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l Introduction* Let f(x) be a real valued continuous function
defined on a closed finite interval and let F be a class of approximating
functions for /. Suppose there exists a function g0 e F such that
| | / - <70|| = inf geF \\f-g\\ where | | / | | = sup xe[α>6]|/(&)!• The problem
of characterizing g0 and giving conditions that it be unique is classical
and has received attention from many authors. The well-known results
for polynomials were generalized by Bernstein [2] to " Chebyshev"
systems. Later Motzkin [10] and Tornheim [15] further extended these
theorems to not necessarily linear families of continuous functions. The
only essential requirement was that to any ^-points in the plane with
distinct abscissae lying in a finite interval [α, 6], there should be a uni-
que function in the class F passing through the given points. Such
a system F is called an ^-parameter family. Constructive methods for
determining the function from F of best approximation to /, due to
Remes [14] in the polynomial case, were extended to the above situation
by Novodvorskii and Pinsker [13]. In this paper and in the paper of
Motzkin two apparently additional requirements were placed on the
system F. One, a continuity condition, was shown by Tornheim to fol-
low from the axioms of F. The other, a condition on the multiplicity
of the roots oί f — g,f, g e F, also follows from the definitions as will
be shown in § 2. In § 3 the characterization of g0 is discussed. Methods
for constructing g0 are given in § 4. These are based on the maximiza-
tion of a certain function of n + 1 variables. In § 5 it is shown that
an ^-parameter familiy has a unique function of best approximation to
an arbitrary continuous function in the LPtN norm if and only if F is
the translate of a linear ^-parameter family. The problem of the ex-
istence of ^-parameter families on general compact spaces S is discussed
in § 6. Under additional hypotheses on F it is shown that S must be
homeomorphic to a subset of the circumference of the unit circle. If n
is even this subset must be proper.

2Φ ^-parameter families functions* Following Tornheim we define,
for a fixed integer n > 1, an n-parameter family of functions F to be
a class of real valued continuous functions on the finite interval [α, 6]
such that for any real numbers
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there exists a unique feF such that /(#*) — yi i — 1, , n. For con-
venience we will usually take [α, 6] to be the interval [0,1]. We will
include the possibility that 0 and 1 are identified. Then of course xx Φ xn,
and the functions of F are periodic of period 1. We call such a family
a periodic ti-parameter family. If we wish to consider specifically the
case when 0 and 1 are not identified, we will refer to F as an ordinary
^-parameter family. If F is a linear vector space of functions then we
will call F a linear ^-parameter family (e.g., polynomials of degree <
n — 1). The following continuity theorem of Tornheim [15] is a generali-
zation of a result of Beckenbach [1] for n = 2.

THEOREM 1. Let F be an n-parameter family on [0,1]. For

k = 1,2,--.,let x?\---,x<*\y[*\"-,y<nk},0^xίk>< ••• < xίk) < 1

be given sequences of real numbers and let fk be the unique function
from F such that

Suppose for each

i, lirnα^*0 = xu \imy{k) = yi and 0 < xx < < xn < 1 -1

Let f be the unique function from Fsuch that f(xt) = yt i = 1, •••, n.
Then linifc^/fc = / uniformly on [0,1],

Proof. If 0 and 1 are not identified the proof is given in [15].
Therefore, let 0 and 1 be identified and the functions of F be periodic.
Suppose fk does not tend uniformly to / . For some ε > 0, there exists
a sequence {uk} c [0,1] such that for each fc, \f{uk) — fh{uk)\ > ε. Since
a subsequence of {uk} converges, we may assume {u^} does and let
u = limu-ooM*. By a suitable rotation of [0,1] we may assume u, x^ yXn
all lie in the interior of an interval [a, b], 0 < a < b < 1. But F forms
an ordinary %-parameter family on [α, 6] and hence fk - > / uniformly on
[α, 6] which is a contradiction. This completes the proof.

