CENTRALIZERS IN JORDAN ALGEBRAS

BRUNO HARRIS

Introduction. The aim of this paper is to prove for Jordan algebras
some theorems on centralizers of subalgebras analogous to known results
in the theory of associative algebras (contained in [6, Chapter 3] and
[7, Chapter 6], for instance).

The definition of the centralizer of a subalgebra in a Jordan algebra
is based on the concept of ‘‘operator commutativity ”’ introduced by
Jordan, von Neumann and Wigner in [17]: two elements x,y of the
Jordan algebra J operator commute if the operators R,: a— ax and
R,: a— ay, acting on J, commute, that is (ax)y = (ay)x for all elements a
of J. In §1 we study this concept, extend the results of [8] to algebras
over fields of characteristic not two, and show that for many types of
Jordan algebras obtained from associative algebras by introducing the
Jordan product aob = ab + ba (ab the associative product), the centralizer
of a subalgebra is just the set of elements commuting in the associative
multiplication with the elements of the subalgebra. Thus some of our
later results can be regarded as generalizations of the associative algebra
results if we convert the asgociative algebras into Jordan algebras by
means of the Jordan product.

In §2 we generalize some of the theory of a single linear trans-
formation in a finite dimensional vector space (see [6, Chapter 3] and
[13]) to the subalgebra generated by a single element in a simple finite
dimensional Jordan algebra. We show that such a subalgebra is equal
to the centralizer of its centralizer, and we also generalize to any central
simple Jordan algebra a formula of Frobenius giving the dimensionality
of the centralizer of a single linear transformation in terms of the
degrees of its invariant factors. A special case of this formula—namely,
the formula for the central simple Jordan algebra of all symmetric
matrices—was proved earlier, and by a different method, by H. Osborn
(to appear in these Transactions).

In §3 we study the centralizer theory of a simple subalgebra in a
central simple Jordan algebra. We show that the analogues of the
centralizer and double centralizer theorems for simple finite dimensional
subalgebras of the associative algebra of all linear transformations on
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algebras of the Jordan algebra of all self-adjoint linear transformations
on a vector space with inner product. Incidentally we show that some
of the results of [15] can be generalized from the class of rings of all
continuous linear transformations on a vector space to the larger class
of primitive rings with minimal ideals. In the same way the Galois
theory of automorphisms of [16] can be generalized to primitive rings
with minimal ideals.

In conclusion we would like to express our gratitude to Professor
Nathan Jacobson who suggested these problems and gave much stimulat-
ing advice.

Preliminary Notions. A Jordan algebra is a linear algebra, whose
multiplication we shall denote by « oy, satisfying the following identities

(1) Toy=you
(2) (@ox)oy)ox = (wox)o(yowm).

We shall always assume that the base field has characteristic different
from 2.

A special Jordan algebra is a subspace of an associative algebra
(with associative multiplication xy) closed under the composition xoy =
2y + yx. The special Jordan algebra whose underlying vector space
coincides with that of the associative algebra 2 and whose multi-
plication is zoy = xy + yx (xy the multiplication in A) will be denoted
by 2[,. If %A is an associative algebra with an involution, the subset of
elements left fixed by the involution is also a special Jordan algebra,
which will be denoted by H(). The same notation will be used for the
get of elements left fixed by an involution in a possibly non-associative
algebra U : this set may or may not be a Jordan algebra.

We shall have to consider sometimes matrix algebras with coefficients
in a (possibly non-associative) algebra with identity element. A set of
matrix units in an algebra of all » x n matrices (r = 2) will mean a set
of elements ¢, 7,7 =1, ---, n which associate with every pair of elements
of the algebra (i.e. lie in the nucleus) and satisfy

(3) €8x, = 0,6y (0, the Kronecker delta)

ey -+ +++ +e,, =1, the identity element.
If we consider Jordan algebras (with identity) of all hermitian matrices
with coefficients in an involutorial algebra we are led to consider elements
(which we shall also call matrix units) e, w;; with < <j, 4,7 =1, ..., n,
n = 3, such that

(4) €06, =20, , €uoU;y; =1y, U;zou;=2e; + ¢)
Wiy 0 Uy, = Uy, if 4,7, k are distinct, Dle; =1
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and all other products are zero. As shown in [9], Th. 9.1, any set of
elements ¢, u,; satisfying (4) leads to a representation of the Jordan
algebra as the subalgebra of n x » hermitian matrices of an algebra 2,
where 2 is the algebra of all n x n matrices with coefficients in an in-
volutorial algebra, and, if f;;; 4,7 = 1,...,n are the matrix units in 2,
then

(5) fu=ey, uij:fij+fji (<3).

If the base field is algebraically closed and & is the exceptional
simple Jordan algebra of all 3 x 3 hermitian matrices with coefficients
in the Cayley algebra, then given elements ¢,;, 2 = 1,2, 3, in &, satisfy-
ing e, 0¢;;, =26,,¢,; we can find elements u,,, #; (in many different ways)
satisfying w0 g, = 2(e;; + €5), U 0 Uy, = 2(e;; + €;5) such that the ¢;;, uy,, %y,
and u,; = u;, 0 uy; satisfy the conditions (4) and hence are the ¢ matrix
units”’ of another representation of X as 3 x 3 hermitian matrices with
Cayley number coefficients.

Finally we shall summarize briefly the classification of the finite
dimensional central simple Jordan algebras. For further references
about classification, structure, or representation theory of Jordan alge-
bras, one should consult [9].

First, assume the base field algebraically closed. Then the algebra
has an identity element; if the identity element can be written as a
sum of n, but not more, mutually orthogonal idempotents, then the
algebra is said to have degree n. (¢ is an idempotent if eoe = ¢).

If » =1, then the algebra is one-dimensional, [10]. If n =2, the
algebra is a vector space direct sum of the subspace generated by 1
and of a vector space V of dimension at least 2 with non-degenerate
symmetric scalar product. The multiplication is

(@l +a)o (Bl +y) = [af + (x, y)]1 + ay + fz

«, B scalars, x,y in V and (z,y) their scalar product. Such an algebra
is said to be of type D.

If n =3, there are 4 types: A,B,C,E. Types A, B, C are special,
while type E is the exceptional algebra described above. To each of
the types A4, B, C (and also to D) corresponds an associative algebra 1
such that if the corresponding Jordan algebra is contained in an algebra
A, A associative, then the associative subalgebra of A generated by
(enveloping algebra of J) is a homomorphic image of 1.

Type A: I =2A, A the associative algebra of all » x n matrices
over the base field, n>=3. U=APA

Type B:  is the algebra of all » x n symmetric matrices, n = 3.
N =2A (A as for type A).

Type C: & is the algebra of all 2rn x 2n symplectic-symmetric
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matrices, isomorphic to the set of all self-adjoint linear transformations
on a vector space V with non-degenerate skew-symmetric scalar product.
1 is the algebra of all linear transformations on V.

Type D: U is the Clifford algebra determined by the space V and
the inner product.

If the base field is not algebraically closed, then the algebras which
become of type A on extension of the base field are of two subtypes:

4. JI=H®), A a simple algebra with involution such that the
involution is not the identity automorphism on the center of 9. U = 2.

A,: I=2U, A a central simple associative algebra.
nU=APW, A anti-isomorphic to 2.

The algebras that become types B or C are of the form I = H(),
A simple involutorial with the involution acting as the identity auto-
morphism on the center. 1 = 2.

Algebras of type D over an arbitrary base field are as described
above for an algebraically closed base field. U = C, the Clifford algebra.

Algebras of type E need not be algebras of all 3 x 3 hermitian
matrices if the base field is not algebraically closed, according to recent
unpublished work of A. A. Albert.

Section 1. Operator Commutativity. We will consider Jordan alge-
bras over fields of characteristic different from 2; this assumption on
characteristic will be made throughout this paper.

The concept of Operator-Commutativity, introduced by Jordan, von
Neumann and Wigner in [17], is the natural analogue of the concept
of commutativity of two elements in an associative algebra, as some
of the following propositions will show. Some of these results were
proved for characteristic zero in [8].

Let & be a Jordan algebra,  and y elements of §. Let z oy denote
their product and write #* for Z(xox). We denote by R, the linear
transformation ¢ — @ o« acting in .

DEFINITION. Two elements x,y of & operator-commute (we will
write also: o-commute) if R,R, = R,R,.

The set of elements of & o-commuting with « will be denoted by
Cx(x). If & is a subalgebra of I, the set of elements of & o-commuting
with all elements of & will be denoted by Czx(R).

If o is an associative algebra and B an associative subalgebra, we
will write Cu(B) for the subalgebra of elements of A commuting with
the elements of B. Eu(A) is the center of A—its elements will be
called ¢‘central’’.

The following example, due to McCoy [14], and Jacobson [8], shows
that the set €g(x) of elements of ¥ o-commuting with an element z of
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J is not necessarily a subalgebra of J: I will be a special Jordan
algebra (product xzoy = ay + yr) consisting of 6 x 6 matrices whose
coefficients are rational numbers, namely the Jordan algebra over the
field of rational numbers generated by the following matrices a, b, 1
(using ¢,, to denote the matrix with 1 in the k&, position and zeros
elsewhere, k,1=1,...,6): a=e¢,+e;+2¢; b=e,+ e;+ ¢; and
l=¢,+ -+ +e¢,. Let c=ab—ba, then ¢ =¢,+ ¢; +e; and ¢ =
e+ 0. Also ac = ca, be = ¢b, so that ¢ commutes with every polynomial
in @ and b. Consider now Cg(a): we claim €g(a) contains b but not b
The equation (@ o ) o b = @ o (x o b) becomes, on replacing y o z by yz + zy,
[[a, b], z] = 0 where [y, z] denotes yz — zy. But [a, ] = ¢ and ¢ clearly
commutes with every element of the Jordan algebra generated by a and
b, so b o-commutes with a. We compute [a,d*] and show this element
does not commute with every x in J:

la, 0*] = [a, b]b + bla, b] = be + ¢b = 2bc = 2[a, b]b
[[a, b°], a] = 2[be, a] = 2[b, alc + 2blc, a] = —2[a, b]lc = —2¢* as [a,c] = 0

but ¢* = 0, and 2¢* = 0, thus ¥ is not in €x(a). We note also that b
does not o-commute with @* and that [a, b]* # 0.

In the preceding example, b did not o-commute with all elements of
the subalgebra generated by @ and 1. One may ask whether Cg(R) is
a subalgebra if & is a subalgebra. This is so in many cases, as the
following propositions will show, and we conjecture that it is true in
general. Some of the following results were proved in [8] for charac-
teristic zero.

We say a finite dimensional Jordan algebra & over a field F is
separable if it is semi-simple and the algebra J @ E obtained by
extending the base field to E is also semi-simple for any extension field
E of F. We note at this time a few simple facts about the effect of
field extension on centralizers: if « and y are elements of &, they o-
commute in ¥ if and only if they o-commute in J Q) E; also, since the
equation R,R, = R,R, expressing that two elements a and b o-commute
is linear in each, it follows that if & is a subalgebra of &, then
Cen(R Q E) = C3(R) ® E, and this allows us to extend the base field
in many of our arguments.

