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REMARKS ON ONE-DIMENSIONAL SEMINORMAL RINGS
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Various characterizations of reduced seminormal rings of dimension one
are given in Salmon [4], Bombieri[1] and Davis[2]. Among others it is shown
that if (4, m) is a local ring of a closed point on an algebraic curve defined over
an algebraically closed field %, then A is seminormal if and only if the comple-
tion A is k-isomorphic to R[[X, -+, X,]1/(+++, X;X;, ---) where i % ([1]) or the
associated graded ring G7r'(A4) is k-isomorphic to R[X,, -+, X,]/(--+, X, X}, )
where 727 ([2]). Generalizing these results we prove the following in the first
section. Under certain moderate assumptions on A there exist an integer # and
an ideal I in R[X], --+, X,] such that 4 is seminormal if and only if flzk[[Xl, ey
X IR[[ X, «-+, X,]] or Gri(A)=<k[X,, -+, X,]/I. Moreover the ideal [ is gene-
rated by quadratic forms and these forms and integer z are determined solely by
the k-algebra structure of A/J(A4), where 4 is the integral closure of 4 in the
total quotient ring of 4 and J(A) is the Jacobson radical of 4. Let C be a plane
algebraic curve and let P be a closed point on C. Then it is known that the
local ring Op ( is seminormal if and only if P is a simple point or a node (cf. [1],
[2], [4]). It is then natural to ask what the seminormalization of Op ¢ is when
P is not a seminormal point. The answer to this question is given in the second
section in the case where P is an ordinary multiple point.

The author would like to express his sincere gratitude to Professors Y.
Nakai and M. Miyanishi, and Dr. K. Yoshida for their valuable advice and
suggestions during the preperation of this article.

0. Notations and conventions

The following notations and conventions are fixed throughout this article.
When R is a ring, J(R) stands for the Jacobson radical of R, O(R) for the total
quotient ring of R, R for the integral closure of R in Q(R) and *R for the seminor-
malization of R. We denote by =, an R-algebra isomorphism. An R-algebra
is always assumed to be commutative, associative and containing 1. The sym-
bols X,Y, Z, T, X,, etc. are used to denote indeterminates or variables. When
we say that (R, IR) is a quasi-local ring, we mean that R is a ring which has the
unique maximal ideal M. A noetherian quasi-local ring is called a local ring.
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1. Characterizations of one-dimensional seminormal rings

Lemma 1.1. Let (R, M) be a reduced one-dimensional quasi-local ring.
Then R is seminormal if and only if M= J(R).

Proof. By definition, we have *R=R+-J(R). Therefore, R="R if and
only if M=J(R). Q.E.D.

Lemma 1.2. Let k be a field and let L be a reduced noetherian k-algebra
of dimension 0. Then, both k+TL[T] and k+TL[[T]] are seminormal, where
k+TL[T] is identified with a subring of L[T] and k+ TL[[T]] is identified with a
quasi-local subring of L[[T] with residue field k.

Proof. Set R=k-+TL[T] and S=k'4+TL[T], where k' is the integral
closure of % in L. First we prove that R=S. By assumption L is a direct
product of fields, hence L[T] is normal. Thus we have RCL[T]. Let f(T) be
an element in L[T]. Then, it is easy to see that f(T)& R if and only if f(0)EE’,
which shows R=S. Let % be the prime ideal TL[T] of R. Then, as is readly
seen, we have PRp=J(Sg), and hence Rgp is seminormal by Lemma 1.1. Let
g(T) be an arbitrary element in *R. Then we have k(T)g(T)ER for some el-
ement %(T) in R but not in P, because (*R)pC *(Rg)=Rg. Then we have A(0)
g(0)k, which implies that g(0)k because 2(0)==0. This shows that g(T)&
R, and R is seminormal. We can verify that k4 TL[[T]] is seminormal by
the similar way. Q.E.D.

1.3. In the rest of this section we fix the following notations: Let (4, m)
be a reduced one-dimensional local ring containing the field k2 isomorphic to
A/m. We assume that A4 is a finite A-module. Then A is a semi-local ring.
Let J=J(A4) and let K=A4/]. When M is a finite 4-module we denote by M
the m-adic completion of M.

Then the following lemma is proved in Davis [2].

Lemma. The following conditions are equivalent to each other.
(1) A is seminormal.
(2) Gr'(A4) is k-isomorphic to k+TK[T].
(3) Gr(A) s reduced and seminormal.

