Vasile Ene, Quellenstrasse 18, 63571 Gelnhausen, Germany, e-mail:
gabrielaene@hotmail.com ${ }^{\dagger}$

THOMSON'S VARIATIONAL MEASURE AND NONABSOLUTELY CONVERGENT INTEGRALS

Abstract

In 1987 Jarník and Kurzweil [11] proved the following result: A function $F:[a, b] \rightarrow \mathbb{R}$ is $A C^{*} G$ on $[a, b]$ if and only if μ_{F}^{*} (Thomson's variational measure) is absolutely continuous on $[a, b]$ and F is derivable a.e. on $[a, b]$. But condition " F is derivable a.e. on $[a, b]$ " is superfluous, as it was shown in [3]. In this paper we shall improve this result (from where we obtain an answer to a question of Faure [9]). Then using Faure's definition for a Kurzweil-Henstock-Stieltjes integral with respect to a function ω, we give corresponding definitions for: a Denjoy ${ }^{*}$-Stieltjes integral with respect to ω, a Ward-Perron-Stieltjes integral with respect to ω, a Henstock-Stieltjes variational integral with respect to ω, and we show that the four integrals are equivalent.

1 Introduction

Throughout the paper we shall use Thomson's variational measure μ_{F}^{*} for a function F (see Definition 2.4).

In 1987, Jarník and Kurzweil proved the following result [11] (see 3.19, p. 656):

Theorem A. A function $F:[a, b] \rightarrow \mathbb{R}$ is $A C^{*} G$ on $[a, b]$ if and only if μ_{F}^{*} is absolutely continuous and F is derivable a.e. on $[a, b]$.

[^0]Almost three years later, P. Y. Lee proved the same theorem [13] (see Theorem 4, p. 757), without any reference to the paper of Jarník and Kurzweil. A variant of Theorem A is presented by W. F. Pfeffer in [15] (see Theorem 6.4.4, p. 115), and he mentioned neither Jarník and Kurzweil's theorem, nor P. Y. Lee's result. Not knowing the paper of Jarník and Kurzweil, in 1994 [3], we improved Theorem A (giving credit to P. Y. Lee), showing that the condition " F is derivable a.e. on $[a, b]$ " is superfluous:
Theorem B. ([3], Corollary 1, (i), (vii) or [4], Corollary 2.27.1, (i), (vii)). A function $F:[a, b] \rightarrow \mathbb{R}$ is $A C^{*} G$ on $[a, b]$ if and only if μ_{F}^{*} is absolutely continuous.

In proving Theorem B, otherwise than Jarník and Kurzweil, P. Y. Lee and W. F. Pfeffer, we haven't used the Kurzweil-Henstock theory. In 1996, using the Kurzweil-Henstock theory, Bongiorno, Di Piazza and Skvortsov also proved Theorem B without mentioning [3] (see Theorems 3 and 4 of [1]).

Using Theorem B and a result of Thomson (see Theorem 3.1), we can easily deduce the following theorem:

Theorem C. Let $F:[a, b] \rightarrow \mathbb{R}$ be a function such that μ_{F}^{*} is absolutely continuous. Then μ_{F}^{*} is σ-finite on $[a, b]$.

In this paper we shall improve Theorem B and Theorem C (see Theorem 5.1 and Theorem 3.2), and then use these results to answer to a question of Faure [9]. In performing this task we shall use many definitions and results of Faure's paper [9].

Using Faure's definition for a Kurzweil-Henstock-Stieltjes integral with respect to a function ω, we give corresponding definitions for: a Denjoy*-Stieltjes integral with respect to ω, a Ward-Perron-Stieltjes integral with respect to ω, a Henstock-Stieltjes variational integral with respect to ω, and we show that the four integrals are equivalent.

2 Notations, Definitions and Preliminary Results

We denote by $m^{*}(X)$ the outer measure of the set X and by $m(A)$ the Lebesgue measure of A, whenever $A \subseteq \mathbb{R}$ is Lebesgue measurable. For the definitions of $V B, V B^{*}$ and $A C^{*}$, see [16]. Let $\langle x, y\rangle$ denote the closed interval with the endpoints x and y. We denote by $\mathcal{P}(E)=\{X: X \subseteq E\}$ whenever $E \subseteq \mathbb{R}$. Let $C[a, b]=\{F:[a, b] \rightarrow \mathbb{R}: F$ is continuous on $[a, b]\}$ and $\mathcal{B} \operatorname{or}(X)=\{A \subset X: A$ is a Borel set $\}$. We denote by $\mathcal{O}(F ; X)$ the oscillation of the function F on the set X. Let C_{f} denote the set of continuity points of the function f.

Definition 2.1. Let $F:[a, b] \rightarrow \mathbb{R}$, and let P be a closed subset of $[\mathrm{a}, \mathrm{b}]$, $c=\inf (P), d=\sup (P)$. Let $F_{P}:[c, d] \rightarrow \mathbb{R}$ be defined as follows: $F_{P}(x)=$ $F(x), x \in P$ and F_{P} is linear on each $\left[c_{k}, d_{k}\right]$, where $\left\{\left(c_{k}, d_{k}\right)\right\}_{k \geq 1}$ are the intervals contiguous to P.

Definition 2.2. ([17]). A sequence $\left\{E_{n}\right\}$ of sets whose union is E is called an E-form with parts E_{n}. If, in addition, each part E_{n} is closed in E (i.e. $E_{n}=\bar{E}_{n} \cap E$) then the E-form is said to be closed. An expanding E-form is called an E-chain.
Definition 2.3. Let $f:[a, b] \rightarrow \mathbb{R}$ and $E \subseteq[a, b] . f$ is said to be $V B^{*} G$ (respectively $A C^{*} G$) on E if there is an E-form $\left\{E_{n}\right\}$ such that f is $V B^{*}$ (respectively $A C^{*}$) on each E_{n}. Note that $A C^{*} G$ here differs from the definitions given in [16], because f is not supposed to be continuous.

