TAUTNESS FOR ALEXANDER-SPANIER COHOMOLOGY

E. H. SPANIER

The purpose of this note is to give a straightforward unified proof of the tautness of Alexander-Spanier cohomology in the cases where it is known to be valid and to give a necessary condition that every closed (arbitrary) subspace be taut with respect to zero dimensional cohomology.

Let F denote a contravariant functor from the category of topological spaces to the category of abelian groups. A subspace A of a topological space X is said to be *taut with respect to* F if the canonical map $\lim_{X \to F} \{F(U)\} \to F(A)$ is an isomorphism (the direct limit is taken over the family of all neighborhoods of A in X, the family being directed downward by inclusion). The subspace A is *taut* in X if it is taut with respect to the Alexander-Spanier cohomology theory \overline{H} for every dimension and every coefficient group (for notation and terminology dealing with \overline{H} see [6]).

This concept of tautness has proved to be important. In [6] and [7] it is shown that a closed subspace of a paracompact Hausdorff space is taut, and this is used to deduce a strong excision property for \overline{H} . This tautness property is also used in [6] to derive the continuity property for \overline{H} . In [4] it is shown that an arbitrary subspace of a metric space is taut with respect to Čech cohomology, and this is used to obtain a general duality in spheres. Since the Čech cohomology is isomorphic to \overline{H} [3], every subspace of a metric space is taut. In [2] it is shown that every neighborhood retract of X is taut in X, and this is used to prove a generalized homotopy property for compact spaces. In [1] tautness is considered for sheaf cohomology and used in proving the Vietoris-Begle mapping theorem.

We shall prove a simple lemma which gives a sufficient condition for tautness. This sufficient condition is enough to establish tautness in all the various cases where it is known.

Let \mathcal{U} be a collection of subsets of X and A a subset of X. The star of A with respect to \mathcal{U} , denoted by $st(A, \mathcal{U})$, is defined to be the union of those elements of \mathcal{U} whose intersection with A is nonempty. An open covering of A in X is a collection \mathcal{U} of open sets of X such that $A \subset st(A, \mathcal{U})$.

The following seems to be the main fact underlying tautness (see [2] and [6]).

LEMMA. Let A be a subspace of X and suppose that for every open covering \mathcal{U} of A in X there are an open covering \mathcal{V} of A in X and a function (not necessarily continuous) f: st(A, \mathcal{V}) \rightarrow A such that:

(1) f(a) = a for all $a \in A$.

(2) For each $V \in \mathcal{V}$ with $V \cap A \neq \emptyset$ there is $U \in \mathcal{U}$ such that $V \cup f(V) \subset U$.

Then A is taut in X.

Proof. (Recall the notation is as in [6].) An arbitrary qdimensional cohomology class of A is represented by a q-cochain $\varphi \in C^q(A)$ such that $\delta \varphi = 0$ on $\mathcal{U}^{q+2} \cap A^{q+2}$ where \mathcal{U} is an open covering of A in X. Choose \mathcal{V} and f with respect to this \mathcal{U} to satisfy (1) and (2). Then $f^*\varphi \in C^q(\operatorname{st}(A, \mathcal{V}))$ is a q-cochain such that $\delta f^*\varphi = f^*\delta\varphi$, and, by (2), the latter vanishes on $\{V \in \mathcal{V} \mid V \cap A \neq \emptyset\}^{q+2}$. Thus, $f^*\varphi$ represents an element of $\overline{H}^q(\operatorname{st}(A, \mathcal{V}))$, and, by (1), its restriction to A is the element of $\overline{H}^q(A)$ represented by φ . Therefore, the canonical map $\lim \{\overline{H}^q(U)\} \to \overline{H}^q(A)$ is an epimorphism.

Let U be a neighborhood of A. An element of $\overline{H}^q(U)$ whose restriction to A is 0 is represented by a q-cochain $\varphi \in C^q(U)$ such that $\delta \varphi = 0$ on \mathcal{U}_1^{q+2} where \mathcal{U}_1 is an open covering of U and such that there is a (q-1)-cochain $\varphi' \in C^{q-1}(A)$ with $\varphi \mid A = \delta \varphi'$ on $\mathcal{U}_2^{q+1} \cap A^{q+1}$ where \mathcal{U}_2 is an open covering of A in X. Let $\mathcal{U} = \{U_1 \cap U_2 \mid U_1 \in \mathcal{U}_1 \text{ and} U_2 \in \mathcal{U}_2\}$. Then \mathcal{U} is an open covering of A in X such that $\delta \varphi = 0$ on \mathcal{U}^{q+2} and $\varphi \mid A = \delta \varphi'$ on $\mathcal{U}^{q+1} \cap A^{q+1}$. Let \mathcal{V} and f satisfy (1) and (2) with respect to this \mathcal{U} . It follows from (1) and (2) using the Fundamental Lemma 9.1 of [5] that $\varphi \mid \text{st}(A, \mathcal{V})$ and $f^*(\varphi \mid A)$ represent the same element of $\overline{H}^q(\text{st}(A, \mathcal{V}))$. Since $f^*(\varphi \mid A) = f^*\delta \varphi' = \delta f^*\varphi'$ on $\{V \in \mathcal{V} \mid V \cap A \neq \emptyset\}^{q+1}$, we see that $f^*(\varphi \mid A)$ represents 0 in $\overline{H}^q(\text{st}(A, \mathcal{V}))$. Therefore, $\varphi \mid \text{st}(A, \mathcal{V})$ represents 0 in $\overline{H}^q(\text{st}(A, \mathcal{V}))$, and the canonical map $\lim_{n \to \infty} \{\overline{H}^q(U)\} \to \overline{H}^q(A)$ is a monomorphism.

