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São Paulo, R. do Matão 1010, São Paulo, SP 05054-010, Brazil. email:
plkaufmann@gmail.com

Ricardo Bianconi, Instituto de Matemática e Estat́ıstica, Universidade de
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TRIANGLE INTEGRAL - A
NONABSOLUTE INTEGRATION PROCESS

SUITABLE FOR PIECEWISE LINEAR
SURFACES

Abstract

We present a two-dimensional nonabsolute gauge integral which sa-
tisfies several convergence theorems and a general divergence theorem,
and at the same time admits a change of variables formula valid up to
affine transformations - thus applicable to piecewise linear surfaces. Our
approach is based on a modification of the M1-integral presented in [6],
using triangle-based partitions.

1 Introduction

The problem of defining an integration process for which∫ b

a

F ′ = F (b)− F (a) (1.1)

is satisfied for each differentiable real valued function F defined in a compact
interval [a, b] was first solved, independently, by Denjoy and Perron in the
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beginning of the twentieth century; it was known to Lebesgue, when he intro-
duced his integral in 1904, that it would fail to satisfy this property, since for
some differentiable functions the derivative is not even integrable. Take for
example the function F defined in [0, 1] by

F (x) =

{
x2 sin

(
1
x2

)
, if x > 0;

0, if x = 0.

In the fifties, Henstock and Kurzweil developed another integration process
which was shown to be equivalent to Denjoy’s and Perron’s, but with a much
simpler definition based on gauges and Riemann sums. The integrals defined
by Denjoy, Perron and Henstock-Kurzweil are often referred to as nonabsolute
integrals, since they lack the strong property of the Lebesgue integral which
says that if f is integrable, then |f | is also integrable. We refer to [2] for the
definitions of the mentioned integrals.

The problem of generalizing the Lebesgue integral in order to obtain a
large class of functions which satisfy (1.1) is naturally extended to the case
where the domain has more dimensions. It is desirable to define an integration
process in some domain U ⊂ Rn which satisfies the following version of the
divergence theorem:∫

U

divF =

∫
∂U

F ·N, for each differentiable F : Rn → Rn. (1.2)

To clarify the notation, divF denotes the divergence of F , defined by divF
.
=

∂F1

∂x1
+ · · ·+ ∂Fn

∂xn
, and F ·N is the scalar product of F with the outward-pointing

normal vector N , which is defined over the boundary ∂U of U . If (1.2) holds,
it is implied that divF must be integrable for each differentiable function F .
If the domain U is relatively simple - take, for example, a simplicial complex -
the integral to the right is expected to converge for each differentiable F , since
F ·N is continuous in each face of U . The natural extension of the definition
of integral given by Henstock and Kurzweil for the multidimensional case does
not satisfy (1.2) even when U is an interval (that is, the cartesian product of
compact intervals in the real line).1

Several attempts have been made to modify the definition of Henstock and
Kurzweil for more dimensions in order to obtain (1.2), maintaining the gauge
approach. One line of development was to impose on the admissible interval-
based partitions of the domain some regularity conditions (see for example [6]
and [13]); this way, the simplicity of working with intervals is kept and it is

1The advantage of this natural extension is that a Fubini type theorem is satisfied (see
[14]). In fact, there is a degree of incompatibility between the divergence theorem and
Fubini’s Theorem; we refer to [9], [15] and the upcoming [8] for a study on this subject.
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possible to obtain satisfactory convergence theorems for the integrals defined
in the referred articles. On the other hand, the M1-integral defined in [6], as
well as the Henstock-Kurzweil multidimensional integral, have the common
flaw of being sensitive to rotations (see [9] and [10]); thus these integrals are
not suitable for applications to manifolds, since we do not have a satisfactory
change of variables formula. The other line of development is based on taking
partitions of the domain into sets which are more complicated than intervals
(see, for example, [4] and [5]). This way a change of variables formula is
obtained - up to C1-transformations for the integral defined by Kurzweil in [4].
However, the price for admitting complicated partitions is that it becomes hard
to prove even simple properties for the integrals defined in the referred articles.
In this context Pfeffer obtained good results in [16]; in this paper Pfeffer
defines an integral using partitions of the domain into BV sets, also with some
regularity control. We should mention that there is a number of interesting
and more recent results for nonabsolute multidimensional integrals which are
defined leaving aside the simple partition-controlled-by-gauge approach; the
interested reader should check, for example, the PU-integral from [3], which
is based on partitions of the unity, and the distributional integral from [19].

In the present paper, still maintaining the gauge approach, we introduce an
integral which is a modification of the M1-integral - we call it ∆-integral. Our
admissible partitions will be into triangles - which are, in a way, simpler2 than
intervals. This way, all the basic properties of the M1-integral remain true for
the ∆-integral, and we can easily obtain a change of variables formula valid up
to affine transformations - which makes this integral suitable for application
to piecewise linear surfaces ([17]). We recall that any smooth manifold admits
a (unique) piecewise linear structure (cf. [20]). We will show in Section 4 that
the ∆-integral is in fact strictly less general than the M1-integral. In Sections
5, 6, 7 and 8, more advanced properties are proved for the ∆-integral, including
a general divergence theorem and several convergence theorems.

For further investigation on the divergence theorem, the authors recom-
mend De Pauw’s survey [1]; not only is the meaning of the integral symbol in
(1.2) considered, but also the class of functions F and the domains U . In the
present paper we will restrict our study to domains that are finite unions of
triangles. See the comments on further steps in the last section.