ProOPOSITION 1.1. Let & be any Jordan algebra (possibly infinite
dimensional), & a separable subalgebra. Then €gx(R) is a subalgebra of
[eY]

e

Proof. First we show that if ¢ is an idempotent in &, then €g(e)
is a subalgebra. Let ¥ =, + i + 1 be the Peirce decomposition of
I relative to ¢, ie. Jy={weJ|leox =1z}, 1 =0, 1/2, 1. (We will also
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write 3,(¢) for ;.) I, and I, are subalgebras, and J,J, = 0, I E Jupes
Sz E .. From these relations it follows that €g(e) = & + & @ let
x be in Cg(e), and let v =2, +a,, + 2, @ in &. Then ¢o(eox) =
xo(goe)=woe, but xoe= (1/2)x,, + @, and eo (zoe) = (1/4)zy, + 2,
8o x;, = 0 and w is in J, + J;. Conversely, let x be in &y, 2 = 2y + 21, + 2,
in . @xo(eoz)=wx0[(1/2)2,, + 2] = 1/2(x o 2,,), Whereas e¢o (xoz) =
eo(woz, + xozy) =1/2(x oz, since xoz, is in Iy, wozy is in Jys;
thus z o-commutes with ¢, and similarly if xis in &, it o-commutes with
¢. On extending the base field F' of & to its algebraic closure,  remains
semi-simple, and we will conclude the proof by showing that a semi-
simple Jordan algebra over an algebraically closed base field has a basis
consisting of idempotents—for if e, ..., e, are this basis, then Cgx(R) is
the intersection of all the €g(¢;) and the latter are subalgebras. From
the structure theory, it is known that & is a direct sum of simple
algebras, and each simple algebra is either of degree one, i.e. of the
form F'. e, ¢ an idempotent, or else is a vector space sum of algebras
of degree two. An algebra of degree two has a basis of elements
e, €, X1, ..., T, Where the ¢, are idempotents with e, + ¢, = ¢ being the
identity element of the algebra, and =, o x;, = ¢. Then 1/2(¢ + ;) is also
an idempotent, and e, ¢, 1/2(¢ + x)), ..., 1/2(¢ + z,) is a basis consisting
of idempotents, which we had to show.

The next proposition shows that for a large class of special Jordan
algebras, including all that we will be concerned with in later sections,
the set of elements o-commuting with the elements of a subalgebra is
the same as the set of elements commuting with them in the associative
multiplication. In particular, if ¥ = U, is such an algebra, where U is
associative, and & = B,, where B is an associative subalgebra of %A, then
C(R) = [Cu(B)];.

ProproSITION 1.2. Let X be a special Jordan algebra with envelop-
ing associative algebra 2, and assume ¥ has no central nilpotent elements
(e.g. A any semi-simple algebra). Let & be a Jordan subalgebra of $,
y an element of . Then y is in €x(K) if and only if ay = yx for all
ze & Thus €3(RK) consists of all elements of & commuting in the
associative multiplication with the elements of &, and €x(R) is a sub-
algebra of .

Proof. We make extensive use of the assumption that 2 =+ 0. Also,
we note that the equation z(R,R, — R,R,) =0 is equivalent to [[ay]z]
=0, where [ab] =ab —ba. Let now xze R, ye €x(R). Since K is a
subalgebra, zox = 22* € &, and «* € & so that [[zy]z] = 0 and [[2’y]z] = 0
for all ze . Since A is the enveloping algebra of I, [xy] and [2%y]
are in the center of . But [2%y] = [xyle + a[xy] = 2x[xy] since [xy] is
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in the center of 2. [a%] e the center of 2 implies that
0 = [yle*yll = 2[y, (lzwy])] = 2[yxllzy] + 0 = —2[xy]" .

Thus [xy]* = 0, so by hypothesis on %, [zy] = 0. Conversely, if [zy] = 0,
then [[xy]z] = 0 so that x o-commutes with y. The statements on CEg(R)
now follow.

Let 2 be a possibly non-associative algebra with multiplication
denote by zy. We again introduce the new multiplication zoy =
xy +yx. Let B be a subspace of A closed under xoy, then we
denote by R, the operation z — « oy = xR, acting in B, where x, y are
elements of B. As before we say « and y o-commute if R R, = R/R,.
We can make a remark in case 2 is a matrix algebra with canonical
involution and B is the set of self-adjoint elements (see [9]), i.e. A is a
matrix algebra D, over an algebra D with identity 1 and involution
d—d in D, and U has involution a = 3 ,d,,e;; > 3. ,77'dis7:€, Where
the e;; are matrix units, y, =1, 7y, ..., 1, are self-adjoint elements of the
nucleus of D having inverses, and n = 2; B is the set of self-adjoint
matrices, denoted by H(D,). Such algebras have been studied in [9],
and include all simple Jordan algebras of degree greater than two over
algebraically closed fields.

LEMMA. Let A = D, be a matriz algebra with canonical tnvolution,
B = H(D,), x, y elements of B. If x andy o-commute, then [xy] = d - I,
where d is a skew element of D, and I is the unit matrix.

Proof. Since x and y are self-adjoint, [xy] is skew. B contains the

elements e¢,, and d[i,j] = de,, + r7'dre, for i+ 4. Since z and y o-
commute, we have (¢;; o ) o y = (&, o ) o &, which is equivalent to [¢;[2y]]
=0,4¢=1,..., n since ¢, is in the nucleus of A. The matrix [xy] thus
has zeros off the main diagonal. The elements 1[i] = ¢;; + 77'1:¢;; are
in the nucleus since the y; and e, are, so that

[e; + 77'1:€0), [oy]l =0, 1+
or

esloy] + ri'riesnlay] = leyle; + [oylyi'ries: -
Denote by [xy];; the ¢, 5 entry of [xy] for 4,5 =1,...,2. Then
[xylsses + rinleylues = [@ylues; + [wylyri'rie; for i #7.
Since the coefficients of ¢;, in the above equation must be equal,
[xy]l,;, = [xy]l;; = d for all 4,7 .

Thus [2y] = dI, d = —d, which completes the proof.
From this lemma we can derive conditions for the centralizer of a
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subalgebra of H(D,) to consist of the matrices commuting with the
matrices of the subalgebra. We denote by Z the set of elements of D
commuting with every element of D, and by N (nucleus) the set of
elements of D associating with every pair of elements of D.

ProrosiTiON 1.3. Let B = H(D,), n = 2.

(a) Let » not be divisible by the characteristic of F. If a and y
are two matrices of B such that the coefficients of a commute with
those of y and if = and y o-commute, then they commute. In particular
if « has coefficients in Z and y o-commutes with «, then ay = yx.

(b) Let & be a subalgebra of H(D,) such that every element of &
has coefficients in N, the nucleus of D. If Z contains no skew-elements
whose squares are zero then y is in €s(f) if and only if zy = yx for
all z in &, so Cy(R) is a subalgebra. In particular, if D is associative
with no central skew elements of square zero, the conclusion holds for
any subalgebra & of H(D,). If B is an exceptional simple Jordan
algebra, then D is a Cayley algebra and Z = N = F .1, F the base
field, so that the conclusion holds for subalgebras & whose elements have
coefficients in F.

Proof. (a) By the lemma, if y o-commutes with «, then [xy] = dI,
d e D, I = identity matrix. Let us now take the trace of the elements
on each side of this equation. If the coefficients of » commute with
those of y, then tr(xy) = tr(yx) so tr([wy]) = 0 = tr(dl) = nd. Since
nd = 0 implies d = 0, axy = yx.

(b) Let every z in R have coefficients in N. Then (ay)z = a(yz)
for all y,ze D,. Let now y e €3(). Then (xoz)oy =(yoz)ox for
all z in B, which is equivalent to: [[zy]z] = 0 for all zin B. [ay] = dI,
80 dz;; = 2;,d for each coefficient z;; of 2. Since n = 2, for any a € D,
there is a 2z in B with 2, =a. Thus d is in Z. Since 2* is in & also,
[«*y] = fI where f is a skew element of Z. The calculation of Proposi-
tion 1.2 is still valid since x and 2* associate with any two elements of
B, and we conclude that d*> =0and sod =0, or zy = yx. The remain-
ing statements of the proposition are now obvious.

ProposITION 1.4. Let Ot be an exceptional central simple Jordan
algebra, and & a separable subalgebra of 9 containing the identity.
Then Can(R) is separable, and, if the base field is algebraically closed,
Wt can be represented as an H(C,) such that Cy(R) consists of the
matrices in M commuting with those in K.

Proof. We first assume the base field F' algebraically closed, and
! semi-simple. M is then of degree 3, ie. if 1=¢ + -+ + ¢, ¢
primitive mutually orthogonal idempotents in 9, then » = 3, and Wt is
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a vector space sum > ; ;WM,;;, 1 <74, 4,7 = 1,2, 3 where

M, ={xeMleox = (1/2)x = e¢;0x} for ¢ +# j, and
Wy, = {xe Mle,ox = x} = Fe, .

These facts limit & to a few possibilities :

1. & not simple: then R =R P --- P K,, K, simple and r = 2 or
3, since the identity element 1 of Misalsoin R, and 1 =u, + -+ + u,,
u; the identities of &,.

(a) r=3. Then wu, u,, u; are primitive (in M) orthogonal idem-
potents and each R; is of degree 1 so that we may take ¢, =u,. We
now represent M as H(C;) with ¢, = (1/2)e;. We have & = Fe; and
Cm(R) = N, Cm(e;). But Cam(e) = WMy, + WMy, + M, + M, where J, k
# ¢ since with respect to ¢;, Y4 =M,;;, and Ny = 3, ;... M,.. Hence
Co(R) = My, + Wy, + My, = K. It is clear that the matrices of Cy(R)
commute with those of & Conversely, any matrix commuting with e,,
e, ¢; is a linear combination of e, e, ¢;, and thus in Cm(K).

(b) r=2. Then & = & P K, and K, has identity u,. Since 1 =
U, + u,, one of the u, must be primitive in M, say u,, and the other
one not: u, = ¢, U, = ¢, + e, ¢; primitive orthogonal idempotents. Again
write M = H(C;), (1/2)¢;; = ¢;. Here there are two cases

(i) &, is of degree one: &, = Fu,. Since & = Flu,,

Co(R]) = Com(uy) N Cm(uy)
= (WM + My, + Wy + D) N (Ve + Dy, + Wiy + D)
= Emu + gﬁzz + mzs + EI)233 .

But M, + My; + M; is a simple Jordan algebra M, of degree two, so
that Com(R) = M, P My, is semi-simple. The matrices of Em(K]) are
evidently just those matrices commuting with ¢, and ¢, + ¢; and therefore
with the matrices of R.

