n-PARAMETER FAMILIES AND BEST APPROXIMATION

Philip C. Curtis, Jr.

1. Introduction. Let $f(x)$ be a real valued continuous function defined on a closed finite interval and let F be a class of approximating functions for f. Suppose there exists a function $g_{0} \in F$ such that $\left\|f-g_{0}\right\|=\inf _{g \in F}\|f-g\|$ where $\|f\| \equiv \sup _{x \in[a, b]}|f(x)|$. The problem of characterizing g_{0} and giving conditions that it be unique is classical and has received attention from many authors. The well-known results for polynomials were generalized by Bernstein [2] to "Chebyshev" systems. Later Motzkin [10] and Tornheim [15] further extended these theorems to not necessarily linear families of continuous functions. The only essential requirement was that to any n-points in the plane with distinct abscissae lying in a finite interval [$a, b]$, there should be a unique function in the class F passing through the given points. Such a system F is called an n-parameter family. Constructive methods for determining the function from F of best approximation to f, due to Remes [14] in the polynomial case, were extended to the above situation by Novodvorskii and Pinsker [13]. In this paper and in the paper of Motzkin two apparently additional requirements were placed on the system F. One, a continuity condition, was shown by Tornheim to follow from the axioms of F. The other, a condition on the multiplicity of the roots of $f-g, f, g \in F$, also follows from the definitions as will be shown in $\S 2$. In § 3 the characterization of g_{0} is discussed. Methods for constructing g_{0} are given in $\S 4$. These are based on the maximization of a certain function of $n+1$ variables. In $\S 5$ it is shown that an n-parameter familiy has a unique function of best approximation to an arbitrary continuous function in the $L_{p, N}$ norm if and only if F is the translate of a linear n-parameter family. The problem of the existence of n-parameter families on general compact spaces S is discussed in $\S 6$. Under additional hypotheses on F it is shown that S must be homeomorphic to a subset of the circumference of the unit circle. If n is even this subset must be proper.
2. n-parameter families functions. Following Tornheim we define, for a fixed integer $n \geq 1$, an n-parameter family of functions F to be a class of real valued continuous functions on the finite interval $[a, b]$ such that for any real numbers

$$
x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}, a \leq x_{1}<x_{2}<\cdots<x_{n} \leq b
$$

[^0]there exists a unique $f \in F$ such that $f\left(x_{i}\right)=y_{i} i=1, \cdots, n$. For convenience we will usually take $[a, b]$ to be the interval $[0,1]$. We will include the possibility that 0 and 1 are identified. Then of course $x_{1} \neq x_{n}$, and the functions of F are periodic of period 1 . We call such a family a periodic n-parameter family. If we wish to consider specifically the case when 0 and 1 are not identified, we will refer to F as an ordinary n-parameter family. If F is a linear vector space of functions then we will call F a linear n-parameter family (e.g., polynomials of degree \leq $n-1$). The following continuity theorem of Tornheim [15] is a generalization of a result of Beckenbach [1] for $n=2$.

Theorem 1. Let F be an n-parameter family on $[0,1]$. For

$$
k=1,2, \cdots, \text { let } x_{1}^{(k)}, \cdots, x_{n}^{(k)}, y_{1}^{(k)}, \cdots, y_{n}^{(k)}, 0 \leq x_{1}^{(k)}<\cdots<x_{n}^{(k)} \leq 1
$$

be given sequences of real numbers and let f_{k} be the unique function from F such that

$$
f_{k}\left(x_{i}^{(k)}\right)=y_{i}^{(k)} \quad i=1, \cdots, n
$$

Suppose for each

$$
i, \lim _{k \rightarrow \infty} x_{i}^{(k)}=x_{i}, \lim _{k \rightarrow \infty} y_{i}^{(k)}=y_{i} \text { and } 0 \leq x_{1}<\cdots<x_{n} \leq 1 .^{1}
$$

Let f be the unique function from F such that $f\left(x_{i}\right)=y_{i} i=1, \cdots, n$. Then $\lim _{k \rightarrow \infty} f_{k}=f$ uniformly on $[0,1]$.

Proof. If 0 and 1 are not identified the proof is given in [15]. Therefore, let 0 and 1 be identified and the functions of F be periodic. Suppose f_{k} does not tend uniformly to f. For some $\varepsilon>0$, there exists a sequence $\left\{u_{k}\right\} \subset[0,1]$ such that for each $k,\left|f\left(u_{k}\right)-f_{k}\left(u_{k}\right)\right| \geq \varepsilon$. Since a subsequence of $\left\{u_{k}\right\}$ converges, we may assume $\left\{u_{k}\right\}$ does and let $u=\lim _{k \rightarrow \infty} u_{k}$. By a suitable rotation of [0,1] we may assume u, x_{1}, \cdots, x_{n} all lie in the interior of an interval $[a, b], 0<a<b<1$. But F forms an ordinary n-parameter family on $[a, b]$ and hence $f_{k} \rightarrow f$ uniformly on $[a, b]$ which is a contradiction. This completes the proof.

We now verify that n-parameter families are unisolvent in the sense of Motzkin [10]. Let $f, g \in F$ and let x be an interior point of [0, 1]. If x is a zero of $f-g$ and if $f-g$ does not change sign in a suitably small neighborhood about x then we will say the zero x has multiplicity 2, otherwise we say x has multiplicity 1 . If 0 and 1 are not identified and either is a zero of $f-g$, then the multiplicity is taken to be 1. We shall denote the sum of the multiplicities of the zeros of $f-g$ within an interval $[a, b]$ by $m_{a, b}(f, g)$. The following generalized con-

[^1]vexity notion is also useful. A continuous function h will be said to be convex to F if h intersects no function of F at more than n points. The following result extends Theorems 2 and 3 of [15].

Theorem 2. Let F be an n-parameter family on $[0,1]$ and let h be convex to F. Then for any $f, g \in F, m_{0,1}(f, h) \leq n$ and $m_{0,1}(f, g) \leq n-1$.

Proof. We assume first that 0 and 1 are not identified and that F is an ordinary n-parameter family. We verify the first statement by induction on n. For $n=1$ the result follows by [15] Theorem 2. Hence, let h be a continuous function convex to a $k+1$ parameter family F and assume the conclusion holds for all k-parameter families. For $f \in F$ let $x_{i}, i=1, \cdots, m$, be the zeros of $f-h$ ordered from left to right and assume $m_{0,1}(f, h)>k+1$. Choose a point u such that $x_{1}<u<x_{2}$. If $F_{1}=\left\{g \in F \mid g\left(x_{1}\right)=h\left(x_{1}\right)\right\}$, then F_{1} is a k-parameter family on [u, 1]. $f \in F_{1}$ and h is convex to F_{1}. By our inductive assumption $m_{u, 1}(f, h) \leq$ k. Therefore x_{1} must be a zero of $f-h$, and $m_{0,1}(f, h)=k+2$. By the same reasoning we may assume x_{m} is a double zero of $f-h$.

