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1. Introduction. Let Z denote the set of positive integers and
let P and Q be nonvacuous subsets of Z such that if nx e Z,n2e Z,
(nlf n2) = 1, then

(1.1) n = nxn2 e P^t^e P,n2e P;

suppose also that the elements n in Q satisfy the condition (1.1) with
P replaced by Q. If, in addition, every integer n e Z possesses a unique
factorization of the form

(1.2) n = ab, ae P,b eQ ,

then each of the sets P and Q will be called a direct factor set of Z,
while P and Q together will be said to form a conjugate pair. In the
rest of this paper P will denote such a direct factor set with conjugate
set Q. It is clear that 1 is the only integer common to both P and Q.
A simple example of a conjugate pair P, Q is the set P consisting of
1 alone and the set Q = Z.

Let r be a positive integer. In this paper we shall generalize the
notion of a reduced residue system (mod r). If P is a given direct
factor set, then the elements a of a complete residue system (mod r)
such that (α, r) e P will be called a P-reduced residue system (mod r)
or simply a P-system (mod r). Any two P-system (mod r) are equivalent
in the sense that they are determined by the residue classes of the in-
tegers (mod r). A P-system chosen from the numbers 1 < a < r will
be called a minimal P-system (mod r). The number of elements in
a P-system (mod r) will be denoted by φP(r) and called the P-totient of
r. Clearly, if P = 1, ψP(r) reduces to the ordinary Eulerian totient
φλ{r) = φ(r), while φz(r) = r.

We summarize here the central points of the paper. Analogous to
the generalization φP(r) of φ(r), we define in § 2 a function μP(r) ex-
tending the Mόbius function μ{r) to arbitrary direct factor sets P. On
the basis of this definition we prove in Theorem 3 an analogue of the
Mόbius inversion formula. This result is then applied in § 3 to yield
an evaluation of φP(r). In § 4 a generalization cP(n, r) of Ramanujan's
trigonometric sum c(n, r) is defined and evaluated for arbitrary direct
factor sets.
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In § 5 applications to two relative partition problems (mod r) are
considered. In particular, in Theorem 12 we obtain a formula for the
number of solutions (mod r) of the congruence

(1.3) n = xλ + + xs (mod r) ,

such that (xiy r) e P, (i = 1, . . . , s). In Theorem 13 a formula is deduced
for the number θP(n, r) of integers a (mod r) such that (α, r) = 1 and
(n — a, r) e P. These two theorems are wide generalizations of results
proved by the author in [1], [2], and [3]. We remark that the method
in § 5 and the latter part of § 4 is based on the theory of even func-
tions (mod r) developed in the three papers cited above.

In § 6 the results of the preceding sections are specialized to the
conjugate pair P, Q, where P consists of the A -free integers and Q is
the set of kth powers. Precise criteria for the vanishing of θP(n, r)
and θQ(n, r) in these cases will be found in Theorem 14.

Regarding the theoretical foundations of arithmetical inversion, we
mention an investigation of Holder [6]. Additional references to the
literature appear in Holder's paper.

REMARK. It is noted that several of the results proved in this paper
are valid for arbitrary sets P, as distinguished from direct factor sets
(for example, Theorems 6, 8, 9, and 13). In the general case, however,
the unifying method of arithmetical inversion is no longer applicable.
The broader topic of arthmetical functions in relation to arbitrary sets
P will be treated in another paper.

2* The inversion function μP(r). We recall the following funda-
mental property of μ(r).

(2.D

The /^-function may be generalized to arbitrary direct factor sets by
writing

(2.2) M 0 Σ
dβP

where the summation is over the divisors d or r contained in P. It will
be observed that μjj) = μ(r) and μz(r) = p{r).

By (2.2), (1.1), and the factorability of μ(r), it follows that μP(r) is
a factorable function of r :

THEOREM 1. If rxe J,r2e J, (ru r2) = 1, then
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(2.3) μP{r) = M n ) M O (r = r.r,) .

We next prove that the property (2.1) of μ{r) can be extended to
the function μP{r).

THEOREM 2.

(2.4) Σ

Proof. On the basis of (2.1), (2.2) and the uniqueness of the factori-
zation (1.2) one obtains

ΣμJrA = Σ Σ μ{D)
d\r \ & / dc = r e=8D
dβQ dβQ 8er

= ΈtiD) Σ 1 = Σ,KD) = P(r) .
D\r 8d = r/D D\r

δβP.dβQ

This completes the proof.
By means of Theorem 2 we generalize the Mobius inversion formula

to arbitrary direct factor sets.