(i) &, is of degree two: u, = ¢, + ¢; where both e, and e¢; are in
&,. Then &, is a simple Jordan algebra of degree two, and so contains
an element ¢ with aoa = 4(e, + &), a € M,,. Since ¢, ¢, ¢, all belong to
R, C(R) & Fe, + Fe, + Fe,. Also, since C(e) = WMy, + Wiy, + Weys + My,
2 &, we see that Fe, o-commutes with &, i.e. Fe, < Cm(R). Let now
ag, + fe; belong to Ca(R): then this element o-commutes with a, so

[e.0 (ae, + fle)] o & = ae, 0 a = (1/2)aa = (¢, a) o (ae, + fley)
= (1/2)a o (ae, + fe;) = (1/4)(a + Bla .
Thus a = 3, i.e. CR) S Fe, + Fle, + ¢). On the other hand, (e, + ;)
€ Cm(R) since K = M, + My, so Cw(R) = Fe, + Fe, + ¢5), and evident-
ly these matrices commute with the matrices in & Conversely, let
T = Suciy, X5 € My, commute with the matrices of ®. Since e, ¢, ¢,
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are in 8, = we; + fe, + re,.  Letting e, © # j denote the matrix units,
the element @ of ® can be written as a = de, + de,, d an element of
C, and a o a = 4(dde, + dde;) = 4(e, + ¢,), thus dd = dd = 1.

ax = (dey + dey)(ae, + Pe, + re;) = (1/2)(dres + dPes); «, B, 7€ F.
xa = (ce, + Pe, + re5)(deys + dey,) = (1/2)(Bdeys + rdes,) .

Since we are supposing ax = xa, we have fd = dy, but dy = rd as y € F,
g0 B=17, l.e. ® = ae, + P(e, + ¢;) and z is in Cm(R).

2. R is simple; then & has degree one, two, or three

(a) & has degree one: & = F'-1. Then CEm(R) =M, and the
matrices of M commuting with those of & are just the elements of Cy(K).

(b) & has degree two: we show this is impossible. For let 1 =
Uy -+ Uy, u; primitive idempotents in & Then, as in case 1b, we may
assume u, is primitive in 9 and u, not, so that u, = e, u,=e¢, + e.
Since & is simple of degree two, it contains an element x such that
xow =2 =u, +u, and u,0ox = (1/2)x = u,ox. Let © = 3,<a;,, & in
M,;. Since e ox = (1/2)x, = = x, + x3; therefore xox = x,0x, +
T30 Tyy + 2w, 0 ;. But

Ty o Xy, = A6, + 6), Tzox; = (e, + &), 4, € F, m,0x;5€ My

S0 xox = (4 + A)e + le, + Ae; + 2wy 0 Ty = Uy + Uy, = €, + ¢, + ;. Since
M is a direct sum of the M,,, 2v o2, =0, 1, +4, =1, 1, =1, 1, =1,
a contradiction.

(¢) R has degree three: Then & contains idempotents ¢, e,, ¢; and
the subspaces &;; = 8 N M,; are all non-zero. K contains the subalgebra
8+ Ry + K + & of the type considered in 1b (ii), and the centralizer
of this subalgebra, as well as the set of matrices commuting with its
elements, is Fe, + Fl(e, + ¢;). Arguing the same way but replacing the
index 1 by 2 and then 3, we see that Cm(R) = Fl(e, + e, +¢e) = F-1,
and that any matrix commuting with the elements of & is in F'. 1.
Conversely, the matrices in F'-1 obviously commute with those in  We
have shown that in each case Cm(R) is semi-simple.

If now F' is not necessarily algebraically closed, the centralizer of
& in M remains semi-simple on extending F' to its algebraic closure, so
that Cm(K) is separable. Also, in the algebraically closed case, we have
shown that for every ® there is a matrix representation of 9t such
that the elements of Cy(R) are represented by the matrices commuting
with the matrices representing the elements of & This concludes the
proof.

2. Subalgebras Generated by a Single Element. In this section we
study the centralizer and double centralizer in a central simple Jordan
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algebra of the subalgebra generated by one element, and generalize to
Jordan algebras some of the known results on simple associative algebras
contained in, say, [6], Chapter 3.

If = is an element of J, we denote by (x) the subalgebra generated
by « and 1. The following facts are known about €g((x)) if F = 2, and
A is the associative algebra of all » x n matrices over a field F':

1. Let x have invariant factors o, ---, d, of respective degrees
d=>d,=--- =d,. Let (F[1]), be the algebra of all » x r matrices with
coefficients polynomials in an indeterminate 2, (6) the matrix diag
(6:(2), + -+, 8,(2)) and B the subalgebra of matrices («) in (#2]), such that
(a)'(0) = (0)(PB) for some (f3) in (F[1]),, which condition we will also write
as (6) " Y«)'(8) = (P) € (FI4]),, (@) denoting the transpose of («). Let %
be the ideal in B of matrices of the form (B)(6). Then Cu((x)) is
isomorphic to B/N, so that by the results of section 1, Cgz((x)) is
isomorphic to B,/MN,. From 1. easily follows the following theorem of
Frobenius :

2. Let x be as above with invariant factor degrees d, = .- = d,.
Then €((x)) is of dimension S :izi(2k + 1)d....

3. Finally, Cu(Cu((z)) = ().

We will give appropriate generalizations of these results for Jordan
algebras. The method will be to examine one by one the various types
of simple algebras. In this way we will obtain some information on
each of the various types of simple Jordan algebras, but it would also
be interesting to have a general method which works for all the algebras
at once.

Since all the special algebras & that occur will have semi-simple
enveloping associative algebras, we will be able to apply Proposition 1.2
to obtain that €g((x)) is just the set of elements of ¥ commuting with
x. Proposition 1.8b will be used in a similar way for the exceptional
algebras.

In most proofs the key case will be that of a nilpotent element z,
and the reduction to that case will be made by using a special cage of
the decomposition of an associative algebra over a perfect field into a
direct sum of a semi-simple algebra and the radical: if we consider the
associative commutative subalgebra (x) of ¥ and decompose it, then we
can write x =s + n, s a linear combination of orthogonal idempotents
¢; in (x) and » a sum of nilpotent elements »; in (x) such that ¢n;, = n,,
e;n, = 0 for j =+ 1.

The known theorems about the algebra of all linear transformations
quoted above are best proved by considering the vector space V on
which the given transformation = acts as a module over a principal ideal
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ring and decomposing it into a direct sum of cyclic modules. If we are
interested in vector spaces with inner product we have to try to obtain
orthogonal decompositions into cyclic subspaces. This is done in the
first two lemmas (which are essentially known, see e.g. [13], last
chapter, for algebraically closed fields, but hard to find in the literature
in a form useful for us).

Let V be a finite dimensional left vector space over an involutorial
division ring D. We will use the letters z,y, --- for elements of V, «,
B, -+« for scalars in D, « — o’ denoting the involution, and A, N, --. for
linear transformations. We will assume V is a self-dual space, i.e. it
has a non-degenerate scalar product (x,y) which is either hermitian :
(y, ) = (z, v), (az, Py) = a(x, y)F’, or else alternate: (x, y) = —(y, =) and
D is a field with « =«a. V will be called hermitian or alternate,
respectively. The characteristic is assumed to be different from two.

LEMMA 2.1. Let V be a finite dimensional self-dual hermitian space
over D, and F the subfield of self-adjoint elements of D. Let A be a
self-adjoint linear transformation which is algebraic over F, ie. A
satisfies a polynomial equation over F', and assume also that +f D + F
then the roots of this equation lie in F. Then V can be decomposed into
o direct sum of wmutually orthogonal mnon-isotropic spaces which are
wndecomposable cyclic for A. If A is nilpotent, then each cyclic subspace
has a basis of the form {x,xA, ---,xA"'} such that (zAl,xA’) =0 if
i+ 37 #n—1, and (xA?, A" %) = p for all ¢, ¢ a self-adjoint non-zero
element of D.

Proof. If the minimum polynomial of A over F has distinet prime
factors, then corresponding to these there exist mutually orthogonal
idempotents E; with sum 1 which are polynomials in A with coefficients
in F, and so are self-adjoint. Then V = 3@ VE;, and (VE,, VE,) =
(VEE;, VE,) =0 for i + j. Thus the V, = VE,; are mutually orthogonal
and so are themselves hermitian self-dual spaces, and the linear trans-
formation induced by A on each of these satisfies a primary polynomial
p(2)" over F. Thus it is sufficient to assume the minimum polynomial
of A over F'is of the form p(2)*, and by assumption p(1) =1 — «, a in
F, if D is not equal to F. Moreover, if p(1) =21 — «, then it is
sufficient to prove the first statement of the lemma for A — «l instead
of A, that is, we may assume A nilpotent if D is not F. In what follows
we will often write p or p” for p(2) or p(4), and if m(2) is a polynomial
over F' in the indeterminate 1, we will write zm(2) or zm for zm(4), if
zisin V.

If « is a vector of order p", that is, ap(4)" = 0 and am(4) = 0 im-
plies that p” divides m, then the vectors xzA4° = z, x4°, 0 < s < degree
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of p", form a basis for the cyclic subspace generated by z. This is
well known if D= F, and if D+ F, then p(1) =2 and so A" =0,
xA™! # 0, and it is easy to check that the vectors z, A4, --., xA" "' are
linearly independent over D. We also note that p(4)*, the minimum
polynomial of A over F, is also the minimum polynomial of A with
coefficients in D, since if p(2)* = 2*, the only monic factors of p(2)* are
the polynomials 2" which have coefficients in F. From now on all poly-
nomials we will consider will be assumed to have coefficients in F.
Since p(4)* is the minimum polynomial of A over D, there is an «
in V of order p®. Let U be the cyclic subspace generated by «, and
suppose U is isotropic. We show that this implies (xp™?, 2) = 0: first
let D = F, and let xg(4) be a non-zero vector in the radical of U. Then
(wg(A), xt(A)) = 0 = (zwa(A)t(A), ) for all t = t(2). Since xq(A) # 0, there
is a ¢ such that xg(4)t(4) = ap(4A)"*. If D+ F, let z = S raxA® be
non-zero and in the radical of U. Suppose r, # 0, and 7; = 0 for j < k.
Then 0 = (2, zA* %) = r(xA*, A" %) = r (@A™, ). We now show
that we can find a non-isotropic cyclic subspace U of maximum order :
once we have it, its orthogonal complement U+ will also be invariant
for A, and will satisfy the same hypotheses as A but will have lower
dimension, and we can use induction. Therefore, suppose (x, xp™~!) = 0.
There exists y in V such that (y, zp*!) =1 = (yp*', ). Thus yp** + 0,
and we may assume (y, yp" ') = 0, otherwise y generates the desired
cyclic space. Consider now the cyclic subspace spanned by = + ¥ :

@ +y @+ yp') = (x,2p"") + (y, yp" ") + (@, yp"") + (y, p™")
=0+0+1+1=2+0.

Thus, in particular, 4+ y has order p*, and it generates a non-isotropic
cyclic space of order p”. This completes the proof of the first state-
ment of the lemma.

Suppose A is nilpotent and V is cyclic of dimension n. Let z, z4,
«++, A" be a basis for V. Clearly (z4™!, ®4%) =0 for ¢ =1, so we
may assume (x, xA""") = ¢ # 0. If n =1, there is nothing to prove, so
let » = 2. Suppose k is some integer such that 0 <k <n» —1 and
(x¢, xA™) = 0 for all r satisfying ¥ <r <n —1. We show that 2 may
be replaced by another cyclic generator y such that (y,y4") =0 for
E—1<r<n—1: Let y=x+ avA*'* « an element of D to be
specified shortly. Fork <r <mn — 1, y4” = azA”'*"* + xA" = wA" since
A® = 0; in particular yA™' + 0 so y is a cyclic generator also. Further,
for k<r<mn-—1,

(y, A7) = (y, A7) = (v + azA" 7%, xA")
= (x, zA") + a(x, zA"+7-F)
= (x, xA") since r — k> 1.
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Finally,

(y, yA*) = (@ + awA 7", wA* + awA ™)
= (x, vA*) + a(x, A7) + (@, A" ")’ + a(@ArF, Al .