2The idea of trying triangle-based partitions for nonabsolute integration in order to try
to avoid rotation problems arose from a discussion on the subject between Prof. Pavel
Krejč́ı from the Institute of Mathematics of the Academy of Sciences of the Czech Republic
and one of the authors; Prof. Krejč́ı’s argument that triangles might help, since they are
more simple than intervals and are also independent from coordinate systems, inspired the
present work.
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2 The ∆-integral

Let us establish some notation. When we speak of a partition K1, . . . ,Kn

of a nonempty closed subset K of R2, we mean that each Kj is closed and
has positive Lebesgue measure, K1 ∪ · · · ∪Kn = K, and the sets K1, . . . ,Kn

do not overlap (which means that the Lebesgue measure of Ki ∩Kj , that we
shall denote by |Ki ∩Kj |, equals zero whenever i 6= j). For partitions we use
also the notation {Kj}j∈Γ, where Γ is simply a finite and nonempty index set.
When we speak of a triangle in R2, we are always referring to the closed set.

Let I be a triangle in R2 and δ be a gauge in I. We say that a set of the
form P = {(Ij , tj)}j∈Γ is a ∆-partition of I if {Ij}j∈Γ is a partition of I into
triangles with tj ∈ Ij for each j ∈ Γ, and we say that it is δ-fine when in
addition we have for each j ∈ Γ that Ij ⊂ Bδ(tj)(t

j) (the open ball centered
in tj with radius δ(tj)).

The irregularity of P is defined by

irr(P)
.
=
∑
j∈Γ

q(Ij), (2.1)

where q(Ij) = per(Ij) diam(Ij) (the perimeter times the diameter of the trian-
gle Ij), and for each given C > 0, we say that P is C-regular when irr(P) ≤ C.

To obtain a satisfactory definition for the integral, we must verify Cousin’s
Lemma for this kind of partition.

Lemma 2.1 (Cousin). Let I be a triangle, δ a gauge in I and C ≥ q(I). Then
there exists a δ-fine, C-regular ∆-partition of I.

Proof. Let us first note the following for an arbitrary triangle J . By linking
the midpoints of each side of J by three line segments, we induce a partition of
J into four triangles J1, . . . , J4, which are congruent to each other and similar
to J . By doing so we have

q(J) =

4∑
j=1

q(Jj). (2.2)

Let us prove Cousin’s Lemma for C = q(I); the general case follows trivial-
ly. Suppose that I does not admit a δ-fine, C-regular ∆-partition. Then if
we take a partition of I into four congruent triangles I1

1 , . . . , I
1
4 , as it was

described above, we have by (2.2) that at least one of these triangles, say, I1
n1

,

does not admit a δ-fine, C
4 -regular ∆-partition.

Taking likewise a partition of I1
n1

into four triangles I2
1 , . . . , I

2
4 , at least one

of them, I2
n2

, does not admit a δ-fine, C
42 -regular ∆-partition.
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Figure 1: Proof of Cousin’s Lemma.

Proceeding this way, as shown in Figure 1, we obtain a sequence of triangles
(Ijnj

)j such that, for each j, Ijnj
does not admit a δ-fine, C

4j -regular ∆-partition,

and I ⊃ I1
n1
⊃ I2

n2
⊃ . . . . Since diam(Ijnj

)
j→ 0, there exists t ∈ I such that

∩j∈NIjnj
= {t}. There is k satisfying Iknk

⊂ Bδ(t)(t), which leads us into

contradiction, since {(Iknk
, t)} is a δ-fine, C

4k -regular ∆-partition of Iknk
.

Definition 2.2. Let I be a triangle. We say that f : I → R is ∆-integrable
if there exists A ∈ R such that, for each ε > 0 and each C ≥ q(I), there is a
gauge δ in I which satisfies, for each ∆-partition of I, the following condition:

if P is δ-fine and C-regular, then |S(f,P)−A| < ε.

In that case, we write

(∆)

∫
f
.
= (∆)

∫
I

f
.
= A.

We point out that the difference between the definition of the ∆-integral
and the definition of the M1-integral from [6] is restricted to the fact that,
for the M1-integral, the considered domain I is an interval and the considered
partitions are into intervals instead of triangles; the regularity condition is the
same, for the M1-integral the diameter and the perimeter of each interval of
the partition P is considered to calculate irr(P).

The regularity condition imposed to the ∆-partitions is necessary to obtain
the divergence Theorem for the ∆-integral in a most general setting, as we shall
see (Theorem 8.1). The next result gives us a change of variables formula for
the ∆-integral, which makes it suitable for piecewise linear surfaces:

Proposition 2.3. Let I and J be triangles, T an affine operator in R2 which
satisfies T [I] = J , and f : J → R a ∆-integrable function. Then f ◦ T is
∆-integrable in I and

(∆)

∫
I

f ◦ T = |detT |−1(∆)

∫
J

f.
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Proof. Let ε > 0 and C ≥ q(I)/||T ||. then there exists a gauge η in J such
that for each η-fine, (||T ||C)-regular ∆-partition Q of J we have∣∣∣∣S(f,Q)− (∆)

∫
J

f

∣∣∣∣ < |detT |ε. (2.3)

Consider in I the gauge δ
.
= η ◦ T , and suppose that P = {(Ij , tj) : j ∈

Γ} is a δ-fine, C-regular ∆-partition of I. Then if we denote T < P >
.
=

{(T [Ij ], T (tj)) : j ∈ Γ} we have that |T [Ij ]| = |detT | |Ij | implies

S(f, T < P >) = |detT |S(f ◦ T,P).

