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STANDARD ALGEBRAS

R. D. SCHAFER

In 1948 A. A. Albert defined a standard algebra Sί by the
identities (x, y, z) + (z, x, y) — (x, z, y) = 0 and

(x, y, wz) + O, y, xz) + (z, y, wx) = 0 .

Standard algebras include all associative algebras and com-
mutative Jordan algebras. The radical 9ΐ of any finite-dimen-
sional standard algebra ?! is its maximal nilpotent ideal. It
is known that any semisimple standard algebra is a direct
sum of simple ideals, and that any simple standard algebra
is either associative or a commutative Jordan algebra.

In this paper we study Peirce decompositions and deriva-
tions of standard algebras. We prove the Wedderburn principal
theorem for standard algebras of characteristic Φ2 (announced
in 1950 by A. J. Penico for characteristic 0): if 21/91 is separable,
then 8Ϊ = © + 51 where © is a subalgebra of % © ̂  «/9fc. For
standard algebras of characteristic 0 we prove analogues of
the Malcev-Harish-Chandra theorem and the first Whitehead
lemma, and we determine when the derivation algebra of Sί
is semisimple.

Let Sί be a nonassociative algebra over a field F of characteristic

Φ 2. In [2] Albert called % a standard algebra in case the identities

(1) (x, y, z) + (z, x, y) - (x, z, y) = 0

and

( 2) (x, y, wz) + (w, y, xz) + (z, y, wx) = 0

are satisfied, where (x,y,z) denotes the associator

(x, y, z) = (xy)z - x{yz) .

Clearly every associative algebra is a standard algebra. In every non-
associative algebra one has the identity

(x, y, z) + (z, x, y) - (x, z, y) = [xy, z] - [x, z]y - x[y, z]

where [x, y] denotes the commutator [x, y\ — χy — yx. Hence (1) is

equivalent to

( 3 ) [xy, z] = [x, z]y + x[y, z] ,

so that every commutative algebra satisfies (1). Thus every commuta-

tive Jordan algebra of characteristic Φ 2 is a standard algebra.

If the characteristic is Φ 3, then (2) implies
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( 4 ) (X, y, X2) = 0.

We shall define 21 to be a standard algebra in case (1), (2) and (4)
are satisfied. Condition (4) is redundant except for characteristic 3.

Put z = x in (1). Then

( 5 ) (a?, y, x) = 0

for all x, y in 21; that is, SI is flexible. Hence, as Albert proved,
every standard algebra is a noncommutative Jordan algebra [18, p.
140] and is therefore power-associative. The linearized form of (5) is

(x, y, z) + (z, y, x) = 0 .

Using flexibility, it is easy to see that, if an identity element 1 is
adjoined to a standard algebra, the result is a standard algebra.

Interchange x and z in (2), and subtract, in order to obtain

( 6 ) (w, y, [x, z\) = 0

for all w,x,y,z in 31. Defining a nonassociative ring to be accessible
in case (1) and (6) are satisfied, Kleinfeld proved in [8] that any
simple accessible ring (of arbitrary characteristic) is either associative
or commutative, implying that any simple standard ring is either
associative or a commutative Jordan ring.

Albert had proved the latter result for finite-dimensional simple
standard algebras in [2]. In that paper he also proved that any
finite-dimensional standard nilalgebra of characteristic Φ 2 is nilpotent.
Let the radical of a finite-dimensional standard algebra 21 of charac-
teristic Φ 2 be its maximal nilpotent (= solvable = nil) ideal ϊi, and
call 2t semisimple in case 31 = 0. Then 2I/9Ϊ is semisimple. Albert
showed, for standard algebras of characteristic 0, that 31 coincides
with the radical of the commutative Jordan algebra 2ί+, in which
multiplication is defined by

(7) x-y = —(xy + yx) ,

and that any semisimple standard algebra 21 is the direct sum

(8) 2i = (s, e @2 e . . . e @r

of simple ideals @ί#

The restriction to characteristic 0 is not necessary, as may be
seen as follows. A nodal algebra is a power-associative algebra 2t
with 1 over F such that every element of 21 is of the form al + z
where a is in F and z is nilpotent, and 2t is not of the form 21 —
Fl + 31 for 31 a nilsubalgebra of 2t. Now every nodal algebra has a
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homomorphic image which is a simple nodal algebra [17, p. 117]. But
any simple standard algebra is either associative or a commutative
Jordan algebra, and therefore cannot be a nodal algebra. Since %κ

is a standard algebra for any scalar extension K of the base field,
%κ is without nodal subalgebras, and Theorems 3 and 4 of [17] imply
that, for characteristic Φ 2, 9̂  coincides with the radical of SL+ and
that any semisimple standard algebra 2ί is a direct sum (8) of simple
(associative or commutative Jordan) ideals.

In [13] Penico announced the Wedderburn principal theorem for
standard algebras of characteristic 0, together with the essential por-
tions of our Lemma 1 and Theorem 3 which appear in § 4. However,
his proofs of these results, which are generalizations to standard
algebras of his theorems in [12] for commutative Jordan algebras,
have never been published.

Albert proved in [2] several identities which will be useful in
this paper. Using flexibility, we may rewrite (2) as

( 9 ) (wx, y, z) - (w, y, xz) + (wz, y, x) = 0 ,

or as

(10) (wx, y, z) + (xz, y, w) - (xf y, wz) = 0 .

Using (6) and flexibility, (10) may be rewritten as

(11) (x, y9 zw) — (xz, y, w) + (z, y, xw) = 0 .