The last term is zero since n — 1 — k=1, and (x, xA"') = ¢ #+ 0. Let
a=—(1/2)(x, zA")p", then a(x, xA") = ap=— (1/2)(x, xA*) = (x, xA* )’
since ¢’ = p, and so (y, yA*) = 0 also. This completes the proof.

This last type of basis can be used to give a relation between the
index of the hermitian form and the index of nilpotency of a nilpotent
self-adjoint linear transformation. Let V have dimension m and index
r, that is, r is the dimension of any maximal totally isotropic subspace,
so that m = 2r. Let N be nilpotent of index n, i.e. N* =0, N*» ! %0,
and self-adjoint. Then: n < Min (m, 2r + 1), (i.e. if m = 2r then n < 2r
and if m > 2r then n < 2r + 1), and equality is achieved for some N).
To see this, choose a set of vectors z, N, - .., xN"* satisfying (xN’, N*)
=0 for j+k+n—1, (xzn’,aN*'7/) 0. The vectors aN’ for j <
(n — 1)/2 then span a totally isotropic subspace of dimension [n/2]
(greatest integer < m/2) so [#/2] <r and n < 2r + 1. The condition
n < m is always satisfied. Conversely, let V have index r. Then we
can find vectors x, ---, 2, and y,, - - -, ¥y, spanning totally isotropic spaces
respectively and satisfying (x;, y;,) = r6;;, 7 any preassigned element of
D. TFirst assume m > 2r; then we can find a vector z orthogonal to
the space spanned by the z; and y, such that (z,2) = 0. We may assume
(®:;, ¥,) =7 = (2, 2) for all i. Now define a linear transformation N as
follows :

xlN = &y, sz =&y, xr—lN = &y, er =%,
N =9, yN=19y,_y, »++, N =y, yN = 0.

Let U be the space spanned by the xz;,¥;,2; U is non-isotropic, so
U@ UL =V, U* denoting the orthogonal complement of U. Define N
to be zero on Ut. It is clear that N is nilpotent of index 2r + 1 with
cyclic subspace U, and self-adjoint. If m = 2r, we merely omit z and
define N by: s N=wx,, «-+, 2, N=x, 2,N =y, YN = Y, _1, +++, N =
Y1, le = 0’ where (xi! yj) = 6“‘

Lemma 2.1 is a generalization of the result that a hermitian self-
dual finite-dimensional space has an orthogonal basis, the one-dimensional
orthogonal subspaces being replaced by cyclic subspaces of a self-adjoint
linear transformation. We obtain an analogous generalization of a
symplectic basis (i.e. (@, ¥;) = 0;; = —(yy, o), (@, ;) = 0 = (y;, y;)) for a
symplectic space :

LEMMA 2.2. Let V be a symplectic space and A a self-adjoint linear
tramsformation in V. Then V can be decomposed into a direct sum of
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indecomposable cyclic subspaces U, U, such that U, and U, are isomorphic
as (A) modules and totally isotropic and U, + U, is non-isotropic and
orthogonal to U; + Uj if 4 + 3. If A is wmilpotent and U, U are a pasr
of isomorphic cyclic subspaces with U + U non-isotropic, then we can
find bases of the form {x,zA, ---,2A™'}, {y,vA, ---,yA™} for U, U
respectively such thot (zAi yA ") =1 = —(y&', zA""'"%), and all other
scalar products are zero.

Proof. As in the hermitian case, we can immediately reduce the
proof to the case of a primary minimum polynomial p(2)* for 4. We
note that every cyclic subspace is totally isotropic, for (x4, z4’) =
—(xd?, zA") since V is symplectic, but (x4’ x4’) = (vA?, xA’) since A is
self-adjoint, so (x4’ xA’) = 0. This implies that if U and U’ are cyclic
subspaces such that U 4+ U’ is non-isotropic, then their intersection
contains just the zero vector, since any vector in the intersection is
orthogonal to both U and U’ and so is orthogonal to U + U’. As in the
proof of Lemma 2.1, it will suffice to find isomorphic cyclic subspaces
U, U such that U+ U’ is non-isotropic (and therefore the sum is
automatically direct).

Let x be a vector of maximum order p” in V, and let U be the
cyclic subspace generated by x. xp"* is not zero, so there exists y in
V such that (zp, y) =1. Then also (z,yp"*) =1, so yp" '+ 0 and y
also has order p*. Let U’ be the cyclic subspace generated by y: then
U’ has order p® and so is isomorphic to U. Suppose 2z is in the radical
of U+ U’, and let z = xf(4) + yg(4), f, ¢ polynomials. If f(A) is not
zero, then f is not divisible by p", and so there is a polynomial %~ such
that f(A)(A) = p(4)*~'. Then

0 = (2, yo(A4)) = (21(A), y) = (@p(A)"~" + yg(A)(A), y)
=1 since (zp(A)"~', y) =1 and (yg(A)h(A),y) =0,

a contradiction. Thus f(4) = 0, and since (yp(4)*~!, ) = —1, we obtain
in the same way ¢g(4) =0, so z =0. Thus U + U is non-isotropic.

Now assume A is nilpotent, and U, U’ are isomorphic cyclic sub-
spaces such that U + U’ is non-isotropic. Let =z, z4,.--,2A™"!, and
¥, yA, ---, yA"" be bases for U, U’ respectively, and A" = 0. (yA*, xA’)
= (A", x) =0 if ¢ > 1, and also (yA""',2) = 0 for every z in U’, thus
we must have (yA™, x) # 0 since otherwise yA’!' is in the radical of
U+ U'. Replacing « by a scalar multiple if necessary, we may assume
(@, yA™") = 1.

Fix k, 0 < k <r — 1, and assume that (z, y4) =0 fork <j <r —1.
Let o = + axA™ "%, « a scalar to be specified shortly. Then & is
also a cyclic generator of U, and

(&, yAr™) = (@, pA™) + a(w A, yA) = (@, ydr ) =1
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since r —1—k=1. Algo, for k<j<r—1,

(@, y4) = (@, yA) + @A, y4) = (&, yA) + ale, yA1+Y)
= (z, yA)

since j — k=1, so (¢',y4’) =0 for £k <j <r —1. Finally,
(@', y4") = (z, yA") + alx, yA™") = (v, yA*) + « .

Let @ = —(x, y4*), then (2, yA*) = 0 also. Proceeding in this way we
can obtain a cyclic generator =/ of U such that

(@', yA) =1 = —(y, " A", and (&, yA’) = 0 for j#n — 1.

This completes the proof.

The above lemma has several immediate consequences :

1. The invariant factors ¢, ---,d, of a self-adjoint linear trans-
formation in a symplectic space come in pairs: 6, = 4,, - -+, 6,-, = ¢, (and
7 is even).

2. If V has dimension m there is a self-adjoint nilpotent linear
transformation of index of nilpotency m.

3. If the base field is algebraically closed, two self-adjoint linear
transformations are conjugate by an isometry of V if and only if they
have the same invariant factors.

The last statement, 3., is also valid for a space V with symmetric
scalar product over an algebraically closed field. This follows easily
from Lemma 2.1.

In order to extend the theorem of Frobenius mentioned above to
arbitrary central simple Jordan algebras, we have to define now invariant
factor degrees, and preferably also invariant factor polynomials, for an
element x of such a Jordan algebra. For characteristic zero, there is
a general method for doing this, due to Professor Jacobson (unpublished),
based on Lie algebra methods: it is proved that if x is a nilpotent
element, then there exists another nilpotent element y such that z,y
and the identity element of ¥ generate a semisimple subalgebra which
is a direct sum of simple algebras H;, where H, is the Jordan algebra
of all self-adjoint linear transformations in a vector space of dimension
n, with non-degenerate symmetric scalar product of maximal index,
and if n,=n,= --- = n,, then n, is the index of nilpotency of x. It
is then natural to define §,(2) = 1%, d, =n,. We shall use the full
statement of the above theorem only for the exceptional Jordan algebra
over an algebraically closed field. In this case of the exceptional algebra
the theorem has also been proved for characteristic p #+ 2 or 3, based on
(unpublished) work of Professor Jacobson on the representation theory of
a simple 3-dimensional Lie algebra, so that we have to assume characteris-
tic not 2 or 38 for the exceptional Jordan algebra in Theorems 2.2, 2.4.



CENTRALIZERS IN JORDAN ALGEBRAS 773

To avoid the difficulties of Lie algebra arguments in characteristic
p, we will define the d, differently, and will use the above theorem of
Professor Jacobson only in some of the proofs for the exceptional algebra.

Definition of the d,: Let & be central simple, and extend the base
field to its algebraic closure. If & becomes the algebra of all n x n
symmetric matrices (Type B) or all n x n matrices, Type A, take the
usual definition of d;, J, for the n x n matrix z. For Type C, the
““ symplectic-symmetric ’ matrix « has invariant factors equal in pairs,
and we take for 0, one member of each pair, and for d; the degree of
d;. For type D, the element « satisfies a minimum polynomial p of
degree one or two; let 6,=p =20, d, =d, =1 if ¢ is of degree one,
and 6, =p, 0,=0, d, =2, d, =0 if ¢ is of degree two. Finally, if & is
an =xceptional algebra, every element satisfies a minimum polynomial of
degree at most 3 ([5]): set d, =3, d,=d, =0,0rd, =2,d,=1,d, =0,
or d, =d, = d, =1 according as the degree is 3, 2, or 1; set §, = mi-
nimum polynomial of ». TFinally, if & is of degree one, then § = F'- 1,
and we can set d, =1, d, =0 for ¢ > 1. In the following proofs the
case of ¥ of degree one will not be mentioned because of its triviality.

The d;, J; as defined above have the following properties :

(a) 6, = minimum polynomial of = in &. d, = d,., and &;,,; divides
J; whenever defined.

(b) d, < degree of & (defined as the maximum number of ortho-
gonal idempotents in a decomposition of the identity when the base field
is extended to its algebraic closure). >%,d; = degree of .

(¢) If X is special (Types A-D) and the base field is algebraically
closed, two elements are taken into one another by an automorphism of
X leaving the center fixed if and only if they have the same invariant
factors. The same thing is true for & an exceptional algebra, at least
for characteristic zero, as will become apparent from some of the later
proofs. However, we will not use this, and so do not give the details
of a proof.

The next theorem describes the structure of Cgx((x)) if ¥ is central
simple over an algebraically closed field and special. The exceptional
algebra is studied during the proof of the succeeding theorem, but we
cannot give a simple statement for it.

THEOREM 2.1. (a) Let & be the Jordan algebra of all n x n sym-
metric matrices over an algebraically closed field F', N a nilpotent element
of X with invariont factors 85, 8,, - -+, 8, where J,., divides d;. Let (F'[1]),
be the algebra of all r x r matrices with coefficients polynomials in the
indeterminate A, & the subalgebra of matrices () = (B:,(2) satisfying
(0) (B (0) = () where (o) = diag (5, --+, 8,) and (B) is the transpose of
B, and N the ideal in K of matrices (B) of the form (B) = («)(0) for some
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(@) in (F'[2]),. Then C3((N)) is isomorphic to &IR. If A is an arbitrary
element of X, then €x((A)) s a direct sum of algebras K,/R,, one for
each characteristic root. If & comsists of all hermition matrices over an
arbitrary field and N is a nilpotent element, then Cx(N) is as above with
0, replaced by a0, «; a self-adjoint scalar, and (B) the conjugate trans-

pose of (F).

