible single axiom for $\mathbf{C 4}$. In fact, (3) is the shortest $\mathbf{C 4}$ single axiom (all other 21 -symbol candidates have been eliminated).

Proof With a circle of three deductions, we now establish that each of (2) and (3) is necessary and sufficient for (1). It follows that both (2) and (3) are bases for C4. First, we prove (1) \Rightarrow (3):

	1.	Cpp
	2.	CCpqCrCpq
	3.	CCpCqrCCpqCpr
$D .3 .3$	4.	CCCpCqrCpqCCpCqrCpr
$D .2 .3$	5.	CpCCqCrsCCqrCqs
$D .3 .5$	6.	CCpCqCrsCpCCqrCqs
$D .6 .2$	7.	CCpqCCrpCrq
$D .3 .7$	8.	$C C C p q C r p C C p q C r q$
$D .7 .2$	9.	$C C p C q r C p C s C q r$
$D .7 .8$	10.	$C C p C C q r C s q C p C C q r C s r$
$D .7 .9$	11.	$C C p C q C r s C p C q C t C r s$
$D .9 .2$	12.	$C C p q C r C s C p q$
$D .12 .1$	13.	$C p C q C r r$
$D .9 .13$	14.	$C p C q C r C s s$
$D .4 .13$	15.	$C C p C C q q r C p r$
$D .4 .14$	16.	$C C p C C q C r r s C p s$
$D .6 .16$	17.	$C C p C C q C r r C s t C C p s C p t$
$D .15 .17$	18.	$C C p C C q C r r C p s C p s$
$D .9 .18$	19.	$C C p C C q C r r C p s C t C p s$
$D .10 .19$	20.	$C C p C C q C r r C p s C C s t C p t$
$D .11 .20$	21.	$C C p C C q C r r C p s C C s t C u C p t^{*}$

Next, we prove that $(3) \Rightarrow(2)$:

1. CCpCCqCrrCpsCCstCuCpt
D.1.1
D.2.1
D.3.3
D.1.3
D.5.1
D.6.6
D.4.6
D.1.6
D.1.8
2. CCCpCqqrCsCCpCCtCuиCpvr
3. CpCCqCCrCssCqtCCCuuvCwCqv
4. CCpCCqCrrCpsCCCttuCvCpu
5. CCCpCqrsCtCCCuurs
6. CpCCCqqCrsCCstCuCrt
7. CCCppCqrCCrsCtCqs
8. CCCppqCrCCstq
9. CCCpCqrsCtCCqrs
10. $C C p q C r C C C s s p q$

D.9.7	11.	CpCCqrCCrsCtCqs
$D .7 .10$	12.	CCCCCppqqrCsCtr
$D .7 .11$	13.	CCCCpqCrCsqtCuCCspt
$D .1 .12$	14.	CCpqCrCCCCCssttpq
$D .12 .14$	15.	CpCqCrCCCCCssttCCuuvv
$D .15 .15$	16.	CpCqCCCCCrrssCCttuu
$D .16 .16$	17.	CpCCCCCqqrrCCsstt
$D .17 .17$	18.	CCCCCppqqCCrrss
$D .13 .18$	19.	CpCCqCCrrsCqs
$D .18 .12$	20.	CpCqq*
$D .19 .19$	21.	CCpCCqqrCpr
$D .21 .13$	22.	CCCCpqCrCsqtCCspt
$D .21 .1$	23.	CCpCCqCrrCpsCtCps
$D .22 .21$	24.	CCpqCCqrCpr
$D .24 .24$	25.	CCCCpqCrqsCCrps
$D .25 .25$	26.	CCpCqrCCsqCpCsr
$D .24 .26$	27.	CCCCpqCrCpstCCrCqst
$D .27 .21$	28.	CCCppCqrCCsqCsr
$D .25 .28$	29.	CCpqCCrpCrq
$D .28 .7$	30.	CCpCqrCpCsCqr
$D .24 .30$	31.	CCCpCqCrstCCpCrst
$D .31 .23$	32.	CCpCpqCrCpq
$D .29 .32$	33.	CCpCqCqrCpCsCqr
$D .27 .33$	34.	CCpCqrCCpqCsCpr