In terms of right and left multiplications of SI, (9) and (11) are
equivalent to

(12) Ry(xz) — RyRxz + Rχ(Ryz ~ Ry^z) + Rz(Ryx ~ Ry^x)

and

(13) L,xz)y - LyLxz + Lx(Lzy - LyLz) + Lz(Lxy - LyLx)

for all x, y, z in any standard algebra St. Then (12) and (13) imply

(14) Rxs = SRXRX2 - 2RI

and

(15) Lxz = SLXLX2 - 2LI

for all x in §ί.

2* The Peirce decomposition. Let 21 be a standard algebra
over F of characteristic Φ 2. Since §1 is a noncommutative Jordan
algebra, we have a Peirce decomposition
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2ί - SI, + Six + Sto

relative to any idempotent e in §t, where

21; = {a G 2ί I ea = ae = ίa} , i = 0,1,

and

21 ̂  — {a e 211 ea + αβ = a} .

It is known [11, p. 118] that 21, and 2I0 are orthogonal subalgebras of
21, and that

2I,2Ii s 2tχ , 21x21, s Stj ,

2ίo2tέ s % , «*Sto S Stj

Now (14) and (15) imply that

(Re - I)(Re - H)R§ = 0

and

(L. - J)(Lβ - iI)L§ = 0 .

Hence 2Ii is the vector space direct sum

3tέ - 2ί10 + 2 t M + 2t01

where

(16) ST̂  = {α G 211 βα = m, ae = ja} , (i + j = 1; i, i = 0, J, 1) .

That is, any standard algebra 21 has the Peirce decomposition

(17) 21 = 21, + 2I10 + S t H + 2ί01 + 2t0

relative to the idempotent e. (When e is not the only idempotent
involved, we write 2Ii(e), 2ίlo(e), etc.) We shall prove that products of
these Peirce spaces are contained in the spaces indicated in the table
below:

(18)

st,
2 t 1 0

2 I M

Stβi

si.

Si,

st,
0

stέ έ

Stβi

0

Sl,o

St,0

0

0

Sto

0

* * *

«**
0

st, + sto

0

2ί 0 1

0

Si,

0

0

2t 0 1

SIo

0

Sίio

s t 4 4

0

Sto
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Put w = z = β, x = xk e 2Ifc (k = 0,1), y = ^ e 21^ (i, i = 0, i, 1)
in (10) to obtain (xk, yih e) = 0, or (xkyiS)e = i α ^ , implying

2t,3ί10 s (2ί10 + Sto) Π a 4 = 2I10 ,

§ifcsi01 s (a, + SΪ01) n stj = 2i0 1.

Putting w = x = e, y = xk, z = ^ in (6), we have

0 = (e, %, [β, 2/i,-]) = (i - i)(e, αft, τ/ίy) = (i - j){kxkyiά -

so that

§ίo2ίlo s (2ί01 + »o) Π §ί10 - 0 ,

s t ^ s (Si, + st10) n Sox = o .

We have verified the first and fifth rows of table (18). By flexibility
we have (e, 2/«, , xk) = 0 and (i — j)(yii9 xk, e) = 0, from which the first
and fifth columns of (18) may similarly be verified.

Put z = e, x = α ί y e 21̂ -, y = ykle Stfcί (i, i , fc, ί = 0, i , 1) in (3) to
obtain [a^ ?/̂ , e] = 0* — i + Z - k)xiSykl. Writing

XijVki = Λi + α10 + a n + α01 + α0 (αp G SIP, apq e %pq) ,

we have [xiάyku e] = — α10 + α01, so that

S ί ^ s Six + a έ i + «o if i - i + ϊ - fc = 0 ,

while

a^Stw g 2ί10 + 2I01 if i - i + I - & =* 0 .

Also (j - ί + I — k + l)α10 = ( i — i + Z - A: - l)α01 = 0, implying

5I10SI10 = StoxSto! = 0 .

Put w = Xn, x = I/*!, ?/ = z = e in (9) to obtain

((s<;2/*z)e)e - (Xijykι)e + (j - Λ)(i - Z)ajo i/AI = 0 ,

or

~ ~jHh + (̂ " ~ * W "" ^)(αi + αi° + α έέ + α o 1 + αo) = 0 .

Hence

ii z) =^ o f

while

St«Slt, S §1, + 2t10 + 2C01 + Sto if ( i - ft)(i - ϊ ) = 0 .
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Then

St l o3t 4 4 £ (2I10 + 2I01) Π S t 4 4 = 0 ,

St103t01 £ (2ti + 8 I 4 i + SIo) Π (SI, + St10 + St01 + 2I0) = St, + 2I0 ,

st 4 4 st 1 0 £ (st10 + »oi) n s t 4 4 = o ,
s t 4 4 s t 4 4 s (2ix + s t 4 4 + sio) n (st, + 2i10 + st01 + st0) = st, + 2i0,

St4iSt01 £ (St10 + 2I01) n St 4 4 = 0 ,
2I012I10 £ (21, + 2Iχ i + Sto) Π (21, + 2I10 + 2I01 + 2t0) = 21, + 2I0 ,

St0 1St4 4 £ (2I10 + 2I01) n S t 4 4 = 0 .

I t remains to be shown t h a t

(19) 2I102I01 £ 21, + Sto implies 2I102I01 £ 21,

and

(20) 2IO12I1O £ 21, + Sto implies 2IO,2I1O £ 2I0 .

