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REMARKS ON ONE-DIMENSIONAL SEMINORMAL RINGS
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Various characterizations of reduced seminormal rings of dimension one
are given in Salmon [4], Bombieri[l] and Davis [2]. Among others it is shown
that if (A, m) is a local ring of a closed point on an algebraic curve defined over
an algebraically closed field k> then A is seminormal if and only if the comple-
tion A is A-isomorphic to &[[XX, •••, Xw]]/(»--, X{Xjy •••) where i=tj ([1]) or the
associated graded ring Gr'(A) is &-isomorphic to k[Xly •••, Xn]l("*, X{Xjy •••)
where i^FJ ([2]). Generalizing these results we prove the following in the first
section. Under certain moderate assumptions on A there exist an integer n and
an ideal / in k[Xly •••, Xn] such that A is seminormal if and only if A^k[[Xu •••,
Xn]]IIk[[Xly .--, Xn]] or Grm(A)txk[Xl9 •••, Xn]/I. Moreover the ideal / is gene-

rated by quadratic forms and these forms and integer n are determined solely by
the ^-algebra structure of AjJ{A)y where A is the integral closure of A in the
total quotient ring of A and J{A) is the Jacobson radical of A. Let C be a plane
algebraic curve and let P be a closed point on C. Then it is known that the
local ring OP c is seminormal if and only if P is a simple point or a node (cf. [1],
[2], [4]). It is then natural to ask what the seminormalization of OPC is when
P is not a seminormal point. The answer to this question is given in the second
section in the case where P is an ordinary multiple point.

The author would like to express his sincere gratitude to Professors Y.
Nakai and M. Miyanishi, and Dr. K. Yoshida for their valuable advice and
suggestions during the preperation of this article.

0. Notations and conventions

The following notations and conventions are fixed throughout this article.
When R is a ring, J(R) stands for the Jacobson radical of R, Q(R) for the total
quotient ring of R, R for the integral closure of R in Q(R) and +R for the seminor-
malization of R. We denote by ^R an i?-algebra isomorphism. An i?-algebra
is always assumed to be commutative, associative and containing 1. The sym-
bols X, Y\ Z, T, Xh etc. are used to denote indeterminates or variables. When
we say that (R, 3Ji) is a quasi-local ring, we mean that R is a ring which has the
unique maximal ideal <DDri. A noetherian quasi-local ring is called a local ring.
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1. Characterizations of one-dimensional seminormal rings

L e m m a 1.1. Let (R, 2Ji) be a reduced one-dimensional quasi-local ring.
Then R is seminormal if and only if <M=J(R).

Proof. By definition, we have +R=R+J(R). Therefore, R=+R if and
Q.E.D.

Lemma 1.2. Let k be a field and let L be a reduced noetherian k-algebra
of dimension 0. Then, both k+TL[T] and k+TL[[T]] are seminormal, where
k+TL[T] is identified with a subring of L[T] and k+TL[[T]] is identified with a
quasi-local subring of L[|T]] with residue field k.

Proof. Set R=k+TL[T] and S=k'J-TL[T], where kf is the integral
closure of k in L. First we prove that R=S. By assumption L is a direct
product of fields, hence L[T] is normal. Thus we have R<zL[T\. Let/(T) be
an element in L[T]. Then, it is easy to see that f(T)^R if and only if f(0)^k',
which shows R=S. Let «P be the prime ideal TL[T] of R. Then, as is readly
seen, we have <$R$=J(S%))y and hence R% is seminormal by Lemma 1.1. Let
g(T) be an arbitrary element in +R. Then we have h(T)g(T)^R for some el-
ement h(T) in R but not in *P, because (+R)$(Z+(R%)=R%. Then we have A(0)
g(0)<=k, which implies that g(0)^k because A(0)4=0. This shows that g(T)^
R, and R is seminormal. We can verify that k+TL[[T]] is seminormal by
the similar way. Q.E.D.

1.3. In the rest of this section we fix the following notations: Let (A, m)
be a reduced one-dimensional local ring containing the field k isomoiphic to
A/xn. We assume that A is a finite ^4-module. Then A is a semi-local ring.
Let J=J(A) and let K=AjJ. When M is a finite ^4-module we denote by M
the tn-adic completion of M.

Then the following lemma is proved in Davis [2].

