ON McCONNELL'S INEQUALITY FOR FUNCTIONALS OF SUBHARMONIC FUNCTIONS

Akihito Uchiyama

Abstract

Recently, McConnell obtained an L^{p} inequality relating the nontangential maximal function of a nonnegative subharmonic function u and an integral expression involving the Laplacian of u. His result is imposing a restriction on the range of p. In this paper, we show that his inequality holds for all $p \in(0,+\infty)$.

1. Introduction. Let $u(x, t)$ be a nonnegative subharmonic function defined on $R_{+}^{n+1}=\left\{(x, t): x \in R^{n}, t>0\right\}$. (For the definition of subharmonic functions, see Hayman and Kennedy [5] p. 40.) Let Δu be the Laplacian of u in the sense of distributions. Then, this is a positive measure on R_{+}^{n+1}. Let

$$
\begin{aligned}
& N(x)=\sup \left\{u(y, t):(y, t) \in \Gamma_{1}(x)\right\}, \\
& S(x)=\iint_{(y, t) \in \Gamma_{1}(x)} t^{1-n} \Delta u(y, t),
\end{aligned}
$$

where

$$
\begin{aligned}
\Gamma_{\alpha}(x) & =\left\{(y, t) \in R_{+}^{n+1}:|x-y|<\alpha t\right\}, \\
|x| & =\left|\left(x_{1}, \ldots, x_{n}\right)\right|=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2} .
\end{aligned}
$$

If $v(x, t)$ is a real harmonic function defined on R_{+}^{n+1} and if

$$
\begin{equation*}
u(x, t)=v(x, t)^{2}, \tag{1}
\end{equation*}
$$

then u is nonnegative and subharmonic. In this case, $N^{1 / 2}$ and $S^{1 / 2}$ turn out to be the usual nontangential maximal function and the usual area integral of v, respectively. So, the results of Burkholder and Gundy [1] and C. Fefferman and Stein [3] imply that in case of (1) we have

$$
\begin{equation*}
\|S\|_{L^{p}} \leq c(p, n)\|N\|_{L^{p}} \tag{2}
\end{equation*}
$$

for all $p \in(0,+\infty)$. (Under the additional assumption $\lim _{t \rightarrow+\infty} v(x, t)$ $=0$, they showed also the converse inequality of (2) with other constants $c(p, n)$.)

Recently, McConnell [7] extended the inequality (2) to general nonnegative subharmonic functions.

Theorem A. Let u be a nonnegative subharmonic function defined on R_{+}^{n+1}. There are constants $c(p, n)<+\infty$, depending only on p and n, and a positive constant $p_{0}(n)$, depending only on n, such that the inequalities

$$
\begin{equation*}
\|S\|_{L^{p}} \leq c(p, n)\|N\|_{L^{p}} \tag{3}
\end{equation*}
$$

hold for all p satisfying

$$
\begin{equation*}
0<p<p_{0}(n) \quad \text { or } \quad 1 \leq p<+\infty \text {; } \tag{4}
\end{equation*}
$$

moreover $p_{0}(1)=1$.
This theorem in the case $n \geq 2$ is imposing an unnatural restriction (4) on the range of p. In this paper, we remove (4).

Theorem 1. Let u be as in Theorem A. Let $0<p<+\infty$. Then, there exist constants $c(p, n)<+\infty$, depending only on p and n, such that (3) holds.

The argument in this paper is an extension of that in our paper [8].
2. Preliminaries. First we prepare notation. The Laplacian Δ and the gradient ∇ in this paper are taken in the sense of distributions. For a measurable subset E of the Euclidean space, let χ_{E} and $|E|$ be the characteristic function of E and the Lebesgue measure of E, respectively. For $x \in R^{n}$ and $E \subset R^{n}$, let $\delta(x, E)$ be the distance of the point x from E. Let $\delta(x, \varnothing)=+\infty$.