L e t Xij-yji = a, + a0 (ί Φ j ; i,j = 0 , 1 ) . P u t t i n g w = x = e, y = xijf

z = yH in (6), we have 0 = (e, xiS, [e, ydi\) = (j - i)(m, + ίa0 - α,), or
(i — l)α, + ia0 = 0 since i Φ j . Hence α0 = 0 if i = 1, while α, = 0 if
i = 0; that is, (19) and (20) hold. This completes the verification of
table (18).

Relative to a set of pairwise orthogonal idempotents e19e2, * ,et

in a standard algebra 21, the Peirce decomposition (17) may be refined.
However, the notation is unavoidably cumbersome. The only Peirce
decomposition relative to a set of pairwise orthogonal idempotents
which we shall actually use is the less complicated one which is known
for noncommutative Jordan algebras [11, p.188]. We may restrict
ourselves to the case where 21 contains 1 = eL + e2 + ••• + et, and
write fi = 1 — e4. Then 21 is the vector space direct sum

where

« « = »i(*i) = 3UΛ) (ϊ = l , ••-,«),

and

SIίy = 8tyί = 2ί i(β,) Π Slέ(ey) (i Φ j ; i, i - 1, , ί) .

(There can be no confusion with St^ in (16), since here both subscripts
are taken from the set 1, 2, •••,£, whereas in (16) a t least one is not.)
We have, for distinct i,j,k,l the known properties:
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s si,,,
= o

The subalgebra Sl̂ β,; + ey) is

(22) 3 1 ^ + e5) = 3t« + SI,, + SI,, ,

and βi + e, is its identity element.
McCrimmon's results on noncommutative Jordan algebras with a

set e19e2, * ,et (t >̂ 3) of connected idempotents may be applied to
standard algebras. An element x in SI (with 1) is called regular
[10, p. 943] in case there exists y in §1 satisfying

Xy = yx = 1 9 χ2y = τ/#2 = x .

Then et and ed(i Φ j) are said to be connected with indicator φ — 0
(resp. <£> = 1/4) in case there is an element x in

(resp. a; in 2tjj(et ) n 2ίjj(βi)) which is regular in the subalgebra
SI.. + §ί.y + SI,-,- [11, p. 190]. McCrimmon has proved [11, p. 191] that,
in case 1 = eι -{- e2 -\- -f et is the sum of t ^ 3 connected orthogonal
idempotents with indicator φ = 0 (resp. <p = 1/4), then §ί is associative
(resp. a commutative Jordan algebra).

The radical 3 ^ of %{ is

(23) 5RW = St« Π 9̂

where 9ΐ is the radical of SI. For this is true in the commutative
Jordan algebra §ί+ [7, §7.6, Lemma 1], Since we have seen in §1
that the radical of §I+ is 5R+, we have %, = W± = SI« Π 5Ji+ - 3t« Π 91.

If a standard algebra St is associative, then it is well known that
the Peirce space 3111 relative to any idempotent e is 0. We remark
that this readily implies that, if 35 is an ideal in a standard algebra
31, and if §1/35 is associative, then §ίi i SS5. Similarly, if SI/35 is a
commutative Jordan algebra, then 2ί10 + SI01 S 35.

3* Derivations* A derivation D of a nonassociative algebra St
over î 7 is a linear operator on SI satisfying

(24) (χy)D - (xD)y + x(yD)

for all x,y in SI. (More generally, if Si is a subalgebra of an algebra
35 over F, a derivation of SI into 35 is a linear mapping D of 31 into
35 satisfying (24) for all x, y in SI.) The set ®(SI) of all derivations
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of a nonassociative algebra 31 is a Lie algebra, the derivation algebra

In terms of right and left multications of an algebra SI, (24) is
equivalent to

(25) [Ry, D] = RyD

for all y in SI, and to

(26) [Lx1 D] = LxD

for all x in SI. The Lie multiplication algebra 8(31) of a nonassociative
algebra SI is the enveloping Lie algebra of the right and left multipli-
cations of SI. A derivation D of 31 is called inner in case D is in
8(31) [18, p. 21].

It is well known [18, p. 92] that, in any commutative Jordan
algebra $ of characteristic Φ 2, the operators [Rx, Ry] are derivations
for all x, y in $. Indeed, if £5 contains 1, then the inner derivations
of $ are exactly the operators

(27) Σ [ ^ , RVi]; xi9Vi in 3 .
i

(Since in this paper we shall encounter commutative Jordan algebras
which do not necessarily contain 1, we shall simplify matters here by
reserving the term inner derivation of a commutative Jordan algebra
for the derivations having the form (27).)

If 31 is a standard algebra, so that the algebra SI+ defined by
(7) is a commutative Jordan algebra, then the operators [Rt, Ry]y

where

are derivations of 3I+. Then the inner derivations of 3I+ are sums of
such operators [Rt, Ry]. According to the following theorem, they
are actually derivations of 31.

THEOREM 1. Let 31 be a standard algebra of characteristic Φ 2.
Then the following are derivations of 31:

(28)

(29)

and

(30)

for all x,

[Rx + Lx1 Ry

y in 31.