1.4. Since the m-adic completion of 4 coincides with the J-adic comple-

tion of A we have Asz[[T]] and j—](A) kTK[[T]] Notice that A=4,
because A is a finite A-module with ACQ(A) and ANk'K[[T]] is normal.

Lemma 1.5. The following conditions are equivalent to each other.
(1) A is seminormal.
(2) A is k-isomorphic to k- TK[[T]].
(3) A is seminormal.



ONE-DIMENSIONAL SEMINORMAL RINGS 233

Proof. (1)=>(2): A is a local ring with maximal ideal #t and kCA.
Hence we have A=t k+h=Fk+J=k+TK[[T]], because seminormality of A
implies that m=].

(2)=>(3): By Lemma 1.2, if A=<k+TK[[T]] then A is seminormal.

(3)=(1): Since A is seminormal we have fi=/, where ii=m® ,A and J=
J®4A. Therefore we have m=J because A is faithfully flat over 4. By
Lemma 1.1 we see that 4 is seminormal. Q.E.D.

Lemma 1.6. Let L be a k-algebra and let v,, -+, v, be a k-basis of L. Let
pije (1=1, j, R=<n) be the structure constants of L, i.e., p;;’s are elements of k such
that

'Z),"I)j == ,,:21 p;j,,‘vk .
Let o: R[X,, -, X,] = L[T] (or E[[X,, -+, X,]]— L[[T]]) be a k-algebra homomor-

phism defined by o(X;)=v,T (=1, ---,n). Then the kernel I of o is generated
by the quadratic polynomials

Vi =2 pirn X)X~ (3 pismX )X (14, j, k<)

Proof. First notice that p,;,’s satisfy the relations

(1) Pijr = Pjik >
(2) gl Pikm Pmjs = ,g PjkmPmis -
Let

1= mﬁ_‘,l CUp

where ¢, €k (m=1, --,n). From (2"] CnVm)0;=1; it follows that
m=1

( 3 ) ’Ecmpmis = Sis .

Let I’ be the ideal generated by {y;;;}. As is readly seen I is a homogeneous
ideal, and I'CI from (2). We set Y=E" ¢nX,. Then, using (3) we get
m=1

g Clrije = X,-Xr‘ Ygl ijsXs
i.e.,

(4) X, X,= Y}] pineX, (modI).

Let F(X,, -+, X,) be a homogeneous polynomial of degree N in I. Clearly
N >1, and from (4) we easily see that
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F(X, -+, X,)= Y"'3aX, (modI)

for some a,€k. Since o(F)=0, o(Y)=1 and o(X)=0v,T we have a,=0
for s=1, -+, n because v, -+, v, are linearly independent over k. This proves
that Fel'. Q.E.D.

For practical purpose the generators {yr;;;} of I are not easy to handle.
For later use we prove the following lemma.

Lemma 1.7. Let L=kK[X]/(f(X)), where f(X)=X"+a, X" '+---+a, and
let a=the residue class of X in L. Define a k-algebra homomorphism o: k[X,, -+,
X, ]=L[T] (or K[X,, -+, X, ]]=L[[T]]) by o(X))=a'T. We set E,=
XX tmanya for m=0, -, 2n—2, where [ ] is the Gauss symbol. Let I, be the
ideal generated by quadratic polynomilas

gii = X X;—&; 0=s, j=n—-1),

hs - zn]amgm+s (0§S§n—2), Where a,— 1 .
m=0
Then the kernel of o is equal to 1.

.. n-1 7n-1 n-1
Proof. Let a’a’zkgo piikak and set '\l’ijk= (mlv-l:o Pikam)Xj_(gopjkam)Xi-

Then, by virtue of Lemma 1.6, Ker ¢ is generated by +,’s. It is easy to check
that I, is contained in Ker . We shall prove the inverse containment I,D
Ker o. Notice that p;;;=pgy if i-+j=s42. Weset p;;; ;=p;j- Then we have

(1)  pym=08yn if N<n and p,, = —a, for 0=m=n—1,
and
(2)  pyo= —QpPy-1n-1 304 py = Py_1 41— AkPN-1,n-1 for 1=k=n—1.