(b) Let & be the Jordan algebra of all m x n symplectic-symmetric
matrices over an arbitrary field, N a nilpotent element with tnvariant
factors 6y, «+-, 0, in X (i.e. the 0, are every other one of the ordinary
invariant factors). Then CI((N)) is isomorphic to IR where K is the
subalgebra of (F'[A]),. of matrices (B) satisfying (8)"Y(B)'(0) = (B), (8) =
0i(€ — €y) + 0y(€s — ) + <o+ 4+ 0(Crrar2r — €arr-1) (815 Matric units in
(F[1])s), and R s the ideal in & of matrices of the form (B) = (a)(d).

() Let I be the algebra (F,); of all n x n matrices over F, A an
element of X with invariant fastors o0, +--,0,. Let & be the subalgebra
of (F[A]), of all (B) such that (8)(B)(5) is in (F[1])., (6) as in (a), R
the ideal of (B) of the form (B) = (a)(0), (@) in (F[A]),. Then C3((4)) is
isomorphic to K/N.

(d) Let & be central simple of Type D. Then C3((x)) = (x) iof « is
not in the center of I, and Cgx((x)) = I otherwise.

Proof. (a) We take & to be the set of all self-adjoint linear
transformations in a hermitian self-dual space V, and N a nilpotent
element of . Let «,.--,x. generate cyclic non-isotropic mutually
orthogonal subspaces of orders d, = degree of §;,, ¢ =1, .-, r and satisfy
(@, e, N =a, =0 if j=d, — 1, (x;, 2,N'') = 0 otherwise.

Let B be any linear transformation commuting with N and write
B = >75..2,8;(N), B,; polynomials. Since #,0(N) = 0, §,8;;=0 (mod 5,).
Also, since BN = NB, (¢;N°B, x;N?) = (x;N?*'B, x,), so that B is self-
adjoint if and only if (x,N*B, x;) = (x,N*, x;B) for all 1, j, k.

Now fix 4,5,1 <+ <7< 7r and let

Bis(D) = pry + A+ oo + p, 27 p=d,
Bi(2) = vy + v 4+ oo oy A0, q=4d,.

Since (x;, ,N?) = «ay, (%, ;N9 = «a;, and (x, 2,N*) =0 for k =+ q,
we have the condition :

(@;N*B, ;) = (x;BN*, ;) = pt, 1 (®; N7, ;) = st 1y

(@ N*, 2,B) = vg_1_ (@, NI, ;) = Qpygoi-y

for all k, that is a7yig = A7y OF QFB(2) = A W a8,
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(1) Bis(2) = [a;*8(D)]7B,:(2) (@76,(2))

B,/(2) denoting the conjugate of §,(2).

Since 8,(1)f:;(1) = 0 (mod 5,(2)) is a consequence of the condition (1),
every matrix (f3) satisfying the above condition (1) defines a B in €3((V))
if we define for all 4, &k a,N*B = ¥, x,8,,(N)N*, and conversely every B
in €3(N) gives rise to such a matrix. Since 4, is the order of z,, it is
clear that B is zero if and only if 3, = 0 (modd,). This proves the
isomorphism for N nilpotent. If A is an arbitrary element of &, in the
symmetric case, and all the characteristic values 2, of A lie in F, then
we can write A = 3, ,E, + N;, the E;, N; being the idempotent and
nilpotent elements of 4. Set V, = VE,, then €g(4) is the direct sum
of €x,((NV,)), & the symmetric linear transformations on V,. If F is
algebraically closed, we may assume «, =1 for V symmetric.

(b) We denote by A4 the nilpotent symplectic-symmetric matrix under
consideration. Regarding the elements of ¥ as self-adjoint linear trans-
formations in V, we can choose a canonical basis {x;4% y,A*} as in
Lemma 2.2: (4% ) =1 = — (v, 4% «,) if k=d, — 1, all other scalar
products are zero. Let B be a linear transformation in V' commuting
with 4, and let

2B = X3@590:(A) + Ys¢i,(A)

yB = X2 m(A) + yipei(A) .
Then

(x;A*B, y,) = (%‘PU(A)A’C’ Y5)

(2 A%, y;B) = (2, A%, 9:0:1:(A)) = (@:ip(A)A", y:)

(@ AB, ;) = (y¢i(A)AF, a;) = —(2,¢0:,(A)A%, ¥))
(4%, 2,B) = (@, 4%, yi¢(4)) = @:,,(A) A", ys)
(¥ A*B, y;) = (& A)A*, y;)

WiAY, y,B) = (y, A%, 25(A)) = —(@,(A)A*, vi)

Thus B is self-adjoint if and only if

(@,0,(A) A", ;) = (@ipu(AA", )
(;¢:,(A)A, y;) = — (@ (A) A%, y,)
(@;7,,(A)AY, y))=— (@, (A) A", ;) .

Since (w,4% y;) =1 if k= d, — 1, = 0 otherwise, we have, exactly
as in the symmetric case,

(2) @iy = 070305, i3 = —07'¢505, Yiy = —07'950; -
To B we now assign the 2r x 2r matrix (f.,.(1)) where

Poie1,25-1 = Pi, 5
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1821—1,2] = ¢’i,]
Pt o1 = T, s
48212,2_1 = Pi, s hy=1,e0,r

i.e. we arrange the elements ¢, ¢, 7, p in 2 x 2 blocks
(%1 Sl’tj)
Nes Pug

If now (6) is the matrix with the blocks

( 0 8i>
—0; 0
on the main diagonal and zeros elsewhere, condition (2) in matrix form
is (0)7Y(R)(9) = (B).

If B corresponds to (5), clearly B = 0 if and only if ¢, ¢4, 745 045
are all = 0 (mod 9,), i.e. (B) = (a)(d) for some («) in (F[1]).,.. It is now
clear that the map B into 3 gives an isomorphism of €g((A)) and &/R.

(¢) This case is treated in [6], Chapt. 3, where however the defining
relation for & is

(3) 0B, =0 (mod d,) .

However, the condition 4,43;;, = 0 (mod §,) is clearly equivalent to (8)~*(8)'()
being in (F'[1]),, i.e. to the existence of (r) in (F'[4]), such that (8)'(s) =
(O)(7).

(d) Let & of be type D, then & = F-1@ V, 1 the identity element
and V a vector space of dimension at least two and with non-degenerate
symmetric scalar product (z,y).  can be considered as a subspace of
the Clifford algebra C determined by V, and the product in & can be
written as x oy = xy + yx, where zy is the product in C. The vector
space C can be identified with the vector space of the exterior algebra
E over V, with multiplication « A y, in such a way that xy = 2 Ay + (2, y)1
for «,y in V (See [3]). Let nowa = «al + v, « € F, v € V be an element
of & Clearly €3((a)) = €3((v)), and €3x((a)) = if v =0. Let now
v # 0: we have to show Cg((v)) = (v). Let we V and w e €x((v)). As
shown in §1, vw = wv, but vw =vaw + (v, w)l, 80 vAw=wav =0,
thus w is in (v). This proves €x((v)) = (v) if » is not zero, and com-
pletes the proof of the theorem.

COROLLARY 2.1. If & 4s a central simple Jordan algebra of type B
with enveloping associative algebra A and x is any element of &, then
the enveloping associative algebra of €g((x)) is Cu((w)). The same state-
ment does mot hold if X is of type C.
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Preof. As usual, we assume the base field F'is algebraically closed,
and consider first the case of a nilpotent element x. Then, in the nota-
tion of previous theorem, €v((x)) can be identified with the associative
algebra &N, & the subalgebra of (F[2]), of matrices («) such that
(0)H@)'(8) is in (F[A]), and R the ideal of matrices of the form («)(9),
while Cg((x)) is the Jordan subalgebra (H + RN)/R of KN, H denoting
the matrices («) such that (8)*(«)'(d) = («). It is sufficient to prove
that the enveloping algebra of H in (F'[4]), contains every element of
K. If » > 1, H contains elements ¢e¢;; and ¢¢;; + 0,07'¢e,; for1 < <j<r
and ¢ any polynomial. Thus the enveloping algebra contains e;(¢e;; +
007 ve;;) = e,; for © < j and also 8,07'¢e;; = (¢e;; + 8,07'¢e e, as well
as ¢e; for all 4; however the elements ¢¢;;, ¢ < 7, and ¢e;; with ¢ =0
(mod 0,67") for ¢ > j, clearly are a basis for £ Note that if » = 1, then
C3((@)) = Cu((x)). If now x is not nilpotent, we write = = 3 e, + ni,
e; idempotent and n; nilpotent as before, and set U, = ¢,WUe;, & = ¢,Je.
Then Cu((z)) = 2 D Cu((n), E3((@) = > D €34((n:)), therefore the
enveloping algebra of €gx((x)) is Cu((x)). If I is of type C, and Ais a
nilpotent 2n x 2n symplectic-symmetric element of & of index of
nilpotency n, i.e. r =1, §, = 4, then it is easy to see that Cg((»)) = (%)
and is a commutative associative algebra, whereas €y((z)) is not com-
mutative.

THEOREM 2.2. Let  be a central simple Jordan algebra, n its degree
and n + (1/2n(n — 1)s its dimension [thus s =1,2,4,8 if n =3, s=1,
2,4if n>38, s=1if n=2]. Letx be an element of F with invariant
factor degrees d,=d,= --- =d,, as defined before. Then Cx((x)) has

dimension S5Zisk + )div. If s =8, we assume characteristic + 2 or
3.

Proof. We may assume the base field is algebraically closed.
(a) Let & be of type A: this is the theorem of Frobenius and follows
from Th. 2.1, part C). Here s = 2.

(b) & of type B. First let « be nilpotent. We merely have to
calculate the dimension of the space of matrices () with (0)7(5)(0) = (¥)
and subtract the dimension of the (f) of the form (a)(d), i.e. reduce
f;;mod 8;. Clearly (f) is determined by the elements f3;; with ¢ < j and
B:; of degree < d,, thus the dimension is d, + 2d, + --- 4 rd,, and here
s =1. If x is not nilpotent, z = S a;e; + m;, and €3((x)) is a direct sum
of the algebras Ca((n)), & = Ju(e;) and n = n;. The J(e;) are again
algebras of all symmetric matrices (of degree = 1), and the invariant
factor degree d, of = is the sum of the d.(n;). Thus the formula holds
also for z«.

(¢) Type C. Again we need only consider nilpotent elements, and
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the calculation of the dimension is like that for symmetric matrices,
using Th. 2.1 b and its proof.

(d) I of type D. Let @ = al + v, v € V, using the notation of the
proof of Cor. 2.1. If the minimum polynomial 6, has degree one, then
v=0, d,=d,=1, and €g((x)) = . Here 2 + s = dimension of , so
Setisk + 1)dyey = dy + (s + 1)d, = s + 2. Let now the minimum poly-
nomial have degree two, then d, = 2, d, = 0, and v is not zero, so €x((x))
= (x) has dimension 2 = 3'iZi(sk + 1)dy.1.