Rd — Ld

[Lx, Ry]

+ Ly] = RΪX,yl — LlXfyΛ

for all d in 31;

+ 4[LX, Ry]
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Proof. The operators Rd — Ld are derivations by (3). Hence
[Rx, Ry - Ly] = Rίx>y} and [Lx, Ry - Ly] = L[x>2/] by (25) and (26). Since
[Rx, Ly] = [Lx, Ry] by flexibility, we have

(31) [Rx, Ry] = RίXfyl + [Lx, Ry] ,

(32) [Lx, Ly] = — LiXfy] + [Lxf Ry] ,

and the equality which is indicated in (30). Then (29) is a derivation
of 31 (resp. 30) if and only if (30) is a derivation of 2ί (resp. Sί+).
But we already know that (30) is a derivation of A+. Hence

(33) [Rz + Lzy [Lx, Ry]] = R(X,z,y) + L{X}Z>y)

for all x,y,z in 2ί. Now (6), (1) and flexibility imply that

(x, [w,z],y) = 0

for all x, y, z, w in §ί, or

(34) Rz[Lxy Ry] - LZ[LX, Ry] .

Since Rw — Lw is a derivation of 21, we have

[(x, z, y), w] = ([x, w], z, y) + (x, [z, w], y) + (x, z, [y, w\) .

But each term on the right side of this equation is 0, so

(35) [(x, z, y), w] = 0

for all x, y, z, w in 21 [8, p. 336], or

(36) L { x > Z } y } = R(X,z>y) .

Interchanging w and z in (35), we have [(x, w, y), z] = 0, so that

(37) [Lx, Ry]Rz = [La, Ry]Lz .

Then (33), (34), (36) and (37) imply [R,, [Lx, Ry]] = R(x,z,y) = RaiLxtSylf

so that [Lx1 Ry] is a derivation of 21.

COROLLARY. Let % be α standard algebra over F of characteristic
Φ 2. Then any inner derivation of the commutative Jordan algebra
2t+ is a derivation of 2ί.

THEOREM 2. The Lie multiplication algebra 8(31) of any standard
algebra 2t of characteristic Φ 2 is

= 22(31) + L(St) + [L(St) f 2?(St)] ,

where i?(2I) (resp. L(2ί)) denotes the set of all right (resp. left)
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multiplications of 31.

Proof. It is sufficient to verify that

8 = JB(St) + L(3I) + [L(3I), 72(51)]

is a Lie algebra. Now (31) and (32) imply that [Rx, Ry] and [LXJ Ly]
are in 8 for all x,y in SI. Also Theorem 1 implies that

[Rz, [Lx, Ry]] = R(XfZ,y)

and

[Lz, [Lx, Ry]] = L i X y Z j V )

are in 8 for all x,y,z in SI by (25) and (26). Finally,

[[La, Rb], [L,, Ry]] = - [[Rb, [Lx, Ry]]y La] - [[[Lx, Ry], La]y Rb]

— [La, R(x,b,y)] + [L(x,a,y), Rb]

is in 8 for all α, 6, x, y in 31 by the Jacobi identity.

COROLLARY. Let SI be a standard algebra with 1 over F of
characteristic Φ 2. The inner derivations of SI are the operators

(38) Rd~Ld + Σ [Lx., RVi] , d, xiy yt in SI.
i

Proof. Let D = Rd + Lf + Σ * [̂ ^̂  β2/J ί n S(SI) be a derivation of
31. Then 0 = ID = d + /, implying D has the form (38). But any
such D is a derivation by Theorem 1.

4* The Wedderburn principal theorem* Our chief result in
this section is a generalization of both the Wedderburn principal
theorem for associative algebras [l, p. 47] and its analogue for com-
mutative Jordan algebras [12; 7, Chapter VII]. We shall use both
of these theorems in its proof. As we have indicated in §1, Penico
has announced this result (Theorem 4) for characteristic 0, together
with the essential portions of Lemma 1 and Theorem 3, in [13].

LEMMA 1. Let 33 be an ideal of a standard algebra SI of charac-
teristic Φ 2. Then the following are also ideals of 31:

(39) 3I33
2
 + S3

2
 = 33

2
3I + S3

2
 ,

(40) S3
2
33 + 3333

2
 ( = S3

3
) .

Proof. Put x = b1 e S3, y = b2 e S3, z = a e SI in (1) to obtain

(bj)2)a = bjf>za) — (abjbz + a(bj>2) + ( M ) ^ - δ^αδa)
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in 2ί332 + 332, implying 3323t g 2I332 + 332. Similarly, 2ΐ332S 3322I + 332.
This establishes the equality in (39). To see that 2I332 + S32 is a left
ideal of 21, we put a? = c e 31, y = α G 21, w = &! G 33, z = 62 G 33 in (2).
We obtain

in 2ίS32 + S32, so that 2l(2ί332 + S32) S 2ί332 + S32. Similarly, 3S22ί + S32

is a right ideal of 2t, so that (39) is an ideal of 2ί. To prove that
(40) is an ideal of 2ί, we first put x = 6 ^ S3, y = 6 2 G33, 2 = αe2ί in
(3) to see that

(41) [S32, 21] g S32 .

Then, putting w = b, e 33, x = 62 e 33, y = δ3 G 33, 2 = α e 2ί in (10), we
have ((bfi^a = (bLb2)(bΆa) - ((b^b^b, + (b2a)(bA) + (b2bΆ)(b1a) - b^hφ.a))
in 33233 + 33332, implying (33233)2I S 33 2^ + 33332. Similarly, 2ί(33332) S

33332 + 33332. P u t α? = 6 e 33, /̂ e 332, z = a e 2ί in (3) to obtain

(by)a = a(by) + [6, α]τ/ + b[y, a]

in 2ί(33332) + 3S332 by (41), implying (33332)2I S S3233 + 33332. Similarly,
2I(33233) S 33233 + 33332. This proves that 333, defined as 3S3 = 3323S + 3S332,
is an ideal of 21.

