A NOTE ON HAUSDORFF'S SUMMATION METHODS

J. P. Brannen

If $\left\{a_{n}\right\}$ is a moment sequence and (Δa) is the difference matrix having base sequence $\left\{a_{n}\right\}$, then (Δa) is symmetric about the main diagonal if and only if the function $\alpha(x)$ such that $a_{n}=\int_{0}^{1} x^{n} d \alpha(x), n=0,1,2, \cdots$, is symmetric in the sense that $\alpha(x)+\alpha(1+x)=\alpha(1)+\alpha(0)$ except for at most countably many x in $[0,1]$. This property is related to the "fixed points" of the matrix H, where $H a H$ is the Hausdorff matrix determined by the moment sequence $\left\{a_{n}\right\}$.

In each of the papers [2], [3] and [5], there is reference to difference matrices of the form

$$
(\Delta d)=\left[\begin{array}{cccc}
\Delta^{0} d_{0} & \Delta^{0} d_{1} & \Delta^{0} d_{2} & \\
\Delta^{1} d_{0} & \Delta^{1} d_{1} & \Delta^{1} d_{2} & \vdots \\
\Delta^{2} d_{0} & \Delta^{2} d_{1} & \Delta^{2} d_{2} & \\
& \cdots & &
\end{array}\right]
$$

where $\left\{d_{n}\right\}$ is a moment sequence, $\Delta^{0} d_{n}=d_{n}, n=0,1,2, \cdots$ and $\Delta^{m} d_{n}=$ $\Delta^{m-1} d_{n}-\Delta^{m-1} d_{n+1}$, for $n=0,1,2, \cdots$ and $m=1,2,3, \cdots$. In [2], Garabedian and Wall discussed the importance of (Δd) having the property of being symmetric about the main diagonal, i.e. $\Delta^{m} d_{n}=\Delta^{n} d_{m}$. They also showed that if $\left\{d_{n}\right\}$ is a totally monotone sequence, then (Δd) is symmetric about the main diagonal if and only if the function $f(x)$ which generates $\left\{d_{n}\right\}$ has a certain type continued fraction expansion.

In this paper, the symmetry of (Δd) is investigated with the restriction of total monotonicity removed and a collection of necessary and sufficient conditions are given, Theorem 3, for moment sequences in general. A relation is established between the symmetry of (Δd) and the "fixed points" of the difference matrix

$$
H=\left[\begin{array}{ccc}
\binom{0}{0} & & \tag{1}\\
\binom{1}{0} & -\binom{1}{1} & \\
\binom{2}{0} & -\binom{2}{1} & \binom{2}{2} \\
& \cdots &
\end{array}\right]
$$

[^0]2. Notation, definitions, and examples. Except for some notation and definitions introduced for convenience, the notation and definitions of this paper will follow [6].

Notation. If $\left\{d_{n}\right\}$ is an infinite sequence, d^{*} and d^{\prime} denote respectively the diagonal and column matrices determined by $\left\{d_{n}\right\}$.

Definition 1. If $\left\{d_{n}\right\}$ is a number sequence such that for some function $f(x)$ on $[0,1]$,

$$
d_{p}=\int_{0}^{1} x^{p} d f(x)=\int_{0}^{1}(1-x)^{p} d f(x) ; \quad p=0,1,2, \cdots,
$$

then $\left\{d_{n}\right\}$ is called a symmetric moment sequence.
The Cesàro moment sequence $1, \frac{1}{2}, \frac{1}{3}, \cdots$ provides an example of a moment sequence satisfying Definition 1 since for $p=0,1,2, \ldots$

$$
\begin{align*}
c_{p} & \left.=\int_{0}^{1} x^{p} d x=x^{p+1} / p+1\right]_{0}^{1} \tag{2}\\
& \left.=\int_{0}^{1}(1-x)^{p} d x=-(1-p)^{p+1} / p+1\right]_{0}^{1}=\frac{1}{p+1} .
\end{align*}
$$

Definition 2. If A is a semi-infinite, lower triangular, matrix having inverse and $\left\{a_{n}\right\}$ and $\left\{d_{n}\right\}$ are sequences such that $A^{-1} d^{*} A a^{\prime}=$ $A^{-1} a^{*} A d^{\prime}$, then $\left\{a_{n}\right\}$ and $\left\{d_{n}\right\}$ are symmetric relative to A.