Note that for an arbitrary triangle K inequality q(T [K]) ≤ ||T ||q(K) holds,
thus irr(T < P >) ≤ ||T ||irr(P). Then T < P > is a δ-fine, (||T ||C)-regular
∆-partition of J . Then by inequality (2.3) we have that∣∣∣∣S(f ◦ T,P)− | detT |−1(∆)

∫
I

f

∣∣∣∣ =

=

∣∣∣∣|detT |−1S(f, T < P >)− | detT |−1(∆)

∫
I

f

∣∣∣∣ < ε,

which concludes our proof.

It is unknown to the authors whether it is possible to generalize the above
proposition for more general transformations; see the commentaries in Section
9.

3 Basic properties

Throughout this section, I always denotes a triangle, except when indicated.

Proposition 3.1 (Linearity). Let f and g be ∆-integrable functions in I and
λ ∈ R. Then f + g and λf are ∆-integrable, and

(∆)

∫
(f + g) = (∆)

∫
f + (∆)

∫
g, and

(∆)

∫
(λf) = λ(∆)

∫
f.

In particular, the zero function is ∆-integrable and (∆)
∫

0 = 0.
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Proof. Let ε > 0 and C ≥ q(I). There exist gauges δ1 and δ2 in I such that,
for each δ1-fine, C-regular ∆-partition P we have∣∣∣∣∣∣

∑
(J,t)∈P

f(t)|J | − (∆)

∫
f

∣∣∣∣∣∣ < ε

2

and for each δ2-fine, C-regular ∆-partition Q we have∣∣∣∣∣∣
∑

(J,t)∈Q

g(t)|J | − (∆)

∫
g

∣∣∣∣∣∣ < ε

2
.

Thus if P is a min{δ1, δ2}-fine, C-regular ∆-partition of I, then it satisfies∣∣∣∣∣∣
∑

(J,t)∈P

(f(t) + g(t))|J | −
(

(∆)

∫
f + (∆)

∫
g

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

(J,t)∈P

f(t)|J | − (∆)

∫
f

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(J,t)∈P

g(t)|J | − (∆)

∫
g

∣∣∣∣∣∣
<

ε

2
+
ε

2
= ε

and the first part of the proof is concluded. The second part derives trivially
form the identity S(λf,P) = λS(f,P).

Like the Lebesgue integral, the ∆-integral satisfies the following:

Proposition 3.2. If f : I → R equals zero almost everywhere, then f is
∆-integrable and (∆)

∫
f = 0.

Proof. Let ε > 0 and C ≥ q(I), and consider the set X
.
= {x ∈ I : f(x) 6= 0}.

X can be written as a disjoint union of the form ∪nXn, where

Xn
.
= {x ∈ I : n− 1 < f(x) ≤ n}, n ∈ N.

Note that |Xn| = 0 for each natural number n, since |X| = 0. Then there
exists an open subset Un of I satisfying

Xn ⊂ Un, |Un| <
1

2nn
ε.
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For each x ∈ Xn, there exists δ(x) > 0 such that Bδ(x)(x) ⊂ Un. this defines a
gauge in X. Extending δ arbitrarily to all I we have, for each δ-fine, C-regular
∆-partition P = {(Ij , tj) : j ∈ Γ} of I, that

|S(f,P)− 0| =

∣∣∣∣∣∣
∑
j∈Γ

f(tj)|Ij |

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈Γ0

f(tj)|Ij |+
∑
n∈N

∑
j∈Γn

f(tj)|Ij |

∣∣∣∣∣∣
≤

∑
n∈N

∑
j∈Γn

|f(tj)| |Ij | ≤
∑
n∈N

n
∑
j∈Γn

|Ij |

≤
∑
n∈N

n|Un| ≤ ε,

where Γ0
.
= {j ∈ Γ : tj ∈ I \ X} e Γn

.
= {j ∈ Γ : tj ∈ Xn}. Thus f is

∆-integrable and (∆)
∫
f = 0.

As a consequence, by linearity of the ∆-integral and using the same argu-
ment of Proposition 3.2, we obtain the following corollary:

Corollary 3.3. If f is ∆-integrable in I and g : I → R satisfies g(x) = f(x)
for almost each x ∈ I, then g is ∆-integrable in I and

(∆)

∫
g = (∆)

∫
f.

The ∆-integral also preserves order, in the following sense:

Proposition 3.4. If f and g are ∆-integrable in I and f(x) ≤ g(x) for almost
all x ∈ I, then

(∆)

∫
f ≤ (∆)

∫
g.

Proof. By the linearity, it suffices to show that (∆)
∫
h ≥ 0, where h = g−f .

By Corollary 3.3, we can assume that h(x) ≥ 0 for all x ∈ I. But in that case,
for each ∆-partition P of I, the Riemann sum S(h,P) is non-negative, and
the result follows from the fact that (∆)

∫
h can be approximated by Riemann

sums of that kind.
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Proposition 3.5 (Cauchy Criterion). A function f defined in I is ∆-integrable
if and only if for each ε > 0 and each sufficiently large C there exists a gauge
δ in I such that, for each two δ-fine, C-regular partitions P and P ′ of I, we
have

|S(f,P)− S(f,P ′)| < ε.

Proof. (⇐) Let us fix a sufficiently large C and consider a sequence (δn)n of
gauges in I satisfying:

1. for each x ∈ I we have that δ1(x) ≥ δ2(x) ≥ . . . ;

2. for each two δn-fine, C-regular partitions P and P ′ of I, we have

|S(f,P)− S(f,P ′)| < 1

n
.