In any nonassociative algebra 21 the derived series

(42) 33(0) 2 33(1) B 333(Λ) B •

of 33 is defined by

33(0) = S3 , 33(ί+1) = (33(i))2 ,

and 33 is called solvable in case there is some k for which 33(A;) = 0.
If 33 is an ideal of 21, the terms of the derived series (42) are not in
general ideals of 2t. By Lemma 1 we do obtain from any ideal 33 in
a standard algebra 21 a descending chain

(43) 33<o> a ss(1> a a ^<k> a

of ideals 33<ΐ> of 21 defined b y

(44) 33<°> = 3 3 , 33< i + 1 >

Following Jacobson's terminology for commutative Jordan algebras,
we call (43) a Penico sequence and call the ideal 33 Penico solvable in
case there is some k for which 33α> = 0.

If 33 is Penico solvable, then 33 is solvable, since
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SS^ a SS(ί) for i = 0,1, 2, .

The converse is known for finite-dimensional commutative Jordan
algebras [12; 7, Chapter V]. We model our proof for standard algebras
on an unpublished concise proof by K. McCrimmon for the commuta-
tive Jordan case.

The multiplication algebra SK(Sί) of any nonassociative algebra
% is the enveloping associative algebra of the right and left multipli-
cations of St. If S3, (£ are ideals of SI, then

is an ideal of 3K(2I). L e m m a 1 implies t h a t , if S3 is an ideal of a
standard algebra 2ί, then

(45) Q = [S33: S3]

is an ideal of 3K(2t). Also

(46)

THEOREM 3. Any solvable ideal S3 in a finite-dimensional stand-
ard algebra 31 over F of characteristic Φ 2 is Penico solvable.

Proof. It is sufficient to prove that, if S3 is any ideal of finite
codimension in a (possibly infinite-dimensional) standard algebra §1,
then

(47) 23<%+1> S S33 if 2n - 1 > dim 2I/S3 .

F o r (47) and t h e assumed finite-dimensionality of 21 insure t h a t t h e r e
is an integer t such t h a t &ty g E 3 £ E 2 = (£(1) for every ideal £ of SI.
Then S3<Λί> £ S3(A;) for a n y ideal S3, as m a y be seen by induct ion:

If S3 is solvable, then 33<fcί> £ S3(&) = 0 for some k, and S3 is Penico
solvable.

In order to prove (47), we adjoin 1 to 2ί to obtain SIχ = Fl + Sί,
so that 33(ί+1> - SI^SS^)2 in (44). We shall show first that, for any n,

(48) S3<%+1> S 33(L(S3, SIJLίSIJ)2* + S33 ,

where L(S3, %) denotes the set of all left multiplications of % cor-
responding to elements of S3. For Q in (45) we have

(49) L ¥ 2 e Q , LhLb2e£ί

for all h in S3. Put x = b, e S3, z = b2 e S3, y = a e 2IX in (13) to obtain
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L{blb2)a ΞΞ - LhLaLh - Lb]LaLH (mod £>)

by (49), implying

(50) £ ( 9 3 % , 2IX) S £(33, Si,) L(2Q L(S3, §1,) + G .

We prove (48) by induction on n. The case n — 0 is clear. Assuming
(48), we have

S 33(L(33, 2I1)L(2ί1))2(%+1) + S33

by (50) and (46), as desired. Put α? = c^eSIx, s = α 2 e2t!, 7/ = 62eS3
in (13) to obtain

(51) L ( α i α 2 ) δ 2 = LhLaia2 + La2(Laib2 — Lb2Lai) + Lai(La2b2 — Lb2La2) .

Multiply (51) on the left by Lbl and on the right by Lδ3, for 64 e S3,
to obtain

Lhl(LasLhLai + LaiLb2La2)Lh e Q

by (49). Hence, modulo O,

/(α x , α2, , α2w_1) = LblLaiLb2La2 La2n_Jjb2nLa2n

is an alternating function of αx, α2, , a2w-i^ Sti> a n d

/(α 1 ? , α2Λ_i) e O if α̂  = αy for some i Φ j .

Also f(au α2, , α2%_!) is in £} if any c^ is in S3. If 2n — 1 > dim21/33,
the a{ cannot be independent modulo J P I + S3. Hence f(a19 α2, , α2w_i)
is in O when 2n — 1 > dim 21/33, and (48) implies that

This establishes (47), and completes the proof of the theorem.

THEOREM 4 (Wedderburn principal theorem for standard algebras).
Let 2ί be a finite-dimensional standard algebra over F of characteristic
Φ 2, and let -K be the radical of 2ί. // 21/9Ϊ is separable, then

(52) 21 = @ + 31 (dίrβcί sum)

where @ is α subalgebra of 21, @ =
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Proof. We may assume that the solvable ideal 9Ϊ is Φ 0. If
W» = 3Ϊ, then SJί - ^ = 9ΐ<2> = . . . = 3̂<&> = 0 for some k, since 9?
is Penico solvable by Theorem 3. Hence the ideal 3 ^ of 21 is properly
contained in 5Ji, and we may make the usual reduction of the proof
of the theorem to the case 9ΐ2 = 0 by an inductive argument based
on the dimension of 21 [1, p. 47]. We may also make three further
reductions which are typical of proofs of the Wedderburn principal
theorem for other classes of algebras [18, pp. 64-65; 7, Chapter VII].
We may assume that §1 contains 1, and that F is algebraically closed.
Finally we may assume that 2Ϊ/9Ϊ is (central) simple. For, if SΪ/9Ϊ =
SSi 0 0 33r, S3ί simple, the identity elements of the 33; are pair wise
orthogonal idempotents in 2t+/9ΐ+ = (§I/9ίZ)+ and may be lifted to pair-
wise orthogonal idempotents e{ satisfying 1 = eL + + er in the
commutative Jordan algebra 2Γf. But then the e{ are pairwise orthogo-
nal idempotents in §1. We have seen in (23) that, in the correspond-
ing Peirce decomposition (21), the radical of 21^ is $R« = 5ft ΓΊ 3t« (i =
1, « , r ) . This is sufficient by the usual argument to reduce the
proof of the theorem to the case where Sl/Sft is (central) simple.