We now construct a set E of k points from [0,1] in the following manner. First choose an $\varepsilon>0$ such that $x_{i}+2 \varepsilon<x_{i+1}-2 \varepsilon, i=1, \cdots$, $m-1$. If x is a single zero of $f-h$ then let x belong to E. If x is a double zero of $f-h, x \neq x_{1}, x_{m}$ let $x+\varepsilon$, and $x-\varepsilon$ belong to E. We add the points $x_{1}+\varepsilon, x_{m}-\varepsilon$. Since $m_{x_{1}+\varepsilon, x_{m}-\varepsilon}(f, h)=k-2$ it is clear that E contains exactly k points. Choose a point $x^{\prime}, x_{1}+\varepsilon<$ $x^{\prime}<x_{2}-\varepsilon$. Let f_{n} be the unique function in F such that

$$
\begin{aligned}
& f_{n}(x)=f(x), x \in E \\
& f_{n}\left(x^{\prime}\right)=f\left(x^{\prime}\right)+\frac{1}{n} \operatorname{sgn}\left[f\left(x^{\prime}\right)-h\left(x^{\prime}\right)\right]
\end{aligned}
$$

Now $f_{n}-f$ has k zeros which must all be simple by [15] Theorem 3. Within the interval $\left[x_{1}, x_{m}\right] f_{n}-h$ has exactly k simple zeros since f_{n} was chosen so that at the points $x_{i} \pm 2 \varepsilon, i=2, \cdots, m-1, x_{1}+2 \varepsilon$, $x_{m}-2 \varepsilon, f$ lies between f_{n} and h. Hence for $0 \leq x<x_{1}$ and $x_{m}<x \leq 1, f_{n}$ and h are on the same side of f (i.e., $\operatorname{sgn}\left[f_{n}(x)-f(x)\right]=\operatorname{sgn}[h(x)-f(x)]$. But by Theorem 1, f_{n} tends uniformly to f as $n \rightarrow \infty$. Hence for n sufficiently large $f_{n}-h$ must have at least $k+2$ zeros which is a contradiction.

The case when 0 and 1 are identified and F is periodic causes no difficulty. For if x_{1}, \cdots, x_{m} are the zeros of $f-h$, using a suitable rotation we may assume that there is an interval $[a, b]$, such that $0<a<x_{1}<\cdots<x_{m}<b<1 . \quad F$ is an ordinary n-parameter family on $[a, b]$ and $m_{0,1}(f, h)=m_{a, b}(f, h) \leq n$.

The verification of the second assertion is very similar to the above, and we leave the details to the reader.

Corollary. There are no periodic n-parameter families when n is an even integer.

Proof. Suppose false. Let F be a periodic n-parameter family and n an even integer. Let $f \in F$ and choose $x_{i} i=1, \cdots, n$ such that $0<$ $x_{1}<x_{2}<\cdots<x_{n}<1$. Choose $g \in T$ such that $g\left(x_{i}\right)=f\left(x_{i}\right) i=1, \cdots$, $n-1, g\left(x_{n}\right)=f\left(x_{n}\right)+1$. By Theorem $2, f-g$ changes sign at each of the points $x_{i}, i=1, \cdots n-1$; and since $f-g$ can have no other zeros within $[0,1], g(1)>f(1)$. On the other hand $g(0)<f(0)$ which is a contradiction, since f, g are periodic of period 1 .
3. Best approximation in the L_{∞} norm. If g is continuous on $[0,1], g \notin F$, then $\{g-f\}$ forms a new n-parameter family. Hence without loss of generality we may consider the characterization and construction of the function $\hat{f} \in F$ such that

$$
\|\hat{f}\|=\inf _{f \in F}\|f\| \equiv \delta
$$

We first adopt the following notation. If $S \subset[0,1]$

$$
\delta_{S}=\inf _{f \in F} \sup _{t \in S}|f(t)|
$$

Let T denote the class of vectors $\boldsymbol{u}=\left(u_{1}, \cdots, u_{n+1}\right)$ satisfying the condition that $0 \leq u_{1}<u_{2}<\cdots u_{n+1} \leq 1$. The statements and proofs of the results of this section are valid when F consists of continuous periodic functions on $[0,1]$. We shall assume, however, that F is an ordinary n-parameter family and leave the details in the periodic case to the reader.

The following two lemmas are appropriate generalizations of results of de la Vallee Poussin [6] for polynomials. Where possible we refer the reader to [13] for proofs.

Lemma 1. For any $\boldsymbol{u}=\left(u_{1}, \cdots, u_{n+1}\right) \in T$ there exists a unique $f \in F$ and unique real number λ such that $f\left(u_{i}\right)=(-1)^{i} \lambda \cdot i=1, \cdots, n+1$. Moreover $|\lambda|=\delta_{u}$ and f is the only function in F with the property that $\max _{i=1, \cdots, n+1}\left|f\left(u_{i}\right)\right|=\delta_{u}$. In addition suppose for $k=1,2, \cdots$ that

$$
\boldsymbol{u}^{(k)}=\left(u_{1}^{(k)}, \cdots, u_{n+1}^{(k)}\right) \in T \text { and } f_{k}\left(u_{i}^{(k)}\right)=(-1)^{i} \lambda^{(k)} .
$$

Then if $\boldsymbol{u}^{(k)} \rightarrow \boldsymbol{u}$ and $\boldsymbol{u} \in T$, it follows that $f_{k} \rightarrow f$ uniformly on $[0,1]$ and $\lambda^{(k)} \rightarrow \lambda$.

Lemma 2. Let $\boldsymbol{u} \in T$ and a sequence of non-negative numbers λ_{i} $i=1, \cdots, n+1$ be given. If there exists an $f \in F$ such that

$$
f\left(u_{i}\right)=(-1)^{i} \lambda_{i} i=1, \cdots, n+1 \text { or } f\left(u_{i}\right)=(-1)^{i+1} \lambda_{i} i=1, \cdots, n+1
$$

then either $\min \lambda_{i}<\delta_{u}<\max \lambda_{i}$ or $\lambda_{i}=\delta_{u} i=1, \cdots, n+1$.
Proof. Lemma 2 is a restatement of Lemma 1 of [13]. Everything in Lemma 1 except the facts that $|\lambda|=\delta_{u}$ and the function f satisfying $\max _{i=1, \ldots, n+1}\left|f\left(u_{i}\right)\right|=\delta_{u}$ is unique is proved explicitly in [13]. To prove the latter statements observe that if there is a $g \in F$ satisfying $\left|g\left(u_{i}\right)\right|<$ $|\lambda|$ then $f\left(u_{i}\right)-g\left(u_{i}\right)=(-1)^{i} \lambda_{i} i=1, \cdots, n+1$ where either $\lambda_{i} \geq 0$, $i=1,2, \cdots, n+1$ or $\lambda_{i} \leq 0 i=1,2, \cdots, n+1$. In either case by [12], Lemma $1, f-g$ must have at least n zeros between u_{1} and u_{n+1} counting multiplicity which is a contradiction.

For $\boldsymbol{u} \in T$ we will usually denote the function f of Lemma 1 by f_{u}. Next we define a function $\delta\left(u_{1}, \cdots, u_{n+1}\right)$ of $n+1$ variables.

$$
\begin{aligned}
\delta(\boldsymbol{u}) \equiv \delta\left(u_{1}, \cdots, u_{n+1}\right) & =\delta_{\boldsymbol{u}} \text { if } \boldsymbol{u}=\left(u_{1}, \cdots, u_{n+1}\right) \in T \\
& =0 \text { otherwise } .
\end{aligned}
$$

If we restrict the points u_{i} to lie in some subset $S \subset[0,1]$, then $\delta\left(u_{1}, \cdots, u_{n+1}\right)$ will be denoted $\delta_{s}\left(u_{1}, \cdots, u_{n+1}\right)$.