Lemma. The following conditions are equivalent to each other.
(1) A is seminormal.
(2) Gr\A) is k-isomorphic to k+ TK[T].
(3) Gr\A) is reduced and seminormal.

1.4. Since the tn-adic completion of A coincides with the^-adic comple-
tion of A, we have A^kK[[T]] and J=J(A)c*hTK[[T]]. Notice that A=A,
because A is a finite A-module with A(zQ(A) and A^kK[[T]] is normal.

Lemma 1.5. The following conditions are equivalent to each other.
(1) A is seminormal.
(2) A is k-isomorphic to k+ TK[[T]].
(3) A is seminormal.
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Proof. (1)=#>(2): A is a local ring with maximal ideal m and kczA.
Hence we have A^kk+m=k-{-J^ffi-{-TK[[T]], because seminormality of A
implies that xn=J.
(2)-*(3): By Lemma 1.2, if A^^+TK[[T]] then A is seminormal.
(3)=#>(1): Since A is seminormal we have xh=J, where ih=tn(g)AA and / =
J®AA. Therefore we have t n = / because A is faithfully flat over A. By
Lemma 1.1 we see that A is seminormal. Q.E.D.

Lemma 1.6. Let L be a k-algebra and let vly *",vn be a k-basis ofL. Let
pijk ( l ^ i , j , k^n) be the structure constants of L, i.e., pijk's are elements of k such
that

Let <r: k[Xlf - , Xn] ->L[T] (or k[[Xu - , XJ\ ->L[[T]]) be a k-algebra homomor-
phism defined by a-(X^)=ViT ( i = l , •••, n). Then the kernel I of a is generated
by the quadratic polynomials

ikMXj-Cb PjkmXu)X; (1

Proof. First notice that p,//s satisfy the relations

( 1 ) Pah = Pjik >

( 2 ) 2 Pikm Pmjs = 2 PjkmPmis •

Let

where cm^k (m=l, •••,«). From (^]cmvm)vi=vi it follows that

n

( 3 ) 2 CmPmi, = 8is '

Let / ' be the ideal generated by {^r;^}. As is readly seen / is a homogeneous

ideal, and I'czl from (2). We set Y = 2 cmXm. Then, using (3) we get

i.e.,

(4) X&t=Y*J2piluXt (mod/').

Let F(Xly -",Xn) be a homogeneous polynomial of degree N in / . Clearly
N>19 and from (4) we easily see that
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F(XU .-, Xn) = Y^iZaJC, (mod /')

for some as<=k. Since <r(F)=0, a(Y) = \ and o-(Xs)=vsT we have as=0
for s=ly •••, w because ẑ , •••, M̂ are linearly independent over &. This proves
that F e / ' . Q.E.D.

For practical purpose the generators {i^,*} of / are not easy to handle.
For later use we prove the following lemma.

Lemma 1.7. Let L=k[X]/(f(X))y where f(X)=Xn+an.1X
n-1-\ Mo and

let a=the residue class of Xin L. Define a k-algebra homomorphism &: k[X0> •••,
X n _J ->L[T] (or k[[X0,..-,Xn_1]]->L[[T]]) by ^X^a'T. We set %m =
X[m/2\X[(m+i)/2\ for m=0> •••, 2n—2, where [ ] is the Gauss symbol Let If be the
ideal generated by quadratic polynomilas

K = 2 auZm+, (0^s^n-2), where an=\ .

Then the kernel of a is equal to If.
fl-l w-i n-1

Proof. Let a f ' a y = 2 pijka
k and set ^ijk=(J} pikmXm)Xj~(^] pjkmXm)Xi,

Then, by virtue of Lemma 1.6, Ker a is generated by ̂ , ^ ' s . It is easy to check
that If is contained in Ker a. We shall prove the inverse containment If~D
Ker cr. Notice that Pijk—pstk if i+j—s+t. We set Pi+jtk=Pijk- Then we have

( 1 ) pNm = SNm if N<n and pM%m = -am for

and

( 2 ) pNQ = — aopN_ln_1 and pN,k= pN-i,k-i—<*kpN-i,*-i f o r

From (2), if s<n—1 and i V ^ l we easily get the relation

( 3 ) HpNmZm+s = lLlpN-lmZm+s+l (mod/,) .
w» = 0 m = 0

To prove /yDKercr it suffices to prove tyijk^If. Notice that

( 4 ) ^ i y * = 2 pi+kymZm+j—

because XmXj = %m+j and XwX: = gm+i (mod 7^. We may assume i*zj because
<yJTijk=—'^jik' If i+k<n, from (1) and (4) we have

^ijk = Zi+j+k—%i+j+k = 0 (mod If).