Finally, we prove that $(2) \Rightarrow(1)$, which completes the circle:

$D .1 .1$	3.	Cpp*
$D .2 .2$	4.	CCCpCqrCpqCsCCpCqrCtCpr
$D .2 .1$	5.	CCpqCrCpq*
$D .4 .1$	6.	CpCCqCqrCsCqr
$D .6 .6$	7.	CCpCpqCrCpq
$D .7 .7$	8.	CpCCqCqrCqr
$D .2 .8$	9.	CCpCqCqrCsCpCqr
$D .9 .2$	10.	CpCCqCrsCCqrCqs
$D .10 .10$	11.	$C C p C q r C C p q C p r *$

This circle of proofs $(1) \Rightarrow(3) \Rightarrow(2) \Rightarrow(1)$ has the additional property of being pure-in the sense of Wos [19] and [20]. That is, (i) the proof of (1) \Rightarrow (3) does not make use of (2), (ii) the proof of (3) \Rightarrow (2) does not make use of (1), and (iii) the proof of $(2) \Rightarrow(1)$ does not make use of (3). We believe this circle of pure proofs provides an especially elegant demonstration that (2) and (3) are bases of C4.

3 Axiomatic C5

We begin with appropriate background to place our study of $\mathbf{C 5}$ in perspective.
3.1 A brief history of axiomatic C5 The problem of axiomatizing the implicational fragment of $\mathbf{S 5}$ was solved in 1956 by Lemmon, Meredith, Meredith, Prior, and Thomas. In their seminal paper, Lemmon et al. [8] report several bases for C5, including 4-, 3-, 2-, and 1 -axiom bases. We adopt the following 3 -axiom basis from [8] as our reference axiomatization of $\mathbf{C 5}$. (We note that (4) is basis (ii) from Lemmon et al. [8, p. 227]. This basis is C. Meredith's simplification of Lemmon's original 4-axiom basis for C5; see Meredith and Prior [11].)

$$
\begin{gather*}
C q C p p \\
C C p q C C q r C p r \tag{4}\\
C C C C p q r C p q C p q
\end{gather*}
$$

Since the late 1950s, the shortest known bases for $\mathbf{C 5}$ have been the 2-axiom bases (v) and (vi) of Lemmon et al. [8, p. 227]. These bases contain 20 symbols (including 9 occurrences of C). Meredith was able to find the following 21-symbol (10-C) single axiom for C5; and until now Meredith and Prior's work [11] seems to have been the last word on this matter.
CCCCCppqrCstCCtqCsCsq

Especially in view of that success, it is interesting to note that—as far as we knowMeredith failed to find a single axiom for $\mathbf{C 4}$. This is indeed surprising because Meredith was responsible for finding (shortest) single axioms for almost every system (that has one) that he studied. We sometimes wonder whether the 21-symbol $\mathbf{C 4}$ single axiom we reported earlier had been previously discovered (but never published) by Meredith.
3.2 Shortest axiomatizations of C5 Applying our automated reasoning strategies to $\mathbf{C 5}$ (see Section 4), we have discovered several new (and shortest) 2-axiom bases for $\mathbf{C 5}$, including the following 18 -symbol, $8-C$ basis.

$$
\begin{gather*}
C p p \\
\text { CCpqCCCCqrsrCpr } \tag{6}
\end{gather*}
$$

By examining all other possible shorter bases (with any number of axioms), we have established that (6) is a shortest possible basis for C5. Furthermore, we have ruled out all other 2-bases of this complexity. Therefore, (6) is the shortest basis for C5. A corollary of this result (coupled with the appropriate exhaustive search) asserts that there exists no single axiom for C5 shorter than Meredith's (5). We have, however, discovered the following six other single axioms of length 21 :

$$
\begin{align*}
& \text { CCCCpqrCCuuqCCqtCsCpt } \tag{7a}\\
& \text { CCCCpqrCCuuqCtCCqsCps } \tag{7b}\\
& \text { CCCCpqrCCuutCsCCqtCpt } \tag{7c}\\
& \text { CCCCCppqrCuqCCqtCsCut } \tag{7d}\\
& \text { CCCCCppqrCuqCCtuCsCtq } \tag{7e}\\
& \text { CCCCCppCqrurCCrtCsCqt } \tag{7f}
\end{align*}
$$