We now verify that w-parameter families are unisolvent in the sense
of Motzkin [10]. Let f,geF and let x be an interior point of [0,1].
If x is a zero of / — g and if / — g does not change sign in a suitably
small neighborhood about x then we will say the zero x has multiplicity
2, otherwise we say x has multiplicity 1. If 0 and 1 are not identified
and either is a zero of / — g, then the multiplicity is taken to be 1.
We shall denote the sum of the multiplicities of the zeros of / — g
within an interval [α, b] by mα,6(/, g). The following generalized con-

1 If 0,1 are identified we assume x^ < 1 and xn < 1,
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vexity notion is also useful. A continuous function h will be said to be
convex to F if h intersects no function of F at more than n points.
The following result extends Theorems 2 and 3 of [15].

THEOREM 2. Let F be an n-parameter family on [0, 1] and let h
be convex to F. Then for any f,geF, mO)1(/, h) <n and m o l (/ , g) < n — 1.

Proof, We assume first that 0 and 1 are not identified and that F
is an ordinary ^-parameter family. We verify the first statement by
induction on n. For n — 1 the result follows by [15] Theorem 2. Hence,
let h be a continuous function convex to a k + 1 parameter family F
and assume the conclusion holds for all k-parameter families. For feF
let xt, i — 1, •••, m, be the zeros of / — h ordered from left to right
and assume mOtl(f, h) > k + 1. Choose a point u such that xx < u < x2.
If Fλ — {g^F\g(x^) — /φ?i)}, then F± is a /c-parameter family on [u, 1].
feFx and h is convex to Fx. By our inductive assumption mUtl(f,h) <
k. Therefore xx must be a zero of / — h, and mOtl (/, h) = k + 2. By
the same reasoning we may assume xm is a double zero of / — h.

We now construct a set E oΐ k points from [0,1] in the following
manner. First choose an ε > 0 such that xt + 2ε < xi+1 — 2ε, i = 1, ,
m — 1. If x is a single zero of / — h then let x belong to E. If x is
a double zero of / — h> x Φ x19 xm let x + e, and x — ε belong to E.
We add the points x1 + ε, xm — ε. Since mXL+SίXm-s(f, h) = k — 2 it
is clear that E contains exactly k points. Choose a point x', xx + ε <
%' < oo2 — ε. Let /Λ be the unique function in F such that

fn(x) - /(a), a? e E

+

Now fn—f has & zeros which must all be simple by [15] Theorem 3.
Within the interval [xlf xm] fn — h has exactly k simple zeros since
fn was chosen so that at the points xt ± 2e, i = 2, , m — 1, xx + 2ε,
xm — 2ε, / lies between fn and /̂ . Hence for 0 < x < xλ and α?TO < a? < 1, /„
and h are on the same side of / (i.e., sgn [fn(x) —/(a?)] = sgn [̂ (a;) —f(x)~\.
But by Theorem 1, /„ tends uniformly to / a s n-> oo. Hence for n
sufficiently large fn — h must have at least & + 2 zeros which is a con-
tradiction.

The case when 0 and 1 are identified and F is periodic causes no
difficulty. For if xlf , xm are the zeros of f — h, using a suitable
rotation we may assume that there is an interval [α, 6], such that
0 < α < a ? ! < < ί c T O < 6 < l . F i s a n ordinary ^-parameter family on
[a, b] and mOtl(f, h) = matb(f, h) < n.
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The verification of the second assertion is very similar to the above,
and we leave the details to the reader.

COROLLARY. There are no periodic n-parameter families when n is
an even integer.

Proof. Suppose false. Let F be a periodic n-parameter family and
n an even integer. Let feF and choose x% i = 1, , n such that 0 <
%ι < %2 < < %n < l Choose g e T such that g(Xi) = /(#*) i = 1, ,
n — 1, g(xn) = f(xn) + 1. By Theorem 2, / — g changes sign at each of
the points xif i = 1, w —- 1; and since f — g can have no other zeros
within [0, 1], flf(l) >/(l). On the other hand g(0)< f(0) which is a
contradiction, since /, g are periodic of period 1.

3 Best approximation in the L^ norm. If g is continuous on
[0,1], gφF, then {g — /} forms a new n-parameter family. Hence
without loss of generality we may consider the characterization and con-
struction of the function feF such that

We first adopt the following notation. If S c [0,1]

Ss = mffeFs\iptes\f(t)\.

