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Some Criteria for Acceptable Abstraction

Øystein Linnebo

Abstract Which abstraction principles are acceptable? A variety of criteria
have been proposed, in particular irenicity, stability, conservativeness, and un-
boundedness. This note charts their logical relations. This answers some open
questions and corrects some old answers.

1 Introduction

An abstraction principle is a principle of the form

§α = §β ↔ α ∼ β (6)

where the variables α and β range over entities of some sort, and where ∼ is an
equivalence relation on this sort of entity. Frege’s inconsistent Basic Law V shows
that not every such principle is acceptable. A variety of criteria for acceptable ab-
straction have been proposed.1

This note charts the logical relations between some of the proposed criteria. I an-
swer some technical questions thrown open by the discovery of errors in the proofs
and claims of the most systematic study of these issues to date, namely, the de-
servedly influential [12]. My results are summarized by the following strict implica-
tions.

irenic ⇒ conservative
⇓ ⇓

stable ⇒ unbounded

Restricted to the important class of “purely logical” abstraction principles (Defini-
tion 2.7), the vertical dimension of the previous diagram is collapsed to yield two
equivalences and one strict implication.

irenic ⇔ stable ⇒ conservative ⇔ unbounded
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Throughout the note, I proceed model-theoretically and work against the background
of standard ZFC set theory.2 No attempt is made to assess the philosophical plausi-
bility of the suggested criteria.3

2 Conservativeness and Unboundedness

The criterion of conservativeness is based on a fairly intuitive idea, namely, that an
abstraction principle 6 is acceptable just in case it can be added to any theory without
disturbing this theory’s claims about the objects with which it is concerned. That is,
adding 6 to a theory T may give us additional information about ‘new’ objects with
which 6 is concerned, but not about the ‘old’ objects with which T is concerned.

The standard way of making this intuitive idea precise is as follows. Let T be a
theory in some base language L that does not contain the abstraction operator §. Let
L+ be the language that results from adding to L the operator §. Define the predicate
‘old(x)’ as ¬∃α(x = §α). Let ϕold be the result of restricting all the quantifiers in ϕ
to ‘old’ objects, and let T old be the result of replacing every axiom ϕ of T with ϕold.

Definition 2.1 (Conservativeness) An abstraction principle 6 is conservative over
an L-theory T if and only if for any L-formula ϕ we have

if T old
∪ {6} |H ϕold, then T |H ϕ.

6 is conservative if and only if it is conservative over any L-theory T provided L
does not contain the operator §.4

Note that we are concerned with model-theoretic rather than proof-theoretic conser-
vativeness. Note also that the only restriction on the base theory T is that its language
must not contain the operator §. (Henceforth, this restriction will be left implicit.)
It would be inappropriate to impose any other restrictions on the base theory. For
the intuitive idea which motivates the criterion of conservativeness is that, whatever
theory T scientists might come to formulate, adding an abstraction principle should
not disturb the claims about the objects with which T is concerned. To impose any
further restrictions would be to go beyond abstractionism’s remit and prejudge what
theories it might be legitimate for scientists to use.

Another criterion that has been discussed is unboundedness, which we define as
follows.

Definition 2.2 (Unboundedness) An abstraction principle 6 is κ-satisfiable if and
only if 6 is satisfiable in a domain of cardinality κ . 6 is unbounded if and only if 6
is κ-satisfiable for an unbounded sequence of cardinals κ .

Theorem 4.2 of [12] asserts that any abstraction principle that is “unbounded” is con-
servative. However, the following example shows Weir’s assertion to be incorrect,
given his (and our) official definitions.5

Example 2.3 Let 6 be the abstraction principle,

§F = §G ↔ ¬∃x Px ∨ ∀u(Fu ↔ Gu),

where F and G are monadic second-order variables and P is an atomic predicate
of the base language L. 6 is unbounded because it is satisfiable in any domain by
interpreting P as not applying to any object in the domain. However, 6 is noncon-
servative over the theory T whose sole axiom is ∃x Px . For on the one hand we have
T old

∪ {6} |H ⊥ (because T old ensures that the domain contains a P , which turns 6
into Frege’s inconsistent Basic Law V). But on the other hand we have T 6|H ⊥.
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What went wrong? The problem is that the notion of conservativeness requires
that the vocabulary of the base language L retain its meaning on the ‘old’ domain,
whereas the notion of unboundedness is defined in terms of satisfiability and thus
allows this vocabulary to be reinterpreted. Any notion of unboundedness capable
of implying conservativeness must ensure that the vocabulary of the base language
retains its meaning on the ‘old’ domain. This suggests to the following definition.