Of these six single axioms, we note that (7d) and (7e) are in the same resonator class as Meredith's previously-known single axiom (5). This means that they differ only with respect to which variables occur in each position; they are identical in each
position containing a connective. But in spite of the fact that these three formulas are in the same resonator class, they are not trivial alphabetic variants of each other. We also note that (7 d) and (7e) are members of the same resonator class, but are not trivial alphabetic variants.

Because of space constraints, we shall not give proofs that each of these six formulas are single axioms for $\mathbf{C 5}$. Instead, we shall present a circle of three pure proofs (this time using (4) as our reference basis) that together establish that (6) and (7a) are each bases for $\mathbf{C 5}$ (and, of course, that their members are each tautologies). First, we prove that $(6) \Rightarrow(4)$:

Proof

D.1.1	3. CCCCCCCCpqrqCuqtstCCupt
D.1.2	4. $C C C C p q r q C p q$
D.3.3	5. CCpCqrCCuqCpCur
D.5.2	6. $\mathrm{CCpqCCqrCpr}{ }^{*}$
D.5.1	7. CCpCCCqrsrCCtqCpCtr
D.6.6	8. ССССрqСrquССгри
D.6.8	9. CCCCpqrsCCCCqtCptrs
D.8.4	10. $\mathrm{CCp}^{\text {cq }} \mathrm{Cpr} \mathrm{CqCpr}$
D.7.9	11. CCpCqrCCCCuqtCurCpCur
D.6.10	12. CCCpCqrsCCqCpCqrs
D. 12.7	13. CCCCpqrCuCCCpqrqCCtpCuCtq
D.4.13	14. CCpqCCrpCuCrq
D.14.2	15. $C C p q C r C p q$
D.15.2	16. $C p C q q^{*}$
D.11.16	17. CCCCpqrCpqCuCpq
D.6.17	18. CCCpCqrsCCCCqrtCqrs
D. 17.18	19. CpCCCCqrsCqrCqr
D. 19.19	20. CCCCpqrCpqCpq*

Next, we show that $(4) \Rightarrow(7 a)$.

1. $C C p q C C q r C p r$
2. CCCCpqrCpqCpq
3. $C p C q q$
D.1.1
D.1.3
D.4.4
D.4.2
D.6.4
D.6.3
D.4.7
D.1.9
D.11.10
D.6.12
D.1.5
4. ССССpqCrquCCrpu
5. CCCppqCrq
6. CCpCqrCCuqCpCur
7. $C \subset p C p q C p q$
8. CCpCqrCCCCrsCqstCpt
9. $C C p q C r C p q$
10. CCCpqpCCpqq
11. CCCpCqrsCCqrs
12. CCpqCCCpqrr
13. CCpCCqrsCCqrCps
14. CCCpqrCCCuuqr

D.11.13	15.	CCCpqrCCpqCur
D.1.13	16.	CCCCpqCrstCCrCCpqst
$D .16 .2$	17.	CCpCCCPqrqCpq
$D .14 .17$	18.	CCCppCCCqrsrCqr
$D .16 .18$	19.	CCCCpqrCCuuqCpq
$D .8 .19$	20.	CCCCpqCrquCCCCrptCCsspu
$D .20 .15$	21.	CCCCpqrCCuuqCCqtCsCpt*

Finally, we complete the circle by showing that $(7 a) \Rightarrow(6)$.