From (2), if s<n—1 and N =1 we easily get the relation

(3) mZO Px.m EME:Z:: PN-1mEmisin (mod I).
To prove I;DKer o it suffices to prove ;;;€1,. Notice that
(4) Vije 5:'2:0 Pitk,m §m+j—‘:2=10 Pi+kmEmti (mod I)

because X, X;=§&,,; and X, X;=£,,, (mod I;). We may assume =j because
Vijp=—vYju. If i4+k<n, from (1) and (4) we have

Vip=Eivje—Eirjre =0 (mod I).
If i+k=n and j+k<mn, from (1), (3) and (4) we have
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n—1
Yijp = MZ:}) Pn,m Emvivitk-n—Eirjrr (mod If)

n-1

- amgm+i+j+k-n—§i+j+k = _hi+j+k~n .

m=0

If j+-k=n, from (3) and (4) we have

n-1 o1
Yrije = "§Pi+,’+k+1—n,m §m+n-1_m2=opi+j+k+1-n,m Epina (mod If)
=0.

Thus we have +;;,=0 (mod I;) and we proved the assertion. Q.E.D.

By virtue of Lemmas 1.3, 1.5 and 1.6 we have the following

Theorem 1.8. Let vy, -+, v, be a k-basis of a k-algebra K= A|](A) and let
pijr be the structure constants of k-algebra K. Set

Vi = (2 XX, —(S piunXm) X (15i, j, k).
Then the following conditions are equivalent to each other.
(1) A is seminormal.
(2) A is k-isomorphic to [ Xy, -+, X,J1/(*+*» Vrijer +*)-
(3) Gr'(A) is k-isomorphic to k[ X, -+, X,1[(***, Yijes **)-

Lemma 1.9. We say that a polynomial f(X) in k[ X] is reduced in k[ X ] if f(X)
has no multiple factors in k[X], i.e., if the residue ring k[X)/(f(X)) is reduced.
Let the ideal 1, have the same meaning as in 1.7. If A is k-isomorphic to
R[[ Xy, -, X,_i])/ I, or Gri(A) is k-isomorphic to R[X,, -+, X, 1]/, for some
reduced monic polynomial f(X) of degree n in k[ X then A is seminormal.

Proof. This lemma follows from Lemmas 1.2 and 1.7. Q.E.D.

Theorem 1.10. Let the ideal 1, have the same meaning as in 1.7. Assume
that k is a perfect infinite field. Then the following conditions are equivalent to
each other.

(1) A is seminormal.

(2) A is k-isomorphic to R[[X,, -+, X, /I ; for some reduced monic polynomial
f(X) of degree n in k[ X].

(3) Gr'(A) is k-isomorphic to R[X,, -+, X, _,1/1; for some reduced monic polynomial
f(X) of degree n in k[ X].

Proof. If we see that K is k-isomorphic to k[X]/(f(X)) for some reduced
monic polynomial f(X) in R[X] then the assertion follows from Theorem 1.8,
Lemma 1.7 and Lemma 1.9. Let M,, .-, M, be all the maximal ideals of 4 and
set K;=A/M,; for i=1, ---,r. Then we have K=, K,;x---xK,. Since kisa
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perfect field we have K;==, k([ X]/(f(X)) for some irreducible monic polynomial
fX) in R[X]. We may assume that f,(X), -, f(X) are relatively prime because
k is an infinite field. Set f(X)=f(X):--f(X). Then f(X) is a rdeuced monic
polynomial and we have K ==, kK[X]/(f(X)). Q.E.D.

Remark 1.11. In Theorem 1.10 we assumed that the local ring A4 is re-
duced. We may replace this assumption by the condition that depth 4=1.
In fact the following lemma holds in general.

Lemma. Let (R, M) be a seminormal local ring with depth R=1. Then R
is reduced.

Proof. Let n=nil(R), where nil(R) denotes the nilradical of R, and let
S be the set of regular elements of R. Then we have nil(R)=S~n. From
definition, it is easy to check that R4+-nil(R)C*R, hence we have S~'nCR. Let
x be an arbitrary element in n. Notice that S NM=¢ because depth R=1.
Let a be an element in S NIWM. Then we have x/a"=R and x€a"RCIM” for

any integer #. Thus we have x& rj‘JR", and hence we have x=0 by Krull’s
intersection theorem. - Q.E.D.