Fix, for each n, a δn-fine, C-regular ∆-partition Pn of I. Note that for each
n, k we have

|S(f,Pn)− S(f,Pn+k)| < 1

n
, (3.1)

and it follows that (S(f,Pn))n is a Cauchy sequence. Writing limn S(f,Pn)
.
=

A and taking the limit in k in (3.1) we obtain

|S(f,Pn)−A| ≤ 1

n
.

For each ε > 0, take a natural number n0 which satisfies 2
n0

< ε. Consi-

dering δ
.
= δn0 , we have for each δ-fine, C-regular ∆-partition P of I that

|S(f,P)−A| ≤ |S(f,P)− S(f,Pn0
)|+ |S(f,Pn0

)−A| ≤ 1

n0
+

1

n0
< ε,

from which follows that f is ∆-integrable and (∆)
∫
f = A.

The other implication is straightforward.

Proposition 3.6 (Additivity). Let I be a triangle, I = K ∪ L, where K and
L are non-overlapping triangles. Then f is ∆-integrable in I if and only if f
is ∆-integrable in K and L, and in that case

(∆)

∫
K

f + (∆)

∫
L

f = (∆)

∫
I

f. (3.2)
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Proof. Suppose that f is ∆-integrable in I. Let ε > 0 and C ≥ q(I), and let
us consider a gauge δ in I which satisfies∣∣∣∣S(f,P)− (∆)

∫
I

f

∣∣∣∣ < ε, (3.3)

for each δ-fine, 2C-regular ∆-partition P of I. Let P1
K and P2

K be δ-fine,
C-regular ∆-partitions of K, and let PL be a δ-fine, C-regular ∆-partition of
L. Then P1

I
.
= P1

K ∪PL and P2
I
.
= P2

K ∪PL are δ-fine, 2C-regular ∆-partitions
of I satisfying

S(f,P1
K)− S(f,P2

K) = S(f,P1
I )− S(f,P2

I ).

By (3.3) we have that |S(f,P1
I ) − S(f,P2

I )| < 2ε, thus Cauchy criterion 3.5
guarantees the ∆-integrability of f in K. Analogously we prove that f is
∆-integrable in L.

Suppose now that f is ∆-integrable in K and L. Let ε > 0 and C ≥ q(I),
and consider gauges δK in K and δL in L which satisfy∣∣∣∣S(f,P)− (∆)

∫
K

f

∣∣∣∣ < ε

2
,

for each δK-fine, 3C-regular ∆-partition P of K, and∣∣∣∣S(f,Q)− (∆)

∫
L

f

∣∣∣∣ < ε

2
,

for each δL-fine, 3C-regular ∆-partition Q of L. Define a gauge δ in I by

δ(x)
.
=

 min{δK(x), d(x, L)}, if x ∈ K \ L;
min{δL(x), d(x,K)}, if x ∈ L \K;
min{δK(x), δL(x)}, if x ∈ K ∩ L.

(3.4)

Let P be a δ-fine, C-regular ∆-partition of I. Then for each (J, t) ∈ P such
that J intercepts K ∩ L we have that t ∈ K ∩ L; if we have moreover that
J∩K is not a triangle, then J∩K can be partitioned into up to three triangles
which intercept in t. This can be done by linking t to the vertices of J which
are in K, as is shown in Figure 2.

The same holds evidently when J ∩ L is not a triangle. By these observa-
tions, by the definition of δ and taking in account that q(M) ≤ q(N) when M
and N are triangles with M ⊂ N , we modify partition P in order o obtain a
∆-partition Q = {(Ij , tj) : j ∈ Γ} of I which satisfies

1. S(f,P) = S(f,Q);
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L K
t

J

Figure 2: Additivity.

2. for each j ∈ Γ, Ij ⊂ K or Ij ⊂ L;

3. denoting ΓK
.
= {j ∈ Γ : Ij ⊂ K}, we have that QK

.
= {(Ij , tj) : j ∈

ΓK} is a δK-fine, 3C-regular ∆-partition of K;

4. denoting ΓL
.
= {j ∈ Γ : Ij ⊂ L}, we have that QL

.
= {(Ij , tj) : j ∈ ΓL}

is a δL-fine, 3C-regular ∆-partition of L.

Then we have that∣∣∣∣S(f,P)−
(

(∆)

∫
K

f + (∆)

∫
L

f

)∣∣∣∣ =

∣∣∣∣S(f,Q)−
(

(∆)

∫
K

f + (∆)

∫
L

f

)∣∣∣∣
≤

∣∣∣∣S(f,QK)− (∆)

∫
K

f

∣∣∣∣+

+

∣∣∣∣S(f,QL)− (∆)

∫
L

f

∣∣∣∣
<

ε

2
+
ε

2
= ε,

thus f is ∆-integrable in I and (3.2) holds.

In comparison to the M1-integral from [6], proving additivity properties
for the ∆-integral is a little bit more tricky, since we do not have (as we do
for intervals) that the intersection of two overlapping triangles is always a
triangle. It is a straightforward technical exercise to extend the proof above
to the case where I is partitioned into a finite quantity of triangles I1,. . . ,In.
Some difficulty arises when we define δ in (3.4), but it is solved when we take

δ(x)
.
=

{
min{δj(x), d(x,∪k 6=jIk)}, if x ∈ Ij \ (∪k 6=jIk);
min{δj(x) : x ∈ Ij}, if x is in two or more Ij .

(3.5)
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We will say that a subset of R2 is a ∆-elementary set when it is a (nonempty)
finite union of triangles; it is straightforward that ∆-elementary sets can al-
ways be written as a finite union of non-overlapping triangles. For instance,
two-dimensional simplicial complexes are ∆-elementary sets.