Definition 2.4. Let $E \subset \mathbb{R}, \delta: E \rightarrow(0,+\infty)$,

$$
\beta^{*}(E ; \delta)=\{(\langle x, y\rangle, x): x \in E, y \in(x-\delta(x), x+\delta(x))\} .
$$

The finite set $\pi=\left\{\left(\left\langle x_{i}, y_{i}\right\rangle, x_{i}\right)\right\}_{i=1}^{n} \subset \beta^{*}(E ; \delta)$ is said to be a partition if the $\left\{\left\langle x_{i}, y_{i}\right\rangle\right\}_{i=1}^{n}$ is a set of nonoverlapping closed intervals. Let $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
V_{\delta}^{*}(f ; E)=\sup \left\{\sum_{(\langle x, y\rangle, x) \in \pi}|f(y)-f(x)|: \pi \subset \beta^{*}(E ; \delta) \text { is a partition }\right\},
$$

and

$$
\mu_{f}^{*}(E)=\inf _{\delta} V_{\delta}^{*}(f ; E) .
$$

Note that this μ_{f}^{*} is the same as that of Thomson [19, p. 186], and it is also identical with Thomson's $\mathcal{S}_{o}-\mu_{F}$ of [18] and Faure's $m_{F}[9]$.
Definition 2.5. Let X be a nonempty set and $\mathcal{P}(X)=\{E: E \subseteq X\}$. Let $\alpha: \mathcal{P}(X) \rightarrow[0,+\infty]$ be a set function with $\alpha(\emptyset)=0$. α is said to be σ-finite on E if there exists a sequence $\left\{E_{i}\right\}_{i}$ of sets such that $E \subset \cup_{i} E_{i}$ and $\alpha\left(E_{i}\right) \neq+\infty$ for each i.

Definition 2.6. A function $\alpha: \mathcal{P}(E) \rightarrow \overline{\mathbb{R}}$ is said to be absolutely continuous on $E \subseteq \mathbb{R}$ if $\alpha(Z)=0$ whenever $Z \subseteq E$ and $m^{*}(Z)=0$.
Definition 2.7. [9] Let $F, \omega:[a, b] \rightarrow \mathbb{R}, \omega \in V B^{*} G$ and $\omega \in C[a, b]$.

- F is called ω-Lipschitzian on a set $E \subset[a, b]$ or $L Z_{\omega}$ on E, if there exists $C>0$ such that $\mu_{F}^{*}(A) \leq C \cdot \mu_{\omega}^{*}(A)$ for every subset $A \subseteq E$. The function F is called generalized ω-Lipschitzian or $L Z_{\omega} G$, if there exists an $[a, b]$-form $\left\{E_{n}\right\}$ such that F is ω-Lipschitzian on each E_{n}.
- Similarly, F is called ω-absolutely continuous on a set E, or $A C_{\omega}$ on E, if for any $\epsilon>0$ there exists $\delta>0$ such that $A \subseteq E$ and $\mu_{\omega}^{*}(A)<\delta$ imply $\mu_{F}^{*}(A)<\epsilon$. And it is called generalized ω-absolutely continuous, or $A C_{\omega} G$, if there exists an $[a, b]$-form $\left\{E_{n}\right\}$ such that F is ω-absolutely continuous on each E_{n}. If in addition each set E_{n} is closed then we say that $F \in\left[A C_{\omega} G\right]$.
- One says that F is ω-variational normal or shortly ω-normal, if $\mu_{\omega}^{*}(A)=$ 0 implies $\mu_{F}^{*}(A)=0$.

Definition 2.8. Let μ be a positive measure defined on a σ-algebra \mathcal{A} of X. A real measure ν defined on \mathcal{A} is absolutely continuous with respect to μ (shortly $\nu \ll \mu$) if $\nu(A)=0$ whenever $\mu(A)=0$ and $A \in \mathcal{A}$.

Remark 2.1. If F is ω-normal then the restrictions of the outer measures μ_{F}^{*} and μ_{ω}^{*} on a σ-algebra \mathcal{A} satisfy $\mu_{F}^{*} \ll \mu_{\omega}^{*}$.

Proposition 2.1. [16, p. 31] If μ is a positive measure on a σ-algebra \mathcal{A} of X and ν is a finite positive measure on \mathcal{A} then $\nu \ll \mu$ if and only if for $\epsilon>0$ there is a $\delta>0$ such that $\nu(A)<\epsilon$ whenever $\mu(A)<\delta$.

3 An Extension of Theorem C

Lemma 3.1. Let $F:[a, b] \rightarrow \mathbb{R}, Q \subset[a, b]$ a compact set and $\mu^{*}: \mathcal{P}(Q) \rightarrow$ $[0,+\infty]$ an outer measure such that for every compact subset S of Q, there exists a G_{δ}-set $Z \subset S$ with $\bar{Z}=S$ and $\mu^{*}(Z)=0$. Then the following assertions are equivalent:
(i) $F \in V B^{*} G$ on Q;
(ii) each closed subset S of Q contains a portion on which $F \in V B^{*}$;
(iii) $F \in V B^{*} G$ on Z whenever Z is a G_{δ}-subset of Q and $\mu^{*}(Z)=0$.

Proof. (i) \Leftrightarrow (ii) See Theorem 9.1 of [16, p. 233] (F needs not to be continuous on Q, because $F \in V B^{*}$ on $A \subset Q$ implies that $F \in V B^{*}$ on \bar{A}, see Theorem 7.1 of [16, p. 229]).
(i) \Rightarrow (iii) This is obvious.
(iii) \Rightarrow (ii) Let S be a closed subset of Q (so S is compact). Then there is a G_{δ}-set $Z \subset S$, with $\bar{Z}=S$ and $\mu^{*}(Z)=0$ (see the condition on μ^{*}). By (iii) $F \in V B^{*} G$ on Z, so there exists a Z-form $\left\{Z_{i}\right\}$ such that $F \in V B^{*}$ on each Z_{i}. Then $F \in V B^{*}$ on each \bar{Z}_{i} (see Theorem 7.1 of [16, p. 229]). By

Baire's Category Theorem [16, p. 54], there is an open interval I such that $\emptyset \neq I \cap Z \subset \bar{Z}_{i_{o}}$ for some i_{o}. But

$$
\emptyset \neq I \cap S=I \cap \bar{Z} \subset \overline{I \cap Z} \subset \bar{Z}_{i_{o}}
$$

Indeed, let $x \in I \cap \bar{Z}$ and let V_{x} be a neighborhood of x. Then $I \cap V_{x}$ is a neighborhood of $x \in \bar{Z}$ too, so $V_{x} \cap I \cap Z \neq \emptyset$. Hence $x \in \overline{I \cap Z}$ and the above relation is proved. It follows that $F \in V B^{*}$ on $I \cap S$.

Lemma 3.2. (Lemma 4.2 of [9]) Let $\omega: \mathbb{R} \rightarrow \mathbb{R}, \omega \in C[a, b], \omega(x)=\omega(a)$ for $x<a, \omega(x)=\omega(b)$ for $x>b$, and $E \subset[a, b]$. If $\mu_{\omega}^{*}(E) \neq+\infty$ the function $V: \mathbb{R} \rightarrow[0,+\infty)$,

$$
V(x)= \begin{cases}0 & \text { if } x \in(-\infty, a] \\ \mu_{\omega}^{*}(E \cap[a, x]) & \text { if } x \in(a,+\infty)\end{cases}
$$

is continuous, increasing and bounded on \mathbb{R}.
Moreover, if $x, y \in[a, b], x<y$ then:
$V(y)-V(x)=\mu_{\omega}^{*}(E \cap[x, y])=\mu_{\omega}^{*}(E \cap(x, y))=\mu_{\omega}^{*}(E \cap[x, y))=\mu_{\omega}^{*}(E \cap(x, y])$.
Proof. That V is continuous follows by Lemma 4.2 of [9], and that V is increasing and bounded is evident.