We know from § 1 that the simple standard algebra 2I/9Ϊ is either
associative or a commutative Jordan algebra. Let the degree of the
central simple algebra 21/9̂  be t. Then, by the lifting of idempotents
proved above, 1 e 2ί may be written as 1 = eι + + et for pairwise
orthogonal idempotents e{ in 21 (i = 1, , t). If t = 1, then dim Sί/Sft =
1, and JPI is the desired subalgebra of 21. We shall give separate
proofs for the cases t = 2 and t ^ 3.

Assume that 2I/5R is a (central) simple commutative Jordan algebra
of degree 2. Then, since F is algebraically closed, 21/51 has a basis
[1]> t^iL " ' Ί ίvm], wi ΞS 2, where [x] denotes the residue class [x] —
x + % of x e 21, and where

[vtf = [1] , [v^vj] = [0] if i Φ j (i, j = 1, , m) .

Now 2I+ is a commutative Jordan algebra with radical 9ΐ+, and
2ί+/9ϊ+ = (2ί/9ϊ)+ - 2ί/9ϊ. By a special case of the Wedderburn princi-
pal theorem for commutative Jordan algebras, there are elements
uίf "-,um in 2I+ such that

(53) u\ = 1 , Ui Uj — 0 for i Φ j (i, j = 1, , m).

In the Peirce decomposition (17) of 21 relative to the idempotent e —
i(l + Uj), we have vH e 2Ii(e) = 2I10 + 2ί11 + 2I01 for i = 2, , m.
Write

Ui = r{ + Si + ti (i = 2, . , m)

where r ί e2I 1 0 , S;e2ίii, ^e2I 0 1 . Since 2ί/9ΐ is a commutative Jordan
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algebra, we have 2I10 + 2ί01 g 9ΐ by the final remark in § 2. Since
9Ϊ2 = 0, (18) implies that

(54) UiUj = SiSj e §IX + 3I0 for ΐ, j = 2, , m .

Write Si = ^ = 2e - 1. Then

(55) si = 1 , s ^ - s ^ = 0 (i = 1, , m; i = 2, , m)

and

(56) s ^ = d + c 0, Ci e 3d, c0 e 2I0 (i =£ i ; ΐ, i = 2, , m) .

By (53) and (54) we have 0 = uiuj + u ^ = s ^ +SjSi for ΐ ^ i (i9j =
2, , m), so that SjSi = — cx — c0 and [siy Sj] = 2cι + 2c0. Then (3)
implies that [s^e, Sj] = [ŝ , sy]β + ŝ [e, Sj], or cx + c0 = 2cx, so that cλ =
c0 = 0, and s^j = 0 in (56). Then (56) and (55) imply that 1, sly , sm

form a basis for a subalgebra of §1 which is isomorphic to SΪ/SR.
Next assume that SΪ/9Ϊ is a (central) simple associative algebra

of degree 2 over the algebraically closed field F. Then 31/% is iso-
morphic to the algebra of all 2 x 2 matrices over F, and (2I/9ΐ)+ is a
central simple commutative Jordan algebra of degree 2. By the
Wedderburn principal theorem for commutative Jordan algebras, §I+

contains elements ulfu21u3j satisfying (53). We have seen that u2 is
in the Peirce space 2L(β) = 2Ϊ1O + 2tii + 2I01 relative to the idempotent
β = i ( l + *O. Write "

u2 = α10 + αi i + <x01 , α o e ^^-(e) .

Since St/% is associative, we have St i 4 C 3ΐ. Then 9ΐ2 = 0 and (18)
imply that u\ = α10α01 + α01α10 where ^ 0 ^ 6 21!, α01α10G9I0. But u2, =
1 = β + (1 — e), so that α10α01 = e, α01α10 = 1 — β. Hence 2ί contains
elements un — e, u12 = α10, u21 = α01, u22 = 1 — β which form the basis
for a subalgebra @ with multiplication table uiάukl — djkuu (ifj, k,l —
1,2), &~ SI/% as desired.