1. CCCCpqrCCuuqCCqtCsCpt
D.1.1 2. CCCpCqrsCtCCqru
D.2.1 3. CpCCCqqrCCrsCtCus
D.3.3 4. CCCppqCCqrCuCtr
D.1.3 5. CCCCCppqCrCuqtCsCt $6 t$
D.2.4 6. CpCCqrCCCqrsCtCsu
D.1.5 7. СССрCqrsCtСССиити
D.4.6 8. CCCCpqCCCpqrCuCtrsCt6Ct7s
D.1.7 9. CССССррqqтСиСtr
D.1.8 10. CCCCCpqrCuCtrsCt6CCpqs
D.1.9 11. CCCpqrCuCCCttCpqr
D.1.10 12. CСССрqCrstCuСССрqst
D.9.11 13. CpCqCrCCCuиCCttss
D.12.1 14. CpCCCCqrsrCCrtCuCqt
D.13.13 15. CpCqCCCrrCCsstt
D.14.14 16. ССССрqrqССquСtСри
D.15.15 17. CpCCCqqCCrrss
D.16.16 18. CCCCpqCrCuqtCsCCupt
D.17.17 19. СССррССqqr
D.1.18 20. CCCCpqCprsCtCCqrs
D.19.19 21. Cpp*
D.19.20 22. CCpqCCrpCrq
D.9.22 23. CpCqCCrCCsstCrt
D.19.23 24. CCpCCqqrCpr
D.22.24 25. CCpCqCCrrsCpCqs
D.25.16 26. ССССрqгqССqиСри
D.26.26 27. ССССрqСrquССгри
D.24.26 28. CCCCpqrqCpq
D.27.27 29. CCpCqrCCuqCpCur
D.29.28 30. CCpqCCCCqrsrCpr*

4 The Role of Automated Reasoning in Our Research

Throughout our investigations into axiomatic $\mathbf{C 4}$ and C5, automated reasoning strategies played a crucial role. In particular, we relied heavily on McCune's automated reasoning program OTter [9], Zhang and Zhang's model finder SEM [24], and Slaney's model finder MAGIC [15]. Here we outline the approach used to obtain these results and briefly discuss some of the automated reasoning strategies.
(1) First, we wrote computer programs to generate a large list of candidate formulas that were to be tested as axioms. For most of the research, it was practical to generate an exhaustive list of all formulas with as many as twenty-one symbols.
(2) All the formulas in the list were tested (by using matrices) to see which were likely to be tautologies in the system in question. Nontautologies were eliminated from the list of candidate formulas. We used finite matrices rather than decision procedures or semantic arguments because testing for validity on small matrices is very efficient, and those formulas that survived the filters could be subjected to more conclusive tests later in the search.
(3) We immediately eliminated large numbers of formulas by applying known results about axiomatizations in the various systems. For example, as reported by Lemmon et al. [8], every axiomatization for $\mathbf{C 5}$ must contain a formula with $C p p$ as a (possibly improper) subformula. Another useful result is the Diamond-McKinsey theorem that no Boolean algebra can be axiomatized by formulas containing fewer than three distinct propositional letters [2, p. 83].
(4) An arbitrary set of formulas was selected from the list. Using either SEM or a program we ourselves wrote, we found a matrix model that respects modus ponens, invalidates a known axiom basis for the system, but validates the formulas selected from the list. Such a model suffices to show that the formulas are not single axioms for the system.
(5) All the remaining formulas in the list were tested against that matrix. Every formula validated by that matrix was eliminated.
(6) Steps (4) and (5) were repeated until the list of candidate formulas was reduced to a small number, or eliminated entirely.
(7) Finally, we used Оtter to attempt to prove a known axiom basis from each of the remaining candidates. Following the standard approach in automated reasoning, we sought in each case a proof by contradiction and, therefore, assumed the conclusion to be false. By choosing the appropriate list from among those offered by McCune's program, the so-called denial of the conclusion was used only to detect proof completion; any proof that was discovered relied solely on reasoning forward. Regarding strategy to direct the program's reasoning, we used the resonance strategy, which enables the researcher to provide patterns (formulas or equations) that are treated as attractive because of their functional shape (ignoring their variables) (Wos [18]). For the same purpose, we used Veroff's hints strategy in which the researcher provides attractive patterns, patterns that are keyed upon themselves and also on patterns that subsume or are subsumed by them (Veroff [17]). We restricted the program's reasoning by placing bounds on the complexity of retained conclusions and on the number of distinct letters occurring in such. Purity (of the circles of proofs) was achieved by instructing the program to immediately discard an unwanted specific deduction. With various methodologies based on offered strategies that included the cramming strategy, we also sought proofs of minimal length. With cramming, one instructs the program to rely heavily on chosen steps of a proof with the objective of cramming most or all of them into another proof of interest (Wos [21]).