For $x \in R^{n}, R>1, \alpha>0$, and for $u(x, t)$ in Theorem A let

$$
\begin{aligned}
\varphi(x) & =\max (0,1-|x|), \\
T_{R} & =\left\{(x, t) \in R_{+}^{n+1}:|x|<R, 1 / R<t<R\right\}, \\
N(x ; \alpha) & =\sup \left\{u(y, t):(y, t) \in \Gamma_{\alpha}(x)\right\}, \\
S(x ; \alpha) & =\iint_{(y, t) \in \Gamma_{\alpha}(x)} t^{1-n} \Delta u(y, t), \\
s(x ; \alpha, R) & =\iint_{(y, t) \in R_{+}^{n+1}} \varphi\left(\frac{x-y}{\alpha t}\right) t^{1-n} \Delta u(y, t) \chi_{T_{R}}(y, t) .
\end{aligned}
$$

Note that if $\alpha^{\prime}>\alpha>0$, then

$$
\begin{equation*}
S(x ; \alpha) \leq c\left(\alpha, \alpha^{\prime}, n\right) \lim _{R \rightarrow+\infty} s\left(x ; \alpha^{\prime}, R\right) . \tag{5}
\end{equation*}
$$

Cubes considered in this paper have sides parallel to the coordinate axes. For a cube I, let $l(I)$ and αI be the side length of I and a cube concentric with I satisfying $l(\alpha I)=\alpha l(I)$, respectively. For a cube I in R^{n}, let

$$
Q(I)=\left\{(x, t) \in R_{+}^{n+1}: x \in I, t \in(0, l(I))\right\}
$$

For a nonnegative measure μ on R_{+}^{n+1} let

$$
\|\mu\|_{c}=\sup _{I} \mu(Q(I)) /|I|
$$

where the supremum is taken over all cubes I in R^{n}. If $\|\mu\|_{c}<+\infty$, then μ is called a Carleson measure.

For the proof of Theorem 1 we need the following.

Lemma 1. Let u be as in Theorem A. Let $\lambda>0, \alpha>\beta>0$,

$$
\begin{gather*}
\Omega=\left\{x \in R^{n}: N(x ; \alpha) \leq \lambda\right\} \tag{6}\\
W=\left\{(x, t) \in R_{+}^{n+1}: \delta(x, \Omega)<\beta t\right\} \tag{7}
\end{gather*}
$$

Then

$$
\begin{equation*}
\left\|t \Delta u \chi_{W}\right\|_{c} \leq C \lambda, \tag{8}
\end{equation*}
$$

where C is a constant depending only on α, β and n.

Lemma 2. Let u be as in Theorem A. Let $\lambda>0, R>1, \gamma>1$ and $\alpha>\beta>0$. Then

$$
\begin{align*}
& \left|\left\{x \in R^{n}: s(x ; \beta, R)>\gamma \lambda, N(x ; \alpha) \leq \lambda\right\}\right| \tag{9}\\
& \quad \leq C e^{-c \gamma}\left|\left\{x \in R^{n}: s(x ; \beta, R)>\lambda\right\}\right|
\end{align*}
$$

where C and c are positive constants depending only on α, β and n.

3. Proof of Lemma 1.

Lemma 3. Let $m \geq 2$ be an integer. Let $r>0$,

$$
\begin{aligned}
B & =\left\{X \in R^{m}:|X|<r\right\} \\
0.5 B & =\left\{X \in R^{m}:|X|<0.5 r\right\}
\end{aligned}
$$

Let $U(X)$ be a subharmonic function defined on B such that

$$
0 \leq U(X) \leq 1 \quad \text { for all } X \in B
$$

Then
(i) ΔU in the sense of distributions satisfies

$$
\int_{X \in 0.5 B} \Delta U(X) \leq C r^{m-2}
$$

(ii) ∇U in the sense of distributions is locally integrable on B and satisfies

$$
\int_{X \in 0.5 B}|\nabla U(X)| \leq C r^{m-1}
$$

where C is a constant depending only on m.