(e) & the exceptional algebra, type E. We use the previously
mentioned result of Professor Jacobson that if 2 is a nilpotent element
of J, with a” =0, 2" # 0, then (x) can be imbedded in a direct sum
of algebras H® of all n; x n, symmetric matrices with n =n, = n, =

+ =2 n,. The identity element of & is in (x) and § has degree 3, so
r is at most 3, and x satisfies a cubic polynomial over the center F.
Thus we have only a small number of cases to consider. Let the cubic
polynomial be (1 — a))(2 — a,)(A — «;), «; € F.

(1) The «; are all equal, say to «,. Since Cx((z — ;1)) = Cz((x)),
we may replace x by x — «;1, and thus have z nilpotent.

(i) Let 2*=0, 2>+ 0. Since no element of a 2x2 or1x1
matrix algebra can satisfy this condition, H® must be of degree 8, and
H® =0 for ¢« >1. Then H® contains primitive orthogonal idempotents
e, with sum 1, and elements u,,, %, %,; With u;; 0 u;; = 4(e; + €;), Uy 0 Uy
= u,;, for 4,7, k distinct, and e; o u;; = (1/2)u;;. By Theorem 9.1 of [9],
& can be represented as H(C,) with these elements as matrix units and
involution 3\¢;e,; = S.¢ise:, (e = 2¢;, €55 + €5, = uy;). The element x is
represented by a matrix N with elements in F. Since N* =0, N* £ 0,
and N is a 3 x 3 symmetric matrix, it follows from the remarks after
Lemma 2.1 that there is an orthogonal matrix 7' with elements in F'
such that TNT-* = M,

0 0 1
M=]|0 0 «af aeF and a®= —1
1 a 0

since also M®* =0, M? + 0. The matrix T is in the nucleus of C; (i.e.
associates with all elements), and so X— TXT-' = X* iz an auto-
morphism A of H(C,). Using the matrix units ef, u#;, by Th. 9.1 of [9]
we may represent & as H(C,) with involution the ordinary conjugate
transpose operation with « being represented by M. Since M has
coefficients in the center of C, by Proposition 1.3b, €g((M)) is just the
get of matrices commuting with MM : these turn out to be all matrices
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of the form

X = 1.8 + 1.6n + 7385 + T8, + B0y + Y8 + Yulu + 26 + 7€y
such that the r;, are in F, &, =x,, y, =¥, 2 = 2, = aQy,
and it ams =1 =7, — Qm, .

Thus the =z, y;, 2; are in F, and X = (v, + az;)1 + azM + y,M*. Hence
Cx((x)) = (x). Also, d, =38, d,=d, =0 and 3, (8% + 1)d,., = 3 = dimen-
sion of (x).

(i) 2*=0: then H® is of degree two, so H® must be of degree
one and equal to Fe, ¢ a primitive idempotent. We note for future
reference that H® @) H® 1is contained in J,(1) + J.(0) = {@ in I such
that ¢eca =a or ¢coa = 0} and so ¢is in Cp((x)). H® contains primitive
orthogonal idempotents ¢, ¢, and an element u,, with u,, o u,, = 4(¢, + @,).
Write ¢; for ¢, then there are elements vy, w,; in & such that vy, o v =
4(e; + @), Wy 0 Wy = 48, + €5), Uiy © Vi3 = Wy, Uy © Wy = Vg3, aNd Vi3 0 Wy =
Uy, (this can be seen, for instance, by writing & as H(C;) with 2¢;, = e,
so that u, = ce,, + ce,; where cc = 1 in C, and setting v,; = cey; + cey,
Wy = € + @3,). As before we can write & as H(C;) using the ¢, uy,, vy,
Wy as matrix units : then x is a linear combination of e, ¢, %, and e,
and so is represented by a matrix with elements in F. Since 2* =0,
the coefficient of ¢, must be zero, and as before the 2 x 2 symmetric
matrix r.e, + 7.2, + 74(én + ), 7, in F, may be transformed to the form
ale, — e,) + e, + e, by a 2 x 2 orthogonal matrix T with coefficients in

0
F. Then the 38 x 8 orthogonal matrix T, = T /()) induces an
0 0 1
automorphism of H(C,), taking x into
a 1 0
N=|1—-a0 o= —1.
0 0 0

Again we have only to find the matrices commuting with N, which turn
out to have the form

I8 (1/2)&(‘32 —f)  az
(1/2)a(, — f) B, 2|, B in F, 2z, in C .
6(23 ES IH3
Thus the dimension of €g((x)) is 8- dim F + dim C = 11; also d, = 2,
d,=1, dy=0 so S8k + Ddesy = 2 + 9 = 11.

(2) The cubic polynomial of z has two distinet roots. Then (x)
contains two orthogonal idempotents ¢, f with sum 1, which we may
write as e=e, f =e¢ + e, where the e are orthogonal primitive
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idempotents in . Then « = r,.f + n + r:¢, where = is nilpotent, in fact
n* =0, eon=20, fon=mn, and ¢,f,n are all in (z). Note that (x) &
J,(0) + J,(1) and e is in €x((x)). Suppose first that » = 0. Then Cgx((x))
= Cg(e) = €3(f) = &(0) + J,(1) and has dimension 11, while d; = 2, d,=1
and >.(8% + 1)d,., = 11. Now suppose n == 0, and let y be in €g((x)).
Since y o-commutes with ¢, y = 9, + %, ¥: in J(¢). Since ,(0) is an
algebra, ¥, o-commutes with » in &,(0)—a simple algebra of degree two;
thus by part (d) of this theorem, y, is a linear combination of f and =
since n is not in the center of ,(0). Also, » is a scalar multiple of ¢
since (1) = Fe; thus y = y, + ¥, belongs to (x) and €3x((x)) = () and
has dimension 3. d, =3, d, =0 and 3.,(8% + 1)d,., = 3.

(8) The cubic polynomial has 3 distinet roots. Then (x) = Fe, +
Fe, + Fe,, ¢, mutually orthogonal, and €g((x)), being the intersection of
the &.(0) + J.(1) for ¢ = ¢, e, e; respectively, equals (z). Here d; = 3,
d,=d, =0, and S,(8% + 1)di+; = 3 = dim €3((x)). Incidentally, we also
note that for each « in & there is a representation of & as H(C,) such
that the matrices of €gx((x)) are just those commuting with the matrices
of (x).

COROLLARY 2.2. Let & be a central simple Jordan algebra of degree
n, (n=1), « an element of . Then the minimum polynomial of x in
X has degree at most m, and equals m if and only if C3((x)) = (x).
Elements x with minimum polynomial of degree n always exist.

Note. such elements with minimum polynomial of degree equal to
the degree of the algebra are a natural generalization of non-derogatory
n x n matrices in the Jordan algebra (F));.

Proof of the Corollary. Since the dimension of (x) is d,, the degree
of the minimum polynomial of «, and (x) is always contained in €g((x)),
we see that >'iZi(sk 4+ 1)dy.. = d, if andonlyif d,=--- =d. =0. But
since d, + -+ + d, = n, this means d, = n. If the base field is alge-
braically closed, hence infinite, and e, ---, ¢, are primitive orthogonal
idempotents with sum 1, then = = ae; + --- + «a,¢, is of degree n if
the «, are distinet. Since the degree of the minimum polynomial is
unaffected by field extension, there must exist elements with d, = n in
a central simple & over any base field.

We next consider the double centralizer €x(€x(x)), and prove that
it is always equal to (x): a known theorem for & the algebra of all
n x n matrices over a field. We can also prove this for & a Jordan
algebra analogous to a finite dimensional Jordan algebra of type A, B, or
C but obtained from a simple ring with minimum condition instead of
a simple algebra.
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THEOREM 2.3. Let U be an involutorial simple ring with minimum
condition, F' the set of self-adjoint elements of the center of A, and
the set of self-adjoint elements of U, regarded as a Jordan algebra over
F. Let x be an algebraic element of 3, i.e. (¥) is finite dimensional over
F. Then C3(C3((w))) = ().

Progf. We can also consider 2 as an algebra over F, and if K is
a finite extension field of F' containing the eigenvalues of z, form
AR K, IQ@,K, noting that the involution in 2 can be extended to
A R K by letting it be the identity on K =1&® K and that I ® K is
then the set of self-adjoint elements of AR K. We then need only
prove that if x is an algebraic element of I ® K with eigenvalues in
K, then (x) is its own double centralizer.

Case 1. Let E, the center of 2, equal F. Then A& K is again
an involutorial simple ring with minimum condition so that we may as
well assume F already contained the eigenvalues of . We may represent
A as the algebra (over F') of all linear transformations on a finite
dimensional vector space V, over an involutorial division ring D with
center F, with a non-degenerate scalar product which either is hermitian
or else is symplectic and D = F.

(a) Hermitian scalar product. We use the following lemma :

LEMMA 2.3. Let V be a vector space of dimension n =1 with non-
degenerate hermitian scalar product over a division ring D. Let F be
the subfield of szlf-adjoint elements of D, X the Jordan algebra, over F,
of self-adjoint linear transformations in D. Let A be an element of
such that A" =0, A" ' =0 (set A" =1). Then C3x(Es((4))) = (4).

Proof. First consider the case m» =1, that is V=D (as left D
space). Then (4)=F, C3((4))=F. Now it is known that either
generates D or else ¥ =F ([7], p. 187). In either case, Cgx(¥) =
C3(Cgx(A))) = (A) = center of I =F. Let now n>1. By Lemma 2.1
we can find a basis for V of the form (v,vA4,---,v4*"') such that
(vA!, vA’) = 1, a self-adjoint non-zero element of D, if 4+ 7=n —1, and
(vAl, vA’) = 0 otherwise. Let B be a self-adjoint linear transformation
commuting with ¥, and let vB = @ + A + «++ + B, wA"t, f, in D.
Then

(vB, vA"1-t) = B,(vAL, vAM ) = §,2
(v, vA*7'B) = (v, fA"") = Af;
for all ¢, and conversely, any linear transformation B commuting with

A such that the j; satisfy £,4 = 15; is self-adjoint, (¢ =0,1, .-+, n — 1).
For 7 in D, let y* = 22", Then 7y —* is an involution in D, and BfF



782 BRUNO HARRIS

= f;. The self-adjoint elements of this new involution either generate
D or else lie in the center of D. First suppose they lie in the center
of D: then Bf=p;=p, so the f, are in F, and B is in (4), (B=
Bl+BA+ .-+ B, A" ) 1e. €3((A4)) = (4) so E3(€5((4)))=C3((4))=(4).
Next suppose that the self-adjoint elements of * generate D, and let M be
in €gx(€x((4))). Since A is in €3((A4)), M commutes with A and so vM
=pv+ oo + p,_ A", Also M commutes with the linear transforma-
tion By(B): pvAt — ppvA® (¢ = 1,n — 1, in D) for every f such that g = B*.
Thus vBM = Bpp+ + -+« + P wA" = vMB, = v+ « - - + p, 1fA"" 80
that the g, commute with all such 53, and since the latter generate D,
every p, is in the center of D, so y¢f = ¢, = p, and the g, are in F.
Thus B is in (4). This completes the proof of the lemma.