Lemma 3. $\delta\left(u_{1}, \cdots, u_{n+1}\right)$ is continuous on R^{n+1}
Proof. Assume that $\delta\left(u_{1}, \cdots, u_{n+1}\right)$ is not continuous at some point $\boldsymbol{u}=\left(u_{1}, \cdots, u_{n+1}\right)$. We may assume $0 \leq u_{1} \leq u_{2} \leq \cdots \leq u_{n+1} \leq 1$, and by Lemma 1 we may assume that $m(\leq n)$ of the points u_{i} are distinct. Consequently $\delta\left(u_{1}, \cdots, u_{n+1}\right)=0$. Suppose there exists an $\varepsilon>0$ and a sequence $\left\{\boldsymbol{u}_{k}\right\} \subset T$ such that $\boldsymbol{u}_{k} \rightarrow \boldsymbol{u}$ and $\delta_{\boldsymbol{u}_{k}} \geq \varepsilon$. Let $u_{i}^{(k)}$ be the i th coordinate of \boldsymbol{u}_{k}. Choose n points $u_{i}^{\prime}, 0 \leq u_{i}^{\prime}<\cdots<u_{n}^{\prime} \leq 1$ such that m of the points u_{i}^{\prime} coincide with the m distinct points u_{i}. Let f_{0} be the unique function in F such that $f_{0}\left(u_{i}^{\prime}\right)=0$. Choose η such that for any $i\left|u_{i}^{\prime}-u_{i}\right|<\eta$ implies $\left|f_{0}\left(u_{0}\right)\right|<\varepsilon / 2$. Choose k so large that all coordinates of \boldsymbol{u}_{k} are within η neighborhoods of some coordinate of \boldsymbol{u}^{\prime}. Then $f_{u_{k}}\left(u_{i}^{(k)}\right)-f_{0}\left(u_{i}^{(k)}\right)=(-1)^{i} \lambda_{i}$ where $\operatorname{sgn} \lambda_{i}^{(k)}=\operatorname{sgn} \lambda_{i+i}^{(k)} i=1, \cdots, n$. As in the proof of Lemma 1 it follows that $f_{u_{k}}-f_{0}$ must have at least n zeros within $[0,1]$ which is a contradiction.

Using the function $\delta\left(u_{1}, \cdots, u_{n+1}\right)$ one can give a simple proof of the Theorem of Motzkin and Tornheim characterizing the function \hat{f} which has minimum deviation from zero.

Theorem 3. There exists a unique $\hat{f} \in F$ such that $\|\hat{f}\|=\inf _{f \in F}\|f\|$. \hat{f} is uniquely characterized by the fact that for some $\boldsymbol{u}=\left(u_{1}, \cdots, u_{n+1}\right) \in T$
$\|\hat{f}\|=\delta_{u} . \quad \boldsymbol{u}$ will have this property if and only if $\delta\left(u_{1}, \cdots, u_{n+1}\right)$ is an absolute maximum, and then $\hat{f}=f_{u}$.

Proof. Since $\delta\left(u_{1}, \cdots, u_{n+1}\right)$ is a continuous function on a compact set, its maximum is attained for some $\boldsymbol{u}=\left(u_{1}, \cdots, u_{n+1}\right) \in T$. Assert $\left\|f_{u}\right\|=\delta_{u}$. If $\left\|f_{u}\right\|>\delta_{u}$, then there is a point x^{\prime} in $[0,1]$ for which $\left|f_{u}\left(x^{\prime}\right)\right|=\left\|f_{u}\right\|$. We form a new vector $\boldsymbol{u}^{\prime} \in T$ by replacing one coordinate u_{i} of \boldsymbol{u} by x^{\prime} in the following way. If $u_{i}<x^{\prime}<u_{i+1} i=1, \cdots, n$ and $\operatorname{sgn} f_{u}\left(u_{i}\right)=\operatorname{sgn} f_{u}\left(x^{\prime}\right)$ then let $u_{j}^{\prime}=u_{j}, j \neq i$, and $u_{i}^{\prime}=x^{\prime}$. If $\operatorname{sgn} f_{u}\left(u_{i}\right)=(-1) \operatorname{sgn} f_{u}\left(x^{\prime}\right)$ let $u_{j}^{\prime}=u_{j} j \neq i+1$ and $u_{i+1}^{\prime}=x^{\prime}$. If $x^{\prime}<$ $u_{1}\left(x^{\prime}>u_{n+1}\right)$ and $\operatorname{sgn} f_{u}\left(u_{1}\right)=\operatorname{sgn} f_{u}\left(x^{\prime}\right)\left(\operatorname{sgn} f_{u}\left(u_{n+1}\right)=\operatorname{sgn} f_{u}\left(x^{\prime}\right)\right)$ let $u_{j}^{\prime}=u_{\text {, }}$ $j \neq 1(j \neq n+1)$ and $u_{1}^{\prime}=x^{\prime}\left(u_{n+1}^{\prime}=x^{\prime}\right)$. If $\operatorname{sgn} f_{u}\left(u_{1}\right)=(-1) \operatorname{sgn} f_{u}\left(x^{\prime}\right)$ $\left(\operatorname{sgn} f_{u}\left(u_{n+1}\right)=(-1) \operatorname{sgn} f_{u}\left(x^{\prime}\right)\right)$ then let $u_{1}^{\prime}=x^{\prime}, u_{j}^{\prime}=u_{j-1} j=2, \cdots, n+1$ ($u_{j}^{\prime}=u_{j+1}, j=1, \cdots, n, u_{n+1}^{\prime}=x^{\prime}$). Now either $f_{u}\left(u_{i}^{\prime}\right)=(-1)^{i} \lambda_{i} i=1, \cdots$, $n+1$ or $f_{u}\left(u_{1}^{\prime}\right)=(-1)^{i+1} \lambda_{i} i=1, \cdots, n+1$ where $\lambda_{i}=\delta_{u}$ or $\lambda_{i}=\left\|f_{u}\right\|$. Therefore by Lemma $2, \delta_{\boldsymbol{u}}<\delta_{u^{\prime}}<\left\|f_{u}\right\|$ which contradicts the maximality of δ_{u}.

It now follows immediately that $\left\|f_{u}\right\|=\inf _{f \in F}\|f\|$ and that f_{u} is the only such function with this property. For if $f_{0} \in F$ and $\left\|f_{0}\right\| \leq\left\|f_{u}\right\|$ then $\left\|f_{0}\right\| \leq \delta_{u}$ which contradicts Lemma 1. Moreover the same argument shows that if there exists an $f_{0} \in F$ and a $\boldsymbol{v} \in T$ such that $\left\|f_{0}\right\|=\delta_{\boldsymbol{v}}$ then $\left\|f_{0}\right\|=\inf _{f \in F}\|f\|$. It is clear that $\delta\left(v_{1}, \cdots, v_{n+1}\right)$ must be an absolute maximum.