The Cesàro moment sequence $1, \frac{1}{2}, \frac{1}{3}, \cdots, c_{p}$ of (2), and the sequence $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots$ are symmetric relative to the matrix H of (1).
3. Theorems. Lemma. Suppose $\left\{s_{n}\right\}$ is a sequence such that $s_{p} \neq 0$ for $p=0,1,2, \cdots$ and suppose that A is a semi-infinite matrix having inverse such that $A s^{\prime}=s^{\prime}$; then,
(i) $A^{-1} s^{\prime}=s^{\prime}$,
(ii) $\left\{x_{n}\right\}$ and $\left\{s_{n}\right\}$ are symmetric with respect to A if and only if $A x^{\prime}=x^{\prime}$, and
(iii) if $A^{-1} a^{*} A s^{\prime}=A^{-1} s^{*} A a^{\prime}$ and $A^{-1} b^{*} A s^{\prime}=A^{-1} s^{*} A b^{\prime}$, then $A^{-1} b^{*} A a^{\prime}=A^{-1} a^{*} A b^{\prime}$.

Proof. (i) is obvious. For the proof of (ii), we first suppose $\left\{x_{n}\right\}$ is symmetric with $\left\{s_{n}\right\}$ relative to A so that $A^{-1} x^{*} A s^{\prime}=A^{-1} s^{*} A x^{\prime}$. Multiplying both sides on the left by A and using $A s^{\prime}=s^{\prime}$ gives $x^{*} s^{\prime}=s^{*} A x^{\prime}$. Under the hypothesis, s^{*} has inverse s^{*-1} so that

$$
\begin{equation*}
s^{*-1} x^{*} s^{\prime}=s^{*-1} s^{*} A x^{\prime}=A x^{\prime} . \tag{3}
\end{equation*}
$$

Since $x^{*} s^{\prime}=s^{*} x^{\prime}$, it follows from (3) that $x^{\prime}=A x^{\prime}$.

On the other hand, if $A x^{\prime}=x^{\prime}$,

$$
\begin{equation*}
A^{-1} x^{*} A s^{\prime}=A^{-1} x^{*} s^{\prime} \tag{4}
\end{equation*}
$$

and

$$
A^{-1} s^{*} A x^{\prime}=A^{-1} s^{*} x^{\prime}
$$

Since $s^{*} x^{\prime}=x^{*} s^{\prime}$, it follows from (4) that x and s are symmetric relative to A.

For the proof of (iii), we suppose that $a^{\prime}=s^{*-1} a^{*} s^{\prime}$ and $b^{\prime}=s^{*-1} b^{*} s^{\prime}$, from which it follows that

$$
\begin{equation*}
A^{-1} a^{*} A b^{\prime}=A^{-1} a^{*} s^{*-1} b^{*} s^{\prime} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{-1} b^{*} A a^{\prime}=A^{-1} b^{*} s^{*-1} a^{*} s^{\prime} \tag{6}
\end{equation*}
$$

Since diagonal matrices permute, it follows that (5) and (6) are equal establishing (iii).

Theorem 1. If $\left\{b_{n}\right\}$ is a moment sequence, i.e.,

$$
\begin{equation*}
b_{p}=\int_{0}^{1} x^{p} d g(x) \tag{7}
\end{equation*}
$$

$\left\{b_{n}\right\}$ and the Cesàro sequence (2) are symmetric relative to H if and only if $\left\{b_{n}\right\}$ is a symmetric moment sequence.

Proof. Let

$$
f_{n}(x)= \begin{cases}\sum_{p=0}^{n-1}\binom{n}{p}(-1)^{p} x^{p} & \text { for } n=2,4,6, \cdots \\ \sum_{p=0}^{n-1}\binom{n}{p}(-1)^{p} x^{p}-2 x^{n} & \text { for } n=1,3,5, \cdots\end{cases}
$$

Clearly, if $\left\{t_{n}\right\}$ is any number sequence, $H t^{\prime}=t^{\prime}$ if and only if

$$
\sum_{p=0}^{n-1}\binom{n}{p}(-1)^{p} t_{p}=0 \quad \text { for } n=2,4,6, \cdots
$$

and

$$
\sum_{p=0}^{n-1}\binom{n}{p}(-1)^{p} t_{p}-2 t_{n}=0 \quad \text { for } n=1,3,5, \cdots
$$

Thus if $\left\{b_{n}\right\}$ is defined as in (7), $H b^{\prime}=b^{\prime}$ if and only if

$$
\begin{equation*}
\int_{0}^{1} f_{n}(x) d g(x)=0 \quad \text { for } n=1,2,3, \cdots \tag{8}
\end{equation*}
$$

But, $f_{n}(x)=(1-x)^{n}-x^{n}$ for $n=1,2,3, \cdots$ so that

$$
\begin{equation*}
\int_{0}^{1} f_{n}(x) d g(x)=\int_{0}^{1}(1-x)^{n} d g(x)-\int_{0}^{1} x^{n} d g(x) \tag{9}
\end{equation*}
$$

and consequently (8) holds if and only if $\left\{b_{n}\right\}$ is a symmetric moment sequence. It follows from (9) and (2) that $H c^{\prime}=c^{\prime}$ and from the preceding Lemma that $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are symmetric relative to H.