Taking into account that if I and J are triangles with J ⊂ I, then I \ J is
a ∆-elementary set, we have the following Corollary of Proposition 3.6:

Corollary 3.7. If f is ∆-integrable in I (or R2) and J is a triangle contained
in I (or R2), then f is ∆-integrable in J .

4 ∆-integration in ∆-elementary sets and comparison with
the M1-integral

The additivity properties of the ∆-integral allows us to naturally extend
its definition to functions defined in ∆-elementary domains, as we shall see
throughout this Section.

Definition 4.1. Let K be a ∆-elementary set in R2, and suppose that {I1, . . . , In}
is a partition of K into triangles. We will say that f : K → R is ∆-integrable
(in K) if for each j = 1, . . . , n the restriction of f to Ij is ∆-integrable in the
sense of Definition 2.2. In that case, we define

(∆)

∫
f
.
= (∆)

∫
K

f
.
=

n∑
i=1

(∆)

∫
Ii

f.

The additivity of the ∆-integral guarantees that the definition above is
independent of the choice of I1, . . . , In. In effect, if {J1, . . . , Jm} is another
partition of K into triangles, then the set

(∪ni=1∂Ii) ∪ (∪mj=1∂Jj)

of borderlines of the triangles Ij and Jk determine a partition of K into a finite
quantity of ∆-elementary sets, and each one of these sets can be partitioned
into finite triangles. The conclusion follows when we apply the additivity
property for the triangle case (Proposition 3.6).

The linearity of the ∆-integral (Proposition 3.1), as well as the properties
described in Lemma 3.2, Corollary 3.3 and Proposition 3.4 are clearly extended
to functions defined in K.

Proposition 3.6 can be generalized to a ∆-elementary set in the context
that follows:
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Proposition 4.2. Let K be a ∆-elementary set, f : K → R and suppose that
K = M ∪N , where M and N are non-overlapping ∆-elementary sets. Then
f is ∆-integrable in K if and only if f is ∆-integrable in M and N , and in
that case we have

(∆)

∫
K

f + (∆)

∫
M

f = (∆)

∫
N

f.

Proof. It follows directly from the fact that, if {M1, . . . ,Mm} is a partition
of M into triangles and {N1, . . . , Nn} is a partition of N into triangles then
{M1, . . . ,Mm, N1, . . . , Nn} is a partition of K into triangles.

∆-integration in ∆-elementary sets could be defined exactly as in Definition
2.2, only replacing the triangular domain I by a ∆-elementary one. These two
definitions are compatible according to the following characterization:

Proposition 4.3. Let K be a ∆-elementary set, f : K → R and A ∈ R. Then
the following assertions are equivalent:

1. f is ∆-integrable and (∆)
∫
f = A;

2. for each ε > 0 and each sufficiently large C > 0, there exists a gauge δ in
K which satisfies, for each ∆-partition P of K, the following condition:

if P is δ-fine and C-regular, then |S(f,P)−A| < ε. (4.1)

∆-partitions K, δ-fineness and C-regularity must be interpreted in the
same way as for ∆-partitions of a triangle. Note that Cousin’s Lemma holds
also for the ∆-elementary set K, in the following sense: if δ is a gauge in K and
K can be partitioned into triangles I1, . . . , In, then for each C ≥

∑n
i=1 q(Ii)

there exists a δ-fine, C-regular ∆-partition K. To see this we just have to
apply the triangle version of Cousin’s Lemma (Lemma 2.1) to each Ii. The
sufficiently large C > 0, as specified in item 2. of the above Proposition,
can be for example those C > 0 which are greater than

∑n
i=1 q(Ii), so that

Cousin’s Lemma guarantees the existence of δ-fine, C-regular ∆-partitions of
K.

Proof (of Proposition 4.3). Let us refer by now to the functions f which
satisfy 2. as ∆′-integrable, and for these functions let us define the ∆′ integral
of f by (∆′)

∫
f
.
= A.

Suppose f is ∆-integrable and (∆)
∫
f = A. Then K can be partitioned

into triangles I1, . . . , In such that f is ∆-integrable in each Ii, and denoting

(∆)

∫
I1

f = A1, . . . , (∆)

∫
In

f = An,
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we have that A = A1 + · · · + An. Let ε > 0 be given, and let C > 0 be
sufficiently large. For each i there is a gauge δi in Ii satisfying, for each
δi-fine, 3C-regular ∆-partition P of Ii,

|SIi(f,P)−Ai| <
ε

n
. (4.2)

We can assume that δi satisfies the following additional condition: for each
x ∈ ∂Ii, Bδ(x)(x) does not intersect the sides of Ii that do not contain x.

Define a gauge δ in K by

δ(x)
.
=

{
min{δi(x), d(x, ∂Ii)}, if x ∈ int(Ii) for some i;
min{δi(x) : i = 1, . . . , n, x ∈ Ii}, otherwise.

If we fix a δ-fine, C-regular ∆-partition P = {(Jj , tj) : j ∈ Γ} of K, then, for
each i, j satisfying |Jj ∩ Ii| > 0, we have that

Jj ∩ Ii 6= ∅ ⇒ tj ∈ Ii.