In the above theorem if $\|f\|$ is replaced by $\|f\|_{s}=\sup _{t \in s}|f(t)|$ where S is any closed set of $[0,1]$ containing at least $n+1$ points, then the same conclusions hold. Here of course, the function $\delta\left(u_{1}, \cdots, u_{n+1}\right)$ is replaced by $\delta_{S}\left(u_{1}, \cdots, u_{n+1}\right)$ and the points u_{k} are assumed to be in S. The following generalization of [11] Theorem 7.1 is therefore relevant.

Theorem 4. Let S_{k}, S be closed sets of $[0,1]$ such that for each k, S_{k}, contains at least $n+1$ points; S contains infinitely many points, and $S_{k} \subset S$. Let $\hat{f_{k}}, \hat{f_{0}}$ be functions from F which minimize $\|f\|_{S_{k}},\|f\|_{S}$ respectively. If for each $\varepsilon>0$ there exists an integer k_{0} such that for $k>k_{0}$ each point $u \in S$ is at a distance less than ε from some point of S_{k}, than $\hat{f}_{k} \rightarrow \hat{f_{0}}$ uniformly on $[0,1]$.

Proof. We assume $\delta_{s}>0 . \quad S_{k} \subset S$ implies $\delta_{S_{k}} \leq \delta_{s}$. Choose $\boldsymbol{u}=$ $\left(u_{1}, \cdots, u_{n+1}\right) \in T, u_{i} \in S$ such that $\delta_{s}\left(u_{1}, \cdots, u_{n+1}\right)$ is an absolute maximum. Let $\boldsymbol{u}_{k}=\left(u_{1}^{(k)}, \cdots, u_{n+1}^{(k)}\right) \in T, u_{j}^{(k)} \in S_{k}$ be chosen such that $\boldsymbol{u}_{k} \rightarrow \boldsymbol{u}$. By Lemma 1, $\delta_{\boldsymbol{u}_{k}} \rightarrow \delta_{\boldsymbol{u}}$ and since $\delta_{\boldsymbol{u}_{k}} \leq \delta_{S_{k}}, \delta_{S_{k}} \rightarrow \delta_{u}=\delta_{s}$. Let $\boldsymbol{v}_{k}=\left(v_{1}^{(k)}, \cdots, v_{n+1}^{(k)}\right)$ $\in T, v_{i}^{(k)} \in S_{k}$ be chosen so that for each $k, \delta_{S_{k}}\left(v_{1}^{(k)}, \cdots, v_{n+1}^{(k)}\right)$ is an absolute maximum. Extract any convergent subsequence $\boldsymbol{v}_{k_{j}}$ with limit \boldsymbol{v}.

If $\boldsymbol{v}=\left(v_{1}, \cdots, v_{n+1}\right)$, then $v_{i} \in S$ and $\delta_{v}=\delta_{s}$. Also $\hat{f}_{k_{j}}=f_{v_{k_{j}}}$ tends uniformly to f_{v}, the function from F with minimum deviation on \boldsymbol{v}. But by the uniqueness of $f_{v}, f_{v}=\hat{f}_{0}$. The above argument shows that any subsequence of $\left\{\hat{f}_{k}\right\}$ contains a refinement which converges to \hat{f}_{0}. Hence $\lim _{k \rightarrow \infty} \hat{f}_{k}=\hat{f_{0}}$ uniformly on $[0,1]$.
4. The estimation of f. In [13] Novodovorskii and Pinsker consider a direct method, due to Remes [14] in the polynomial case, for the estimation of \hat{f}. However the following Lemma shows that \hat{f} is continuously dependent on estimates of the best approximation. Hence if \boldsymbol{u} is a vector in T for which $\delta(\boldsymbol{u})$ is an estimate of $\inf _{l \in F}\|f\|$, then the solution of the equation $f\left(u_{i}\right)=(-1)^{i} \lambda i=1, \cdots, n+1$ is the appropriate estimate of \hat{f}.

Lemma 4. Let $\left\{\delta_{n}\right\}$ be a sequence of non-negative numbers converging to $\delta=\inf _{f \in F}\|f\|$ from below. If \boldsymbol{u}_{n} are vectors in T for which $\delta\left(\boldsymbol{u}_{n}\right)=\delta_{n}$, then $\lim _{n \rightarrow \infty} f_{u_{n}}=\hat{f}$ uniformly on $[0,1]$.

Proof. If the conclusion is false there exists a subsequence $\left\{\boldsymbol{u}_{k_{j}}\right\}$ and a number $\varepsilon>0$ such that $\left\|\hat{f}-f u_{k_{j}}\right\| \geq \varepsilon$. But $\left\{\boldsymbol{u}_{k_{j}}\right\}$ may be further refined to obtain a convergent subsequence of vectors. Calling this $\left\{\boldsymbol{u}_{k_{j}}\right\}$ and letting $\boldsymbol{u}_{0}=\lim _{j \rightarrow \infty} \boldsymbol{u}_{k_{j}}$ we have by Lemma $1 \delta\left(\boldsymbol{u}_{0}\right)=\lim _{j \rightarrow \infty} \delta\left(\boldsymbol{u}_{k_{j}}\right)$. By Theorem $3 f_{u_{0}}=\hat{f}$ which is a contradiction.

We shall consider two algorithms for estimating δ and prove convergence of both.

Each of these algorithms can be used efficiently for actual numerical calculations. A detailed description of method 2 for polynomials on a finite point set can be found in [5]. Also for polynomials on an interval a maximization procedure has been announced by Bratton [3].

For both methods the following notation is convenient. For $\boldsymbol{u}=$ $\left(u_{1}, \cdots, u_{n+1}\right) \in T$ define for $j=1, \cdots, n+1$.

$$
\begin{aligned}
\delta_{u}^{(j)}(x) & =\delta\left(u_{1}, \cdots, u_{j-1}, x, u_{j+1}, \cdots, u_{n+1}\right) \text { if } u_{j-1} \leq x \leq u_{j+1} \\
& =0 \text { otherwise }
\end{aligned}
$$

where we take $u_{0}=0, u_{n+2}=1$. We now form $\eta_{u}(x) \equiv \max _{j=1, \cdots, n+1} \delta_{u}^{j}(x)$. From the continuity of $\delta\left(u_{1}, \cdots, u_{n+1}\right)$ it follows that for each $j, \delta_{u}^{(j)}(x)$ is continuous, and hence $\eta_{u}(x)$ is continuous. Therefore there exists a point $x^{\prime}, 0 \leq x^{\prime} \leq 1$ and integer $1 \leq m \leq n+1$ such that

$$
\delta_{u}^{m}\left(x^{\prime}\right)=\max _{j=1, \ldots, n+1}\left\|\delta_{u}^{i}\right\|=\left\|\eta_{u}\right\|
$$

For a given vector \boldsymbol{u} we define $\boldsymbol{u}^{\prime}=\left(u_{1}^{\prime}, \cdots, u_{n+1}^{\prime}\right)$ by setting $u_{j}^{\prime}=u_{j}, j \neq m$, $u_{m}^{\prime}=x^{\prime}$.

Theorem 5. If vectors \boldsymbol{u}_{k} are defined inductively in the above fashion with $\boldsymbol{u}_{1} \in T$ chosen arbitrarily, then $\lim _{k \rightarrow \infty} \delta\left(\boldsymbol{u}_{k}\right)$ exists and there exists $\boldsymbol{u}_{0} \in T$ such that $\delta\left(\boldsymbol{u}_{0}\right)=\lim _{k \rightarrow \infty} \delta\left(\boldsymbol{u}_{k}\right)$. Furthermore $\delta\left(\boldsymbol{u}_{0}\right)$ is an absolute maximum of the function $\delta(\boldsymbol{u})$.