Obvious changes were made when we searched for axiom bases with more than a single formula. For example, in contrast to the study of a possible single axiom
where its denial was placed in what is called the passive list, the study of a possible basis with more than one member caused us to place its denial in a list called usable. For a second example, when we sought a proof for a basis other than a single axiom, we sometimes used (through the cramming strategy) the proof of one its members to aid us in completing the proof for the entire basis.

Upon implementing the given procedure, we were surprised to discover that even a small number of simple matrix models can eliminate a very large proportion of candidate formulas. For example, by using ten (and possibly fewer) matrices, none of which have more than five elements, one can show that no formula with nineteen symbols is a single axiom for C5. Because of the efficiency of this procedure, we were able to complete all of our searches using a PC and occasionally a Linux workstation.

We believe that this approach for finding axiom bases in Hilbert-style systems could be used for a wide variety of logics, with equal success. For instance, we have used this approach to discover the shortest known basis for the implicational fragment of the logic RM (first axiomatized by Meyer and Parks [12], Parks [13], Ernst et al. [4]). And McCune, Veroff, and Padmanabhan [10] have successfully used a similar approach to find short single axioms in lattice theory.

Currently, however, an exhaustive search such as the one used in the present study is prohibitively time consuming when applied to logics with a more complete vocabulary of sentential connectives. The reason rests with the fact that the addition of new connectives causes the number of candidate axiomatizations to increase exponentially. Moreover, when additional connectives are added to the language, the matrices and proofs tend to be larger and more complex. Currently, it is difficult, and sometimes impossible, to discover large matrices for many such problems. Significantly, however, methodologies now exist for using McCune's program to discover extremely complex and difficult proofs. For example, Otter has yielded proofs consisting of 200 applications of condensed detachment for theorems of significant depth. (See Wos and Pieper [23] and [22] for information on the solution of challenge problems using OtTER, as well as for open questions.) We believe that further results regarding axiomatizations for more complex logics await future advances in automated reasoning.

Notes

1. See, for instance, Lemmon [8], Kripke [7], Anderson and Belnap [1], Hacking [5], and Meredith and Prior [11].
2. An anonymous referee for this journal points out that this problem can be translated into a problem in combinatory logic because the formulas " CpCqCrr and CCpqCqCqrCpr correspond to the combinators $B B K^{\prime}$ and $B B B^{\prime} W B^{\prime}$, respectively, and the question is whether these suffice to define $K^{\prime}, B B B^{\prime} K^{\prime} B^{\prime}$, and $S . "$