THEOREM 3. If f(r) and g(r) are arithmetical functions, then

(2.5) f(r) = Σ g(~-) 2 9(r) = Σ f(d)μJrΛ .
d\r \d/ d\r \ (Z /
dβQ

Proof. Let f(r) be defined as on the left of (2.5). By (2.4) one
obtains

Σ f(d)μP(l) = Σ ( Σ g(.e))μJ J-)
a\r \ d I d\r \δe = cZ / \ (X /

= Σ flr(e) Σ μA?) = Σ ff(e) Σ M3')
e\r d8'*=r e\r 88r = r\e

8%Q

= Σ 9(e)p(~) - flf(r) .
e\r \ e /

Conversely, let #(r) be defined as on the right of (2.5). Then again

by (2.4)

/ Λ/ \
>Tϊ

dβQ " dβQ

= 8\r de = r 8\r dδ'=r/δ
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The proof is complete.
It is evident that if P = 1, Q — Z, Theorem 3 becomes the inversion

formula of elementary number theory.

3* The totient function φP(r). The following principle is basic in
considering P-totients.

THEOREM 4. Let d range over the divisiors of r contained in Q,
and for each such d let X range over the elements of a P-system (mod
rid). Then the set d X forms a complete residue system (mod r).

Proof. In the proof we suppose n to range over the positive in-
tegers < r. For a fixed divisor d of r, d e Q, let Cd represent the set
of those n for which (n, r) is of the form (n, r) — de, e e P. By the
uniqueness of the factorization (1.2), a given n lies in exactly one class
Cd hence the set of elements in the classes Cd consists precisely of the
integers 1, , r. Moreover, for a fixed divisor d of r such that d e Q,
the elements n — dx comprise Cd if and only if {%, rjd) e P, 1 < x < rjd,
that is, if and only if the elements x form a minimal P-system (mod
rid). Replacing the particular P-system x (mod r/d), by an arbitrary
P-system X (mod r/d) the theorem results.

Theorem 4 leads immediately to

THEOREM 5.

(3.1) Σ

The evaluation of φF(r) follows from (3.1) on applying the inversion
formula of Theorem 3:

THEOREM 6.

(3.2) φP(r) = Σ dμP(^) .
d\r \dJ

In case P = 1, Theorem 6 becomes the well-known evaluation formula
for φ(r).

Since μP{r) is factorable (Theorem 1) the same is true of φP(r)f by
(3.2):

THEOREM 7. If (rlf r2) = 1, then
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(3.3) φP(r) = φpirjφpirz) , (r = rλr2) .

Next we show how φP(r) may be expressed in terms of the ordinary
φ-ί unction.

THEOREM 8.

(3.4) φP(r) = Σ Φ (—) .
fϊGP

Proof. By (2.2) and (3.2) it follows that

φp(r) = Σ ^ ZJ Pi — v- — Σ Σ W-!-—
δfr d|r/δ \ d / Λ\r 8jr/d \ 0 /

d€P dBP

and (3.4) results by (3.2) with P = 1.

4Φ The exponential sum cP(n, r). We define

(4.1) cP(n, r) = Σ e(»̂ » r ) » e(α^ r ) = ^ial\
(i,r)6P

where the summation is over a P-system (mod r). In case P = 1, cP(n, r)
reduces to the Ramanujan sum, c(n r). The next theorem generalizes
the familiar evaluation of c(n, r).

THEOREM 9.

' r
(4.2) C/,(w, r) - Σ dμ

d\(n,r)

Proof. Placing ^(n, r) = cz(τt, r), we have

Furthermore, by Theorem 4,

(4.4) r,{n, r) = Σ Σ e(daw, r) = Σ cP(w, —) .
ά\r (ϊ,r/ιί)6P Λ|r \ (X /

Therefore, by the inversion theorem (§2),

cP(n, r) =Σ
d]r

and the theorem follows on the basis of (4.3).
The function cP(w, r) is a generalization of both φP{r) and
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COROLLARY 9.1. If n = 0 (mod r), then

(4.5) cF(n, r) = φF(r) .

COROLLARY 9.2 // (w, r) = 1, then

(4.6) cF(w, r) = μP(r) .

By (4.2) and (2.3) we have, in addition,

THEOREM 10. The function cP(n, r) is a factorable function of r;
that is, if (rlf r2) — 1, then

(4.7) cP(n, r) = cP(n, r^cP(n, r2) , ' (r == rx r2) .

In the proof of the next theorem we assume the results on even
functions (mod r) proved in [1]. We first state a lemma which results
on applying the Mobius-inversion formula to (2.2).

LEMMA 1.

(4.8)

It

(4.

is noted that

THEOREM 11.