2. Seminormalization of local rings of plane algebraic curves

2.1. Let V be an algebraic variety defined over a field & and let P be a
closed point on V. Then P is said to be seminormal if the local ring Oy is
seminormal. Let V' be a reduced plane algebraic curve. Then it is known
that P is a seminormal point if and only if P is a smooth point or P is a node
(cf.[1], [2], [4]). Consequently, if Pis a singular point and P is not a node, Op
is not seminormal. We are interested in how the seminormalization of O, , can
be obtained. For this purpose, we may assume that V' is a plane curve defined

by a polynomial F(X, ¥)= ;‘ a;X°Y7 in k[X, Y] with a,=1 and P is the
+izn

origin (0,0). In this section we shall determine the seminormalization of
Opy=(k[X, Y)/(F(X, Y)))x,» When fe(X):= 23 a;X’ is a reduced monic
polynomial in k[X]. s

Lemma 2.2. Let I, be the ideal of k[X,, -+, X,_,] (n=2) generated by g;;=
XX;,—&.; 0=i<j=<n—1), where £, is the same as in 1.7. Then we have
XX, =X, X;, (mod 1) if iy+-+i=j1+-+j. In paticular we have
XX, =X, (mod 1,).

Proof. This is easily seen by simple calculations and we omit the proof.

2.3. Let F(X,Y)= X 4,;X'Y’ be an element in k[X, Y] with =2 and

itizn
a,,=1. For each ordered pair (7,j) with 745 =n, we choose a fixed integer
t=1t(z, ) satisfying
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Max (0, n—7)<z =Min(n, j)
and set
b= 20 a,-on’.H_"le—’st 0=s=n—2).

i+j=n

Let I be the ideal of k[X|, -+, X,_,] generated by I, and ¢/s. It should be
noticed that I is independent of the choice of ¢ by Lemma 2.2, and #(n—m,m)=m
for m=0, -+, n.

Lemma 2.4. Let F(X,Y), I, and I be the same as in 2.2 and 2.3. Then
the ring homomorphism 7: (R[X, Y]/(F(X, Y)))x.v) = (R[Xo, =+ Xuci) /T )ixg, -, xp-p
defined by 7(X)=X, and 7(Y)=X, is injective, birational and integral.

Proof. The proof is divided into three steps.

Step 1. The homomorphism 7: k[ X, Y]/(F(X, Y))—=k[X,, -+, X,_1]/] defined
by 7(X)=X, and 7(Y)=X, is well-defined and injective.

In fact by Lemma 2.2 we have
‘X’On_l(ﬁsE 2 d,-oninsz = XSF(XO, Xl) (mod IO)
itj=n
Xo"_2¢oE ’_2 ainoinj = F(Xo, Xl) (mod Io)

+jiz=n

(1)

because X fH7lE,, =X X)X, and X", =X/X)' (mod I)) (notice that
i+t=n=2). In paticular F(X,, X;)I and the homomorphism 7 is well-defined.
To prove that 7 is injective let

G(Xp X) =31 hisgis+ 5 Mt

05i<isn-1

be an element of I N k[X,, X,] where 4,;’s and \,’s are elements of R[X,, -+, X, _,].
Then from (1) we get

XpG(Xy X)=X7 S hiygiytF(Xo X)) 2 X\, (modly).
Therefore we can write
X IG(X,, X)) = 21805 MXo, 05 X)) F( X, X5)
for some elements [;; in R[X,, -+, X,_,], where AMX,, ---,X,,_Q::g:szs. As

is readly seen, there exist an integer N and a polynomial A(X, Y) in two vari-
ables such that

MX, ZX) = X"\(X, ZX, ---, Z"'X).
Since g;;(X, ZX, -+, Z*'X)=0, we get, by specializing X; Z’X, the relation
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XV (X, ZX) = MX, ZX)F(X, ZX).
From this we get the identity
XV 1G(X,, X)) = MX,, X)F(X,, X))

because X and ZX are independent variables over k. From our assumption
F(X,, X)) is not divisible by X,. Hence MX,, X,) is divisible by X ¥**71,
and we have G(X,, X,)eF(X,, X))k[X,, Xi].

Step 2. Let Q be a proper prime ideal of k[ X, -+, X,_;] containing I and
X,. Then Q2 is necessarily equal to the maximal ideal (X,, «-+, X,_,).