Let now A be an algebraic element of & with eigenvalues in F':
thus A= S\A4E, + N, with 2, distinct, in F, and N, nilpotent, E,, N;
being in (A). First let the degree of the minimum polynomial of A on
V equal the dimension of V. Then V is a direct sum of the non-isotropic
mutually orthogonal subspaces V, = VE, and the index of nilpotency of
N, = E;N, equals the dimension of V,. Since the E; are in (4) and so
in €x((A)), every element of €3(€3((4))) maps each V; into itself, com-
mutes with N, on V,, and is self-adjoint on V,. By the lemma the
induced transformation on V,; is a polynomial ¢,(A) with coefficients in
F. Since the minimum polynomials of 4 in V, are relatively prime in
pairs, there is a polynomial ¢(2) such that ¢(A)E, = ¢,(A)E;, that is ¢(4)
induces ¢;(A) on V,. Thus every element of €g(€g3((4))) is a polynomial
in A. Finally, consider the general case. Then V is a direct sum of
cyclic mutually orthogonal subspaces W, such that W,., is a homomorphic
image of W, as A-space and the minimum polynomial of A on W, has
degree equal to the dimension of W,. Since the orthogonal projections
of Von W, are self-adjoint and in €g((4)), every element C of €3(€s((4)))
maps each W, on itself. Let S; be a self-adjoint linear transformation
of W, into itself which commutes with A on W,. S, can be extended
to V by letting it act as zero on the W, with j + 4, and will then belong
to €3((A4)). Thus C commutes with S;, and so on each W,, C is equal
to a polynomial ¢,(4). Finally, we must show that all the ¢,(4) may
be assumed equal. Let x; be a cyclic generator of Wi, and x, its image
under an A-homomorphism of W, onto W,. Then z, is a cyclic generator
of W,. Denote by T' the mapping of W, on W, with #T ==, and
define T=0 on W, for 1=2. Let 71" be the adjoint of 7. Since
w,T,w,) =0, (W,, W.I') =0 for all j, so W.IT'=0. Let S=T+1,
then S=T on W,, S is self-adjoint and since TA = AT, also T'A = AT’
and SA = AS. Thus S is in €g((A4)), SC=CS, and xS =, For all s,
z,C = z;¢(A). Since z, = 2,S, z,¢,(A) = x,C = &,5C = x,CS = x,¢,(A)S =
z,SP(A) = x,¢,(A). Thus ¢(4) =¢(4) on W, and in the same way
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9(4) = ¢ (A) on W, for all ©. Thus C = ¢,(A) on V.

(b) Skew-symmetric scalar product: We now write A for the
element z of . By Lemma 2.2, we can write V as a direct sum of
cyclic totally isotropic spaces W,, W such that W, + W is non-isotropic
and orthogonal to W, + W) for ¢=+j, W, is isomorphic to Wi, and
W,., is a homomorphic image of W, as (4) modules. Let V,= W, + Wi
and A; the restriction of A to V,. Let &, be the algebra of self-adjoint
linear transformations on V,; by Corollary 2.2, €g,((4,)) = (4,), since
the degree of J&; equals the dimension of W,. Let E; be the self-adjoint
projection on V,, and let C be in €x(€x((A4))); then C commutes with
the E; and maps V, on itself, inducing C; on V,. Since C; is in €g,((4,)),
C; is a polynomial ¢,(4). To show the ¢, are all equal, we choose cyclic
generators «;, z; of W,, W; and define a linear transformation 7T by :
TA = AT, 2T = x;,,, /T = x},,, and T is zero on V, for j +#4. As in
the symmetric case, the adjoint 7" of T is zero on V;, so if we set S =
T + T, then xS = 2., xS =a},, and S is in €x((4)). Then «,SC =
%3110 = Ty 1@i01(A) = 2,CS = ;.,9,(A), and similarly, 27.,¢;..(4) = 2}..0:(A).
Thus C = ¢(A) = ¢,(A) on all of V. This completes the proof of Case 1.

Case 2. E, the center of 2, is a quadratic extension of F. Just
as in the case of finite dimensional algebras, the ring A @, E is a direct
sum of two copies 2, A, of A and if we extend the involution of A to
AR E by letting it be the identity on 1 Q £ (i.e. if a —» @' is the in-
volution in A, we set (¢ ® ¢) = a Q¢ for ¢ in E) then the involution
maps 2, on 2, A, on A;. Thus the Jordan algebra F @, E of self-
adjoint elements of A @ E is isomorphic to the set of elements a, P a;
of A P A, where @, is in A, and a; the image of @, under the involu-
tion ; as 2, is isomorphic to A, I @, F is also isomorphic to A, (i.e. A
with the Jordan product). In U, the set of elements o-commuting with
an element x is just the set of elements commuting with it in the
ordinary multiplication, and the double centralizer of (x) for an algebraic
element « (over the base field £) is (x): the usual proof for matrices
over a field goes over for a division ring, since we can quickly reduce
it to the case of a cyclic nilpotent matrix # and note that for such an
x, every matrix commuting with it is a polynomial in « and 1 with
coefficients in the division ring, and every matrix commuting with these
is a polynomial in = with coefficients in the center E of the division
ring. This completes the proof.

THEOREM 2.4. Let X be a central simple Jordan algebra and x an
element of . Then Cx(€g((2)) = (). If I 1s ewceptional we assume
the characteristic is not 2 or 3.
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Proof. Theorem 2.3 covers algebras of types A4,B,C. Let & be
of type D: then, by Th. 2.1 d, if z is not in the center of & then
Cs((x)) = (x) so €3(C3((x))) = Cs((x)) = (x), whereas if z is in the center
of &, then €g((x)) = &, and €3(€g((x))) = Center of I = (x).

It remains to consider the exceptional Jordan algebra & over an
algebraically closed field F. If the minimum polynomial of z is of
degree three, then by Corollary 2.2, €g3((x)) = (z) so €x(€x((x))) = ()
also. If the minimum polynomial is of degree one, then (x) = Center
of ¥, so €3(Cg3((x))) = (x). Finally, let the minimum polynomial be of
degree two: then there are two cases—minimum polynomial has one
root or distinet roots.

Let the minimum polynomial of a be (x — r1)’. Replacing « by
« — 71 does not change (x), and so we may assume &> =0, 2 0. In
the proof of Theorem 2.2, we showed that there is a representation of
I as H(C;) such that x is represented by the matrix a(e; — ey) + e, + ey,
where « is in F and o = —1, and so the elements of H(C;) o-commut-
ing with z are exactly the matrices commuting with the matrix of =z.
We also showed that ¢; = (1/2)e;; is in €g3((z)). Let y be in €x(Cz((2))) :
then y o-commutes with ¢; and y is also in €g((x)) so that its matrix is
as in the proof of Theorem 2.2, and the element z, is zero since y o-com-
mutes with ¢,. Thus y also belongs to the simple subalgebra & of H(C;)
of elements with coefficients in F. Since y o-commutes on ¥ with every
element of €g((x)) and since Cg((w)) = €3((w)) (each consists of the
matrices, in & or & respectively, commuting with x), y o-commutes on
J with every element of €q((x)). and in particular y o-commutes on &
with every element of €ga((x)). As y is in &, we have shown that y is
in €Ca(Cgq((x))), that is, that Cx3(C3((w))) S Ca(Ca((x))). But & = H(F}) is
a simple Jordan algebra of degree three and type B, and we have
already proved for such algebras that Cg(€g((x))) = (x). Thus also
C3(Cs((x))) = ().

The only case left is that of a minimum polynomial of degree two
and distinet roots. Here a« = a¢ + 5(1 — ¢), ¢ a primitive idempotent
and a = B. Clearly (x) = (e¢), so we may assume x =-e¢. Eg((e)) =
J0) + I,(1). Let y be in €3(€s((¢))). Then, since y is in €g((e)), v is
in &,(0) + I.(1) and y o-commutes on &, and therefore on ,(0) + (1)
also, with every element of $,(0) + &(1). Thus y is in the center
of this algebra which is the sum of the centers of J.(0) and (1),
central simple algebras with respective identities 1 — ¢ and e. Thus
y = 7(1 — ¢) + d¢ belongs to (¢), and €3(€3((x))) = (x). This completes
the proof.

Section 3. Centralizers of Simple Algebras. In this section we study
the centralizer and double centralizer of a simple subalgebra in a central
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simple Jordan algebra. We are also able to study the centralizer theory
in certain infinite dimensional Jordan algeberas, namely the algebras
of all self-adjoint linear transformations on a self-dual vector space
which may be infinite dimensional, such as a Hilbert space. The
method is much simpler than that of the last section: we use the
enveloping associative algebra and the known centralizer theory of
simple associative algebras (see [7] and [15]).

We shall prove analogues of the following theorems on associative
algebras ([15]): Let M, N be left and right vector spaces, respectively,
over a division ring D, dually paired by an inner product (z, y) (i.e. if
(x,2) =0 for all z in N, then & =0, and similarly (u,y) =0 for all =
in M implies y = 0). Denote by A = L(M, N) the ring of all linear
transformations on M having adjoints on N, regarded as an algebra over
its center. (M = N, that is, M is self-dual, if and only if 2 has an in-
volution ([6]). The involution can be assumed to be the adjoint map.)
Let B be a simple subalgebra of U containing the identity element.
Then :

1. Cu(B) is also isomorphic to a ring L(V, W) for a pair of dual
spaces V and W. If 2 is a simple finite dimensional algebra then so
is Cu(B).

2. Cu(Cy(B)) = B.

Actually we will also generalize the above associative theorems from
rings L(M, N) to the more general primitive rings with minimal ideals,
and obtain a corresponding generalization for Jordan algebras. In what
follows the term ‘‘simple algebra’’ will be used only for finite-dimen-
sional algebras.

THEOREM 3.1. Let & be a special central simple Jordan algebra,
a semi-simple subalgebra containing the identity of . Then C(R) is
semi-simple. The same result holds for & an exceptional algebra provided
& 1is separable.

Proof. If & is of degree one then & = & and Cx(R) = F = K. Next
let & be of degree two. Then = F-1+4+ V, V a vector space with
symmetric scalar product. Since F'-1isin & =F-1+8&n V. If
K& N V is one-dimensional, then Cg(&) = &; if £ N V has dimension
greater than one, then €x(®) = F'- 1, and if & N V' = (0) then €3(R) = I:
these statements follow immediately from Theorem 2.1d. Thus €g(R)
is semi-simple.

Finally, let ¥ have degree three or more, and be special. If & is
of type A,, i.e. isomorphic to 2, for a central simple associative algebra
A, and & has enveloping associative algebra B in 2, then €x(R) = Cu(B),.
But B is a semi-simple associative algebra, therefore €y(®B) is also semi-
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simple, and so Cy(B), is a semi-simple Jordan algebra. The only remain-
ing possibility is that & = H(), 2 a simple involutorial algebra. Let
B be the enveloping algebra of 8 Then Cg(R!) = Cu(B) N F = set of
self-adjoint elements of €y(*B). But B and Ey(B) are semi-simple, and
Cu(B) is a self-adjoint subalgebra of A since B is self-adjoint. Therefore
the set of self-adjoint elements of Eu(®B) is a semi-simple Jordan algebra :
C9(B) is a direct sum of simple ideals which are either self-adjoint or
interchanged in pairs by the involution, their self-adjoint elements are
simple Jordan algebras of types A,, B, C or type A, respectively. This
completes the proof for special algebras . The exceptional algebra
case was proved at the end of Section 1.