Then for such i, j, Jj ∩ Ii can be partitioned into nij triangles J ij1 , . . . , J
ij
nij

by

the line segments which link tj to the vertices of Jj which are in Ii (nij is a
natural number from one to three, see the proof of Proposition 3.6). Thus,

Q .
= {(J ijl , t

j) : i = 1, . . . , n, j ∈ Γ, |Jj ∩ Ii| > 0, l = 1, . . . nij}

is a δ-fine ∆-partition of K. Moreover, for each i = 1, . . . , n,

Qi
.
= {(J ijl , t

j) ∈ Q : J ijl ⊂ Ii}

is a δ-fine, 3C-regular ∆-partition of Ii, therefore satisfying (4.2). Since Q =
∪ni=1Qi and S(f,P) = S(f,Q), it follows that

|S(f,P)−A| ≤ |S(f,Q1)−A1|+ · · ·+ |S(f,Qn)−An| < ε,

so f is ∆′-integrable and (∆′)
∫
f
.
= A.

Suppose now that f is ∆′-integrable and (∆′)
∫
f = A and fix a triangle

I ⊂ K. Consider a sufficiently large C > 0,3 let ε > 0, and let δ be a gauge in
K such that, for each δ-fine, 2C-regular ∆-partition P of K, we have that

|S(f,P)−A| < ε

2
. (4.3)

3If K can be partitioned into triangles I1, . . . , In, it suffices to take C ≥
max

{
q(I),

∑n
i=1 q(Ii)

}
.
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Suppose that Q and R are δ-fine, C-regular ∆-partitions of I. K \ I admits a
δ-fine, C-regular ∆-partition S; then the ∆-partitions of K defined by

Q′ .= Q∪ S and R′ .= R∪ S

are δ-fine and 2C-regular, thus satisfy inequality (4.3) and it follows that

|S(f,Q′)− S(f,R′)| < ε.

Since |S(f,Q′)−S(f,R′)| = |S(f,Q)−S(f,R)|, by Cauchy criterion (Propo-
sition 3.5) we have that f is ∆-integrable in I. Therefore f is ∆-integrable in
K, and Proposition 4.2 guarantees that (∆)

∫
f = A.

Using the characterization above, it is straightforward to prove that the ∆-
integral also satisfies the Cauchy criterion for functions defined in ∆-elementary
sets; it is just an adaptation of the proof of proposition 3.5.

It is possible now to compare the ∆-integral with the M1-integral for in-
terval domains:

Proposition 4.4. Let K ⊂ R2 be an interval. If f : K → R is ∆-integrable,
then f is also M1-integrable and

(M1)

∫
f = (∆)

∫
f.

Proof. Let ε > 0 be given, let C > 0 be sufficiently large, and suppose that
δ is a gauge in K such that, for each δ-fine, 4C-regular ∆-partition P of K,
we have that ∣∣∣∣S(f,P)− (∆)

∫
K

f

∣∣∣∣ < ε. (4.4)

Let Q = {(Kj , tj) : j ∈ Γ} be a δ-fine, C-regular M1-partition of K. For each
j, the line segments which link tj to the vertices of Kj induce a partition Kj

into triangles Kj
1 , · · · ,Kj

nj
, where nj is an integer from two to four, as seen in

Figure 3.

Then the ∆-partition P0 defined by

P0
.
= ∪j∈Γ ∪

nj

i=1 {(K
j
i , t

j)}

is 4C-regular, since for each j, i we have q(Kj
i ) ≤ |Kj |diam(Kj). The conclu-

sion follows from (4.4) and from the equality S(f,P0) = S(f,Q).
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t
j

K
j

Figure 3: Comparison between the ∆-integral and the M1-integral.

It was proven in [9] (see also the upcoming paper [10]) that the M1-integral
is sensitive to rotations, that is, there are some M1-integrable functions which,
if we compose with a certain rotation, cease to be M1-integrable. Therefore,
since the ∆-integral has a change of variables formula valid for linear trans-
formations (Proposition 2.3), the converse to Proposition 4.4 does not hold in
general.

5 Saks-Henstock Lemma, almost everywhere derivability
of ∆-primitives and measurability of ∆-integrable func-
tions

Lemma 5.1 (Saks-Henstock). Let K be a ∆-elementary set and f : K → R
be a ∆-integrable function, and consider a gauge δ in K such that f ’s ∆-
integrability condition (4.1) is satisfied for ε > 0 and a sufficiently large C > 0.
Suppose that P = {(Ij , tj) : j ∈ Γ} is a δ-fine, C-regular ∆-partition of K.

Then for each nonempty Γ′ ⊂ Γ we have that∣∣∣∣∣∣
∑
j∈Γ′

[
f(tj)|Ij | − (∆)

∫
Ij
f

]∣∣∣∣∣∣ ≤ ε.
Proof. Let r > 0. Fix for each j ∈ Γ \ Γ′ a gauge δj in Ij , smaller than δ in
Ij , and a δj-fine, q(Ij)-regular ∆-partition Pj of Ij which satisfy∣∣∣∣SIj (f,Pj)− (∆)

∫
Ij
f

∣∣∣∣ < r

# (Γ \ Γ′)
, (5.1)
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where # (Γ \ Γ′) denotes the number of elements of Γ \ Γ′. Consider the
following partition of I:

P̃ .
= {(Ij , tj) : j ∈ Γ′} ∪

(
∪j∈Γ\Γ′Pj

)
.

It is easily seen that P̃ is δ-fine, and that

irr(P̃) =
∑
j∈Γ′

q(Ij) +
∑

j∈Γ\Γ′

irr(P̃)

≤
∑
j∈Γ′

q(Ij) +
∑

j∈Γ\Γ′

q(Ij) ≤ C.