Definition 2.4 (Uniform unboundedness) An abstraction principle 6 is uniformly
unbounded if and only if for any model M of any base language L there is a model
N of the extended language L+ such that

(i) N is an extension of M whose ‘old’ objects are precisely the objects of M ,
(ii) N satisfies 6.

Lemma 2.5 Any uniformly unbounded abstraction principle is unbounded. But the
converse does not hold.

Proof The first claim is straightforward. The second claim follows from Exam-
ple 2.3. �

Theorem 2.6 An abstraction principle is conservative if and only if it is uniformly
unbounded.

Proof Assume 6 is uniformly unbounded. Assume that T 6|H ϕ for some L-
formula ϕ. Then there is a model M such that M |H T ∪ {¬ϕ}. By the first assump-
tion, M can be extended to a model N of 6 whose ‘old’ objects are precisely the
objects of M . It follows that N |H T old

∪{6, ¬ϕold
}. This shows T old

∪{6} 6|H ϕold.
Since L, T , and ϕ were arbitrary, it follows that 6 is conservative.

Assume next that 6 is conservative. Let M be a model of some base language L.
Let LM be the enriched base language that adds to L a distinct constant for every
element of M . (LM may thus be an uncountable language, as is commonplace in
model theory.) Let the LM -theory T consist of the diagram of M (that is, the set
of all atomic sentences and negated atomic sentences in LM which are true in M).
Since T contains no quantifiers, we have T old

= T . Assume T ∪ {6} has no model.
Then T old

∪ {6} |H ⊥, whence by 6’s conservativeness, T |H ⊥, which contradicts
M |H T . So let N be a model of T ∪{6}. Then N can be assumed to be an extension
of M whose ‘old’ objects are precisely the objects of M . Viewed as an L- (rather
than LM -) model, N then shows 6 to be uniformly unbounded.6 �

Although generalized languages such as LM are mathematically acceptable, it may
be objected that the present use of such languages is philosophically problematic be-
cause the criterion of conservativeness was formulated with ordinary languages in
mind, not generalized languages. But the objection is unconvincing. The conserva-
tiveness of an abstraction principle 6 is supposed to ensure that 6 can be added to
any base theory T whatsoever without disturbing this theory’s claims about the ob-
jects with which it is concerned. So it would be inappropriate to impose any restric-
tions on the base theory T (other than that its language not contain the operator §).
Indeed, the question of whether there could be beings capable of grasping an infini-
tary base theory of the sort invoked above is not for pure mathematics to answer. So a
philosophical account of pure mathematics must not be made to depend on a negative
answer to this question. Moreover, when we chose to study model-theoretic rather
than proof-theoretic conservativeness of higher-order theories, we already gave up
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on any requirement of a close link with actual (or even mildly idealized) human ca-
pacities. We are in general no more able to assess questions of higher-order semantic
consequence than we are to master a generalized language.7 However, it is an inter-
esting technical question—to which I don’t know the answer—whether Theorem 2.6
can be proved without going beyond an ordinary second-order language.

I next define another assumption and show that its addition enables us to prove a
partial converse of the result of Lemma 2.5.

Definition 2.7 (Purely logical) An abstraction principle 6 is purely logical if and
only if it contains no nonlogical vocabulary except the operator §.

Theorem 2.8 Any unbounded and purely logical abstraction principle is uniformly
unbounded.

Proof Let 6 be an unbounded and purely logical abstraction principle, and let M
be a model of some base language L. Since 6 is unbounded, it is satisfiable in a
model N of cardinality larger than that of M . Since 6 is purely logical, it has no
nonlogical vocabulary in common with L. (Recall that L has been assumed not to
contain the operator §.) This ensures that N can be taken to be an extension of M
whose ‘old’ objects are precisely those of M . �

Corollary 2.9 Let 6 be a purely logical abstraction principle. Then 6 is conser-
vative if and only if it is unbounded if and only if it is uniformly unbounded.

Proof Immediate from Lemma 2.5 and Theorems 2.6 and 2.8. �

It should be noted that the restriction to purely logical abstraction principles is far
from trivial. Frege’s famous direction abstraction principle—which says that the di-
rections of two lines l1 and l2 are identical if and only if l1 and l2 are parallel—is
nonlogical, as are some of the abstraction principles relied on in the standard abstrac-
tionist approaches to the real numbers [4] and [10].8

3 Irenicity and Stability

Unfortunately, a conservative abstraction principle need not be acceptable, as a the-
orem of Weir’s shows ([12], Theorem 4.3).