Let T denote the class of vectors u = (ulf •••, un+1) satisfying the con-
dition that 0 < ux < u2 < un+1 < 1. The statements and proofs of the
results of this section are valid when F consists of continuous periodic
functions on [0,1]. We shall assume, however, that F is an ordinary
n-parameter family and leave the details in the periodic case to the
reader.

The following two lemmas are appropriate generalizations of results
of de la Vallee Poussin [6] for polynomials. Where possible we refer
the reader to [13] for proofs.

LEMMA 1. For any u = (ulf , un+1) e T there exists a unique feF
and unique real number λ such that f{ut) = (— l)*λ ΐ = 1, * , n + l .
Moreover \ λ | = Su and f is the only function in F with the property
that max 4 . 1 , . . . , »+ 1 | / (w i ) l = δ u . In addition suppose for k = 1, 2, ••• that

uw = ( M w . . . f u ^ € τ and fk ( W ? >) = ( _ i ) * λ w .

Then if u(k) -> u and ue T, it follows that fk-+f uniformly on [0,1]
and λ<*° -> λ.
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LEMMA 2. Let ueT and a sequence of non-negative numbers Xt

i = 1, •• ,n + 1 be given. If there exists an fe F such that

then either min Xt < 8U < max Xι or λ4 = δM ί = 1, , n + 1.

Proof. Lemma 2 is a restatement of Lemma 1 of [13]. Everything
in Lemma 1 except the facts that | λ | = 8U and the function / satisfying
max<B,lf...iW+11/(^)1 = δM is unique is proved explicitly in [13]. To prove
the latter statements observe that if there is a geF satisfying |^(^ί) |<
| λ | then f(ut) — g(ut) = (— 1)% i = 1, •••, n + 1 where either λf > 0,
i — 1, 2, , n + 1 or λέ < 0 i = 1, 2, , n + 1. In either case by [12],
Lemma 1, / — g must have at least n zeros between ux and ̂ w + 1 counting
multiplicity which is a contradiction.

For ue T we will usually denote the function / of Lemma 1 by fu.
Next we define a function 8(ulf , un+1) of % + 1 variables.

δ(n) = 8(uly , wn+1) = Su if w = (%!, -, un+1) 6 Γ

= 0 otherwise .

If we restrict the points ut to lie in some subset S c [0,1], then
8(ulf , un+1) will be denoted δ ^ ^ , , un+1).

LEMMA 3. δ(ulf •• ,^ w + 1 ) is continuous on Rn+1

Proof. Assume that 8(uly •• ,un+1) is not continuous at some point
u — (uly , un+1). We may assume 0 < uγ < u2 < < un+1 < 1, and by
Lemma 1 we may assume that m(<ri) of the points ut are distinct.
Consequently 8(uu •••, un+1) = 0. Suppose there exists an ε > 0 and
a sequence {uk} c T such that uk-> u and 8U > ε. Let u^ be the ίth
coordinate of uk. Choose n points u'i9 0 < u\ < < ur

n < 1 such that
m of the points u\ coincide with the m distinct points u%. Let fQ be
the unique function in F such that fύ{u[) — 0. Choose η such that for
any i \u[ — ut\ < η implies \fo(uo)\ < ε/2. Choose k so large that all co-
ordinates of Mfc are within η neighborhoods of some coordinate of u'.
Then fU}c(τ4k)) - f,{u\k)) = ( - 1)% where sgn λf} = sgnλffi i = 1, ,w.
As in the proof of Lemma 1 it follows that fu — f0 must have at least
n zeros within [0,1] which is a contradiction.

Using the function δ(^, , un+1) one can give a simple proof of the
Theorem of Motzkin and Tornheim characterizing the function / which
has minimum deviation from zero.

THEOREM 3. There exists a unique feF such that \\f \\ — inf feF \\ f \\.

f is uniquely characterized by the fact that for some u — (uu , un+1) e T
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11/II = δw. u will have this property if and only if 8(u19 , un+1) is an

absolute maximum, and then f — fu.