If i-\-k^n and/-f&<w, from (1), (3) and (4) we have
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n-l

^ijk = 2 p^mSm+i+j+k-n — gi+j+k (modlf)

— i j amim+i+j+k-n ±i+j+k = "i+j+k-n •
tn = 0

If j+k^n, from (3) and (4) we have
w - 1 w - l

^ijk = ?LjoPi+j+k+l-n,mZm+n-l— 2 Pi+;+*+l-«,«f«+»-l (mod/,)

= 0 .

Thus we have tyijk = 0 (mod 7 )̂ and we proved the assertion. Q.E.D.

By virtue of Lemmas 1.3, 1.5 and 1.6 we have the following

Theorem 1.8. Let vu •••, ^n be a k-basis of a k-algebra K=A/J(A) and let
pijk be the structure constants of k-algebra K. Set

tn = 1 tn = 1

77ze/z £/*£ following conditions are equivalent to each other.
(1) 4 w seminormal.
(2) A & k-isomorphic to k[[Xu - , ^ J ] / ( - , ^,7*, - ) •
(3) Gr\A) is k-isomorphic to k[Xu —, XM]/(-

Lemma 1.9. We say that a polynomial f(X) in k[X] is reduced in k[X] iff(X)
has no multiple factors in k[X], i.e., if the residue ring k[X]l(f(X)) is reduced.
Let the ideal If have the same meaning as in 1.7. If A is k-isomorphic to
k[[X0, •••,XM_1]]// / or Gr'(A) is k-isomorphic to k[X0, •••, Xn_^\jlf for some
reduced monic polynomial f(X) of degree n in k[X] then A is seminormal.

Proof. This lemma follows from Lemmas 1.2 and 1.7. Q.E.D.

Theorem 1.10. Let the ideal If have the same meaning as in 1.7. Assume
that k is a perfect infinite field. Then the following conditions are equivalent to
each other.
(1) A is seminormal.
(2) A is k-isomorphic to k[[X0, •••, Xn_^\jlf for some reduced monic polynomial
f(X) of degree n in k[X].
(3) Gr'{A) is k-isomorphic to k[XOy •••, Xn^\If for some reduced monic polynomial
f(X) of degree n in k[X].

Proof. If we see that K is &-isomorphic to k[X"\j(f{X)) for some reduced
monic polynomial f(X) in k[X] then the assertion follows from Theorem 1.8,
Lemma 1.7 and Lemma 1.9. Let SJtj, •••, 9Jlr be all the maximal ideals of A and
set Ki=AISffli for i = l , •••, r. Then we have K^kKxX ~-xKr. Since k is a
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perfect field we have Ki^kk[X]/(fi(X)) for some irreducible monic polynomial
fi{X) in k[X]. We may assume thzt f1(X)9"^fr(X) are relatively prime because
k is an infinite field. Setf(X)=f1(X)"'fr(X). Thtnf(X) is a rdeuced monic
polynomial and we have Ke*kk[X]l(f(X)). Q.E.D.

REMARK 1.11. In Theorem 1.10 we assumed that the local ring A is re-
duced. We may replace this assumption by the condition that depth A*zl.
In fact the following lemma holds in general.

Lemma. Let (R, 9Ji) be a seminormal local ring with depth R^z 1. Then R
is reduced.

Proof. Let tt=nil(i2), where nil(i?) denotes the nilradical of Ry and let
S be the set of regular elements of R. Then we have nil(JR)=S"1n. From
definition, it is easy to check that i?+nil(i?)c+j?, hence we have S'hidR. Let
x be an arbitrary element in n. Notice that S (15014= <£ because depth i ? ^ l .
Let a be an element in S nSK. Then we have xjan^R and x^ofRaW1 for

any integer n. Thus we have x^. [\yJln, and hence we have #=0 by Krull's
intersection theorem. ~ Q.E.D.