THEOREM 1. In each of the following cases A is taut in X.

(1) A is compact and X is Hausdorff.

(2) A is closed and X is paracompact Hausdorff.

(3) A is arbitrary and every open subset of X is paracompact Hausdorff.

(4) A is a neighborhood retract of X.

Proof. In each of the first three cases it is easy to verify that if \mathcal{U} is any open covering of A in X there is an open covering \mathcal{V} of A in X such that the collection $\{st(V, \mathcal{V}) \mid V \in \mathcal{V} \text{ and } V \cap A \neq \emptyset\}$ is a refinement of \mathcal{U} . If $f: st(A, \mathcal{V}) \to A$ is defined so that f(a) = a for $a \in A$ and so that for every $x \in st(A, \mathcal{V})$ there is $V' \in \mathcal{V}$ with x and f(x) both in V', then \mathcal{V}

and f satisfy (1) and (2) of the Lemma with respect to \mathcal{U} (see Lemma 1 on p. 316 of [6]). Therefore, A is taut in X.

In the fourth case let $r: N \to A$ be a retraction of an open neighborhood N of A to A. If \mathcal{U} is an open covering of A in X let $\mathcal{V} = \{U \cap r^{-1}(U \cap A) | U \in \mathcal{U}\}$. Then \mathcal{V} is an open covering of A in X. Define $f: \operatorname{st}(A, \mathcal{V}) \to A$ by $f = r | \operatorname{st}(A, \mathcal{V})$. Then \mathcal{V} and f satisfy (1) and (2) of the Lemma with respect to \mathcal{U} and so A is taut in X.

The following result is a necessary condition for tautness of every closed (arbitrary) subspace with respect to \overline{H}^0 . It can be used to provide examples where tautness fails to hold.

THEOREM 2. If X is a space such that every closed (arbitrary) subspace is taut with respect to \overline{H}^0 , then X is normal (completely normal).

Proof. We present the proof in the completely normal case, the normal case being analogous. To show X is completely normal it suffices to show that if E and F are subsets of X such that $\overline{E} \cap F = \emptyset = E \cap \overline{F}$ then E and F can be separated by open sets in X. Given such E and F let $A = E \cup F$. Then A is a subspace of X and E and F are both open and closed in A. Let φ be the 0-cocycle on A which is 0 on E and 1 on F. Assuming A is taut in X, there is an open neighborhood W of A in X and a 0-cocycle ψ on W such that $\psi \mid A = \varphi$. Since a 0-cocycle is a locally constant function, $U = \{x \in W \mid \psi(x) = 0\}$ and $V = \{x \in W \mid \psi(x) = 1\}$ are disjoint open sets in W, hence in X, which separate E and F.

References

1. G. E. Bredon, Sheaf Theory, McGraw-Hill Book Company, Inc., New York, 1967.

2. Satya Deo, On the tautness property of Alexander-Spanier cohomology, Proc. Amer. Math. Soc., 52 (1975), 441-444.

3. C. H. Dowker, Homology groups of relations, Ann. of Math., (2) 56 (1952), 84-95.

4. K. Sitnikov, Combinatorial topology of nonclosed sets I. The first duality law; spectral duality, Mat. Sb. N. S. 34 (76) (1954), 3-54 (Russian). Amer. Math. Soc. Transl. (2) 15 (1960), 245-295.

5. E. H. Spanier, Cohomology theory for general spaces, Ann. of Math., (2) 49 (1948), 407-427.

6. ——, Algebraic Topology, McGraw-Hill Book Company, Inc., New York, 1966.

7. A. D. Wallace, The map excision theorem, Duke Math. J., 19 (1952), 177-182.

Received May 6, 1977.

UNIVERSITY OF CALIFORNIA BERKELEY, CA 94720