Proof. $\left\{\delta\left(\boldsymbol{u}_{k}\right)\right\}$ is a monotonically increasing, bounded sequence hence convergent. If $\delta=\lim _{k \rightarrow \infty} \delta\left(\boldsymbol{u}_{k}\right)$, then a suitable subsequence $\left\{\boldsymbol{u}_{k_{j}}\right\}$, converges to \boldsymbol{u}_{0} and $\delta\left(\boldsymbol{u}_{0}\right)=\delta$. We now assert $\eta_{\boldsymbol{u}_{k_{j}}}(x)$ converges uniformly to $\eta_{u_{0}}(x)$. It suffices to assume $u_{i} \leq x \leq u_{i+1}$. Then

$$
\begin{aligned}
& \left.\left|\eta_{u_{0}}(x)-\eta_{u_{k_{j}}}(x)\right|=\mid \max \left(\delta_{u_{0}}^{i}(x), \delta_{u_{0}}^{i+1}(x),\right)\right)-\max \left(\delta_{u_{k_{j}}}^{i}(x), \delta_{u_{k_{j}}}^{i+1}(x)\right) \mid \\
& \quad \leq\left|\delta_{u_{0}}^{i}(x)-\delta_{u_{k_{j}}}^{i}(x)\right|+\left|\delta_{u_{0}}^{i+1}(x)-\delta_{u_{k_{j}}}^{i+1}(x)\right| .
\end{aligned}
$$

Since $\delta(\boldsymbol{u})$ is a uniformly continuous function the latter expression tends to zero uniformly in x.
Hence

$$
\left\|\eta_{u_{0}}\right\|=\lim _{j \rightarrow \infty}\left\|\eta_{u_{k_{j}}}\right\|
$$

But

$$
\left\|\eta_{\boldsymbol{u}_{k_{j}}}\right\|=\delta\left(\boldsymbol{u}_{k_{j}+1}\right) \leq \delta\left(\boldsymbol{u}_{k_{j+1}}\right) \leq\left\|\eta_{\boldsymbol{u}_{k_{j+1}}}\right\|
$$

Therefore $\left\|\eta_{u_{0}}\right\|=\lim _{j \rightarrow \infty} \delta\left(\boldsymbol{u}_{k_{j}}\right)=\delta\left(\boldsymbol{u}_{0}\right)$. It now follows by the same argument as in the proof of Theorem 3 that $\left\|f_{\boldsymbol{u}_{0}}\right\|=\delta\left(\boldsymbol{u}_{0}\right)$ and by Theorem 3 , $\delta\left(\boldsymbol{u}_{0}\right)$ is a maximum.

For the second method of estimation of f we alter slightly our definition of $\delta_{u}^{1}(x)$ and $\delta_{u}^{n+1}(x)$. We now define

$$
\begin{aligned}
\delta_{u}^{1}(x) & =\delta\left(x, u_{2}, \cdots, u_{n+1}\right) \text { if } 0 \leq x \leq u_{2} \\
& =\delta\left(u_{2}, u_{3}, \cdots, u_{n+1}, x\right) \text { if } u_{n+1} \leq x \leq 1 \\
\delta_{u}^{n+1}(x) & =\delta\left(u_{1}, \cdots, u_{n}, x\right) \text { if } u_{n} \leq x \leq 1 \\
& =\delta\left(x, u_{1}, \cdots, u_{n}\right) \text { if } 0 \leq x \leq u_{1} .
\end{aligned}
$$

The algorithm proceeds as follows. First let $\varepsilon>0$ be chosen. Select an arbitrary vector $\boldsymbol{u} \in T$. Maximize $\delta_{\boldsymbol{u}}^{2}(x)$ over its domain of definition. Let x^{\prime} be a point for which $\delta_{\boldsymbol{u}}^{2}(x)$ is a maximum. If $\delta_{\boldsymbol{u}}^{2}\left(x^{\prime}\right) \geq(1+\varepsilon) \delta(\boldsymbol{u})$, replace u_{2} by x^{\prime} forming a new vector u^{\prime}. If not, let $\boldsymbol{u}^{\prime}=\boldsymbol{u}$. We now maximize $\delta_{u^{\prime}}^{3}(x)$ and continue inductively. Special attention is necessary for $\delta_{u}^{n+1}(x)$ and $\delta_{u}^{1}(x)$. If x^{\prime} is a point for which $\delta_{u}^{n+1}(x)$ is a maximum and $\delta_{u}^{n+1}(x) \geq$ $(1+\varepsilon) \delta(\boldsymbol{u})$, then \boldsymbol{u}^{\prime} is formed in the following way. If $x^{\prime} \geq u_{n}$ then $u_{i}^{\prime}=u_{i}, i=1, \cdots, n, u_{n+1}^{\prime}=x^{\prime}$; if $x^{\prime} \leq u_{1}$ then $u_{1}^{\prime}=x^{\prime} u_{i}^{\prime}=u_{i-1} i=2, \cdots, n+1$. In the latter case, the next function maximized is $\delta_{\mu^{\prime}}^{2}(x)$. If the first case occurs then $\delta_{u^{\prime}}^{1}(x)$ is maximized. Let $x^{\prime \prime}$ be a point for which $\delta_{u^{\prime}}^{1}(x)$.
is a maximum and $\delta_{\boldsymbol{u}^{\prime}}^{1}\left(x^{\prime \prime}\right) \geq(1+\varepsilon) \delta\left(\boldsymbol{u}^{\prime}\right)$. If $x^{\prime \prime} \leq u_{2}^{\prime}$ then $u_{1}^{\prime \prime}=x^{\prime \prime}$ and $u_{i}^{\prime \prime}=u_{i}^{\prime} i=2,3, \cdots, n+1$. If $x^{\prime \prime} \geq u_{n+1}^{\prime}$ then $u_{i}^{\prime \prime}=u_{i+1} i=1, \cdots, n$ and $u_{n+1}^{\prime \prime}=x^{\prime \prime}$. For the first case the next function maximized is $\delta_{u^{\prime \prime}}^{2}(x)$; the second case, $\delta_{w^{\prime}}^{(1)}(x)$. If

$$
\delta_{\boldsymbol{u}}^{n+1}\left(x^{\prime}\right)<(1+\varepsilon) \delta(\boldsymbol{u})\left(\delta_{\boldsymbol{u}^{\prime}}^{1}\left(x^{\prime \prime}\right)<(1+\varepsilon) \delta\left(\boldsymbol{u}^{\prime}\right)\right)
$$

then we take $\boldsymbol{u}^{\prime}=\boldsymbol{u}\left(\boldsymbol{u}^{\prime \prime}=u^{\prime}\right)$. When there have been $n+1$ consecutive maximizations with no change in the vector $\boldsymbol{u}, \varepsilon$ is now replaced by $\varepsilon / 2$ and the process is repeated. We now continue inductively and pass to the limit as $\varepsilon / 2^{k} \rightarrow 0$.

Theorem 6. The conclusions of Theorem 5 hold if the sequence $\left\{\boldsymbol{u}_{k}\right\}$ is chosen inductively in accordance with the above algorithm.