Proof. We may assume $r=1$. Let $G(X, Y)$ be the Green function of $B=\left\{X \in R^{m}:|X|<1\right\}$. Namely, for $(X, Y) \in(B \times B) \backslash\{(X, X): X \in$ $B\}$, let

$$
G(X, Y)= \begin{cases}|X-Y|^{2-m}-||Y| X-Y /| Y \|^{2-m}, & Y \neq 0 \\ |X|^{2-m}-1, & Y=0\end{cases}
$$

if $m \geq 3$ and let

$$
G(X, Y)= \begin{cases}\log \frac{\| Y|X-Y /|Y||}{|X-Y|}, & Y \neq 0 \\ \log \frac{1}{|X|}, & Y=0\end{cases}
$$

if $m=2$. For $Y \in B$ let

$$
V(Y)=\frac{1}{\sigma_{m}} \int_{X \in 0.6 B} G(X, Y) \Delta U(X)
$$

where

$$
\sigma_{m}=\frac{2 \pi^{m / 2} \max (1, m-2)}{\Gamma(m / 2)}
$$

Since $U+V$ is nonnegative on B, harmonic on $0.6 B$, subharmonic on B and

$$
\lim _{\varepsilon \rightarrow+0} \sup \left\{V(Y): Y \in R^{m},|Y|=1-\varepsilon\right\}=0
$$

we have

$$
\begin{equation*}
0 \leq U(Y)+V(Y) \leq 1 \quad \text { on } B \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
|\nabla(U+V)(Y)| \leq C \quad \text { on } 0.5 B \tag{11}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
c \int_{X \in 0.6 B} \Delta U(X) & \leq \int_{X \in 0.6 B} G(X, 0) \Delta U(X) \tag{12}\\
& =\sigma_{m} V(0) \leq \sigma_{m}(U(0)+V(0)) \leq \sigma_{m}
\end{align*}
$$

by (10) and

$$
\begin{align*}
\int_{Y \in B}|\nabla V(Y)| & \leq \frac{1}{\sigma_{m}} \int_{X \in 0.6 B} \Delta U(X) \int_{Y \in B}\left|\nabla_{Y} G(X, Y)\right| \tag{13}\\
& \leq C \int_{X \in 0.6 B} \Delta U(X) \leq C
\end{align*}
$$

by (12), where $c>0$ and $C<+\infty$ depend only on m. So, (i) follows from (12) and (ii) follows from (11) and (13).

Now, we begin the proof of Lemma 1. We may assume

$$
\begin{equation*}
\lambda=1 \tag{14}
\end{equation*}
$$

and $\Omega \neq \varnothing$. Let a cube I be given. It is enough to show

$$
\begin{equation*}
\iint_{(x, t) \in Q(I) \cap W} t \Delta u(x, t) \leq C|I| . \tag{15}
\end{equation*}
$$

Let $\varepsilon>0$ be a constant such that

$$
\begin{gather*}
\varepsilon<\min \left(\frac{\beta}{n^{1 / 2}}, \frac{1}{n^{1 / 2}}\right) \tag{16}\\
\frac{(1+\varepsilon)(\beta+\varepsilon)+2 n \varepsilon}{1-n^{1 / 2} \varepsilon}<\alpha \tag{17}
\end{gather*}
$$

For $\eta>0, x \in R^{n}$ and $t>0$, let

$$
\begin{equation*}
\psi_{\eta}(x)=\max (\delta(x, \Omega), \delta(x, I), \eta) \tag{18}
\end{equation*}
$$

(19) $\varphi_{\eta}(x, t)= \begin{cases}1 & \text { if } \frac{1}{\beta} \psi_{\eta}(x)<t, \\ \frac{\beta\left((\beta+\varepsilon) t-\psi_{\eta}(x)\right)}{\varepsilon \psi_{\eta}(x)} & \text { if } \frac{1}{\beta+\varepsilon} \psi_{\eta}(x)<t \leq \frac{1}{\beta} \psi_{\eta}(x), \\ 0 & \text { if } t \leq \frac{1}{\beta+\varepsilon} \psi_{\eta}(x),\end{cases}$
(20) $\quad h(t)= \begin{cases}0 & \text { if }(1+\varepsilon) l(I)<t, \\ \frac{(1+\varepsilon) l(I)-t}{\varepsilon l(I)} & \text { if } l(I)<t \leq(1+\varepsilon) l(I), \\ 1 & \text { if } t \leq l(I),\end{cases}$

$$
\begin{equation*}
V_{\eta}(x, t)=\varphi_{\eta}(x, t) h(t) . \tag{21}
\end{equation*}
$$