By the ∆-integrability of f we have that∣∣∣∣SI(f, P̃)− (∆)

∫
K

f

∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈Γ′

f(tj)|Ij |+
∑

j∈Γ\Γ′

SIj (f,Pj)−
∑
j∈Γ′

(∆)

∫
Ij

f −
∑

j∈Γ\Γ′

(∆)

∫
Ij

f

∣∣∣∣∣∣ ≤ ε.
Then from inequality (5.1) it follows that∣∣∣∣∣∣

∑
j∈Γ′

f(tj)|Ij | −
∑
j∈Γ′

(∆)

∫
Ij

f

∣∣∣∣∣∣ ≤ ε+ r.

Taking the limit when r goes to zero, we conclude our proof.

Saks-Henstock Lemma can also be presented as follows:

Corollary 5.2 (Saks-Henstock). Let K be a ∆-elementary set and f : K → R
be a ∆-integrable function, and consider a gauge δ in K such that f ’s ∆-
integrability condition (4.1) is satisfied for ε > 0 and a sufficiently large C > 0.
Suppose that P = {(Ij , tj) : j ∈ Γ} is a δ-fine, C-regular ∆-partition of K.

Then ∑
j∈Γ

∣∣∣∣f(tj)|Ij | − (∆)

∫
Ij
f

∣∣∣∣ ≤ 2ε.

Proof. Just observe that∑
j∈Γ

∣∣∣∣f(tj)|Ij | − (∆)

∫
Ij
f

∣∣∣∣ =
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=
∑
j∈Γ1

(
f(tj)|Ij | − (∆)

∫
Ij
f

)
−
∑
j∈Γ2

(
f(tj)|Ij | − (∆)

∫
Ij
f

)
,

where Γ1
.
=
{
j ∈ Γ : f(tj)|Ij | − (∆)

∫
Ij
f ≥ 0

}
and Γ2

.
= Γ \ Γ1, and apply

twice Saks-Henstock Lemma 5.1.

The concept of derivative of a triangle function is an useful tool for ob-
taining good convergence results for the ∆-integral. In abstract integration
theory, usually the concept of derivative is applicable to interval functions (see
for example [18]). For our convenience, we adapt the concept to triangle func-
tions. We denote by Sub∆(K) the set of all triangles which are contained in
the ∆-elementary set K. A triangle function in K is a real-valued function de-
fined on Sub∆(K). By the additivity property of the ∆-integral (Proposition
4.2), for each ∆-integrable function f in K it is possible to define a triangle
function by

J ∈ Sub∆(K) 7→ (∆)

∫
J

f.

We will refer to this mapping as the ∆-primitive of f .
Given ρ > 0, a nonempty closed set B ⊂ R2 is said to be ρ-regular if

sup{|B|/|J | : J is a square which contains B} > ρ.

In particular, when B is an interval, B is ρ-regular if and only if l(B)/L(B) >
ρ, where l(B) and L(B) denote respectively the largest and the shortest sides
of B.

Definition 5.3. Let K ⊂ R2 be a ∆-elementary set and F : Sub∆(I) → R
be a triangle function in K. We say that F is derivable in x ∈ K if there
exists a ∈ R such that for each ρ > 0, we have that each decreasing sequence
of ρ-regular triangles Ij ⊂ Sub∆(I) which converges to x satisfies

F (Ij)

|Ij |
→ a.

In that case, we write F ′(x)
.
= a.

By decreasing sequence of triangles (Ij)j converging to x, we mean that
I1 ⊃ I2 ⊃ . . . and ∩jIj = {x}. It is usual to write

lim
J→x

F (J)

|J |
= a;

this notation means precisely that for each ρ > 0 we have that each decreasing

sequence of ρ-regular triangles Ij converging to x satisfies
F (Ij)
|Ij | → a. The next

important result relates ∆-integration with derivation:
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Proposition 5.4. Let f be ∆-integrable in the ∆-elementary set K, denote
by F the ∆-primitive of f . Then

lim
J→x

F (J)

|J |
= f(x) (5.2)

for almost all x ∈ K.

The proof involves Vitali’s Covering theorem. We recall that, given a
nonempty subset X of R2, we say that a family C of closed subsets of R2

covers X in the sense of Vitali if for each x ∈ X there exists ρ = ρ(x) > 0
and a sequence (Bn)n of ρ-regular elements of C which satisfy B1 ⊃ B2 ⊃ . . .
and ∩nBn = {x}. Vitali’s Covering Theorem states the following:

Theorem 5.5 (Vitali’s Covering Theorem). Let X be a nonempty subset of
R2. If C covers X in the sense of Vitali, then there exists an at most countable
subset {Bn : n ∈ Λ} of C such that Bn are pairwise disjoint and |X \∪nBn| =
0.

We will also need the following Lemma:

Lemma 5.6. For each r > 0 there is an A = A(r) > 0 which satisfies
q(J) ≤ A|J | for each r-regular triangle J .

Proof (of Lemma 5.6). Let J be an r-regular triangle. Then there exists
a square D containing J and satisfying |J | ≥ r|D|. Then

q(J) = perim(J)diam(J) < 3 diam(J)2 ≤ 3 diag(D)2 = 6|D| ≤ 6

r
|J |,

thus A
.
= 6

r satisfies the desired condition.

Proof (of Proposition 5.4). Let X
.
= {x ∈ K : (5.2) is not satisfied}.