Theorem 3.1 (Weir) There are pairs of purely logical abstraction principles each
of which is conservative but which are not jointly satisfiable.

A key ingredient of the proof of Theorem 3.1 is the following, well-known theorem.

Theorem 3.2 (Folklore) In the language of pure second-order logic we can char-
acterize various cardinality properties of a concept X, such as being of size ℵn for
some natural number n, being of continuum size, being of limit-cardinal size, being
of successor-cardinal size, and being of inaccessible size.

Proof See, for instance, [9], pp. 104–5. �

Proof of Theorem 3.1 Consider the following restricted version of Frege’s Basic
Law V:

εF = εG ↔ (Bad(F) ∧ Bad(G)) ∨ ∀x(Fx ↔ Gx) (RV)
where Bad(F) is some L-formula. By Theorem 3.2 we can let Bad1(F) and
Bad2(F) express that the universal concept—that is, the concept U such that
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∀x U x—is, respectively, of successor-cardinal size and limit-cardinal size. The
resulting versions of (RV) are easily seen to be satisfiable in all and only domains
of, respectively, successor-cardinal size and limit-cardinal size. So the two prin-
ciples are not jointly satisfiable. But each is unbounded and thus conservative by
Corollary 2.9. �

The next definition is a natural response to the problem posed by Theorem 3.1.

Definition 3.3 (Stability) An abstraction 6 is stable if and only if there is a cardinal
κ such that 6 is λ-satisfiable for all cardinals λ ≥ κ . 6 is strongly stable if and only
if there is a cardinal κ such that 6 is λ-satisfiable just in case λ ≥ κ .

Lemma 3.4 Strong stability implies stability, which implies unboundedness. But
neither converse holds.

Proof The implications are trivial. To establish that stability doesn’t imply strong
stability, consider the version of (RV) where the condition Bad(F) is defined so as
to be true in domains of cardinality ℵ0 and ≥ ℵω but not in a domain of any other
cardinality. To establish that unboundedness doesn’t imply stability, we define the
condition Bad(F) so as to be true just in domains whose size is a limit-cardinal.
Both conditions can be expressed by Theorem 3.2. �

Theorem 6.1 of [12] asserts that stability is equivalent to another criterion that has
been proposed, namely, irenicity.

Definition 3.5 (Irenicity) An abstraction 6 is irenic if and only if it is conservative
and jointly satisfiable with any other conservative abstraction principle.

However, Weir’s proof is flawed for two independent reasons. A minor flaw is
brought out by Example 2.3, which shows that an abstraction principle can be
strongly stable without being conservative and thus a fortiori without being irenic.
Corollary 2.9 suggests that this problem can be avoided by adding the assumption
that 6 is purely logical, as will be confirmed below.9 But even with this added
assumption, an observation due to Shapiro shows the proof to contain a second and
more important flaw, namely, a failure to distinguish properly between stability and
strong stability [8]. All Weir’s proof establishes is that (assuming pure logicality)
strong stability entails irenicity, which in turn entails stability. The proof thus leaves
open the question whether any of the converses hold. This will now be investigated.

Lemma 3.6 Let 6 be an abstraction principle that is not stable. Then there is a
conservative and purely logical abstraction principle 0 that is not jointly satisfiable
with 6.

Proof By Corollary 2.9 it suffices to find a purely logical abstraction principle 0
that is satisfiable at precisely those cardinalities where 6 is not satisfiable. I claim
that it is possible to formulate a condition Bad(F) which expresses that 6 isn’t
satisfiable on the universal concept U . (The variable ‘F’ thus occurs vacuously in
the condition.) Assuming this claim, we can let 0 be the resulting version of (RV).
To see this, assume first that 6 isn’t κ-satisfiable. Then any concept F on a domain
of size κ will be Bad, which makes 0 trivially κ-satisfiable. Next, assume that 6 is
κ-satisfiable. Then no concept F on a domain of size κ will be Bad, which means
that on such domains, 0 is like Basic Law V and thus not κ-satisfiable.
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It remains to prove the claim. A simple way to do so is to let R(6) be the
Ramseyfication of 6, which is available in a language of order one higher than that
of 6. Then Bad(F) can be chosen to be ¬R(6). However, if desired, the claim
can also be proved without having to ascend to a language of order higher than 6.
Consider the case where 6 is second-order; the other cases are analogous. Then a
dyadic relation R can be used to code an assignment of objects to selected monadic
concepts by letting ∀u(Fu ↔ Rux) mean that x is assigned to the concept F . Let
∼ be the equivalence relation on which 6 abstracts. Say that F is associated with x
under R if and only if F bears ∼ to some concept F ′ that R associates with x . The
claim that 6 is satisfiable can then be expressed as the claim that there is a dyadic
relation R such that every concept F is associated with an object x under R, and
such that two concepts F and G are associated with the same object under R just in
case F ∼ G. �

Theorem 3.7 Any irenic abstraction principle is stable. But the converse does not
hold.