2. Seminormalization of local rings of plane algebraic curves

2.1. Let V be an algebraic variety defined over a field k and let P be a
closed point on V. Then P is said to be seminormal if the local ring OPV is
seminormal. Let V be a reduced plane algebraic curve. Then it is known
that P is a seminormal point if and only if P is a smooth point or P is a node
(cf. [1], [2], [4]). Consequently, if P is a singular point and Pis not a node, OPV

is not seminormal. We are interested in how the seminormalization of OPV can
be obtained. For this purpose, we may assume that V is a plane curve defined
by a polynomial F(X, Y)=^ agjX'Y* in k[Xy Y] with aOn=l and P is the

origin (0,0). In this section we shall determine the seminormalization of
Op9y = \k[X, Y]/(F(X, Y)))(XtY) when fF(X): - 2 / o ^ ; ' i s a reduced monic
polynomial in

L e m m a 2.2. Let IQ be the ideal of k[XOy •••, Xn_x] ( n^2 ) generated by gij=
^i<j<^n—l), where %m is the same as in 1.7. Then we have

Jt {mod Io) if i^ \-is=j\-\ \-js. In paticular we have

Proof. This is easily seen by simple calculations and we omit the proof.

2.3. Let F(X, Y)= 2 a^Y* be an element in k[X, Y] with n^2 and
i + te"

aQn=l. For each ordered pair (i,j) with i-{-j"^.n, we choose a fixed integer
t=t(ij) satisfying
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Max(0, n-i)^t^

and set
, ^—• "XZ i+t — n \7" j — tf'

Let / be the ideal of k[X0, •••,XM_J generated by Io and <£s's. It should be
noticed that / is independent of the choice of t by Lemma 2.2, and t(n—m,m)=m
for m=Q, ~-,n.

Lemma 2.4. Let F(X, Y), Io and I be the same as in 2.2 and 2.3. Then
the ring homomorphism r: (k[X, Y]/(F(X, Y)))(XtY)->(k[X0, - , -ar.-J//)(xo.....x.-1)
defined by r(X)=X0 and r(Y)=X1 is injective, birational and integral.

Proof. The proof is divided into three steps.

Step 1. The homomorphism r: k[X, Y]/(F(X, Y))-+k[X0, •••, Xu^/I defined
by T(X)=X0 and r(Y)=Xl is well-defined and injective.

In fact by Lemma 2.2 we have

\r n-l i T̂"1 V i V i V V 17/ V V \ t~~ A T \

\0 0 5 = 2J aiju^Lo^-ij^-s==^-s^('^-o3^-i) (mod l0)

^ow"20o= l^auXjXJ = F{XQ, X,) (mod 70)
because XQ

i+t~l^t+s=iXo
lXiXs and Xo

i+t~2^t = XjXJ (mod 70) (notice that
i-\-t^n*t2). In paticular F(X0, X^ e / and the homomorphism r is well-defined.
To prove that r is injective let

G(X0, Xx) = 2 AI7^ IV+2 Xs<̂ )5

be an element of/ n^[^0> -^i] where A,/s and X/s are elements of k[XOy

Then from (1) we get

X^Xr1 2 A^y+^^o, -̂ 0 S^X. (mod /0).
o^i<y^«-i *=o

Therefore we can write

xr^x*. Xi) = 2 itjgij+MXo, -^x^FiXo, x,)
n-2

for some elements l{j in k[X0, ••-, -X^-J, where X(X0, • • • , ^ _ i ) = 2 ^ 5 X s . As
5 = 0

is readly seen, there exist an integer N and a polynomial ^(X, Y) in two vari-
ables such that

\{X, ZX) = XN\{X, ZX} .-, ZW-2X).

Since gi^X.ZXy •••,Z*"1Z)=0, we get, by specializing X,H->Z'X, the relation
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XN+»-lG{X, ZX) = \{X3 ZX)F(X, ZX).

From this we get the identity

X0»
+»->G(X0, Xx) = %(X0, XJFiX,, X,)

because X and ZX are independent variables over k. From our assumption
F(X0, Xx) is not divisible by Xo. Hence X(X0, Xx) is divisible by X0

N+n~\
and we have G(X0, ^ G F ^ , Xx)k[X09 XJ.

Step 2. Le£ Q, be a proper prime ideal of k[X0, •••, XM_J containing I and

Xo. Then £} is necessarily equal to the maximal ideal (Xo, •••, Xn_^).