Finally we assume that Sl/ϊϊ is a (central) simple standard algebra
of degree t Ξ> 3. We know that 1 = eL + + e4 for pairwise orthogo-
nal idempotents β̂  in 21. We wish to show that the idempotents ^
and βj (i Φ j) are connected (i,j — 1, , t). We know from (23) that
the radical of 93 = St« + at iy + Slyy = 3 1 ^ + e, ) in (22) is 33 n %. Now
33/(33 n 5K) = (SB + 9fc)/ SR = (a/5R)« + (31/3^; + (2t/SΠ)yy where subscripts
indicate Peirce spaces relative to the pairwise orthogonal idempotents
1X1 > '"Λet] in SI/5R. But in both the associative and commutative
Jordan cases, the latter algebra is a central simple algebra of degree
2. We have already seen that such a residue class algebra may be
lifted, so we know that 33 contains a subalgebra with identity βi + e5
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which is a central simple standard algebra of degree 2. In case SΪ/5R
is associative, 35 contains a matric basis u{i = e<, wo , wyi, w,v = eά. Then
wί5 + uH e (Stioίβi) + SIoi(^)) Π (SCxoίe,-) + 2I01(ei)) is regular in 35 since
(t&^ + Ujif = e< + e, . That is, the idempotents ê e,- are connected
with indicator φ = 0. By McCrimmon's results [11, p. 191] which
we mentioned in § 2, the algebra SI itself is associative. But then
the Wedderburn principal theorem is known to be true. Similarly, if
Sί/?i is a commutative Jordan algebra, 35 contains uγ = e{ — eί9 u2, , um

(m ^ 2) satisfying ?4 = β̂  + ej9 u^x — 0 (k Φ I; k,l = 1, , m). Then
^ e S ί i i ^ ) Π 2ίii(βy) is regular in 35. That is, the idempotents ei9 ed

are connected with indicator φ — 1/4, and the algebra 2ί itself
is a commutative Jordan algebra, in which case the Wedderburn
principal theorem is known to hold. This completes the proof of
Theorem 4.

5* The Malcev-Harish-Chandra theorem. For the remainder
of this paper we assume that the field F has characteristic 0. Our
results are generalizations to standard algebras of known theorems
concerning associative and commutative Jordan algebras of charac-
teristic 0.

If D is a nilpotent derivation of a nonassociative algebra §ί of
characteristic 0, then

is an automorphism of §1. Two subalgebras of 21 are called strictly
conjugate if one is mapped onto the other by an automorphism of
the form GJJΓ2 Gk, Gι — exp Diy D{ a nilpotent derivation.

THEOREM 5. (Malcev-Harίsh-Chandra theorem for standard alge-
bras). Let 21 be a finite-dimensional standard algebra of character-
istic 0 with Wedderburn decomposition 21 = @ + 31 as in (52), and
let Wl be a semisimple subalgebra of 2ί. Then 9W is strictly conjugate
to a subalgebra of ©.

Proof. Jacobson has proved this for commutative Jordan algebras
$ [6, Th. 9.3], and has remarked that the Campbell-Hausdorff formula

(57) exp A exp D2 = exp (D, + D2 + γ [ A , A ] + •)

permits one to give the conjugacy by an automorphism G = exp D,
D in the radical of the multiplication algebra 2JΪ(3f). We need to
observe that, since the derivations Z^ which he uses in his proof are
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inner derivations of $, the Campbell-Hausdorff formula (57) gives
conjugacy by G — exp D where D is an inner derivation of Qf.

Now SK+ is a semisimple subalgebra of the commutative Jordan
algebra SI+ = ©+ + 9ΐ+. Then SK+ is strictly conjugate to a subalgebra
of @+, the con jugacy being given by G = exp D, where JD is a nilpotent
inner derivation of §1 ''r. By the Corollary to Theorem 1, JO is actually
a derivation of SI. Hence G is an automorphism of SI, and G maps
3R onto a subalgebra of @.

COROLLARY. // α standard algebra SI o/ characteristic 0
TFeeZ(Zer&2m& decompositions SΪ = @4-5Ti = @1 + 9ίi, ί&ew @x is strictly

conjugate to @.

THEOREM 6. If % is a semisimple subalgebra of a finite-dimen-
sional standard algebra S3 0/ characteristic 0, ίfeew α τ̂/ derivation
of §1 mίo 33 ccm δe extended to an inner derivation

(58) D = Rd - Ld + Σ [L,., iίβ.] , d, ^, ^ e 8 ,

Proof. This result is known for commutative Jordan algebras
[6, Th. 9.1]. Now Sί+ is a semisimple subalgebra of the commutative
Jordan algebra 93+. Any derivation of SI into S3 is also a derivation
of 3I+ into 33+, and can therefore be extended to an inner derivation
D of 93+. By the Corollary to Theorem 1, D is a derivation of SI.
Since D is a sum of derivations (30), D has the form (58) and is inner
by Theorem 2.

Theorem 6 is equivalent to the first Whitehead lemma for standard
algebras of characteristic 0, which involves the notion of standard
bimodule S3 or representation (S, T) of a standard algebra. We omit
the definitions which are determined easily from the general definitions
in [18, pp. 25-26], The first Whitehead lemma may then be stated
as follows: Let 31 be a semisimple standard algebra of characteristic
0 with representation (S, T) acting in SS. Let v be a derivation of SI
into 2? (a "one-cocycle"): v is a linear mapping of SI into 33 satisfying

v(xy) = xv(y) + v(x)y = v(y)Tx + v(x)Sy

for all x, y in St. Then, if 33 is the semidirect sum 33 = SI + S3, there
exist Xi e SI and d,Zi e S3 such that

v(y) = yd - dy + Σ (α»! y, zι)
i

that is, v{y) = yD where D is the inner derivation (58) of S3.
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The restriction to characteristic 0 is not necessary in Theorem 6
and the first Whitehead lemma. With a more complicated hypothesis,
more general results may be obtained by using [4, Th. 2] instead of
[6] in the proof.

We conclude with a generalization of the theorem in [14].

LEMMA 2. The radical 31 of any finite-dimensional standard
algebra 21 of characteristic 0 is characteristic; that is,

(59)

for every derivation D of 21.