Lemma 3.3. Let $\omega: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function, $\omega(x)=\omega(a)$ for $x<a$, $\omega(x)=\omega(b)$ for $x>b$, and let $S \subset[a, b]$ be a G_{δ}-set with $\mu_{\omega}^{*}(S) \neq+\infty$. Then there is a null G_{δ}-set $Z \subset S$ such that $\bar{Z} \supset S$ and $\mu_{\omega}^{*}(Z)=0$.

Proof. Let d be the usual distance on \mathbb{R} (i.e., $d(x, y)=|x-y|$ for $x, y \in$ $\mathbb{R})$. Since (\mathbb{R}, d) is separable, it follows that (S, d) is also a separable metric space (see for example [2, Theorem 12]). Thus there is a countable set $Z_{1}=$ $\left\{x_{1}, x_{2}, \ldots\right\} \subset S$ such that $\bar{Z}_{1} \cap S=S$. Let V be the function defined in Lemma 3.2, with $E=S$. Let $j \in \mathbb{N}$. For each x_{i} let $a_{j i}, b_{j i}$ be such that $x \in\left(a_{j i}, b_{j i}\right)$,

$$
V\left(b_{j i}\right)-V\left(a_{j i}\right)<\frac{1}{2^{j+i}} \quad \text { and } \quad\left(b_{j i}-a_{j i}\right)<\frac{1}{2^{j+i}}
$$

(this is possible because V is continuous and increasing). Let

$$
G_{j}=S \cap\left(\cup_{i=1}^{\infty}\left(a_{j i}, b_{j i}\right)\right) \quad \text { and } \quad Z=\cap_{j=1}^{\infty} G_{j}
$$

Then Z is a G_{δ}-subset of S that contains Z_{1}. Hence $\bar{Z} \supset S$ and

$$
\begin{gathered}
\mu_{\omega}^{*}(Z) \leq \mu_{\omega}^{*}\left(G_{j}\right) \leq \sum_{i=1}^{\infty} \mu_{\omega}^{*}\left(\left(a_{j i}, b_{j i}\right) \cap S\right)= \\
=\sum_{i=1}^{\infty}\left(V\left(b_{j i}\right)-V\left(a_{j i}\right)\right)<\sum_{i=1}^{\infty} \frac{1}{2^{j+i}}=\frac{1}{2^{j}} \quad \text { for all } j \in \mathbb{N} .
\end{gathered}
$$

Thus $\mu_{\omega}^{*}(Z)=0$. Clearly Z is a null set.
Theorem 3.1 (Thomson). [18, p. 94]. Let $F:[a, b] \rightarrow \mathbb{R}, A \subset[a, b]$. If F is continuous at each point of A then $F \in V B^{*} G$ on A if and only if μ_{F}^{*} is σ-finite on A.

Lemma 3.4. Let $F:[a, b] \rightarrow \mathbb{R}, P=\bar{P} \subset[a, b], F \in V B^{*}$ on $P, F \in C[a, b]$. Then $\mu_{F}^{*}(P) \leq 2 V^{*}(F ; P)$.

Proof. We shall use Thomson's technique of [18, p. 94]. Let $A=\{x \in$ $P: x$ is an isolated point of P at one side at least $\}$. By [16, p. 260], A is a countable set. Since $F \in C[a, b], \mu_{F}^{*}(A)=0$. Let $\delta: P \backslash A \rightarrow(0,+\infty)$. Let $\pi=\left\{\left(\left\langle x_{i}, y_{i}\right\rangle, x_{i}\right)\right\}_{i=1}^{p} \subset \beta^{*}(P \backslash A ; \delta)$ be a partition. Split π into

$$
\pi_{1}=\left\{\left(\left[x_{i}, y_{i}\right], x_{i}\right)\right\}_{i=1}^{m} \quad \text { and } \quad \pi_{2}=\left\{\left(\left[y_{i}, x_{i}\right], x_{i}\right)\right\}_{i=m+1}^{p} .
$$

In both cases we label the intervals from the left to the right. Let $c=\inf P$, $d=\sup P, y_{m}^{*} \in\left[y_{m}, d\right) \cap(P \backslash A)$ and $x_{m+1}^{*} \in\left(c, y_{m+1}\right] \cap(P \backslash A)$. Then we have

$$
\begin{aligned}
& \quad \sum_{\pi}\left|F\left(y_{i}\right)-F\left(x_{i}\right)\right| \leq \sum_{i=1}^{m-1} \mathcal{O}\left(F ;\left[x_{i}, x_{i+1}\right]\right)+\mathcal{O}\left(F ;\left[x_{m}, y_{m}^{*}\right]\right) \\
& +\mathcal{O}\left(F ;\left[x_{m+1}^{*}, x_{m+1}\right]\right)+\sum_{i=m+1}^{p-1} \mathcal{O}\left(F ;\left[x_{i}, x_{i+1}\right]\right)<2 V^{*}(F ; P)
\end{aligned}
$$

Thus $V_{\delta}^{*}(F ; P \backslash A) \leq 2 V^{*}(F ; P)$. It follows that $\mu_{F}^{*}(P) \leq \mu_{F}^{*}(P \backslash A)+\mu_{F}^{*}(A) \leq$ $2 V^{*}(F ; P)$.

Theorem 3.2 (An extension of Theorem C). Let $F:[a, b] \rightarrow \mathbb{R}$ be ω-normal, where $\omega \in C[a, b]$ is a $V B^{*} G$ function. Then $F \in C[a, b]$ and F is $V B^{*} G$ on $[a, b]$ (or equivalently μ_{F}^{*} is σ-finite on $[a, b]$, see Theorem 3.1).