Let $R_{+}^{n+1}=\bigcup_{k=1}^{\infty} Q_{k}$ be the Whitney decomposition of R_{+}^{n+1} such that
(22) $\left\{Q_{k}\right\}_{k=1}^{\infty}$ are dyadic cubes in R_{+}^{n+1} with disjoint interiors,
(23) $\frac{1}{\varepsilon} l\left(Q_{k}\right) \leq\left(\right.$ distance between Q_{k} and $\left.\partial R_{+}^{n+1}\right) \leq \frac{4}{\varepsilon} l\left(Q_{k}\right)$,
(This collection $\left\{Q_{k}\right\}$ can be obtained by taking all the maximal cubes among the closed dyadic cubes in R_{+}^{n+1} that satisfy (23).) Let $\left\{Q_{k(j)}\right\}_{j=1}^{N}$ be the subcollection of $\left\{Q_{k}\right\}$ such that

$$
\begin{equation*}
Q_{k(j)} \cap \operatorname{supp} \nabla V_{\eta} \neq \varnothing . \tag{24}
\end{equation*}
$$

In the following part of this section, the letter C denotes various positive constants depending only on $\alpha, \beta, \varepsilon$ and n.

First we accept the following (25)-(30) temporarily;

$$
\begin{equation*}
\iint_{\text {supp } \nabla V_{n}} \frac{1}{t} d x d t \leq C|I| \tag{26}
\end{equation*}
$$

$$
\begin{gather*}
\bigcup_{j=1}^{N} 2 n^{1 / 2} Q_{k(j)} \subset\left\{(x, t) \in R_{+}^{n+1}: u(x, t) \leq 1\right\}, \tag{28}\\
\sum_{j=1}^{N}\left(l\left(Q_{k(j)}\right)\right)^{n} \leq C|I|,
\end{gather*}
$$

the left-hand side of (15)

$$
\begin{equation*}
\leq \lim _{\eta \rightarrow+0} \iint_{(x, t) \in R_{+}^{n+1}} t V_{\eta}(x, t) \Delta u(x, t) . \tag{30}
\end{equation*}
$$

Then, (28) and Lemma 3 (ii) imply

$$
\begin{equation*}
\iint_{(x, t) \in Q_{k())}}|\nabla u(x, t)| \leq C\left(l\left(Q_{k(j)}\right)\right)^{n} . \tag{31}
\end{equation*}
$$

Thus,

$$
\begin{align*}
&\left|\iint_{(x, t) \in R_{+}^{n+1}} t V_{\eta}(x, t) \frac{\partial^{2} u}{\partial x_{i}^{2}}(x, t)\right|=\left|-\iint t \frac{\partial V_{\eta}}{\partial x_{i}} \frac{\partial u}{\partial x_{i}}\right| \tag{32}\\
& \leq C \iint_{\operatorname{supp} \nabla V_{\eta}}\left|\frac{\partial u}{\partial x_{i}}\right|
\end{aligned} \quad \text { by (25) } \quad \begin{aligned}
\leq C \sum_{j=1}^{N} \iint_{Q_{k(J)}}|\nabla u| & \text { by (26) } \\
\leq C \sum\left(l\left(Q_{k(j)}\right)\right)^{n} & \text { by (31) } \\
\leq C|I| & \text { by }(29)
\end{align*}
$$

and

$$
\begin{aligned}
\left|\iint_{(x, t) \in R_{+}^{n+1}} t V_{\eta} \frac{\partial^{2} u}{\partial t^{2}}\right| & =\left|\iint\left(-V_{\eta}-t \frac{\partial V_{\eta}}{\partial t}\right) \frac{\partial u}{\partial t}\right| \\
& =\left|\iint \frac{\partial V_{\eta}}{\partial t} u-\iint t \frac{\partial V_{\eta}}{\partial t} \frac{\partial u}{\partial t}\right| \\
& =|(33)-(34)|
\end{aligned}
$$

where

$$
\begin{aligned}
|(33)| & \leq \iint_{\operatorname{supp} \nabla V_{\eta}} \frac{C}{t} u(x, t) d x d t & & \text { by }(25) \\
& \leq \iint_{\operatorname{supp} \nabla V_{\eta}} \frac{C}{t} d x d t & & \text { by }(28) \text { and }(26) \\
& \leq C|I| & & \text { by }(27)
\end{aligned}
$$