Proof Assume 6 is not stable. Then by Lemma 3.6 there is a conservative abstrac-
tion principle 0 with which 6 is not jointly satisfiable, which shows that 6 is not
irenic. Example 2.3 shows that the converse does not hold. �

However, as in the case of Theorem 2.8, a converse holds under the added assumption
of pure logicality.

Theorem 3.8 Let 6 be a purely logical abstraction principle. Then 6 is stable if
and only if it is irenic.

Proof By the previous theorem, it suffices to prove that every stable and purely
logical abstraction principle is irenic. So assume 6 is stable and purely logical.
Since stability implies unboundedness, 6 is conservative by Corollary 2.9. Let 0 be
another conservative abstraction principle. We need to show that 6 and 0 are jointly
satisfiable. Let κ be a cardinal such that 6 is satisfiable in any domain of cardinality
≥ κ . But by Theorem 2.6 and Lemma 2.5, 0 is unbounded, which ensures that there
is a cardinal λ ≥ κ such that 0 too is satisfiable in domains of cardinality λ. It
follows that 6 is irenic. �

Corollary 3.9 Conservativeness does not imply irenicity or stability.

Proof By Theorem 3.7, it suffices to show that conservativeness does not imply
stability. Assume it did. Then by Theorem 3.8, any unbounded abstraction that is
purely logical would be stable. But we know this not to be so from the example in
the proof of Lemma 3.4. �

Corollary 3.10 There are purely logical and irenic abstraction principles that are
not strongly stable.

Proof This is immediate from Theorem 3.8 and the observation that there are purely
logical abstraction principles that are stable but not strongly stable. The observation
is established in the proof of Lemma 3.4. �
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4 Conclusion

An inspection of the results established above shows that the logical relations be-
tween the proposed criteria are indeed as depicted in the two boxed diagrams at the
beginning of this note.

Notes

1. See, for instance, [1], [13], and [12], and, for an overview, [6].

2. This approach relies on what Stewart Shapiro in [10] calls the external perspective,
namely, the perspective of a bystander who is interested in the prospects of the abstrac-
tionist projected against the background of standard mathematics.

3. See, however, [11] and [7], which challenge the status of stability and strong stability as,
respectively, necessary and sufficient conditions for acceptability. See [3] for a defense
of (strong) stability.

4. [12] discusses a slightly different definition as well. Say that 6 is CN-conservative (for
“Caesar-neutral”) if and only if the same definition holds except with ‘old’ replaced by a
new predicate O about which nothing is assumed. Unpacking definitions, one easily sees
that conservativeness implies CN-conservativeness. Note 6 shows that the two notions
are in fact equivalent.

5. Weir’s definitions are the same as mine: see pp. 21 and 24. However, Weir (p.c.) informs
me he was implicitly restricting himself to what I call “purely logical” abstraction prin-
ciples (see my Definition 2.7), for which his assertion is correct (see my Theorem 2.8).
Here I examine what happens without this substantial restriction and explicitly state the
restriction when it is made.

6. The argument just given also shows that CN-conservativeness (as defined in Note 4) im-
plies uniform unboundedness. Since the latter notion implies conservativeness, which (as
observed in Note 4) implies CN-conservativeness, all three notions are in fact equivalent.
This justifies my choice henceforth to focus exclusively on ordinary conservativeness.

7. Another option is to prove the left-to-right direction of Theorem 2.6 using the general-
ized quantifier “there are κ or more x such that . . . ”.

8. However, say that an abstraction principle is essentially logical if and only if it is either
purely logical or its only nonlogical expressions are abstraction operators governed by
other abstraction principles that are essentially logical. (Thanks here to Stewart Shapiro,
who attributes the idea to Crispin Wright.) The abstraction principles used in the men-
tioned constructions of the reals have this property. Unfortunately, the analogue of The-
orem 2.8 that results from replacing the assumption of pure logicality with essential
logicality is false, as can be seen by replacing ‘¬∃x Px’ in Example 2.3 with the claim
that any two #-abstracts are identical, where ‘#’ is governed by Hume’s Principle.

9. Recall from Note 5 that Weir claims he was implicitly restricting himself to purely logi-
cal abstraction principles.
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