Proof. As before, $\lim _{k \rightarrow \infty} \delta\left(\boldsymbol{u}_{k}\right)=\delta$ exists. We choose a particular convergent subsequence $\left\{\boldsymbol{u}_{k_{j}}\right\}$ of $\left\{\boldsymbol{u}_{k}\right\}$. For each j let $\boldsymbol{u}_{k_{j}}$ be a vector of $\left\{\boldsymbol{u}_{k}\right\}$ such that for each $i, i=1, \cdots, n+1$ and all appropriate $x, \delta_{u_{k_{j}}}^{i}(x)<\left(1+\varepsilon / 2^{j}\right) \delta\left(\boldsymbol{u}_{k_{j}}\right)$. The algorithm guarantees that for each integer j such a vector $\boldsymbol{u}_{k_{j}}$ exists in the sequence $\left\{\boldsymbol{u}_{k}\right\}$. Since a refinement of this sequence is convergent, we assume $\left\{\boldsymbol{u}_{k_{j}}\right\}$ converges. Then if $\boldsymbol{u}_{k_{j}} \rightarrow$ $\boldsymbol{u}_{0}, \delta\left(\boldsymbol{u}_{0}\right)=\delta$. Suppose $\delta\left(\boldsymbol{u}_{0}\right)$ is not a maximum of $\delta(\boldsymbol{u})$, then $\left\|f_{\boldsymbol{u}_{0}}\right\|>\delta\left(\boldsymbol{u}_{0}\right)$. Choose x^{\prime} so that $\left|f_{u}\left(x^{\prime}\right)\right|=\|f\|$, and form \boldsymbol{u}^{\prime} by replacing one point, the i th say, of \boldsymbol{u}_{0} by x^{\prime} in the manner of the proof of Theorem 3. Form $\boldsymbol{u}_{k_{j}}^{\prime}$ by replacing the i th coordinate of $\boldsymbol{u}_{k_{j}}$ by x^{\prime} Then $\boldsymbol{u}_{k_{j}}^{\prime} \rightarrow \boldsymbol{u}^{\prime}$ and $\delta\left(\boldsymbol{u}_{k_{j}}^{\prime}\right) \rightarrow \delta\left(\boldsymbol{u}^{\prime}\right)$. Therefore for j sufficiently large, since $\delta\left(\boldsymbol{u}^{\prime}\right)>\delta$,

$$
\delta\left(\boldsymbol{u}_{k_{j}^{\prime}}^{\prime}\right)>\frac{\delta\left(\boldsymbol{u}^{\prime}\right)+\delta}{2}
$$

On the other hand for each j there is a point x and an integer m such that

$$
\delta\left(\boldsymbol{u}_{k_{j}}^{\prime}\right)=\delta_{\boldsymbol{u}_{k_{j}}}^{m}(x) \leq\left(1+\frac{\varepsilon}{2^{j}}\right) \delta\left(\boldsymbol{u}_{k_{j}}\right) \leq\left(1+\frac{\varepsilon}{2^{j}}\right) \delta .
$$

For j sufficiently large this is a contradiction, therefore $\left\|f_{u_{0}}\right\|=\delta\left(\boldsymbol{u}_{0}\right)$ and $\delta\left(\boldsymbol{u}_{0}\right)$ is an absolute maximum.
5. Approximation in $L_{\rho, N}$ norm. For $N \geq n$ let x_{1}, \cdots, x_{N} be N distinct points of $[0,1]$. In place of the sup norm let $\|f\|=\left\{\sum_{i=1}^{N}\left|f\left(x_{i}\right)\right|^{p}\right\}^{1 / p}$ and assume $p>1$. The fundamental problem to be considered here is to give necessary and sufficient conditions that the function $\hat{f} \in F$ for which $\|\hat{f}\|=\inf _{f \in F}\|\hat{f}\|$ is unique. Now the image of F under the mapping $f \rightarrow\left(f\left(x_{1}\right), \cdots, f\left(x_{N}\right)\right)$ is a closed set in N dimensional Euclidean
space. By a theorem of Motzkin [9] as generalized by Busemann [4], to each point $x \in E_{N}$ there will exist a unique nearest point in a given set $S \subset E_{N}$ with respect to a strictly convex metric if and only if S is closed and convex. Hence \hat{f} will be unique if and only if F is convex, but for n-parameter families we can say more. ${ }^{2}$

Theorem 7. An n-parameter family F is convex if and only if F is the translate of a linear n-parameter family.

Proof. If F is the translate of a linear n-parameter family, i.e., there exists a continuous g on $[0,1]$ and a linear n-parameter family F_{0} such that each $f \in F$ can be written uniquely as $f=g+f^{\prime}, f \in F_{0}$, then F is obviously convex. Conversely suppose F is convex. Choose n distinct points x_{1}, \cdots, x_{n} in $[0,1]$. Let $f_{0}, f_{1}, \cdots, f_{n}$ be the unique functions of F such that $f_{0}\left(x_{j}\right)=0, j=1, \cdots, n ; f_{k}\left(x_{j}\right)=\delta_{k j}$ for $k, j=1, \cdots, n$ where $\delta_{k j}$ is the Kronecker delta. We assert that each $f \in F$ has a representation as

$$
f=f_{0}+\sum_{k=1}^{n} \lambda_{k}\left(f_{k}-f_{0}\right) \text { where } \lambda_{k}=f\left(x_{k}\right) .
$$

If such a representation exists it is obviously unique. Also the vector space spanned by $f_{1}-f_{0}, \cdots, f_{n}-f_{0}$, is obviously an n-parameter family and the theorem is proved. To prove the assertion let

$$
\begin{aligned}
& F_{k}=\left\{f \in F \mid f\left(x_{k+1}\right)=f\left(x_{k+2}\right)=\cdots=f\left(x_{n}\right)=0\right\} \\
& F_{k}^{\prime}=\left\{f \in F \mid f\left(x_{j}\right)=0 j \neq k\right\}
\end{aligned}
$$

From the convexity of F, F_{k}^{\prime} is a convex one parameter family on a suitably small interval containing x_{k}. We assert $f \in F_{k}^{\prime}$ implies $f=f_{0}+\lambda_{k}\left(f_{k}-f_{0}\right)$ where $\lambda_{k}=f\left(x_{k}\right)$. By convexity this is obviously true for $0 \leq \lambda_{k} \leq 1$. For $\lambda_{k}>1$ if $f \in F_{k}^{\prime}, f\left(x_{k}\right)=\lambda_{k}$ then by convexity

$$
f_{k}=\frac{1}{\lambda_{k}} f+\left(1-\frac{1}{\lambda_{k}}\right) f_{0}
$$

or $f=f_{0}+\lambda_{k}\left(f_{k}-f_{0}\right) . \quad$ If $\lambda_{k}<0$,

$$
f_{0}=\frac{1}{1-\lambda_{k}} f+\frac{\left(-\lambda_{k}\right)}{1-\lambda_{k}} f_{k}
$$

or $f=f_{0}+\lambda_{k}\left(f_{k}-f_{0}\right)$. To finish the proof we apply an induction. Assume $f \in F_{k}$ implies that $f=f_{0}+\sum_{j=1}^{k} \lambda_{j}\left(x_{j}-x_{0}\right)$ where $f\left(x_{j}\right)=\lambda_{j}$ and