References

[1] Anderson, A. R., and N. D. Belnap, "The pure calculus of entailment," The Journal of Symbolic Logic, vol. 27 (1962), pp. 19-52. Zbl 0113.00403. MR 27:4739. 170, 177
[2] Anderson, A. R., and N. D. Belnap, Entailment. Volume I. The Logic of Relevance and Necessity, Princeton University Press, Princeton, 1975. Zbl 0323.02030. MR 53:10542. 170, 171, 176
[3] Curry, H. B., "Review of Hacking's 'What is strict implication?'," 1963. MR 31:4717. 170
[4] Ernst, Z., B. Fitelson, K. Harris, and L. Wos, "A concise axiomatization of $R M \rightarrow$," University of Łódz. Department of Logic. Bulletin of the Section of Logic, vol. 30 (2001), pp. 191-94. MR 1885413. 177
[5] Hacking, I., "What is strict implication?" The Journal of Symbolic Logic, vol. 28 (1963), pp. 51-71. Zbl 0132.24503. MR 31:4717. 170, 177
[6] Kalman, J. A., "Condensed detachment as a rule of inference," Studia Logica, vol. 42 (1983), pp. 443-51 (1984). Zbl 0568.03010. MR 86g:03016. 169
[7] Kripke, S., "The problem of entailment," The Journal of Symbolic Logic, vol. 24 (1959), p. 324. 170, 177
[8] Lemmon, E. J., C. A. Meredith, D. Meredith, A. N. Prior, and I. Thomas, Calculi of Pure Strict Implication, Canterbury University College, Christchurch, 1957. MR 19,626f. 173, 176, 177
[9] McCune, W., "Otter 3.0 Reference Manual and Guide," Technical Report ANL-94/6, Argonne National Laboratory, Argonne, IL, 1994. 169, 175
[10] McCune, W., R. Veroff, and R. Padmanabhan, "Yet another single law for lattices," forthcoming in Algebra Universalis.
[11] Meredith, C. A., and A. N. Prior, "Investigations into implicational S5," Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 10 (1964), pp. 203-20. Zbl 0146.00803. MR 29:1142. 173, 177
[12] Meyer, R. K., and R. Z. Parks, "Independent axioms for the implicational fragment of Sobocinski’s three-valued logic," Zeitschrift für mathematische Logik Grundlagen Mathematik, vol. 18 (1972), pp. 291-95. Zbl 0261.02011. MR 50:9530. 177
[13] Parks, R. Z., "A note on R-Mingle and Sobociński’s three-valued logic," Notre Dame Journal of Formal Logic, vol. 13 (1972), pp. 227-28. Zbl 0234.02010. MR 45:4949. 177
[14] Prior, A. N., Formal Logic, Clarendon Press, Oxford, 1962. Zbl 0124.00205. MR 24:A1815. 169, 170
[15] Slaney, J., "MaGIC: Matrix Generator for Implication Connectives," Technical Report TR-ARP-11-95, Research School of Information Science and Engineer and Centre for Information Science Research, Australian National University, 1995.
[16] Ulrich, D., "Strict implication in a sequence of extensions of $\mathbf{S 4}$," Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 27 (1981), pp. 201-12. MR 82h:03017. 170
[17] Veroff, R., "Using hints to increase the effectiveness of an automated reasoning program: Case studies," Journal of Automated Reasoning, vol. 16 (1996), pp. 223-39. Zbl 0857.68095. MR 97d:68202. 176
[18] Wos, L., "The resonance strategy," Computers \& Mathematics with Applications. An International Journal, vol. 29 (1995), pp. 133-78. Zbl 0815.68090. MR 95m:68155. 176
[19] Wos, L., "Searching for circles of pure proofs," Journal of Automated Reasoning, vol. 15 (1995), pp. 279-315. Zbl 0838.68101. MR 96g:03019.
[20] Wos, L., "Otter and the Moufang identity problem," Journal of Automated Reasoning, vol. 17 (1996), pp. 215-57. Zbl 0855.68088. MR 97i:68177. 172
[21] Wos, L., "The strategy of cramming," preprint ANL/MCS-P898-0801, Argonne National Laboratory, Argonne, 2001. 176
[22] Wos, L., and G. W. Pieper, A Fascinating Country in the World of Computing: Your Guide to Automated Reasoning, World Scientific Publishing Company, 2000.
[23] Wos, L., and G. W. Pieper, Automated Reasoning and the Discovery of Missing and Elegant Proofs, Rinton Press, forthcoming. 177
[24] Zhang, J., and H. Zhang, "SEM: A System for Enumerating Models," Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95), (1995), pp. 298-303. 175

Acknowledgments

We thank Michael Byrd and Dov Ulrich for extremely helpful discussions. We would also like to thank an anonymous referee of this journal for helpful comments. This work was supported in part by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

Department of Philosophy Florida State University
151 Dodd Hall
Tallahassee FL 32306-1500
zernst@fsu.edu
Department of Philosophy
University of California-Berkeley
314 Moses Hall \#2390
Berkeley CA 94720-2390
branden@fitelson.org
http://www.fitelson.org
Mathematics and Computer Science Division
Argonne National Laboratory
9700 Cass Ave
Argonne IL 60439
harris@mcs.anl.gov
Mathematics and Computer Science Division
Argonne National Laboratory
9700 Cass Ave
Argonne IL 60439
wos@mcs.anl.gov