Proof. Since S(u19

 Λ ,un+1) is a continuous function on a compact
set, its maximum is attained for some u = (u19 , un+1) e T. Assert
II/„![ = 8U. If H/JI > δu, then there is a point x' in [0,1] for which
\fu(xf)\ = | | / M | | . We form a new vector u'eT by replacing one co-
ordinate ui of iί by xr in the following way. If ut < xr < ui+1 i = 1, , w
and sgn /u(%) = sgn/M(#') then let u) = %, i =£ ί, and ^ = x\ If
s g n / J ^ ) = (— 1) sgnfu(xr) let u) — u5 j Φ i + 1 and wj+1 = a?'. If xf <
uλ{x' > un+1) and agn fjuj = sgn/„(&') (sgn/M(%n+1) = sgn/„(» ' )) l e t ^ί = % J
j Φl(j Φn + 1) and %J = a?f « + 1 = a?'). If sgn/ω(^) = ( - 1) sgn/„(»')
(sgn/M(^w+1) = ( - 1) sgn/„(&')) then let u[ = a?f, ̂  = u^j = 2, , w + 1
(%j = MJ+1, j = 1, . . . , n, u'n+1 = α?') Now either /M(u ) = (— If λ4 i = 1, ,
n + l o r / M (^) = ( - l)i+% i = 1, - . . ,% + 1 where λ, = 8α or λ4 = HΛll.
Therefore by Lemma 2, 8U < δω, < | | / M | | which contradicts the maximali-
ty of 8U.

It now follows immediately that | | / M | | = inf / e jp| |/ll and that fu is
the only such function with this property. For if fQ e F and | | / 0 1 | < \\fu\\
then H/oll < δ β which contradicts Lemma 1. Moreover the same argu-
ment shows that if there exists an f0e F and a, veT such that | | / 0 1 | = δv

then H/oll = inf /€JP | |/ | |. It is clear that δ(vlf •• ,ΐ>Λ+i) must be an ab-
solute maximum.

In the above theorem if | | / | | is replaced by \\f\\s = sup t€sl/(*) I
where S is any closed set of [0,1] containing at least n + 1 points, then
the same conclusions hold. Here of course, the function S(ult •• fun+1)
is replaced by Ss(ulf , un+1) and the points uh are assumed to be in S.
The following generalization of [11] Theorem 7.1 is therefore relevant.

THEOREM 4. Let Sk, S be closed sets of [0,1] such that for each
h, Sk9 contains at least n + 1 points; S contains infinitely many points,
and SK C S. Let fk9f0 be functions from F which minimize \\f\\s, 11/ IU
respectively. If for each ε > 0 there exists an integer k0 such that for

k > k0 each point ue S is at a distance less than ε from some point of

Sk, than fk -+fQ uniformly on [0,1].

Proof. We assume Ss > 0. S f c c S implies Ss < Ss. Choose u =
(u19 , un+1) eT,UiGS such that δs(uly , un+1) is an absolute maximum.
Let uk — (u[h), , uffii) e Γ, uf] e Sk be chosen such that uk -± u. By
Lemma 1, δUfc -> 8U and since δUk<δ8k, SSjc -> δu=δs. Let r f c = ( ^ w , •••, v™+ι)
€ T, v\k) e S* be chosen so that for each Jc, SSk(v[k\ , <fcΛ) is an ab-
solute maximum. Extract any convergent subsequence vk with limit v.
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If v — (vlf , vn+1), then vteS and 8V — 8S. Also fk = fvk tends uni-

formly to /„, the function from F with minimum deviation on v. But

by the uniqueness of /„,/„ = / 0 . The above argument shows that any

subsequence of {/J contains a refinement which converges to /0. Hence

lim fc-oβ/fc = / o uniformly on [0,1].

4. The estimation of / . In [13] Novodovorskii and Pinsker con-
sider a direct method, due to Remes [14] in the polynomial case, for the
estimation of / . However the following Lemma shows that / is con-
tinuously dependent on estimates of the best approximation. Hence if
u is a vector in T for which 8{u) is an estimate of inf f t e *ΊI/ | | , then the
solution of the equation f(uι) — (— l)*λ i = 1, , w + 1 is the appropriate
estimate of / .

LEMMA 4. Let {8n} be a sequence of non-negative numbers converg-

ing to 8 = inf / e F | | / | | from below. If un are vectors in T for which

8(un) — δn, then limn^fUn — f uniformly on [0, 1],

Proof. If the conclusion is false there exists a subsequence {uk}

and a number ε > 0 such that | | / — fu

k \\ > ε. But {ukj} may be further

refined to obtain a convergent subsequence of vectors. Calling this

{uk} and letting uQ — l im^^ ukj we have by Lemma 1 8(u0) — lim ^ ^ ( w ^ ) .