[^2]suppose $g \in F_{k+1}$ and $g\left(x_{j}\right)=\mu_{j}, j=1, \cdots, k+1$. Then if $g_{1}=f_{0}+$ $\sum_{j=1}^{k} 2 \mu_{j}\left(f_{j}-f_{0}\right), g_{2}=f_{0}+2 \mu_{k+1}\left(f_{k+1}-f_{0}\right)$ it follows that
$$
g^{\prime}=\frac{g_{1}+g_{2}}{2} \in F_{k+1}
$$
and $g^{\prime}\left(x_{j}\right)=\mu_{j}, j=1, \cdots, k+1$. Therefore
$$
g=g^{\prime}=f_{0}+\sum_{j=1}^{k+1} \mu_{j}\left(f_{j}-f_{0}\right)
$$
6. The existence of n-parameter families on compact space. Let f_{1}, \cdots, f_{n}, be n linearly independent real valued continuous functions defined on a compact set S in finite dimensional Euclidean space. Let V be the span of the functions f_{1}, \cdots, f_{n}. In 1918 Haar [7] showed that to each continuous real valued function g defined on S, there is a unique $\hat{f} \in V$ satisfying $\|\hat{f}-g\|=\inf _{f \in V}\|f-g\|$ where $\|f\|=\sup _{s \in S}|f(s)|$ if and only if no non-zero function in V vanished at more than $n-1$ points of S. Haar noted that the existence of such a set of functions V placed a severe restriction on the set S. In 1956 Mairhuber [8] proved that if V satisfied the above condition of Haar then S is a homeomorphic image of a subset of the circumference of the unit circle. If n is even this subset must be proper. It is clear that V satisfies the condition of Haar if and only if V is a linear n-parameter family. The characterization of those compact Hausdorff spaces on which there exist n-parameter families F for $n>1$ seems to be quite difficult. One can give a characterization if one imposes a rather strong local condition on F. The result presented here includes the one of Mairhuber, and is proved by somewhat different means. The following fundamental lemma is perhaps of independent interest.

Lemma 5. Let S be a compact connected Hausdorff space with the property that for each point $x \in S$ there exists a neighborhood U_{x} and continuous real valued functions f_{1}, f_{2} defined on U_{x} such that for $y, z \in U_{x}, y \neq z$

$$
\left|\begin{array}{ll}
f_{1}(y) & f_{1}(z) \tag{1}\\
f_{2}(y) & f_{2}(z)
\end{array}\right| \neq 0
$$

Then S may be embedded homeomorphically into the circumference C of the unit circle.

Proof. Without loss of generality we assume U_{x} is a closed, therefore compact neighborhood of $x . f_{1}, f_{2}$ never vanish simultaneously on U_{x} and therefore f_{1} / f_{2} defines a continuous mapping of U_{x} into the
compactified real line. (1) guarantees that the mapping is one to one and $\phi_{x}(u)=\operatorname{Arctan}\left(f_{1} / f_{2}\right)(u)$ gives a homeomorphism of U_{x} into C.

We next verify that S is locally connected. To do this it suffices to show that for each $x \in S$ there exists a connected neighborhood which can be mapped homeomorphically into C. In fact if ϕ_{x} is the homeomorphism for a point $x \in S$ constructed above, and if $C_{x}=\phi_{x}\left(U_{x}\right)$, it is enough to show that there exists a connected neighborhood V_{x} in C_{x} of $\lambda_{x} \equiv \phi_{x}(x)$. For then $\phi_{x}^{-1}\left(V_{x}\right)$ is a connected neighborhood of x contained in U_{x}. But C_{x} is a compact subset of C. Therefore let I_{x} be the component of λ_{x} in $C_{x} . \quad I_{x}$ is a compact connected subset of $C . \quad I_{x}$ is then either an interval or all of C. If I_{x} is the latter we are through. Also if I_{x} is an interval and λ_{x} an interior point (relative to C) then $\phi_{x}^{-1}\left(I_{x}\right)$ is the required neighborhood. Hence assume that λ_{x} is an end point of I_{x}. This will include that degenerate case when I_{x} is just one point. We may also assume that there does not exist a suitably small connected neighborhood N of λ_{x} in C such that $N \cap C_{x} \subset I_{x}$. For then $\phi_{x}^{-1}\left(N \cap N_{x}\right)$ is an appropriate neighborhood of x. Therefore it now must follow that for any connected neighborhood N of λ_{x} in C there exists λ_{1}, λ_{2} in the interior of N such that $\lambda_{1}, \lambda_{2} \notin C_{x}$ and $\left(\lambda_{1}, \lambda_{2}\right) \cap C_{x} \neq \phi$. If we let $F=$ $\phi_{x}^{-1}\left[\left(\lambda_{1}, \lambda_{2}\right) \cap C_{x}\right]$ and $G=\phi_{x}^{-1}\left[C_{x} \sim\left(\lambda_{1}, \lambda_{2}\right)\right]$ then $F \cup\left(S \sim U_{x}\right)$ and G separate S which is a contradiction.

We note that S is certainly a separable metric since a finite number of homeomorphic images of subsets of C cover S. Hence by [16] Theorem 5.1, S is arc wise connected.

We now assert S is homeomorphic to a subset of C. Let U_{1}, \cdots, U_{n} be a finite collection of connected neighborhoods covering S each of which is homeomorphic to a subset of C. By a suitable rearrangement we may assume that $U_{2} \cap U_{1} \neq \phi$ and $U_{2} \not \subset U_{1}$. Let $x_{1} \in U_{1} \sim U_{2}, x_{2} \in U_{2} \sim U_{1}$ $x \in U_{1} \cap U_{2}$. Let A be the maximal subset of $U_{1} \cup U_{2}$ connecting x_{1}, x, x_{2}. This must be all of $U_{1} \cup U_{2}$, for if $y \in U_{1} \cup U_{2}$ and $y \notin A$, then y may be connected to any point in A by an arc in $U_{1} \cup U_{2}$. If y is connected to A at an end point of A, this is an enlargement of A which contradicts maximality. If y is connected to A at a point other than an end point, then no neighborhood of this point is homeomorphic to a subset of C. This also is a contradiction. If $U_{1} \cup U_{2}$ is not all of S then $U_{1} \cup U_{2}$ is homeomorphic to an arc, and by induction the homeomorphism may be extended to all of S.

Theorem 8. For $n>1$ let F be an n-parameter family of functions defined on a compact Hausdorff space S. Suppose in addition that to each point $x \in S$ there exists a neighborhood N_{x} and functions $f_{1}, f_{2} \in F$ such that

$$
\left|\begin{array}{ll}
f_{1}(y) & f_{1}(z) \\
f_{2}(y) & f_{2}(z)
\end{array}\right| \neq 0
$$

for $y, z \in N_{x}, y \neq z$. Then there exists a homeomorphism of S into the circumference of the unit circle. If n is even the image of S must be a proper subset of C.

Proof. First we note that S cannot have a proper subset W homeomorphic to C. If n is even this follows directly from the Corollary to Theorem 2. If n is odd, choose $x \in S \sim W$ and let $F^{\prime}=\{f \in F \mid f(x)=0\}$; then F^{\prime} is an $n-1$ parameter family defined on W. Since $n-1$ is even this is a contradiction. We may therefore assume that if n is even S is not homeomorphic to C.

