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A NOTE ON HAUSDORFF'S SUMMATION METHODS

J. P. BRANNEN

If {an} is a moment sequence and (Δa) is the difference
matrix having base sequence {an}, then (Δa) is symmetric about
the main diagonal if and only if the function a{x) such that

an — 1 xnda(x), n — 0,1, 2, , is symmetric in the sense that
Jo

a(%) + a(l + x) = α(l) + «(0) except for at most countably many
x in [0,1], This property is related to the "fixed points" of
the matrix H, where HaH is the Hausdorff matrix determined
hy the moment sequence {an}.

In each of the papers [2], [3] and [5], there is reference to dif-
ference matrices of the form

(Δd) =

Δ°d
0

J°d
2

Δ
ι
d

2

where {dn} is a moment sequence, Δ°dn = dn, n — 0, 1, 2, and Δmdn =
Δm~λdn - Δm~xdn+1, for n = 0,1, 2, and m = 1, 2, 3, . In [2],
Garabedian and Wall discussed the importance of (Δd) having the
property of being symmetric about the main diagonal, i.e. Δmdn = Δndm.~
They also showed that if {dn} is a totally monotone sequence, then
(Δd) is symmetric about the main diagonal if and only if the function
f(x) which generates {dn} has a certain type continued fraction expansion.

In this paper, the symmetry of (Δd) is investigated with the re-
striction of total monotonicity removed and a collection of necessary
and sufficient conditions are given, Theorem 3, for moment sequences
in general. A relation is established between the symmetry of (Δd)
and the "fixed points" of the difference matrix
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2Φ Notation, definitions, and examples* Except for some notation
and definitions introduced for convenience, the notation and definitions
of this paper will follow [6].

NOTATION. If {dn} is an infinite sequence, d* and d' denote re-
spectively the diagonal and column matrices determined by {dn}.

DEFINITION 1. If {dn} is a number sequence such that for some
function f(x) on [0, 1],

dp = [x'dfix) = \\l - xYdf(x) p = 0, 1, 2, ,
Jo Jo

then {dn} is called a symmetric moment sequence.
The Cesaro moment sequence 1, i , i , provides an example of a

moment sequence satisfying Definition 1 since for p = 0, 1, 2,

cp= [xpdx =
Jo

= Γ(l - x)*dx = - ( 1 - PY+1/P + 1? = — i — .
Jo Jo p + 1

D E F I N I T I O N 2. If A is a semi-infinite, lower t r i a n g u l a r , m a t r i x
hav ing inverse and { α j and {dn} a re sequences such t h a t A~Ύd^Aaf =
A~~λa*Adf, t h e n { α j and {c£J are s y m m e t r i c re lat ive to A.

The Cesaro moment sequence 1, i , i , •••,<?„ of (2), and t h e sequence
1> 4, i , J , a re symmetr ic re lat ive to t h e m a t r i x H of (1).

3* T H E O R E M S . L E M M A . Suppose {sn} is a sequence such that
sp Φ 0 for p — 0, 1, 2, cmd suppose that A is a semi-infinite matrix
having inverse such that As' — s'; £/kβw,

( i ) A-V = 8',
(ii) {xn} and {sn} are symmetric with respect to A if and only

if Ax' — x', and
(iii) if A-WAs' = i^sMα' and A'^As' = A-VA&',

Proof, (i) is obvious. For the proof of (ii), we first suppose {xj
is symmetric with {sn} relative to A so that A~1x*As' = A~ιs*Axf.
Multiplying both sides on the left by A and using As' = s' gives
x*s' — s*Ax'. Under the hypothesis, s* has inverse s*"1 so that

( 3) s * - 1 ^ ' = 8*-1e*Aa' = ila/ .

Since x*s' — 8*x\ it follows from (3) that x' — Ax'.
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On the other hand, if Axf — x'',

( 4 ) A-WAs' = A~ιx*sf

and

A-WAx' = A-χ8*x' .

Since s*xr — x*sf, it follows from (4) that x and s are symmetric
relative to A.

For the proof of (iii), we suppose that a! — 3*^*3' and bf — s*~16*s',
from which it follows that

( 5 ) A'WAV = A-1α*s*"16*β'

and

( 6 ) A-WAa! = A-Ws^Ws' .