and where

$$
|(34)| \leq C|I|
$$

follows from the same argument as (32). Thus we get

$$
\iint t V_{\eta}(x, t) \Delta u(x, t) \leq C|I|
$$

which combined with (30) implies (15).
Next, we prove (25)-(30). (25)-(26) are clear. (30) follows from

$$
\begin{aligned}
\{(x, t) \in & \left.R_{+}^{n+1}: V_{\eta}(x, t)=1\right\} \\
& \supset\left\{(x, t) \in R_{+}^{n+1}: \frac{1}{\beta} \psi_{\eta}(x) \leq t \leq l(I)\right\} \\
& \supset Q(I) \cap W \cap\left\{(x, t) \in R_{+}^{n+1}: t>\eta\right\}
\end{aligned}
$$

Proof of (28). Since

$$
\begin{aligned}
\operatorname{supp} \nabla V_{\eta} & \subset \operatorname{supp} V_{\eta} \\
& \subset\left\{(x, t) \in R_{+}^{n+1}: \frac{1}{\beta+\varepsilon} \psi_{\eta}(x)<t\right\} \\
& \subset\left\{(x, t) \in R_{+}^{n+1}: \frac{1}{\beta+\varepsilon} \delta(x, \Omega)<t\right\} \\
& =\bigcup_{x \in \Omega} \Gamma_{\beta+\varepsilon}(x)
\end{aligned}
$$

for each $Q_{k(j)}$ there exists an $x \in \Omega$ such that

$$
Q_{k(j)} \cap \Gamma_{\beta+\varepsilon}(x) \neq \varnothing
$$

which combined with (17) and (23) implies

$$
2 n^{1 / 2} Q_{k(j)} \subset \Gamma_{\alpha}(x)
$$

Therefore,

$$
\begin{aligned}
\bigcup_{j=1}^{N} 2 n^{1 / 2} Q_{k(j)} & \subset \bigcup_{x \in \Omega} \Gamma_{\alpha}(x) \\
& \subset\left\{(x, t) \in R_{+}^{n+1}: u(x, t) \leq 1\right\} \quad \text { by }(14)
\end{aligned}
$$

Proof of (27). Let

$$
\tilde{I}=(1+2(\beta+\varepsilon)(1+\varepsilon)) I
$$

Then
(35) $\operatorname{supp} \nabla V_{\eta} \subset \operatorname{supp} V_{\eta}$

$$
\begin{aligned}
& \subset\left\{(x, t) \in R_{+}^{n+1}: \frac{1}{\beta+\varepsilon} \delta(x, I) \leq t \leq(1+\varepsilon) l(I)\right\} \\
& \subset Q(\tilde{I})
\end{aligned}
$$

Let

$$
\begin{aligned}
& S_{1}=\left\{(x, t) \in R_{+}^{n+1}: \frac{1}{\beta+\varepsilon} \psi_{\eta}(x) \leq t \leq \frac{1}{\beta} \psi_{\eta}(x)\right\} \\
& S_{2}=\left\{(x, t) \in R_{+}^{n+1}: l(I) \leq t \leq(1+\varepsilon) l(I)\right\}
\end{aligned}
$$

Then, by (19)-(21) and (35) we have

$$
\operatorname{supp} \nabla V_{\eta} \subset\left(S_{1} \cup S_{2}\right) \cap Q(\tilde{I})
$$

which combined with (25) implies (27).