By Theorem 3 fUQ = / which is a contradiction.
We shall consider two algorithms for estimating δ and prove con-

vergence of both.
Each of these algorithms can be used efficiently for actual numerical

calculations. A detailed description of method 2 for polynomials on a finite
point set can be found in [5], Also for polynomials on an interval
a maximization procedure has been announced by Bratton [3].

For both methods the following notation is convenient. For u —
(ulf , un+1) e T define for j — 1, , n + 1.

8cJ}(x) = 8(ulf , Uj-19 x, uJ+1, , un+1) if Uj-! < x < uj+1

= 0 otherwise

where we take u0 = 0, un+2 = 1. We now form ηu{x) == max j=1)... jW+1 8}

u(x).
From the continuity of 8(ulf •••, un+1) it follows t h a t for each j , 8cJ\x) is
continuous, and hence Ύ]u{x) is continuous. Therefore there exists a point
#', 0 < xr < 1 and integer 1 < m < n + 1 such t h a t

θu\*fi ) ~~ max ||oMJJ = II^MII

For a given vector u we define υ! — (u[, , u'n+1) by setting Uj=uJf j Φ m,
u' = xf.
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THEOREM 5. If vectors uk are defined inductively in the above fashion
with uλeT chosen arbitrarily, then limλ;_yooδ(wλ.) exists and there exists
uoeT such that δ(w0) = limfc_+0Oδ(wΛ). Furthermore δ(w0) is an absolute
maximum of the function 8(u).

Proof. {8(uk)} is a monotonically increasing, bounded sequence hence
convergent. If δ = Iimfc_>00δ(i/fc), then a suitable subsequence {u }, con-

kj

verges to u0 and δ(κo) = δ. We now assert ΎIU (X) converges uniformly to

ηUύ(x). It suffices to assume ut < x < ut+1. Then

< IS* 0(x) - δlk(x) I + I Slζ\x) - Siζ

Since S(u) is a uniformly continuous function the latter expression tends
to zero uniformly in x.

Hence

11^11 = Km HJH | | .

But

1 1 ^ I I - δ(W f c j + 1) < 8(ukj+i) < \\VukjJ\

Therefore H^WJ1 = lim^ooδ(wA.) = δ(iί0). It now follows by the same
argument as in the proof of Theorem 3 that | |/ t t 0H — S(uQ) and by Theorem
3, δ(ϊi0) is a maximum.

For the second method of estimation of / we alter slightly our
definition of 8ι

u(x) and δ£+1(#). We now define

&l(x) = δ(a?, u29 , un+ι) if 0 < x < u2 .

= S(u2, u3, , un+1, x) if un+1 <x<l

δ%+1(x) = 8(1^, •••,%„,&) if un < x < 1

= δ(x, ulf , un) if 0 < x < uλ .

The algorithm proceeds as follows. First let ε > 0 be chosen. Select an
arbitrary vector ueT. Maximize S2

u(x) over its domain of definition. Let
x' be a point for which S2

u(x) is a maximum. If δl(x') > (1 + e)8(w), replace
u2 by αf forming a new vector w\ If not, let uf = u. We now maximize
δ*u,(x) and continue inductively. Special attention is necessary for δ£+1(#)
and Sl(x). If x1 is a point for which δ^+1(x) is a maximum and δl+1(x) >
(1 + ε)δ(w), then w' is formed in the following way. If x' > un then
u ' t = u l f i — 1 , •••, n , uf

n+1 = x f ; i f a ? f < ^ t h e n u[ — x f u \ — u%-λ i = 2, •••, n + 1 .
In the latter case, the next function maximized is δ*u,(x). If the first
case occurs then 81,(x) is maximized. Let x" be a point for which δ^(a ).
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is a maximum and δ^(#") > (1 + e)S(ur). If x" < W2 then u" = x" and
w" = wj i = 2, 3, , n + 1. If x" > uf

n+1 then u" = %i+1 i = 1, , n and
%J,+i = #". For the first case the next function maximized is δ2

ur,(x); the
second case, δ^λ(aj). If

δ2+1(»0 < (1 + ε)δ(«) (δi,(a") < (1 + e)δ(u'))

then we take u! — u (u" = %')• When there have been w + 1 consecutive
maximizations with no change in the vector u, e is now replaced by ε/2
and the process is repeated. We now continue inductively and pass to
the limit as ε/2fc -> 0.