9) c

Pi(r)

P(n,

=

r)

d\r

p(r) .

Σ
d)τ
aep

Proof. By (4.2), cP(n, r) = cP((n, r), r), so that cP(n, r) is an even
function of n(mod r). Hence by Theorem 9 and [1, Theorem 4], cP(n, r)
has a Fourier expansion,

cP(n, r) = Σ # (c

where

α(c2, r) = 5

and the theorem follows by (4.8).
We note that (4.9) reduces to (3.4) in case n — 0, thereby providing

a new proof of Theorem 8, while in case n = 1, (4.9) becomes (2.2).

5. Relative partitions (mod r). In this section we assume the results
of [2] and [3], Let A(

p

s\n, r) denote the number of solutions (mod r) of
(1.3), such that for each xl9 (1 < i < s), (xi9 r) is contained in a P-system



A CLASS OF RESIDUE SYSTEMS (mod r) I 19

(mod r). We deduce the following expansion for A(

p

s)(n, r).

THEOREM 12. For arbitrary positive integral s,

(5.1) Aψ(n, r) = 1 Σ (cJ^, r))'c(n, d) .

Proof. We prove (5.1) inductively on s. Obviously A{p(n, r) =
pF((n, r)). Hence applying [2, Theorem 3] to (4.9), one obtains

(5.2) A$\n, r) = ±Σ>cP U, r) c(n, d) .
r d\r \d J

This proves the theorem in case s = 1. We assume the theorem for
s = t > 1. Then by [3, Theorem 1]

A^+ι\nf r)= Σ Aψ(ay r)Aψ(b, r)

n=«+δ (mod r)

1 / / ni W + 1

r dir \ \d J J

This completes the induction.
Next we derive an arithmetical formula for the function θP(n, r)

defined in the Introduction. Equivalently θP(n, r) may be defined as the
number of solutions, x9 y (mod r) of

(5.3) n = x + y (mod r) , (x, r) = 1 , (y, r) e P .

The proof will depend on the following lemma.

LEMMA 2. Let e be a positive integer. Then

(5.4) ΣfeW) K7Λ
| V c t y ( otherwise.

Proof. By the evaluation formula for c(n, r),

d\r \ d ' dlr Σ>\(rld,e) \ JJ

= Σ ^ ( ! , > Σ μ(d),
D\(e,r) \JJ/ d\r/D

and (5.4) follows on applying (2.1) to the inner sum of the last expres-

sion.
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THEOREM 13.

(5.5) θF(n, r) = φ(r) Σ
d\τ

(d,n)-l

wΛerβ ίfeβ summation is over the divisors of r prime to n.

Proof. Using (5.2) we apply [2 Theorem 6] to θP(n, r) with
f(n, r) — ACp\n, r), obtaining on the basis of Theorem 11 and Lemma 2,

w Σ c

Σ -4- Σ ( Σc^eMί)

= Σ -Ĵ r- Σ HE) = Σ ~r- Σ HE),
\ φ(d) ' \ φ(d) E'

Σ r
*\ φ(d) a\r φ(d) Ee'

(d,n) = l r v 7 (r/d)E=e (Λ,w)-1 7 x / e 'SF

and the theorem follows by definition μP(r).

6. Special cases* For a fixed non-negative integer k, let P be the
set of all fc-free numbers and let Q be the set of all fcth powers. Clearly
P and Q form a conjugate pair of direct factor sets. We introduce the
following notation for the functions corresponding to these sets:
Φ*(r) = ΦP(r), μk(r) = μP(r), gk(n, r) = cP(n, r), and Ψk(r) = φQ(r), λk(r) =
PQ(T)I hk(n, r) = cQ(n, r). If (α, b)k is defined to be the greatest kth.
power divisor of a and b, then Φk(r) denotes the number of integers a
(mod r) such that (α, r)fc = 1, while Ψk(r) denotes the number of a
(mod r) such that (α, r) is a feth power, that is, (α, r)Λ = (α, r).

It is observed that, in case k = 1, (?Λ(r), μk(r), and flrΛ(n, r) reduce
to φ(r), μ(r), and c(w, r), respectively. We also note that λ2(r) — λ{r),
where λ(r) represents the Liouville function. The conjugate totient
functions Φk(r), and Ψk{r) were introduced by Rogel [9]. Regarding the
special case k = 2 of these two functions, 02(r) was evaluated by
Haviland [5] using a definition equivalent to that given here, while Ψ2(r)
was evaluated by the author in [2, Corollary 4.2]. For a further discus-
sion of the function Φk(r) we refer to McCarthy [7].