If X;,eQ for some 1<n—3 we have X;,*=X,X;,,=0 (mod L) whence
X;.,€Q. Thus we have X, -+, X,_,€0. On the other hand, we have
b..€ICQ and ¢, ,=X, *+» with yEQ because (0, n)=n, a,=1 and
£.€Q for s<2n—2. Thus we have X,_’c£Q, whence X,_;€2Q. Obviously,
(Xo, +++, X,1) 1s a maximal ideal of k[X,, -+, X,_,], and thence we have Q=
(Xop ooy X1,

Step 3. The ring homomorphism 7: (k[X, Y]/(F(X, Y)))x,»— (R[X,, -+,
X)) xo, %, induced naturally by 7 is birational and integral.

Set B= X, X,)/(F(Xyy X)), C=HXoy -+, X, )/, p=(Xy, X)B and
M=(X,, =+, X,-1)C. We shall denote by x; the residue class of X; modulo I.
Notice that xx, '=x,’ for 1=<i<7—1 and x, is a regular element of B. This
implies that C,CQO(B,). Next we show that C, is integral over B,. In fact,
we have

F(xo, x,) :;Z;é‘naiixoixlj =0

in B. From this it is easy to check that x,/x, is integral over B,. Hence
x;=xy(%,/x,)" ! is also integral over Bp for 1=<7=<n—1, which shows that Cp is
integral over B,. It remains to prove that C;=Cg. Let QC, be a maximal
ideal of C,, where Q is a maximal ideal of C. Then we have QC’pﬂBp=po
because C, isintegral over B, whence QN B=p. Thus we have Q=1 by the
step 2, from which we see that C is a local ring. 'Therefore, we have C,=Cm
and the assertion is verified.

Lemma 2.5. Assume that fo(X)= 23 a;;X’ is a reduced monic polynomial
itj=n
in R[X]. Then the local ring (k[X,, -+, X,_1)/1)x,, - x,-,) 5 Seminormal.

Proof. Set R=(k[X,**, X,_1)/I)x,,.- x,.)- Notice that the leading form
of ¢, is 23 a;;E;.,. Hence, if we set f=fp(X), we have Gr'(R)=,k[X,, -,
itj=n

X,-1l/1;, where I is the ideal defined in 1.7 (cf. [3; p. 118]). Therefore, by
virtue of Lemma 1.9, we see that R is seminormal. Q.E.D.
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Summarizing the results stated in Lemmas 2.4 and 2.5, we have the follow-
ing theorem.

Theorem 2.6. Let F(X,Y)= 3] a;;X'Y’ be an element in k[X, Y] with
itj=n
n=2 and ay,=1. Assume that fx(X)= 3 a;;X’ is a reduced monic polynomial

in k[X]. Then the seminormalization of the local ring (R[X, Y]/(F(X, Y)))x.v s
isomorphic to (k[ X, *++, X, 1]/ )(x,,- x,,) Where the ideal I is generated by g;; (0=
i<j=n—1) and ¢, (0=s=n—2) given in 2.2 and 2.3, respectively.

ReEMARK 2.7. When fr(X) is a reduced monic polynomial in k[X] the
seminormalization of Oy is determined by the leading form of the defining
equation even if fx(X) is not reduced in k[X], where k denotes the algebraic
closure of k. But when fz(X) is not reduced in 2[X] the seminormalization of
Op v is more complicated as is shown by the following examples.

(1) Let R=(k[X, Y](Y?*—XY?*—X*)xy). Then "R is (k[X,, X,]/(X*—
XoXi—XP)(xo,xp» and the embedding R—*R is given by X—X, and
Y- X7+ X,

(2) Let S=(k[X, Y][(V*—XY?—X%)xy. Then *S is (k[X,, X;, X,]/(X"—
Xo X, X X+ XX — X, Xo*+ X" — X2X1))(x,, x,,x 2nd the embedding S—7S
is given by X—X, and Y—X,+X,.

ReEMARK 2.8. Let F(X,Y) and I have the same meaning asin 2.6. Assume
that the origin P is a unique singular point and k[X,, ---, X,_,]/] is integral
over k[X, Y]/(F(X,Y)). Then the seminormalization of k[X, Y]/(F(X,Y)) is
k[Xo: ) Xn—l]/'['

ExampLE. Let R=FE[X, Y]/(Y3—aX3—X®). Assume that char(k)=3 or
a®cck. Then *R=k[X, Y, Z]|(Y*—XZ, YZ—aX*— X5 Z*—aXY—X"Y).
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