THEOREM 6. The conclusions of Theorem 5 hold if the sequence {uk}
is chosen inductively in accordance with the above algorithm.

Proof. As before, \imk^008(uk) — S exists. We choose a particular
convergent subsequence {ukj} of {uk}. For each j let ukj be a vector
of {uk} such that for each i, ΐ = l, * ,w + l and all appropriate
#> δί («) < (1 + εj23)h{uk). The algorithm guarantees that for each integer
j such a vector uk exists in the sequence {uk}. Since a refinement of
this sequence is convergent, we assume {uk } converges. Then if uk ->
w0, δ(iί0) = δ. Suppose δ(iι0) is not a maximum of δ(κ), then H/Mo|| > δ(iί0).
Choose xf so that \fu(x')\ = 11/II, and form w' by replacing one point,
the ith say, of u0 by xf in the manner of the proof of Theorem 3. Form
u'k by replacing the ith coordinate of uk by xf Then ιιk -> u! and
δ(i4 ) -> δ(α'). Therefore for j sufficiently large, since δ(u') > δ,

On the other hand for each j there is a point a; and an integer m such
that

For i sufficiently large this is a contradiction, therefore \\fUQ\\ = δ(n0)
and δ(n0) is an absolute maximum.

5. Approximation in Lp ̂  norm. For N > n let α̂ , , xN be N
distinct points of [0,1]. In place of the sup norm let | | / 1 | = {Σί-i\f(xd\ ΨlP

and assume p > 1. The fundamental problem to be considered here is
to give necessary and sufficient conditions that the function feF for
which H/ll = inf/6^||/|| is unique. Now the image of F under the
mapping f-> (/fa), ,f(xN)) is a closed set in N dimensional Euclidean
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space. By a theorem of Motzkin [9] as generalized by Busemann [4],
to each point x e EN there will exist a unique nearest point in a given
set S c EN with respect to a strictly convex metric if and only if S is
closed and convex. Hence / will be unique if and only if F is convex,
but for w-parameter families we can say more.2

THEOREM 7. An n-parameter family F is convex if and only if F
is the translate of a linear n-parameter family.

Proof. If F is the translate of a linear n-parameter family, i.e.,
there exists a continuous ^ on [0,1] and a linear n-parameter family Fo

such that each feF can be written uniquely as / = g + f',fe Fo, then
F is obviously convex. Conversely suppose F is convex. Choose n dis-
tinct points x19 , xn in [0, 1]. Let fQ, f19 •••,/„ be the unique functions
of F such that fo(xj) = 0, j = 1, , n\fk(x3) = Sfcj for k, j = 1, , n
where δfcJ is the Kronecker delta. We assert that each feF has a rep-
resentation as

/ = /o + Σ λfc(Λ - /o) where λfc = f(xk) .
fc = l

If such a representation exists it is obviously unique. Also the vector
space spanned by fλ — f0, , fn — f0, is obviously an ^-parameter family
and the theorem is proved. To prove the assertion let

Fk - {feF\f(xk+1) - f(xk+2) = .. = f(xn) = 0}

From the convexity of F, Fl is a convex one parameter family on a suitably
small interval containing xk. We assert fe Fί implies f = fQ + λΛ(/Λ — /0)
where λfc = f(xk). By convexity this is obviously true for 0 < λfc < 1.
For λfc > 1 if feFί,f(xk) = λfc then by convexity

or / = /„ + Xk(fk - /„). If λκ < 0,

1 f I (

or / = / 0 + Xk(fk — /o). To finish the proof we apply an induction. As-

sume feFk implies that / = / 0 + Σjf-iVίO*^ ~" ô) where /(ίCj) = Xj and
2 For a discussion of related results see the article by Motzkin in the Symposium on