As we saw in the above proof, if ¥ is of type 4, ie. JI=9A, A
a central simple associative algebra, and R is a simple subalgebra of &
with enveloping algebra B, then €g(R) = €u(B),; also, if I is central
simple and & contains the identity, then Cu(€u(B)) =B, so that
Cx(Cx(R)) = B,. Thus CE3(C3(R)) = & if and only if & =B, is also an
algebra of type A, and the centralizer theory here is identical with the
associative theory. The theory for algebras of degree two is not very
interesting, since we will always have Cg(R) = &, &, or center of g, as
we have seen in the proof of the above theorem.

The remaining type, & = H(), A an involutorial ring of linear
transformations, is the only interesting one. We note first of all that
the double centralizer of a simple subalgebra & may be actually larger
than R, as is shown by the following examples :

1. Let = F -1+ V, V even-dimensional, be an algebra of type
D and let A be the Clifford algebra determined by V. We may then
assume that £ is contained in 2. 2 has an involution such that the
elements of & are self-adjoint; let & = H(), then { is a simple Jordan
algebra of degree greater than two if V has dimension greater than
two, and & properly contains K. C€g(R) = F'- 1 since ! generates A,
and Cgx(Cx(R) = F. We may also embed V in a larger space W with
symmetric non-degenerate scalar product, and take 2 to be the Clifford
algebra of W, & = H(). If B is the enveloping algebra of &, then
Cx(€x(K)) will contain H(B), so will be larger than & To exclude this
possibility we will at least have to assume that if B is the enveloping
algebra of &, then H(B) = &, that is, that & is not of type D.

2. Let & = H(Q,), the algebra of n x n hermitian matrices with
quaternion coefficients, » = 3, and & the subalgebra of n x n symmetric
matrices, H(F,). It is easy to see that C3(®) = center of = F- 1,
and Cg3(C3(R)) = ¥. Here & is the set of self-adjoint linear transforma-
tions on an m-dimensional space and R generates an irreducible algebra
of linear transformations on the same space, i.e. & is almost all of .
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To rule out such a case we will have to assume the dimension of the
vector space on which  operates is not too small relative to f.

3. Let & = H(C,), ordinary n x m complex-hermitian matrices for
a suitably large n—an algebra over the field of real numbers, and &
the subalgebra of matrices with r equal s x s symmetric (i.e. with real
coefficients) matrix blocks on the main diagonal and zeros elsewhere
(rs =n). Then & is isomorphic to H(R,), and if r,s =2, Cg3(®) is
isomorphic to H(C,), and €x(€x(R)) to H(C,) which properly contains &.
To exclude this, we will assume that the center of the enveloping
associative algebra of K contains the center of the enveloping associative
algebra of .

We start with a discussion of centralizers of simple subalgebras of
a primitive ring with minimal ideals and identity element. Let M, N
be dual left and right spaces over the division ring D with center F.
Then F'- 1 is the center of the ring L(M, N). Let F(M, N) be the socle
of L(M, N), i.e. the linear transformations whose range is finite-dimen-
sional. We will consider primitive rings R containing F'-1 and such
that L(M, N) 2 R D F(M, N).

LeEMMA 3.1. Let U be a ring of endomorphisms of a module M, and
S a right ideal in A such that MS = M. If e is an endomorphism of
M commuting with every clement of &, then e commutes with every
element of .

Proof. Let s,a belong to &, A respectively. Then s(ea — we) =
esa — sae since es = se, but since sa is in &, e(sa) = (sa)e, so s(ea — ae)
=0 for all s in &. Since MS =M, M(ea — ae) = MS(ea — ae) = 0.
Thus ea = ae.

THEOREM 3.2. Let A=LM,N)2R2 F(M,N)+ F-1, and let B
be a simple finite-dimensional subalgebra, over F, of R which contains F - 1.
Then € = Ex(B) is also a primitive ring with minimal ideals and identity
element, and Cn(Cn(B)) = B.

Proof. The above theorem is a generalization of a result of Rosen-
berg, [15], but follows immediately from his result and the above lemma.
Cnr(B) = Cu(B) N N, since R = A. As shown in [15], Cu(B) is a ring
of the form L(V, W) for dual spaces V and W, and the socle & of €y(B)
is contained in F(M,N). Since F(M, N)c R, S cR, and so
& cC Cn(B) < Cu(B) = L(V, W). Thus Cx(B) is a primitive ring with
minimal ideals and identity, since B and R contain the identity of 9.
This proves the first statement.

It is known that M& = M ([15]). Since & is a two-sided ideal in
Ca(DB), it follows from the lemma that €y (S)=Cy(Cy(B)), and Co(Cyu(B))=B
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by [15]. Thus Cn(S) € Cu(S) =B. Since S c Cn(B), Cx(Exr(B)) =
Cn(®) = B, but Cn(Cx(B)) 2 B always, so Cx(Cx(B)) = B, which we had
to prove.

The method of the above proof can be used to extend the Galois
theory of rings L(M, N), contained in [16], to primitive rings with
minimal ideals.

We state now the main result of this section:

THEOREM 3.3. Let M be a self-dual space (see § 2 for the definition)
over a division ring D, E the center of D, and F' the subfield of self-adjoint
elements of E. Let U =LM,N), = H®), the Jordan algebra (over
F-1) of self-adjoint linear transformations, and £ a simple subalgebra
of & of degree greater than two containing F -1 and finite dimensional
over it. Assume that B, the enveloping associative algebra of & in A,
contains E+-1. Then:

1. If R is of type A,, thus is isomorphic to L(V, W), for a pair of
dual spaces V and W, then Cx(8&) is isomorphic to L(P, Q); for a pair of
dual spaces P, Q).

2. If 8 4s of type A,, B or C, i.e. is isomorphic to H(I(V, V)) for
a self-dual space V, then C3(R) isomorphic to H(L(P, P)), P self-dual.

3. C3(Cy(R)) = R, provided the dimension of M is greater than twice
the dimension over D of any minimal right ideal of B - D, the ring of
endomorphisms of M generated by B and the scalar multiplications by
elements of. D.

Proof. Let & be of type A,. Then its enveloping associative algebra
B is a homomorphic image of the ‘‘universal’’ enveloping algebra U of
&, and U =10, P U, where 1, is anti-isomorphic to U, and U, and U, are
simple algebras. Thus either B is isomorphic to 1, or else B is isomor-
phic to U. B is a self-adjoint subalgebra of 2 since & consists of self-
adjoint elements. Moreover the dimensions over F' of 11, and & are the
same, so if B is isomorphic to 11, then B = K. Since & has degree at
least three, B is not commutative and so cannot consist only of self-
adjoint elements. Thus B =B, P B, where B, is isomorphic to U,.
Since B is self-adjoint, either B, and B, are also self-adjoint, or else
B, = B}, the image of B, under the involution in A. But if the B, are
self-adjoint we again get a contradiction: for each k in &, write k =
k, + k., k; in B, and self-adjoint. Then the map k into %, is a homomor-
phism of Jordan algebras and so is either zero or an isomorphism since
& is simple. If it is an isomorphism it is onto B, since B, and & have
the same dimension over F. But then B, consists of self-adjoint elements
and this is impossible, as before. If the map % into %, is zero then the
map k into %k, must be onto, which is equally impossible. Hence B =
B, D B..
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Let ¢; be the identity of &,, ¢ =1,2. Then ¢, = ¢ and ¢, + ¢, = 1,
ee,=0. Let M, = Me,: then M = M, P M, and the M, are each totally
isotropic, for (Me;, Me,) = (Me,e;, Me;) = 0 since ¢¢; = 0. As M is self-
dual, M, and M, are dually paired by the scalar product in M.

Let € = €y(B). Since B contains e¢; and e, clearly

C=CNneAePCNnele,=6€PC,

= centralizer of B, in ¢ e, P centralizer of B, in ee,.

Since B, = B, €, = €. Also, by §3.20 of [16], e¢Ue, is isomorphic
to L(Me,, Me)) = L(M,, M,) and in the same way ele, is isomorphic to
L(M,, M,). €, being the centralizer in L(M,, M,) of the simple subalgebra
B, which contains the center E -1, is a ring L(V, N,), by [15], and
€, = €. Thus Cx(R) = H(C, P C)) is isomorphic to (€,),, i.e. to L(N;, NV,);.
This proves statement 1.

Let & be of type A, as above, and let M satisfy the dimensionality
condition of 8. Since E is the center of D and B contains £ -1, B D
is isomorphic to B@,;D and so B-D =B, - DPVB,- D =B, Q,DD
B, @:D. As the B, are simple and contain FEe, in their centers, B, - D
is a simple ring with minimum condition operating on M; and therefore
M, is completely reducible and homogeneous as B, - D (right) module.
By the dimensionality assumption, M, is a direct sum of at least two
irreducible submodules. Let M be finite dimensional, then €, is the
ring of all endomorphisms of M commuting with B-D and so is a
matrix ring G, over a division ring G with »n =2, ie. € = L(N, N,)
and N, is a vector space of dimension greater than one. If M is infinite
dimensional, so is N,. From this it follows that the enveloping ring in
A of €N F containg the socles of €, and €,: for €, is not commutative
and so contains elements @ and b with ab + ba. Thena + o/, b + b’ and
ba + a't’ all belong to € N, so (¢ + a') (b + &) — (ba + a'b’) = ab — ba is
in the enveloping ring of € N . Also (ab — ba)(g + ¢') = (ab — ba)g and
(g9 + ¢')(ab — ba) = g(ab — ba) are in this enveloping ring for all g in €
(since €€’ = (0) = €’C), and so this ring contains a non-zero two-sided
ideal in €,. Since every two-sided ideal contains the socle, the envelop-
ing ring does also. If V, W are dual spaces and R is a subalgebra of
L(V, W) which is the centralizer of a simple finite dimensional subalgebra,
then the socle F' of N satisfies VF = V (see [15]). Therefore if F) is
the socle of €,, M F, =M, By Lemma 3.1, the centralizer of Fj in
L(M,, M,) is also the centralizer of €,. Thus €3(€3x(R)) = I N Cy(E€).
But Cy(€) is just Cy(€, P E,) and the latter is B, P B, since B, is the
centralizer of €, in ¢Ne, = L(M,, M,) and similarly for B,. Therefore
C3(C3x(R) =B NS and it is known that BN I = HB, P B)) = & since
& is of type A..

Next let & be of type A;, B, or C. Then B is simple and & = H(B).
Ca(R) =CAB)NI. But Eu(B) is self-adjoint and so is of the form
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L(P, P) for a self-dual space P, since B is simple and contains the
center E -1 of A. This proves statement 2.

Let now M satisfy the dimension condition of 8. B - D is a simple
ring with minimum condition since B is simple and contains E - 1, and
so is homogeneous completely reducible on M, and M is a direct sum
of at least three irreducible submodules, i.e. P has dimension at least
three. Write € for €u(B) and F for the socle of €. Then F'is locally
canonically matrix of degree = 3, [12], and so is generated by its self-
adjoint elements—i.e. the enveloping ring of €g(!) = H(C) contains F.
Therefore Cu(F') = Cu(€) = Cu(Cx(R)) and Cy(€) = B. Thus CI(E3(R))
=) NJI=BNG, and finally BNZ = & since J is of type A, B
or C. Thus €3(Cg3(R)) = K. This concludes the proof.
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