Proof. Since ω is continuous at $x \in[a, b]$, we have that $\mu_{\omega}^{*}(\{x\})=0$, so F being ω-normal, $\mu_{F}^{*}(\{x\})=0$. It follows that F is continuous at x, so on $[a, b]$. Since ω is $V B^{*} G$ on $[a, b]$, by Theorem 7.1 of [16, p. 229], there exists a sequence $\left\{Q_{n}\right\}$ of compact sets such that $[a, b]=\cup_{n} Q_{n}$ and ω is $V B^{*}$ on each Q_{n}. By Lemma $3.4, \mu_{\omega}^{*}\left(Q_{n}\right) \neq+\infty$. Fix some n and let S be a compact subset of Q_{n}. Then $\mu_{\omega}^{*}(S) \neq+\infty$, so by Lemma 3.3, there is a G_{δ}-set $Z \subset S$, with $\bar{Z}=S$ and $\mu_{\omega}^{*}(Z)=0$. Thus $\left(\mu_{\omega}^{*}\right)_{\mid \mathcal{P}\left(Q_{n}\right)}$ satisfies the condition of Lemma 3.1. Let Y be a subset of Q_{n} such that $\mu_{\omega}^{*}(Y)=0$. Since F is ω-normal, $\mu_{F}^{*}(Y)=0$, and by Theorem 3.1, F is $V B^{*} G$ on Y. It follows that F is $V B^{*} G$ on each Q_{n} (see Lemma 3.1). Hence F is $V B^{*} G$ on $[a, b]$.

4 An Answer to a Question of Faure

Lemma 4.1 (Thomson). (A particular case of Theorem 43.1 of [18], p. 101). Let $F:[a, b] \rightarrow \mathbb{R}$ and $E \subseteq[a, b]$. Then $m^{*}(F(E)) \leq \mu_{F}^{*}(E)$.

From this lemma we obtain immediately the following corollary.
Corollary 4.1 (Faure). (Lemma 5.1 of [9]). Let $F:[a, b] \rightarrow \mathbb{R}$ and $E \subseteq[a, b]$ with $\mu_{F}^{*}(E)=0$. Then $m(F(E))=0$.

Lemma 4.2. Let $f:[a, b] \rightarrow \mathbb{R}, E \subseteq[a, b]$ and $A \subseteq\{x \in E: f$ is continuous at $x\}$. If $f \in V B^{*} G$ on E then $m^{*}(f(A))=0$ if and only if $\mu_{f}^{*}(A)=0$.

Proof. Since $\mathcal{S}_{o}-\mu_{f}$ and μ_{f}^{*} are identical, the assertion follows immediately by Theorem 8 of [5] (which is an extension of Thomson's Corollary 43.4 of [18, p. 103]).

Theorem 4.1. Let $F:[a, b] \rightarrow \mathbb{R}$ and $A \subseteq[a, b]$. The following assertions are equivalent:
(i) $\mu_{F}^{*}(E)=0$;
(ii) F is continuous at each point of $E, m(F(E))=0$ and $\mu_{F}^{*}(E) \neq+\infty$;
(iii) F is continuous at each point of $E, m(F(E))=0$ and μ_{F}^{*} is σ-finite;
(iv) F is continuous at each point of $E, m(F(E))=0$ and F is $V B^{*} G$ on E.

Proof. (i) \Rightarrow (ii) That F is continuous at each point of E and $\mu_{F}^{*}(E) \neq+\infty$ is obvious. By Corollary 4.1 we also have that $m(F(E))=0$.
(ii) \Rightarrow (iii) This is evident.
(iii) \Leftrightarrow (iv) See Theorem 3.1.
(iv) \Rightarrow (i) See Lemma 4.2.

Remark 4.1. Theorem 4.1, (i) \Leftrightarrow (ii) is in fact Proposition 5.3 of Faure [9, p. 121] (our proof is different).

Example. C. A. Faure asked if in Theorem 4.1 (ii), " $\mu_{F}^{*}(E) \neq+\infty$ " can be replaced by " $F \notin V B^{*} G$ but F is derivable $a . e$. on E ". The answer is no.
Proof. Let C be the Cantor ternary set. We say that $\left(a_{11}, b_{11}\right)=\left(\frac{1}{3}, \frac{2}{3}\right)$ is an open interval from the first step, $\left(a_{21}, b_{21}\right)=\left(\frac{1}{9}, \frac{2}{9}\right)$ and $\left(a_{22}, b_{22}\right)=\left(\frac{7}{9}, \frac{8}{9}\right)$ are the two intervals from the second step. In general the 2^{n-1} open intervals of length $\frac{1}{3^{n}}$ contiguous to C are said to be the intervals from the step n. We denote them from the left to the right as $\left\{\left(a_{n i}, b_{n i}\right)\right\}_{i=1}^{2^{n-1}}$. Let $c_{n i}=\frac{a_{n i}+b_{n i}}{2}$ and let $\left[a_{n i}^{\prime}, b_{n i}^{\prime}\right]$ be an interval contained in $\left(a_{n i}, b_{n i}\right)$ centered in $c_{n i}$. Let $F:[0,1] \rightarrow[0,1]$,

$$
F(x)= \begin{cases}0 & \text { if } x \in C \\ \frac{1}{2^{n-1}} & \text { if } x \in \cup_{i=1}^{2^{n-1}}\left[a_{n i}^{\prime}, b_{n i}^{\prime}\right] \\ \text { linear } & \text { on }\left[a_{n i}, a_{n i}^{\prime}\right] \text { and }\left[b_{n i}^{\prime}, b_{n i}\right] .\end{cases}
$$

Then we have:
(i) $F \in C[0,1]$;
(ii) F is derivable a.e. on $[0,1]$;
(iii) $F^{\prime}(x)=0$ a.e. on $E=C \cup\left(\cup_{n=1}^{\infty} \cup_{i=1}^{2^{n-1}}\left(a_{n i}^{\prime}, b_{n i}^{\prime}\right)\right)$;
(iv) $m(F(E))=0$;
(v) $F \notin V B^{*} G$ on C (so on E), or equivalently (see Theorem 3.1), μ_{F}^{*} is not σ-finite on C (so on E).

5 An Extension of Theorem B

Lemma 5.1. Let $F:[a, b] \rightarrow \mathbb{R}, F \in C[a, b], E \subset[a, b]$. If $\mu_{F}^{*}(E)<+\infty$ then there is a $F_{\sigma \delta}$-set H such that $E \subset H$ and $\mu_{F}^{*}(H)=\mu_{F}^{*}(E)$.
Proof. For $\epsilon>0$ there is a $\delta_{\epsilon}: E \rightarrow(0,+\infty)$ such that $V_{\delta_{\epsilon}}^{*}(F ; E)<\mu_{F}^{*}(E)+$ $\epsilon / 2$. Let $E_{n}^{\epsilon}=\left\{x \in E: \delta_{\epsilon}(x)>1 / n\right\}$. Then $E=\cup_{n=1}^{\infty} E_{n}^{\epsilon}$ and $\left\{E_{n}^{\epsilon}\right\}_{n}$ is an expanding sequence of sets. Let

$$
\pi=\left\{\left(\left\langle x_{i}, y_{i}\right\rangle, x_{i}\right)\right\}_{i=1}^{p} \subset \beta\left(\overline{E_{n}^{\epsilon}} ; \frac{1}{2 n}\right)
$$