Proof. Albert has shown that, for characteristic 0,

(60) 31 = {x I trace Rxy = 0 for all y e 21}

[2, p. 581]. Then D e ®(2ί), x e 31 imply trace R{xD)y = trace Rixy)D_x{yD) =
trace [Rxy, D] - trace Rx{yD) = 0 for all y in 21 by (24), (25) and (60).
Hence xD e 31, implying (59).

LEMMA 3. Let & be a finite-dimensional semisimple standard
algebra of characteristic 0, 3 be the center of S>, ̂ 3 the associator
subspace of @ (spanned by all associators in @), and @' = [@, @] the
commutator subspace of @. Then @ is the direct sum

(61) @ - 3 + ©' + ^ .

Proof. Since it is sufficient to show this for each simple com-
ponent, we may assume that @ is simple. If @ is associative, we
have Sβ = 0, and it is well known that @ is the direct sum @ = 3 + ©'.
If @ is a commutative Jordan algebra, we have @' = 0, and @ = 3 + P̂
[14, p. 292].

THEOREM 7. Lei 'Si be a finite-dimensional standard algebra of
characteristic 0, αmZ 35(21) be its derivation algebra. Then 21 is semi-
simple with each simple component of dimension Φ 3 over its center
if and only if ®(2t) is semisimple or 0.

Proof. If 21 = @i 0 φ @r is semisimple, each simple com-
ponent @; is either associative or a commutative Jordan algebra, and
©(21) is the direct sum of the ®(©i). The latter are all known to be
semisimple or 0, except when @4 is (a commutative Jordan algebra)
of dimension 3 over its center, in which case ®(@i) Φ 0 is abelian.
Therefore, in order to prove the theorem, it is sufficient to show that,
if ®(2ί) is semisimple or 0, then the radical 31 of 21 is 0.
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Let SDj. be the subspace of 2)(2ί) spanned by the derivations (30),
x, y in 31. Then ®x is a solvable ideal of ®(2I+) [14, p. 292]. But
®, s ®(2I) s ®(2ί+), so ®x is a solvable ideal of ®(2ί). Hence ®, = 0.
Let ®2 be the subspace of ®(2I) spanned by the derivations (30), x
in §1, y in 31. Then ®2 is also a solvable ideal of 2)(2I+) [14, p. 293],
and similarly S)2 = 0. That is,

(62) Rίx§βl - L[jΓfβ] + 4[LX, B,] - 0 for all a? e 21, 2 e 31 .

Let

(63) ® 3 = {Rz - Lz I z e 31} .

Lemma 2 implies that ®3 is an ideal of ®(2I): [i?2 - LZJ D] = RzD -
LzD e S)3 for all ze3l,De ®(2I) by (25), (26) and (63). Also ®3 is solv-
able. For it is easy to see by induction on k that the A th derived algebra
3)£fc) of ®3 is spanned by derivations of the form (28) where d is a
product of 2k elements of 31. Since 31 is nilpotent, © ^ = 0 for some
A:. Hence ®3 = 0, implying

(64) Rz = Lz for all z e 31 .

Then (62) and (64) imply that

(65) [Lx,Rz] = 0 for all α eδt, ze3i .

It follows from (64) and (65) that 9̂  is contained in the center (£ of 21.
Let 21 = @ + 9̂  be a Wedderburn decomposition (52) of 21. Then

(£ is the direct sum

(66) £ = 3 + 9?

where 3 is the center of @. It follows from (61) and (66) that

21 - €>' + 5β + K .

Now 3 G 91S ® implies ^[αx, α2] = [zc^, α2] = 0 and z(a19 α2, α3) = (^α:, α2, α3) =
0 for all a, e 21, since za, e 31. Hence $R@' = 0, 31^ = 0, and (£©' S ©',
e φ S β̂ by (66). Similarly, @'9? - 0, 5β$β = 0, @'K S @', ^(£ g 5β.
Let Z>g be any derivation of the commutative associative algebra (£
(into itself). Let D be the linear extension of D^ to 2t defined by
@'i) = ^>D = 0. Then ΰ is a derivation of 2Ϊ, as may be checked by
the same type of computation as given in [14, p. 294]. That is, every
derivation of (£ is induced by a derivation of 21, and the proof of the
theorem is completed as in [14, p. 294]: ®((£) is a homomorphic image
of ®(2I), so is either semisimple or 0. Then Hochschild's result for
associative algebras [5, Th. 4.5] implies that K is semisimple, so its
radical 31 = 0. This completes the proof of Theorem 7.
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The Wedderburn principal theorem does not hold for noncommuta-
tive Jordan algebras (even for characteristic 0, or for $Xi2 = 0), as may-
be seen by a 5-dimensional example [18, p. 147; 16, p. 477], However,
all of the theorems of this paper have valid analogues for alternative
algebras [18, 15]. It would be interesting to know whether there is
a class of nonassociative algebras, containing all alternative algebras
as well as all commutative Jordan algebras, for which the analogous
theorems are true. By virtue of the example cited above, such a
class cannot be as inclusive as the class of all noncommutative Jordan
algebras. It has been suggested that strongly homogeneous algebras
[3, p. 109; 9, p. 356] might constitute such a class. However, the
same example disproves this conjecture. For this particular 5-dimen-
sional algebra is a quadratic algebra in which it is easy to compute
that {xy)~ι = y~ιx~γ for generically independent elements x, y. Hence
the algebra is strongly homogeneous by Theorem 10 of [9]. See [3,
p. 131] for a related conjecture, which is not so easy to settle since
it requires the existence of an unspecified set of identities.
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