Since diagonal matrices permute, it follows that (5) and (6) are equal
establishing (iii).

THEOREM 1. If {bn} is a moment sequence, i.e.,

( 7 ) bp= [xpdg(x) ,
Jo

{bn} and the Cesάro sequence (2) are symmetric relative to H if and
only if {bn} is a symmetric moment sequence.

Proof. Let

Σ ( J J ( - 1 ) ^ for ̂  = 2,4,6, ...

Σ ( ^ ) ( - l ) ^ - 2^1 for w = 1, 3, 5, . .

Clearly, if {ίj is any number sequence, ift' = £' if and only if

Σ (™\-l)ptp = 0 for n = 2, 4, 6,

and
n-l /M\

V ί l ^ — Λ\H — 9f — 0 f o r ΎI — Λ % ^ . .
P=o \/^ /

Thus if {&„} is defined as in (7), Hb' = δ' if and only if

(8 ) [fn(x)dg(x) = 0 for n = 1, 2, 3, .
JO

But, /Λ(α) = (1 - a;)w - x* for n = 1, 2, 3, - so that
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( 9 ) \fn(x)dg{x) = Γ(l - xfdg(x) - [xndg(x) ,
Jo Jo Jo

and consequently (8) holds if and only if {6J is a symmetric moment
sequence. It follows from (9) and (2) that Hcr — cr and from the
preceding Lemma that {bn} and {cn} are symmetric relative to H.

Conversely, if {6J and {ej are symmetric relative to H, it follows
that HV — V, and if {6J is defined as in (7), then {bn} is a symmetric
moment sequence.

THEOREM 2. If g(x) is of bounded variation on [0, 1] and {zn}
is the moment sequence determined by g(x), the following two state-
ments are equivalent:

( i ) {zn} is a symmetric moment sequence^ and
(ii) there do not exist uncountably many x in [0, 1] for which

g(x) + 0(1 - x) Φ 0(1) + g(0).

Proof. Suppose (i). Then let u — 1 — x so that,

zp = Γ(l - x)*dg(x) = ( ^ ^ ( l - a?) = -[u*>dg(l - u) .
Jo Jo Jo

Thus, Γ ( l - x)pdg(x) = - Ϋ x*dg{l - x) so that for p = 0,1, 2, ,
Jo Jo

(10) (1χ*d[g{x) + ff(l - x)] = 0 .
Jo

Since #(#) — ̂ (1 — α?) is of bounded variation on [0, 1], (10) implies

that for every k(x) continuous on [0, 1], \ k(x)d[g(x) + g(l — x)] = 0.
Jo

This, [4, p. 69], implies (ii). Reversing the steps leading to (10) shows
that (ii) implies (i).

An interesting example of a function satisfying (ii) is provided
by Evans in [1].

THEOREM 3. Suppose g(x) is of bounded variation on [0,1] and
suppose {an} is the moment sequence generated by g{x). The following
statements are equivalent:

( i ) {an\ is a symmetric moment sequence^
(ϋ) Ha' = a',
(iii) {an} and the Cesάro moment sequence {cn} are symmetric

relative to H, and
(iv) the difference matrix (Δa) having base sequence {an} is sym-

metric about the main diagonal.

Proof. Theorem 1 implies the equivalence of (i), (ii), and (iii).
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(i) implies (iv) provided

(11) f V ( l - x)ndg(x) = [xn(l - x)mdg(x) for m, n = 0, 1, 2, .
Jo Jo

Let u = 1 - x so that ( V ( l - x)ndg{x) = Γ(l - u)mundg(l - w). Thus
Jo Ji

(11) may be rewritten as

(12) - (1 - x)mxndg(l - x) = xn(l - x)mdg{x)
Jo

= ( V ( l - x)md[g(x) + 9(1 -x)] = O .

That (12) is the case for {αj a symmetric moment sequence follows
from (ii) of Theorem 2β (iv) implies (ii) since (iv) implies that an —
AnAϋJ which is the same as saying that Ha! — a!. Thus the equivalence
of the four statements is established.

I am grateful to Professor H. S. Wall for some comments which
have been of considerable value in the preparation of this paper.
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