Numerical Approximation, University of Wisconsin Press, 1959.
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suppose g e Fk+1 and g(x5) = μj9 j = 1, , k + 1. Then if gλ = / 0 +

ΣUtyjifj ~ fo), Q2=fo + 2/WΛ + i -/o) it follows that

α F
Li

and '̂(Xj) = J«J, j = 1, , k + 1. Therefore

6» The existence of ^parameter families on compact space* Let
fiy ,fn> be n linearly independent real valued continuous functions defin-
ed on a compact set S in finite dimensional Euclidean space. Let V be
the span of the functions f19 •••,/„. In 1918 Haar [7] showed that to
each continuous real valued function g defined on S, there is a unique

/ e F satisfying | |/-ff | | = i n f / 6 F | | / - t f | | where | | / | | = supβ6al/(β)l if
and only if no non-zero function in V vanished at more than n — 1 points
of S. Haar noted that the existence of such a set of functions V placed
a severe restriction on the set S. In 1956 Mairhuber [8] proved that if
V satisfied the above condition of Haar then S is a homeomorphic image
of a subset of the circumference of the unit circle. If n is even this
subset must be proper. It is clear that V satisfies the condition of Haar
if and only if V is a linear ^-parameter family. The characterization
of those compact Hausdorff spaces on which there exist ^-parameter
families F for n > 1 seems to be quite difficult. One can give a cha-
racterization if one imposes a rather strong local condition on F. The
result presented here includes the one of Mairhuber, and is proved by
somewhat different means. The following fundamental lemma is per-
haps of independent interest.

LEMMA 5. Let S be a compact connected Hausdorff space with the
property that for each point x e S there exists a neighborhood Ux and
continuous real valued functions f19 f2 defined on Ux such that for
y,zeUx,y Φ z

( 1 ) My)
Mv)

Then S may be embedded homeomorphically into the circumference C of
the unit circle.

Proof. Without loss of generality we assume Ux is a closed, there-
fore compact neighborhood of x. f19 f2 never vanish simultaneously on
Ux and therefore fjf2 defines a continuous mapping of Ux into the
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compactified real line. (1) guarantees that the mapping is one to one
and φx(u) = Arctan (fjfjiu) gives a homeomorphism of Ux into C.

We next verify that S is locally connected. To do this it suffices
to show that for each xeS there exists a connected neighborhood which
can be mapped homeomorphically into C. In fact if φx is the homeomor-
phism for a point xeS constructed above, and if Cx — φx(Ux), it is
enough to show that there exists a connected neighborhood Vx in Cx of
Xx = φx(x). For then φz\Vx) is a connected neighborhood of x contained
in Ux. But Cx is a compact subset of C. Therefore let Ix be the com-
ponent of Xx in Cx. Ix is a compact connected subset of C. Ix is then
either an interval or all of C. If Ix is the latter we are through. Also
if Ix is an interval and λ̂  an interior point (relative to C) then φχ\Ix)
is the required neighborhood. Hence assume that Xx is an end point of
Ix. This will include that degenerate case when Ix is just one point.
We may also assume that there does not exist a suitably small connected
neighborhood N of λ̂  in C such that Nf)Cx c Ix. For then φ~\NΓ\Nx)
is an appropriate neighborhood of #. Therefore it now must follow that
for any connected neighborhood N of Xx in C there exists Xly λ2 in the
interior of N such that \, λ 20 Cx and (Xly λ2) Π Cx Φ φ. If we let F =
ΦΛ(\f λ

2 ) Π Cx] and G = φz\Cx ~ (λx, λ2)] then F U ( S - ?7X) and G
separate S which is a contradiction.

We note that S is certainly a separable metric since a finite num-
ber of homeomorphic images of subsets of C cover S. Hence by [16]
Theorem 5.1, S is arc wise connected.

We now assert S is homeomorphic to a subset of C. Let Ulf , Un

be a finite collection of connected neighborhoods covering S each of which
is homeomorphic to a subset of C. By a suitable rearrangement we
may assume that U2Γ\ UXΦ φ and U2 ς£ Ux. Let a^e t/x^ i72, x2e U2^ Ux

x e Uj Π CTj. Let A be the maximal subset of i7x U U2 connecting x19 x, x2.
This must be all of Uι U ί72> for if yeUΊl) U2 and ^0A, then y may be
connected to any point in A by an arc in Uι U U2. If 1/ is connected to
A at an end point of A, this is an enlargement of A which contradicts
maximality. If y is connected to A at a point other than an end point,
then no neighborhood of this point is homeomorphic to a subset of C.
This also is a contradiction. If Ux (J ίf2 is not all of S then U1U U2 is
homeomorphic to an arc, and by induction the homeomorphism may be
extended to all of S.