Since $F \in C[a, b]$, for each i one can choose $x_{i}^{*} \in E_{n}^{\epsilon}$ such that

$$
\left|x_{i}^{*}-x_{i}\right|<\frac{1}{2 n} \quad \text { and } \quad\left|F\left(x_{i}^{*}\right)-F\left(x_{i}\right)\right|<\frac{\epsilon}{2^{i+1}} .
$$

1) If $y_{i}<x_{i}=x_{j}<y_{j}$, then one chooses $x_{i}^{*}=x_{j}^{*} \in\left(y_{i}, y_{j}\right) \cap E_{n}^{\epsilon}$.
2) If $x_{i} \neq x_{j}$ for all $i \neq j$, then one chooses x_{i}^{*} such that $\left|x_{i}^{*}-x_{i}\right|<\frac{1}{2} \delta\left(x_{i}, C_{i}\right)$ where $C_{i}=\cup_{j \neq i}\left\langle x_{j}, y_{j}\right\rangle$.
Since $\left|y_{i}-x_{i}\right|<\frac{1}{2 n}$, it follows that $\left|x_{i}^{*}-y_{i}\right|<\frac{1}{n}$, so

$$
\left(\left\langle x_{i}^{*}, y_{i}\right\rangle, x_{i}^{*}\right) \in \beta\left(E_{n}^{\epsilon} ; \frac{1}{n}\right) \subset \beta\left(E_{n}^{\epsilon} ; \delta_{\epsilon}\right) \subset \beta\left(E ; \delta_{\epsilon}\right)
$$

We obtain that

$$
\begin{aligned}
\sum_{i=1}^{p}\left|F\left(y_{i}\right)-F\left(x_{i}\right)\right| & \leq \sum_{i=1}^{p}\left|F\left(x_{i}\right)-F\left(x_{i}^{*}\right)\right|+\sum_{i=1}^{p}\left|F\left(y_{i}\right)-F\left(x_{i}^{*}\right)\right| \\
& <\frac{\epsilon}{2}+V_{\delta_{\epsilon}}(F ; E)<\epsilon+\mu_{F}^{*}(E)
\end{aligned}
$$

Hence

$$
\mu_{F}^{*}\left(\overline{E_{n}^{\epsilon}}\right) \leq V_{\frac{1}{2 n}}^{*}\left(F ; \overline{E_{n}^{\epsilon}}\right)<\epsilon+\mu_{F}^{*}(E)
$$

Let $H^{\epsilon}=\cup_{n=1}^{\infty} \overline{E_{n}^{\epsilon}}$. Since any Borelian subset of $[a, b]$ is μ_{F}^{*} measurable and $\left\{\overline{E_{n}^{\epsilon}}\right\}_{n=1}^{\infty}$ is an E-chain (so $\left\{\overline{E_{n}^{\epsilon}}\right\}_{n=1}^{\infty}$ is an expanding sequence of sets), we have

$$
\mu_{F}^{*}\left(H^{\epsilon}\right)=\lim _{n \rightarrow \infty} \mu_{F}^{*}\left(\overline{E_{n}^{\epsilon}}\right) \leq \epsilon+\mu_{F}^{*}(E)
$$

Let $H=\cap_{k=1}^{\infty} H^{\frac{1}{k}}$. Clearly $E \subset H$ and H is of $F_{\sigma \delta}$-type. We have

$$
\mu_{F}^{*}(E) \leq \mu_{F}^{*}(H) \leq \mu_{F}^{*}\left(H^{\frac{1}{k}}\right) \leq \frac{1}{k}+\mu_{F}^{*}(E)
$$

for all $k=1,2, \ldots$ Thus $\mu_{F}^{*}(E)=\mu_{F}^{*}(H)$.
Remark 5.1. That μ_{F}^{*} in Lemma 5.1 is Borel regular was pointed out (without proof) by Thomson in [18, p. 43]. In fact we can prove even more, see Lemma 5.4.

Lemma 5.2. [7, Corollary 5] Let $f, g:[a, b] \rightarrow \mathbb{R}, E \subseteq[a, b]$. If $f, g \in V B^{*}$ on E and $f=g$ on E, then

$$
\mu_{f}^{*}\left(E \cap C_{f} \cap C_{g}\right)=\mu_{g}^{*}\left(E \cap C_{f} \cap C_{g}\right)
$$

Particularly, $\mu_{f}^{*}\left(E \cap C_{f}\right)=\mu_{\tilde{f}}^{*}\left(E \cap C_{f}\right)$, where $\tilde{f}=f_{\bar{E} \cup\{a, b\}}$ (see Definition 2.1 for the function f_{P}).

Lemma 5.3. [7, Lemma 5] Let $f:[a, b] \rightarrow \mathbb{R}$ and $E \subseteq[a, b]$. If $f \in V B$ on $[a, b]$ then $\mu_{f}^{*}\left(E \cap C_{f}\right)=m^{*}\left(V_{f}\left(E \cap C_{f}\right)\right)$, where $\left.V_{f}(x)=V(f ;[a, x])\right)$.
Lemma 5.4. Let $F:[a, b] \rightarrow \mathbb{R}, F \in C[a, b]$. If F is $V B^{*}$ on $P=\bar{P} \subset[a, b]$, then for every $E \subset P$ there is a G_{δ}-set $H \subset P$ such that $\mu_{F}^{*}(E)=\mu_{F}^{*}(H)$.
Proof. Note that $\mathcal{S}_{o}-\mu_{F} \equiv \mu_{F}^{*}$ and let $\tilde{F}=F_{P \cup\{a, b\}}$. By Lemma 5.2, $\mu_{F}^{*}(X)=\mu_{\tilde{F}}(X)$ for all $X \subset P$, and by Lemma 5.3, $\mu_{\tilde{F}}^{*}(X)=m^{*}\left(V_{\tilde{F}}(X)\right)$ for all $X \subset[a, b]$. Thus

$$
\begin{equation*}
\mu_{F}^{*}(X)=m^{*}\left(V_{\tilde{F}}(X)\right) \quad \text { for all } X \subset P \tag{1}
\end{equation*}
$$

Let G be a G_{δ}-set such that $V_{\tilde{F}}(E) \subset G$ and $m^{*}\left(V_{\tilde{F}}(E)\right)=m(G)$, and let $H=P \cap V_{\tilde{F}}^{-1}(G)$. Then H is a G_{δ}-set (because $V_{\tilde{F}}$ is a continuous function, so $V_{\tilde{F}}^{-1}(G)$ is a G_{δ}-set). Clearly $E \subset H$ and by (1) we have

$$
\mu_{F}^{*}(E) \leq \mu_{F}^{*}(H)=m^{*}\left(V_{\tilde{F}}(H)\right) \leq m^{*}(G)=m(G)=m^{*}\left(V_{\tilde{F}}(E)\right)=\mu_{F}^{*}(E)
$$

Thus $\mu_{F}^{*}(E)=\mu_{F}^{*}(H)$.
Theorem 5.1. Let $F, \omega:[a, b] \rightarrow \mathbb{R}, \omega \in V B^{*} G$ and $\omega \in C[a, b]$. The following assertions are equivalent:
(i) $F \in L Z_{\omega} G$;
(ii) F is $A C_{\omega} G$;
(iii) F is ω-normal.
(iv) There is a closed $[a, b]$-form $\left\{E_{n}\right\}$ such that $\omega, F \in V B^{*}$ on each E_{n} and F is $A C_{\omega}$ on each E_{n}.
(v) There is an $[a, b]$-form $\left\{E_{n}\right\}$ with each E_{n} a Borel set, such that F is $L Z_{\omega}$ on each E_{n}.
(vi) $F \in C[a, b], F$ is N_{ω} and F is $V B^{*} G$ on $[a, b]$.