Proof of (29). Let

$$
\begin{aligned}
& \tilde{S}_{1}=\left\{(x, t) \in R_{+}^{n+1}:\right. \\
& \\
& \left.\quad \frac{1}{(1+\varepsilon)(\beta+\varepsilon)+n^{1 / 2} \varepsilon} \psi_{\eta}(x) \leq t \leq \frac{1+\varepsilon}{\beta-n^{1 / 2} \varepsilon} \psi_{\eta}(x)\right\} \\
& \tilde{S}_{2}=\left\{(x, t) \in R_{+}^{n+1}: \frac{1}{1+\varepsilon} l(I) \leq t \leq(1+\varepsilon)^{2} l(I)\right\}
\end{aligned}
$$

It follows from (23) that

$$
\begin{equation*}
\text { if } Q_{k} \cap S_{i} \neq \varnothing, \text { then } Q_{k} \subset \tilde{S}_{i} \tag{36}
\end{equation*}
$$

for $i=1,2$, respectively. (The case $i=2$ is clear. The proof for the case $i=1$ needs the Lipschitz continuity of ψ_{η}.) Thus, (36) and (24) imply

$$
\begin{equation*}
\bigcup_{j=1}^{N} Q_{k(j)} \subset \tilde{S}_{1} \cup \tilde{S}_{2} \tag{37}
\end{equation*}
$$

On the other hand, (23)-(24) and (35) imply

$$
\begin{equation*}
\bigcup_{j=1}^{N} Q_{k(j)} \subset Q((1+2 \varepsilon) \tilde{I}) \tag{38}
\end{equation*}
$$

For $(x, t) \in R_{+}^{n+1}$ let $P(x, t)=x$. Then, by (22)-(23), (37) and by the geometrical properties of \tilde{S}_{1} and \tilde{S}_{2}, we have

$$
\left\|\sum_{j=1}^{N} \chi_{P\left(Q_{k(J)}\right)}(x)\right\|_{L^{\infty}\left(R^{n}\right)} \leq C
$$

which combined with (38) implies

$$
\begin{aligned}
\sum_{j=1}^{N}\left(l\left(Q_{k(j)}\right)\right)^{n} & =\sum_{j}\left|P\left(Q_{k(j)}\right)\right| \\
& \leq C\left|\bigcup_{j} P\left(Q_{k(j)}\right)\right| \leq C|I|
\end{aligned}
$$

4. Proof of Lemma 2. In the rest of this paper, the letter C denotes various positive constants depending only on α, β and n.

We continue to assume (14).
Let

$$
\mathscr{S}(x)=\iint_{(y, t) \in R_{+}^{n+1}} \varphi\left(\frac{x-y}{\beta t}\right) t^{1-n} \Delta u(y, t) \chi_{W \cap T_{R}}(y, t)
$$

Note that

$$
\begin{gather*}
\mathscr{S}(x)=s(x ; \beta, R) \quad \text { on } \Omega \tag{39}\\
\mathscr{S}(x) \leq s(x ; \beta, R) \quad \text { on } R^{n} \tag{40}
\end{gather*}
$$

Since $\mathscr{S}(x)<+\infty$ and since $\mathscr{S}(x)$ is the balayage of the Carleson measure $t \Delta u \chi_{W \cap T_{R}}$ with respect to the kernel $\varphi(x)$, which has a compact support and which belongs to the Lipschitz class, a well-known estimate of the BMO-norm in terms of the norm of Carleson measure gives us

$$
\|\mathscr{S}\|_{\mathrm{BMO}} \leq C\left\|t \Delta u \chi_{W \cap T_{R}}\right\|_{c}
$$

which combined with Lemma 1 and (14) implies

$$
\begin{equation*}
\|\mathscr{S}\|_{\mathrm{BMO}} \leq C \tag{41}
\end{equation*}
$$

Thus, the left-hand side of (9) with (14)

$$
\begin{align*}
& =|\{\mathscr{S}(x)>\gamma, N(x ; \alpha) \leq 1\}| \tag{39}\\
& \leq|\{\mathscr{S}(x)>\gamma\}| \leq{ }^{(*)} C e^{-c \gamma}|\{\mathscr{S}(x)>1\}| \\
& \leq C e^{-c \gamma}|\{s(x ; \beta, R)>1\}| \tag{40}\\
& =\text { the right-hand side of (9) with (14), }
\end{align*}
$$

where the inequality $(*)$ follows from (41) and from an easy modification of the result of John-Nirenberg [6]. (See Lemma 2.1 of [8] for details.)
5. Proof of Theorem 1. Let $\beta^{\prime}=(\alpha+\beta) / 2$. Applying Lemma 2 with β replaced by β^{\prime} gives us