Conversely, if $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are symmetric relative to H, it follows that $H b^{\prime}=b^{\prime}$, and if $\left\{b_{n}\right\}$ is defined as in (7), then $\left\{b_{n}\right\}$ is a symmetric moment sequence.

Theorem 2. If $g(x)$ is of bounded variation on $[0,1]$ and $\left\{z_{n}\right\}$ is the moment sequence determined by $g(x)$, the following two statements are equivalent:
(i) $\left\{z_{n}\right\}$ is a symmetric moment sequence, and
(ii) there do not exist uncountably many x in $[0,1]$ for which $g(x)+g(1-x) \neq g(1)+g(0)$.

Proof. Suppose (i). Then let $u=1-x$ so that,

$$
z_{p}=\int_{0}^{1}(1-x)^{p} d g(x)=\int_{0}^{1} u^{\nu} d g(1-x)=-\int_{0}^{1} u^{p} d g(1-u) .
$$

Thus, $\int_{0}^{1}(1-x)^{p} d g(x)=-\int_{0}^{1} x^{p} d g(1-x)$ so that for $p=0,1,2, \cdots$,

$$
\begin{equation*}
\int_{0}^{1} x^{p} d[g(x)+g(1-x)]=0 \tag{10}
\end{equation*}
$$

Since $g(x)-g(1-x)$ is of bounded variation on $[0,1]$, (10) implies that for every $k(x)$ continuous on $[0,1], \int_{0}^{1} k(x) d[g(x)+g(1-x)]=0$. This, [4, p. 69], implies (ii). Reversing the steps leading to (10) shows that (ii) implies (i).

An interesting example of a function satisfying (ii) is provided by Evans in [1].

Theoremi 3. Suppose $g(x)$ is of bounded variation on $[0,1]$ and suppose $\left\{a_{n}\right\}$ is the moment sequence generated by $g(x)$. The following statements are equivalent:
(i) $\left\{a_{n}\right\}$ is a symmetric moment sequence,
(ii) $H a^{\prime}=a^{\prime}$,
(iii) $\left\{a_{n}\right\}$ and the Cesàro moment sequence $\left\{c_{n}\right\}$ are symmetric relative to H, and
(iv) the difference matrix ($\Delta \alpha$) having base sequence $\left\{a_{n}\right\}$ is symmetric about the main diagonal.

Proof. Theorem 1 implies the equivalence of (i), (ii), and (iii).
(i) implies (iv) provided
(11) $\int_{0}^{1} x^{m}(1-x)^{n} d g(x)=\int_{0}^{1} x^{n}(1-x)^{m} d g(x) \quad$ for $m, n=0,1,2, \cdots$.

Let $u=1-x$ so that $\int_{0}^{1} x^{m}(1-x)^{n} d g(x)=\int_{1}^{0}(1-u)^{m} u^{n} d g(1-u)$. Thus (11) may be rewritten as

$$
\begin{array}{rl}
-\int_{0}^{1}(1-x)^{m} x^{n} & d g(1-x)=\int_{0}^{1} x^{n}(1-x)^{m} d g(x) \tag{12}\\
& =\int_{0}^{1} x^{n}(1-x)^{m} d[g(x)+g(1-x)]=0
\end{array}
$$

That (12) is the case for $\left\{\alpha_{n}\right\}$ a symmetric moment sequence follows from (ii) of Theorem 2. (iv) implies (ii) since (iv) implies that $\alpha_{n}=$ $\Delta^{n} A_{0}$, which is the same as saying that $H a^{\prime}=a^{\prime}$. Thus the equivalence of the four statements is established.

I am grateful to Professor H. S. Wall for some comments which have been of considerable value in the preparation of this paper.

References

1. G. C. Evans, Calculation of moments for a Cantor-Vitali function, Sixth Herbert Ellsworth Slaught Memorial Paper, Mathematical Association of America, (1957), 22-27.
2. H. L. Garabedian and H. S. Wall, Hausdorff methods of summation and continued fractions, Trans. Amer. Math. Soc. 48 (1940), 185-207.
3. H. L. Garabedian, Einar Hille, and H. S. Wall, Formulations of the Hausdorff inclusion problem, Duke Math. J. 8 (1941), 193-213.
4. T. H. Hildebrandt, Introduction to the theory of integration, Academic-Press, New York, 1963.
5. W. T. Scott and H. S. Wall, The transformation of series and sequences, Trans. Amer. Math. Soc. 51 (1942), 255-279.
6. H. S. Wall, Analytic theory of continued fractions, van Nostrand, New York, 1948.

Sandila Laboratory

[^0]: Received March 15, 1964. This work was performed under the auspices of the United States Atomic Energy Commission.