Proof. (i) \Rightarrow (ii) \Rightarrow (iii) See Lemma 4.3 of [9].
(iii) \Rightarrow (iv) By Theorem 3.2, F is $V B^{*} G$ on $[a, b]$, and by Theorem 7.1 of $\left[16\right.$, p. 229], there is a sequence of closed sets $\left\{E_{n}\right\}$ with $\cup_{n} E_{n}=[a, b]$ such that $\omega, F \in V B^{*}$ on each E_{n}. Then $\mu_{F}^{*}\left(E_{n}\right)<+\infty$ and $\mu_{\omega}^{*}\left(E_{n}\right)<+\infty$ for each n (see Lemma 3.4). Since $\mu_{F \mid \mathcal{B} \operatorname{or}\left(E_{n}\right)}^{*}$ is a positive finite measure, by Proposition 2.1, it follows that for $\epsilon>0$ there is a $\delta=\delta\left(\epsilon, E_{n}\right)>0$ such that $\mu_{F}^{*}(A)<\epsilon$ whenever A is a Borel subset of E_{n} and $\mu_{\omega}^{*}(A)<\delta$. But $\left(\mu_{\omega}^{*}\right)_{\mid \mathcal{P}\left(E_{n}\right)}$
and $\left(\mu_{F}^{*}\right)_{\mid \mathcal{P}\left(E_{n}\right)}$ are both Borel regular (see Lemma 5.1), so for $A \subset E_{n}$ with $\mu_{\omega}^{*}(A)<\delta$, we have $\mu_{F}^{*}(A)<\epsilon$ (because there exists $A^{*} \subset \mathcal{B o r}\left(E_{n}\right)$ such that $A \subset A^{*}$ and $\left.\mu_{\omega}^{*}(A)=\mu_{\omega}^{*}\left(A^{*}\right), \mu_{F}^{*}(A)=\mu_{F}^{*}\left(A^{*}\right)\right)$. Thus F is $A C_{\omega}$ on each E_{n}, so F is $\left[A C_{\omega} G\right]$ on $[a, b]$.
(iv) \Rightarrow (v) By Lemma 3.4 and Proposition 2.1 we have

$$
\left(\mu_{F}^{*}\right)_{\mid \mathcal{B} \operatorname{or}\left(E_{n}\right)} \ll\left(\mu_{\omega}^{*}\right)_{\mid \mathcal{B} \operatorname{or}\left(E_{n}\right)} .
$$

Hence, by the Radon-Nikodym Theorem, it follows that there is a Borel measurable function $f_{n}: E_{n} \rightarrow[0,+\infty)$ such that

$$
\mu_{F}^{*}(A)=\int_{A} f_{n} d \mu_{\omega}^{*}, \text { whenever } A \in \mathcal{B} \operatorname{or}\left(E_{n}\right) .
$$

Let $E_{n k}=\left\{x \in E_{n}: f_{n}(x)<k\right\}$. Then $\left\{E_{n k}\right\}_{k}$ is an E_{n}-chain of Borel sets. Let $A \subset E_{n k}$. Since $\left(\mu_{\omega}^{*}\right)_{\mid \mathcal{P}\left(E_{n k}\right)}$ and $\left(\mu_{F}^{*}\right)_{\mid \mathcal{P}\left(E_{n k}\right)}$ are both Borel regular (see Lemma 5.1), there exists a Borel set $A^{*} \subset E_{n k}$ such that

$$
\mu_{F}^{*}(A)=\mu_{F}^{*}\left(A^{*}\right)=\int_{A^{*}} f_{n} d \mu_{\omega}^{*} \leq k \cdot \mu_{\omega}^{*}\left(A^{*}\right)=k \cdot \mu_{\omega}^{*}(A)
$$

(v) \Rightarrow (i) This is evident.
(iii) \Rightarrow (vi) Clearly $F \in C[a, b]$, and by Theorem $3.2, F$ is $V B^{*} G$ on $[a, b]$. Let Z with $m(\omega(Z))=0$. By Theorem 4.1, (i), (iv), it follows that $\mu_{\omega}^{*}(Z)=0$. Since F is ω-normal, $\mu_{F}^{*}(Z)=0$. Again by Theorem 4.1, (i), (iv), we obtain that $m(F(Z))=0$. Thus $F \in N_{\omega}$.
(vi) \Rightarrow (iii) Let Z with $\mu_{\omega}^{*}(Z)=0$. By Theorem 4.1, (i), (iv), we have $m(\omega(Z))=0$. Since $F \in N_{\omega}$, it follows that $m(F(Z))=0$. Again by Theorem 4.1, (i), (iv), we obtain that $\mu_{F}^{*}(Z)=0$, so F is ω-normal.

Remark 5.2. Theorem 5.1 was proved by Faure in [9, Theorem 4.7], but in (iii) F is assumed to be $V B^{*} G$. As we can see from Theorem 3.2, F being $V B^{*} G$ is superfluous. Also, our proof is different from that of Faure.

6 The Equivalence of the Integrals KHS, $\mathcal{D}^{*} \mathbf{S}, \mathcal{V}$ and \mathcal{W} with Respect to ω

Definition 6.1. Let $\delta:[a, b] \rightarrow(0,+\infty)$ and $E \subset[a, b]$. Let

$$
\beta_{\delta}^{o}[E]=\{([y, z] ; x): x \in E \text { and } x \in[y, z] \subset(x-\delta(x), x+\delta(x))\}
$$

Let π be a finite set of pairs $\left\{\left[c_{i}, d_{i}\right] ; t_{i}\right) \in \beta_{\delta}^{o}[E]$, such that $\left\{\left[c_{i}, d_{i}\right]\right\}_{i}$ is a set of nonoverlapping nondegenerate closed intervals, and let $\sigma(\pi)=\cup_{i}\left[c_{i}, d_{i}\right]$. We
denote by $\mathcal{P}^{\circ}(E ; \delta)$ the collection of all π defined as above. Let $f, \omega:[a, b] \rightarrow \mathbb{R}$, and let

$$
\sigma(f ; \omega ; \pi)=\sum_{i} f\left(t_{i}\right)\left(\omega\left(d_{i}\right)-\omega\left(c_{i}\right)\right), \quad S(f ; \pi)=\sum_{i}\left(f\left(d_{i}\right)-f\left(c_{i}\right)\right),
$$

for $\pi \in \mathcal{P}^{\circ}(E ; \delta)$. If $E=[a, b]$ and $\sigma(\pi)=[a, b]$ then we denote the collection of all these π by $\mathcal{P}_{1}^{\circ}([a, b] ; \delta)$.