$$
\begin{aligned}
& \left|\left\{s\left(x ; \beta^{\prime}, R\right)>\gamma \lambda\right\}\right| \\
& \quad \leq\left|\left\{s\left(x ; \beta^{\prime}, R\right)>\gamma \lambda, N(x ; \alpha) \leq \lambda\right\}\right|+|\{N(x ; \alpha)>\lambda\}| \\
& \quad \leq C e^{-c \gamma}\left|\left\{s\left(x ; \beta^{\prime}, R\right)>\lambda\right\}\right|+|\{N(x ; \alpha)>\lambda\}|
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \gamma^{-p}\left\|s\left(\cdot ; \beta^{\prime}, R\right)\right\|_{L^{p}}^{p}=p \int_{0}^{+\infty} \lambda^{p-1}\left|\left\{s\left(x ; \beta^{\prime}, R\right)>\gamma \lambda\right\}\right| d \lambda \\
& \quad \leq p \int_{0}^{+\infty} \lambda^{p-1}\left(C e^{-c \gamma}\left|\left\{s\left(x ; \beta^{\prime}, R\right)>\lambda\right\}\right|+|\{N(x ; \alpha)>\lambda\}|\right) d \lambda \\
& \quad=C e^{-c \gamma}\left\|s\left(\cdot ; \beta^{\prime}, R\right)\right\|_{L^{p}}^{p}+\|N(\cdot ; \alpha)\|_{L^{p}}^{p}
\end{aligned}
$$

Since $\left\|s\left(\cdot ; \beta^{\prime}, R\right)\right\|_{L^{p}}<+\infty$, the above inequality with sufficiently large γ implies

$$
2^{-1} \gamma^{-p}\left\|s\left(\cdot ; \beta^{\prime}, R\right)\right\|_{L^{p}}^{p} \leq\|N(\cdot ; \alpha)\|_{L^{p}}^{p}
$$

Letting $R \rightarrow+\infty$ and recalling (5), we get

$$
\begin{equation*}
\|S(\cdot ; \beta)\|_{L^{p}} \leq C(\alpha, \beta, p, n)\|N(\cdot ; \alpha)\|_{L^{p}} \tag{42}
\end{equation*}
$$

On the other hand, the argument of [3], p. 166, Lemma 1 shows

$$
\begin{equation*}
c(\alpha, p, n)\|N\|_{L^{p}} \leq\|N(\cdot ; \alpha)\|_{L^{p}} \leq C(\alpha, p, n)\|N\|_{L^{p}} \tag{43}
\end{equation*}
$$

The argument of [2], p. 19, Theorem 3.4 and that of [7], p. 296, Lemma 3.3 show

$$
\begin{equation*}
c(\beta, p, n)\|S\|_{L^{p}} \leq\|S(\cdot ; \beta)\|_{L^{p}} \leq C(\beta, p, n)\|S\|_{L^{p}} \tag{44}
\end{equation*}
$$

where

$$
\begin{aligned}
& 0<c(\alpha, p, n), \quad c(\beta, p, n) \quad \text { and } \\
& C(\alpha, p, n), \quad C(\beta, p, n)<+\infty
\end{aligned}
$$

Therefore, Theorem 1 follows from (42)-(44).

References

[1] D. L. Burkholder and R. F. Gundy, Distribution function inequalities for the area integral, Studia Math., 44 (1972), 527-544.
[2] A. Calderon and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math., 16 (1975), 1-63.
[3] C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math., 129 (1972), 137-193.
[4] R. Fefferman, R. F. Gundy, M. Silverstein and E. M. Stein, Inequalities for ratios of functionals of harmonic functions, Proc. Nat. Acad. Sci. USA, 79 (1982), 7958-7960.
[5] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Academic Press 1976.
[6] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426.
[7] T. R. McConnell, Area integrals and subharmonic functions, Indiana Univ. Math. J., 33 (1984), 289-303.
[8] T. Murai and A. Uchiyama, Good λ inequalities for the area integral and the nontangential maximal function, to appear in Studia Math., 83 (1986), 47-58.
[9] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton, 1970.

Received March 14, 1986. Supported in part by Grant-in-Aid for Scientific Research No. 60740064, Japan.

Тонoku University
Sendai, Japan