THEOREM 8. For n > 1 let F be an n-parameter family of func-
tions defined on a compact Hausdorff space S. Suppose in addition that
to each point x e S there exists a neighborhood Nx and functions flff2^F
such that
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My)
My)

for y, ze Nx, y Φ z. Then there exists a homeomorphism of S into the
circumference of the unit circle. If n is even the image of S must be
a proper subset of C.

Proof. First we note that S cannot have a proper subset W homeo-
morphic to C. If n is even this follows directly from the Corollary to
Theorem 2. If n is odd, choose x e S ~ W and let F' = {fe F\f(x) = 0}
then Ff is an n — 1 parameter family defined on W. Since n — 1
is even this is a contradiction. We may therefore assume that if n is
even S is not homeomorphic to C.

If 7 is a component of S then by Lemma 5 there exists a homeo-
morphism φ of 7 onto the closed interval [0,1] considered as a subset of
C. We assert that if 7 is not all of S, then φ can be extended to an
open and closed set ! 7 D 7 . U and its complement then separate S. If
7 is itself open in S then we take U — I. If not, let x — φ~\0), y —
Φ~\l). Let Nx, Ny be compact neighborhoods of x and y respectively
and let φx, φy be homeomorphisms of Nx and Ny respectively into C.
We may assume φx(x) — 0, φy(y) = 1 and

φx(Nx n 7) c [0, 1] and φy[Ny Π 7] c [0,1] .

If we define φf by

φf(z) = Φ(z) ifzsl

= φy(z) if ze Ny ~I

then φ' is a homeomorphism of NX{J Ny{jl = N into C. Also int. JVz)7.
Now [0, 1] = φ'(7) is the maximal connected subset of φ'(N) containing
Φ'(I). Therefore there exist sequences {λn}, {μn} of real numbers tend-
ing monotonically to 0 from below, and monotonically to 1 from above,
respectively such that {λj n Φr(N) = φ and {μn} Π Φ\N) = φ. Choose
n large enough that 0'-1[Xn, 0] c interior of JV, and φ' - 1[l, μn] c interior of
ΛΓy. Clearly J w = φ'"x[λn, //J is a closed set containing 7. J w is open in
the interior of N. Hence Jn is open in S.

Let T be the class of open sets O of S which can be mapped homeo-
morphically into C. We partially order T in the following way. If
O19 O2 e T then O1 < O2 if θ ! c θ 2 and if there exist homeomorphisms
φ19 φ2 of O19 O2 respectively into C such that φ2 agrees with φ1 on Oλ.
By Zorn's lemma there exists a maximal element O of T7. We assert
O — S. If not, let xe S ~O. Then there exists an open and closed set
UBX and mapping φ such that φ maps ί7 homeomorphically into C.
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0 Π U and O ~ U are separated open sets of S. Hence if </>' is any
homeomorphism of 0 into C such φ'(O)f)Φ(U) — φ. φ" defined by
φ"(x) = φ(x), xeOΓ\U, φ"(x) =Ξ= φ'(x), xe O ~ 17 is also a homeomorphism
of 0 into C. φ" has an obvious extension to U{jO which contradicts
the maximality of 0.

COROLLARY. If F is a linear n-parameter family (n > 1) defined
on the compact Hausdorff space S, then S is homeomorphic to a subset
of C. If n is even the subset must be proper.

Proof. We assume S contains more than n points. For a given
xe S choose n — 2 distinct points xlf , xn-2 of S outside a suitably
small compact neighborhood Nx of x. If Fx — {fe F\f{x^ — 0, i — 1, ,
n — 2} then Fx is a linear 2-parameter family defined on Nx. Therefore,
for any two linearly independent functions f19 f2 in Fx,

My) fά)
for y,zeNx,yΦz

We now apply the theorem.
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