Remark 6.1. Recall that $D^{o}[E]=\left\{\beta_{\delta}^{o}[E]: \delta:[a, b] \rightarrow(0,+\infty)\right\}$ is called the ordinary derivation basis on the set E (see for example [4, p. 87]).

Definition 6.2. [9]. Let $f, \omega:[a, b] \rightarrow \mathbb{R}$. f is said to be Kurzweil-HenstockStieltjes integrable (short $K H S$-integrable) on $[a, b]$ with respect to ω, if there exists a real number I with the following property: for $\epsilon>0$ there exists $\delta:[a, b] \rightarrow(0,+\infty)$ such that $|\sigma(f ; \omega ; \pi)-I|<\epsilon$, whenever $\pi \in \mathcal{P}_{1}^{\circ}([a, b] ; \delta)$. Then $(K H S) \int_{a}^{b} f(t) d \omega(t)=I$.

Remark 6.2. In the above definition, the real number I is unique (the proof is similar to that in Remark 5.4.2 of [4]).

Definition 6.3. ([8, p. 415]) Let $\omega, F:[a, b] \rightarrow \mathbb{R}, \omega$ strictly increasing on $[a, b]$. We define the lower and upper derivatives of F with respect to ω at a point $x \in[a, b]$ as follows:

$$
\underline{D}_{\omega} F(x)=\liminf _{y \rightarrow x} \frac{F(y)-F(x)}{\omega(y)-\omega(x)} \quad \text { and } \quad \bar{D}_{\omega} F(x)=\limsup _{y \rightarrow x} \frac{F(y)-F(x)}{\omega(y)-\omega(x)} .
$$

F is said to be derivable with respect to ω at x if $\underline{D}_{\omega} F(x)=\bar{D}_{\omega} F(x) \in \mathbb{R}$. The derivative with respect to ω of F at x will be their common value and will be denoted by $F_{\omega}^{\prime}(x)$.

Lemma 6.1. Let $f, \omega:[a, b] \rightarrow \mathbb{R}$ be (KHS)-integrable on $[a, b]$ with respect to ω, and let $F(x)=(K H S) \int_{a}^{x} f(t) d \omega(t)$. Then F is derivable with respect to ω and $F_{\omega}^{\prime}=f$ on $[a, b]$, except on a set Z with $\mu_{\omega}^{*}(Z)=0$.

Proof. This is Corollary 4.8 of [9].
Lemma 6.2. Let $f, \omega:[a, b] \rightarrow \mathbb{R}$, and let $E \subset[a, b]$ with $\mu_{\omega}^{*}(E)=0$ such that $f(x)=0$ for $x \in[a, b] \backslash E$. Then f is $(K H S)$-integrable with respect to ω on $[a, b]$, and its integral is 0 .

Proof. This is a particular case of Proposition 2.9 in [9].

Corollary 6.1. Let $f, g, \omega:[a, b] \rightarrow \mathbb{R}$. If f is $(K H S)$-integrable with respect to ω on $[a, b]$, and $f=g$ except on a set E with $\mu_{\omega}^{*}(E)=0$, then g is also (KHS)-integrable with respect to ω on $[a, b]$ and the two integrals are equal.

Proof. The proof follows from Lemma 6.2 and the linearity of the integral.

Definition 6.4. Let $f, \omega:[a, b] \rightarrow \mathbb{R}, \omega \in V B^{*} G$ on $[a, b], \omega \in C[a, b] . f$ is said to be Denjoy*-Stieltjes integrable (short $\mathcal{D}^{*} S$-integrable) with respect to ω on $[a, b]$ if there is a ω-normal function $F:[a, b] \rightarrow \mathbb{R}$ such that $F_{\omega}^{\prime}=f$ on $[a, b]$, except on a set E with $\mu_{\omega}^{*}(E)=0$. We write $\left(\mathcal{D}^{*} S\right) \int_{a}^{b} f(t) d \omega(t)=$ $F(b)-F(a)$, and we say that F is an indefinite $\mathcal{D}^{*} S$-integral of f.

Lemma 6.3. The $\mathcal{D}^{*} S$ integral is well-defined. Moreover, let $f, \omega:[a, b] \rightarrow \mathbb{R}$. If f is $\left(\mathcal{D}^{*} S\right)$-integrable with respect to ω on $[a, b]$, then f is $(K H S)$-integrable with respect to ω on $[a, b]$, and the two integrals are equal.

Proof. Let F be an indefinite $\mathcal{D}^{*} S$ integral of f. Then $F_{\omega}^{\prime}=f$ on $[a, b]$ except on a set Z with $\mu_{\omega}^{*}(Z)=0$. Since F is ω-normal, it follows that $\mu_{F}^{*}(Z)=0$. Let $f_{o}:[a, b] \rightarrow \mathbb{R}$,

$$
f_{o}(x)= \begin{cases}f(x) & \text { if } x \in[a, b] \backslash Z \\ 0 & \text { if } x \in Z\end{cases}
$$

By [9, Proposition 4.5], f_{o} is (KHS)-integrable with respect to ω on $[a, b]$, and

$$
F(x)-F(a)=(K H S) \int_{a}^{x} f_{o}(t) d \omega(t)
$$

So the $\mathcal{D}^{*} S$ integral of f is well defined. By Corollary 6.1 it follows that f is ($K H S$)-integrable with respect to ω on $[a, b]$ and the two integrals are equal.

Definition 6.5. Let $f, \omega:[a, b] \rightarrow \mathbb{R}$.