If Xi^D, for some i^n — 3 we have ^+1
2=X,JE";+2=0 (mod Q) whence

. Thus we have Xoy •••, Z B _ 2 G O . On the other hand, we have
and <K-2—-̂ »-i2+?7 with iyGD because *(0, ri) = n, aOn=l and

for s<2n—2. Thus we have I ^ . / G Q , whence Z ^ G D . Obviously,
XM_1) is a maximal ideal of k[X0> •••,XW_1], and thence we have O =

Step 3. T ^ n ^ homomorphism r: (k[X, Y]/(F(X, Y)))(XfY)-+(k[X0, •••,
Xn_1]II)(Xo...txH-x) induced naturally by r is birational and integral.

Set B = k[X0,Xl]l(F(X0,Xl)), C = k[X0, -, X..^I, p^iX^XJB and
<jffl=(^XOf •••,XW_1)C. We shall denote by x{ the residue class of X{ modulo/.
Notice that tf^o'"^.^ for l^i<.n— 1 and x0 is a regular element of B. This
implies that CpdQ(B^). Next we show that C^ is integral over Bp. In fact,
we have

F(x0, xj = 2 ttijxjxj = 0

in 2?. From this it is easy to check that xxjxQ is integral over 1L. Hence
xi=x1(x1lx0)

i~1 is also integral over B^ for l^i'^w—-1, which shows that Cp is
integral over B^. It remains to prove that C^=C^JI. Let DC^ be a maximal
ideal of Cp, where O is a maximal ideal of C. Then we have £lC^nBp=pB^
because Cp is integral over iL, whence £ir\B=p. Thus we have £l=2Ji by the
step 2, from which we see that Cp is a local ring. Therefore, we have Cp=Cs^
and the assertion is verified.

Lemma 2.5. Assume that fF(X)= 2 ^»y^; w « reduced monic polynomial
i + j = n

in k[X]. Then the local ring (k[X0, -"y Xn_1]II)(Xo...Xn_i) is seminormal.

Proof. Set/?=(*[Jf0,--,Jfll_J/Jr)(^Ot...fjrji_l). Notice that the leading form
of <j>s is 2 aij%j+s- Hence, if we set f—fF(X), we have Gr"(i?)^

X»-{\II/> where / 7 is the ideal defined in 1.7 (cf. [3; p. 118]). Therefore, by
virtue of Lemma 1.9, we see that R is seminormal. Q.E.D.
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Summarizing the results stated in Lemmas 2.4 and 2.5, we have the follow-
ing theorem.

Theorem 2.6. Let F(X, Y)= 2 aijX
iYJ be an element in k[X, Y] with

ri^/L and aOn=l. Assume that fF(X)= 2 <lijXi is a reduced monic polynomial

in k[X], Then the seminormalization of the local ring (k[X, Y]j{F(Xi Y)))(XY) is
isomorphic to (k[X0, •••, ̂ n-J/^)(^0,-.^»-i) wnere tne ideal I is generated by g{j ( 0 ^

j ^n—1) and >̂s (O^s^n—2) given in 2.2 and 2.3, respectively.

REMARK 2.7. When fF(X) is a reduced monic polynomial in k[X] the
seminormalization of OPV is determined by the leading form of the defining
equation even if fF{X) is not reduced in k[X], where k denotes the algebraic
closure of k. But when fF{X) is not reduced in k[X] the seminormalization of
Op v is more complicated as is shown by the following examples.
(1)' Let R = (k[X,Y]l(Y3-XY*-X%x,Y). Then +R is (k[X0, X^X,2-
X0X1—Xo

3)(Xo xj, and the embedding R-++R is given by X\-*Xi and

(2) Let S=(k[X, Y]l(Y3-XY2-X5))(XtY). Then +S is (k[XOy Xu X2]I{XX
2-

X^ X&+X&-X*, Xt+Xt-XfXJ)^^ and the embedding S-++S
is given by X\-*XQ and

REMARK 2.8. Let F(X, Y) and / have the same meaning as in 2.6. Assume
that the origin P is a unique singular point and k[X0, •••,XM_J// is integral
over k[X, Y]I(F(X, Y)). Then the seminormalization of k[X, Y]ftF(X, Y)) is

EXAMPLE. Let R= k[X, Y]/(Y3-aX3-X6). Assume that char(A) 4= 3 or
al/3stk. Then +R=k[X, Y,Z]I(Y2-XZ9 YZ-aX2-X\ Z2-aXY-X4Y).
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