The following evaluation arise as corollaries of the results proved
in §§ 3 and 4.

(6.1) () μ() Σ

(6.2) U)
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(6.3) gt(n,r)= Σ dμj.r) = Σ
cl\(n,r) \ d / |

(6.4) Λt(n, r) = Σ
d[(n,r) d \ r

By (2.2) the functions /^(r) and Λfc(r) may be written

(6.5)

In view of the factorability of μk(r) and 4 ( r ) it is sufficient to evaluate
these functions for prime-power values of r, r = p m (p prime, m > 0).
In particular, it is easily deduced from (6.5) that

while for fc > 2,

( 1 (m = 0 (mod k))
(6.7) 4(p-) = J - 1 (m = 1 (mod k))

{ 0 (otherwise) .

The functions μk(n) and λk{n) were introduced by Gegenbauer [4];
for a further discussion we mention Holder [6, §§ 6-7]. Note that
ΛO) = μ*(r) = p(r), ;0(r) = μ(r).

The corresponding inversion formulas are contained in the following
relations (Theorem 3):

(6.8) f(χ) = Σ ff(^) 7t 9(r) = Σ

(6.9) /(r)= Σ gU)τt9(.r) = Σlf(d)λJ
d\r \dJ Λ\r \d

(d fc-free)

The case ft = 1 in (6.8) is the ordinary inversion theorem, while the case
k = 2 in (6.9) yields the formula,

(6.9a) f(r)= Σ ΰU ) ̂  9(r) = Σ f(d)λ( r

d\r \dJ d\
()

the summation on the left ranging over the primitive (square-free)
divisors of r.

We now specialize the additive results of § 5 to the particular
sets P, Q of this section. Placing Ric>s(n, r) — A(f(n, r), Sk>s(n, r) =
A{q\ny r), we observe that RjcfS(n, r) represents the number of solutions
of (1.3) such that (xt, r)k — 1, while Skt8(n, r) represents the number of
solutions of (1.3) such that (xt, r) is a ftth power (i = 1, « ,s). In
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particular, one obtains from Theorem 12,

(6.10) Rkt8(n, r) - - ! Σ (g*(^, r))Sc(n, d) ,
r a\r \ \d JJ

(6.11) SUn, r) = A Σ (h*(-j, r))'c(n, d) .
r a\r \ \d //

The case k = 1 in (6.10) is Theorem 6 of [1], (also cf. [2, § 2]), while
the case k = 2 in (6.11) is Theorem 3 of [3] in an equivalent form.

If one places θP(n, r) = 0fc(w, r) and 0Q(w, r) = εk(n, r), then 0Λ(w, r)
denote the number of integers a (mod r) such that (α, r) = 1 and
(w — α, r)fc = 1, while εk(n, r) denotes the number of a (mod r) such
that (α, r) = 1 and (w — α, r) is a fcth power. We deduce then from
Theorem 13,

(6.12) θk(nfr) ^

(6.13) efc(n,r)

The case fc = 1 in (6.12) is [2, Corollary 21] while the case k = 2 in
(6.13) is [3, Corollary 38].

Finally, we investigate the conditions under which θk(n, r) and
εk(n, r) vanish. It is sufficient to consider these functions when r and
n are powers of the same prime p, r = p\ n — pδ, t > 0, t > b > 0.
A simple computation yields the following results. If k > 1, then

<MP , P - | ^ - i ( p _ i) otherwise .

Suppose ak < t < (a + l)k where a is a (uniquely defined) non-negative
integer. Then, if k < 2,

( X - 1) ,
(pfc - l)εk(pb, vι) = ^ - ^ c ^ 1 ) ^ - 1 - 1) + pk+t~\p - 2) + p ' " 1

(^+fc-i(p - 2) + j)*-^-!^* _ p + 1) ,

according as (i) b > 0, (ii) 6 = 0, ί = (a + l)fc, or (iii) 6 = 0, ί < (a + l)k.
From these results it is easy to deduce that θk(pb, pι) — 0 if and

only if p — 2, k = l,b = 0 and that ek(pb, pι) = 0 if and only if p —
2yt<kyb — 0. We are therefore led, on the basis of factorability
considerations, to the following criterion in the general case.

THEOREM 14. If k>l, then θk(n, r) = 0 if and only if k = 1, r
is even, and n is odd.

If k > 2, then εk{n, r) = 0 if and only if r is of the form 2ιR
where R is odd, 0 < t < k, and n is odd.
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The above result for θk(n, r) in case k = 1 is due to Ramanathan
[8, p. 68J. The result for ek(n, r) in case k = 2 was proved in [3,
Corollary 38.1].
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