- We define the following class of majorants: $\overline{\mathcal{W}}(f)=\{M:[a, b] \rightarrow \mathbb{R}$: $M(a)=0$; there exists $\delta:[a, b] \rightarrow(0, \infty)$ such that $M(z)-M(y)>$ $f(x)(\omega(z)-\omega(y))$, whenever $x \in[y, z] \subset(x-\delta(x), x+\delta(x))\} ;$
- We define the following class of minorants: $\underline{\mathcal{W}}(f)=\{m:[a, b] \rightarrow \mathbb{R}$: $-m \in \overline{\mathcal{W}}(-f)\}$.
- If $\overline{\mathcal{W}} \neq \emptyset$ then we denote by $\bar{J}(b)$ the lower bound of all $M(b), M \in$ $\overline{\mathcal{W}}(f)$. If $\underline{\mathcal{W}}(f) \neq \emptyset$ then we denote by $\underline{J}(b)$ the upper bound of all $m(b), m \in \underline{\mathcal{W}}(f)$.
- We say that f has a (\mathcal{W})-integral with respect to ω on $[a, b]$, if $\overline{\mathcal{W}}(f) \times$ $\underline{\mathcal{W}}(f) \neq \emptyset$ and $\bar{J}(b)=\underline{J}(b)=(\mathcal{W}) \int_{a}^{b} f(t) d \omega(t)$.

Definition 6.6. Let $f, \omega:[a, b] \rightarrow \mathbb{R}$.

- f is said to be (\mathcal{V})-integrable with respect to ω on $[a, b]$, if there exists $H:[a, b] \rightarrow \mathbb{R}$ such that for every $\epsilon>0$ there exist $\delta:[a, b] \rightarrow(0,+\infty)$ and $G:[a, b] \rightarrow \mathbb{R}$ with the following properties: $G(a)=0, G(b)<\epsilon, \mathrm{G}$ is increasing on $[a, b]$ and $|H(z)-H(y)-f(x)(\omega(z)-\omega(y))|<G(z)-G(y)$, whenever $x \in[y, z] \subset(x-\delta(x), x+\delta(x))$.
- H is called the (\mathcal{V})-indefinite integral of f with respect to ω on $[a, b]$, and $(\mathcal{V}) \int_{a}^{b} f(t) d \omega(t)=H(b)-H(a)$.
- Clearly the (\mathcal{V})-integral is well defined.

Theorem 6.1. Let $f, \omega:[a, b] \rightarrow \mathbb{R}, \omega \in V B^{*} G$ and $\omega \in C[a, b]$. Then f is (KHS)-integrable with respect to ω on $[a, b]$ if and only if f is $\left(\mathcal{D}^{*} S\right)$-integrable with respect to ω on $[a, b]$ and the two integrals are equal.

Proof. " \Rightarrow " The proof follows by Theorem 4.7 and Corollary 4.8 of $[9, \mathrm{p}$. 120].
$" \Leftarrow "$ See Lemma 6.1.
Remark 6.3. Let $f, \omega:[a, b] \rightarrow \mathbb{R}$. The following assertions are equivalent:

- f is $(K H S)$-integrable with respect to ω on $[a, b]$;
- f is $\left(\mathcal{D}^{*} S\right)$-integrable with respect to ω on $[a, b]$;
- f is (\mathcal{V})-integrable with respect to ω on $[a, b]$;
- f is (\mathcal{W})-integrable with respect to ω on $[a, b]$;

The equivalence of the $K H S, \mathcal{W}$ and \mathcal{V} integrals is known. This was proved for instance by Henstock in [10] (see Theorems 2.5.4 and 7.2.1). For the case of $K H S$ and \mathcal{W} integrals this was proved as early as 1957 by Kurzweil in [12] (see Theorem 1.2.1). The equivalence of the $K H S$ and $\mathcal{D}^{*} S$ integrals follows from Theorem 6.1.

References

[1] B. Bongiorno, L. Di Piazza, and V. Skvortsov, A new full descriptive characterization of Denjoy-Perron integral, Real Analysis Exchange 21 (1995-1996), no. 2, 656-663.
[2] N. Dunford and J. T. Schwartz, Linear operators, Interscience, 1958.
[3] V. Ene, Characterization of $A C^{*} G \cap \mathcal{C}, \underline{A C^{*}} \cap \mathcal{C}_{i}, A C$ and $\underline{A C}$ functions, Real Analysis Exchange 19 (1994), 491-510.
[4] V. Ene, Real functions - current topics, Lect. Notes in Math., vol. 1603, Springer-Verlag, 1995.
[5] V. Ene, Characterizations of $V B^{*} G \cap(N)$, Real Analysis Exchange 23 (1997/8), no. 2, 571-600.
[6] V. Ene, An elementary proof of the Banach-Zarecki theorem, Real Analysis Exchange 23 (1997/8), no. 1, 295-302.
[7] V. Ene, Thomson's variational measure, Real Analysis Exchange 24 (1998/9), no. 2, 523-566.
[8] C. A. Faure, Sur le théorème de Denjoy-Young-Saks, C. R. Acad. Sci. Paris 320 (1995), no. Série I, 415-418.
[9] C. A. Faure, A descriptive definition of the KH-Stieltjes integral, Real Analysis Exchange 23 (1997-1998), no. 1, 113-124.
[10] R. Henstock, The general theory of integration, Clarendon Press, Oxford, 1991.
[11] J. Jarník and J. Kurzweil, A general form of the product integral and linear ordinary differential equations, Czech. Math. J. 37 (1987), no. 112, 642-659.
[12] J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. J. 7 (1957), no. 82, 418-449.
[13] P. Y. Lee, On $A C G^{*}$ functions, Real Analysis Exchange 15 (1989-1990), no. 2, 754-760.
[14] I. P. Natanson, Theory of functions of a real variable, 2nd. rev. ed., Ungar, New York, 1961.
[15] W. F. Pfeffer, The Riemann approach to integration, Cambridge Univ. Press, New York, 1993.
[16] S. Saks, Theory of the integral, 2nd. rev. ed., vol. PWN, Monografie Matematyczne, Warsaw, 1937.
[17] D. N. Sarkhel, A wide Perron integral, Bull. Austral. Math. Soc. 34 (1986), 233-251.
[18] B. S. Thomson, Real functions, Lect. Notes in Math., vol. 1170, SpringerVerlag, 1985.
[19] B. S. Thomson, σ-finite Borel measures on the real line, Real Analysis Exchange 23 (1997-98), no. 1, 185-192.
[20] A. J. Ward, The Perron Stieltjes integral, Math. Zeit. 41 (1936), 578-604.

[^0]: Key Words: Thomson's variational measure, $V B^{*}, V B, V B^{*} G, A C^{*}, V B^{*} G$, the Kurzweil-Henstock-Stieltjes integral, the Denjoy*-Stieltjes integral.

 Mathematical Reviews subject classification: 26A45, 26A39, 26A46, 26A24
 Received by the editors January 5, 1999

 * The author died on November 11, 1998; see Real Anal. Exch. 241 (1998/99), 3. See also www.vasile-ene. subdomain.de
 \dagger The author's widow wishes to thank the referee for the so many useful comments and suggestions that have led to a shorter and improved version of this paper.