If I is a component of S then by Lemma 5 there exists a homeomorphism ϕ of I onto the closed interval $[0,1]$ considered as a subset of C. We assert that if I is not all of S, then ϕ can be extended to an open and closed set $U \supset I . U$ and its complement then separate S. If I is itself open in S then we take $U=I$. If not, let $x=\phi^{-1}(0), y=$ $\phi^{-1}(1)$. Let N_{x}, N_{y} be compact neighborhoods of x and y respectively and let ϕ_{x}, ϕ_{y} be homeomorphisms of N_{x} and N_{y} respectively into C. We may assume $\phi_{x}(x)=0, \phi_{y}(y)=1$ and

$$
\phi_{x}\left(N_{x} \cap I\right) \subset[0,1] \text { and } \phi_{y}\left[N_{y} \cap I\right] \subset[0,1] .
$$

If we define ϕ^{\prime} by

$$
\begin{aligned}
\phi^{\prime}(z) & =\phi(z) \quad \text { if } z \in I \\
& =\phi_{x}(z) \text { if } z \in N_{x} \sim I \\
& =\phi_{y}(z) \text { if } z \in N_{y} \sim I
\end{aligned}
$$

then ϕ^{\prime} is a homeomorphism of $N_{x} \cup N_{y} \cup I \equiv N$ into C. Also int. $N \supset I$. Now $[0,1]=\phi^{\prime}(I)$ is the maximal connected subset of $\phi^{\prime}(N)$ containing $\phi^{\prime}(I)$. Therefore there exist sequences $\left\{\lambda_{n}\right\},\left\{\mu_{n}\right\}$ of real numbers tending monotonically to 0 from below, and monotonically to 1 from above, respectively such that $\left\{\lambda_{n}\right\} \cap \phi^{\prime}(N)=\phi$ and $\left\{\mu_{n}\right\} \cap \phi^{\prime}(N)=\phi$. Choose n large enough that $\phi^{\prime-1}\left[\lambda_{n}, 0\right] \subset$ interior of N_{x} and $\phi^{\prime-1}\left[1, \mu_{n}\right] \subset$ interior of N_{y}. Clearly $J_{n}=\phi^{\prime-1}\left[\lambda_{n}, \mu_{n}\right]$ is a closed set containing I. J_{n} is open in the interior of N. Hence J_{n} is open in S.

Let T be the class of open sets O of S which can be mapped homeomorphically into C. We partially order T in the following way. If $O_{1}, O_{2} \in T$ then $O_{1} \leq O_{2}$ if $O_{1} \subset O_{2}$ and if there exist homeomorphisms ϕ_{1}, ϕ_{2} of O_{1}, O_{2} respectively into C such that ϕ_{2} agrees with ϕ_{1} on O_{1}. By Zorn's lemma there exists a maximal element O of T. We assert $O=S$. If not, let $x \in S \sim O$. Then there exists an open and closed set $U \ni x$ and mapping ϕ such that ϕ maps U homeomorphically into C.
$O \cap U$ and $O \sim U$ are separated open sets of S. Hence if ϕ^{\prime} is any homeomorphism of O into C such $\phi^{\prime}(O) \cap \phi(U)=\phi . \quad \phi^{\prime \prime}$ defined by $\phi^{\prime \prime}(x) \equiv \phi(x), x \in O \cap U, \phi^{\prime \prime}(x) \equiv \phi^{\prime}(x), x \in O \sim U$ is also a homeomorphism of O into C. $\phi^{\prime \prime}$ has an obvious extension to $U \cup O$ which contradicts the maximality of O.

Corollary. If F is a linear n-parameter family $(n>1)$ defined on the compact Hausdorff space S, then S is homeomorphic to a subset of C. If n is even the subset must be proper.

Proof. We assume S contains more than n points. For a given $x \in S$ choose $n-2$ distinct points x_{1}, \cdots, x_{n-2} of S outside a suitably small compact neighborhood N_{x} of x. If $F_{x}=\left\{f \in F \mid f\left(x_{i}\right)=0, i=1, \cdots\right.$, $n-2\}$ then F_{x} is a linear 2 -parameter family defined on N_{x}. Therefore, for any two linearly independent functions f_{1}, f_{2} in F_{x},

$$
\left|\begin{array}{ll}
f_{1}(y) & f_{1}(z) \\
f_{2}(y) & f_{2}(z)
\end{array}\right| \neq 0 \text { for } y, z \in N_{x}, y \neq z
$$

We now apply the theorem.

Bibliography

1. E. F. Beckenbach, Generalized convex functions, Bull, Amer. Math. Soc. 43 (1937), 363-371.
2. S. Bernstein, Leçons sur les properties extremals et la meilleur approximation des functions analytiques d'une variable réelle, Paris, Gauthier-Villars, 1926.
3. D. Bratton, New results in the theory and techniques of Chebyshev fitting, Abstract No. 546-34, Notices of the Amer. Math. Soc. 5 (1958), 210.
4. H. Busemann, Note on a theorem of convex sets, Mathematisk Tidsskrift B (1947), 32-34.
5. P. C. Curtis, Jr. and W. L. Frank, An algorithm for the determination of the polynomial of best minimum approximation to a function defined on a finite point set, Jour. Assoc. Comp. Mach. 6 (1959), 395-404.
6. C. J. de la Valle Poussin, Lȩons sur l'approximations des functions d'une variable réelle, Paris, Gauthier-Villars, 1919.
7. A. Haar, Die Minkowskische Geometie and die Annäherung an stetige Funcktionen, Math. Ann. 18 (1918), 294-311.
8. J. C. Mairhuber, On Harr's theorem concerning Chebyshev approximation problems having unique solutions, Proc. Am. Math. Soc. 7 (1956), 609-615.
9. T. S. Motzkin, Sur quelques properiétes caracteristiqutes des ensembles convexes, Atti. Acad. Naz. Naz. Lincei Rend 6, 21 (1935), 562-567.
10. -, Approximation by curves of a unisolvent family, Bull, Amer. Math. Soc. 55 (1949), 789-793.
11. - and J. L. Walsh, The least pth power polynomials on a finite point set, Trans. Amer. Math. Soc. 83 (1956), 371-396.
12. -, Polynomials of best approximation on a real finite point set I, Trans. Amer, Math. Soc. 91 (1959), 231-245.
13. E. N. Novodvorskii and I. S. Pinsker, On a process of equalization of maxima, Usp. Mat. Nauk 6 (1951), 174-181 (Russian).
14. Ya. L. Remes, On a method of Chebyshev type approximation of functions, Ukr. An. 1935.
15. L. Tornheim, On n-parameter families of functions and associated convex functions, Trans. Amer. Math. Soc. 69 (1950), 457-467.
16. G. T. Whyburn Analytic Topology, Amer Math. Soc. Colloquium Publications, 38, (1942)

University of California Los Angeles and
Yale University

[^0]: Received February 17, 1959. This research was supported in part by the Space Technology Laboratories Inc..

[^1]: ${ }^{1}$ If 0,1 are identified we assume $x_{n}^{(k)}<1$ and $x_{n}<1$,

[^2]: ${ }^{2}$ For a discussion of related results see the article by Motzkin in the Symposium on Numerical Approximation, University of Wisconsin Press, 1959.