Then for each x ∈ X, we have that F is not derivable in x or F is derivable
in x but F ′(x) 6= f(x); in either case, for each such x there are ρ(x) > 0 and
η(x) > 0 such that for each neighbourhood V of x there exists a ρ(x)-regular
triangle J = J(x, V ) ⊂ K satisfying x ∈ J ⊂ V and

|F (J)− f(x)|J || > η(x)|J |. (5.3)

For each m,n ∈ N let Xmn
.
= {x ∈ X : ρ(x) > 1/m, η(x) > 1/n}. Note that

∪m,n∈NXmn = X, so it suffices to show that for each given m,n ∈ N we have
|Xmn| = 0. By Lemma 5.6 there exists A > 0 such that, for each 1

m -regular
triangle J , we have

q(J) ≤ A|J |. (5.4)
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Fix B > |K| and let ε > 0. Since f is ∆-integrable in K, by the Corollary 5.2
of Saks-Henstock Lemma there exists a gauge δ in K such that for each δ-fine,
AB-regular ∆-partition P in K we have∑

(J,t)∈P

|F (J)− f(t)|J || < ε. (5.5)

We can assume that δ(x) ≤ 1 for each x ∈ K, and that B is large enough, so
that there exist δ-fine AB-regular ∆-partitions of K.

The family

C .
= {J(x, V ) : x ∈ Xmn, V is a neighbourhood of x contained in Bδ(x)(x)}

is a covering of Xmn in the sense of Vitali, then by Vitali’s Covering Theorem
5.5 there are J1 = J1(x1, V1), . . . , Jk = Jk(xk, Vk) ∈ C, pairwise disjoint,
satisfying

m∗(Xmn) <

k∑
i=1

|Ji|+ ε, (5.6)

where m∗ denotes exterior measure. (5.4) guarantees that

k∑
i=1

q(Ji) ≤ A
k∑
i=1

|Ji| ≤ AB, (5.7)

then by (5.3), (5.5) and (5.6) we have that

m∗(Xmn) <

k∑
i=1

|Ji|+ ε <

k∑
i=1

|F (Ji)− f(xi)|Ji||
η(xi)

+ ε

< n

k∑
i=1

|F (Ji)− f(xi)|Ji||+ ε < (n+ 1)ε,

and thus |Xmn| = 0.

It is now possible to show that ∆-integrable functions are measurable. We
will refer to functions defined in a ∆-elementary set K which can be written
in the form

f(x) = χI1(x)a1 + · · ·+ χIn(x)an,

where {I1, . . . , In} is a partition of K into triangles and a1, . . . , an are con-
stants, as triangle-step functions.
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Proposition 5.7. If f is ∆-integrable in a ∆-elementary set K, then f is
almost everywhere the limit of a sequence of triangle-step functions. In par-
ticular, f is measurable.

Proof. In the case that K is a triangle, for each n ∈ N, we can take a
partition of K into 4n congruent triangles I1

n, . . . , I
4n

n , as shown in Figure 4.

n=1 n=2

Figure 4: Partitions of K.

Define, for each x ∈ Ijn,

fn(x)
.
=
F (Ijn)

|Ijn|
,

where F is the ∆-primitive of f . Proposition 5.4 guarantees that fn(x)
n→

f(x) for almost all x ∈ K. The result can be naturally extended to the
∆-elementary case, since ∆-elementary sets can be finitely partitioned into
triangles.

6 Some convergence theorems

We present in this section versions of the monotone convergence theorem,
dominated convergence theorem and Fatou’s Lemma for the ∆-integral.

Theorem 6.1 (Monotone convergence). Let K be a ∆-elementary set, f a
real valued function defined in K, (fn)n a sequence of ∆-integrable functions
in K and A ∈ R, and suppose that the following conditions are satisfied:

1. fn(x)
n→ f(x), for almost every x ∈ K;

2. f1(x) ≤ f2(x) ≤ . . . for almost every x ∈ K;

3. (∆)
∫
fn

n→ A.

Then f is ∆-integrable and (∆)
∫
f = A.
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Proof. By Corollary 3.3, it suffices to prove this when conditions 1. and 2.
are satisfied for every x ∈ K. Let ε > 0 be given, let C > 0 be sufficiently
large, and consider n0 ∈ N satisfying, for each n ≥ n0,∣∣∣∣(∆)

∫
fn −A

∣∣∣∣ < ε. (6.1)

For each x ∈ K, there is a positive integer k(x) > n0 such that |fk(x)(x) −
f(x)| < ε. By the Corollary 5.2 of Saks-Henstock Lemma, for each positive
integer n there is a gauge δn in K which satisfies, for each δn-fine, C-regular
∆ partition P = {(Ij , tj) : j ∈ Γ} of K,∑

j∈Γ

∣∣∣∣fn(tj)|Ij | − (∆)

∫
Ij
fn

∣∣∣∣ < ε

2n
. (6.2)

Let δ(x)
.
= δk(x)(x) and suppose that P = {(Ij , tj) : j ∈ Γ} is a δ-fine,

C-regular ∆-partition of K. Then

|S(f,P)−A| ≤
∑
j∈Γ

|f(tj)− fk(tj)(t
j)| |Ij |

+
∑
j∈Γ

∣∣∣∣fk(tj)(t
j)|Ij | − (∆)

∫
Ij
fk(tj)

∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈Γ

(∆)

∫
Ij
fk(tj) −A

∣∣∣∣∣∣
= ε|I|+ ε+

∣∣∣∣∣∣
∑
j∈Γ

(∆)

∫
Ij
fk(tj) −A

∣∣∣∣∣∣ .
It suffices to show now that

∣∣∣∑j∈Γ(∆)
∫
Ij
fk(tj) −A

∣∣∣ ≤ ε. Since each se-

quence
(
(∆)
∫
Ij
fn
)
n

is nondecreasing and bounded from above by A, for each

j ∈ Γ there exists Aj ∈ R with (∆)
∫
Ij
fn

n→ Aj . Then

(∆)

∫
fn =

∑
j∈Γ

(∆)

∫
Ij
fn

n→
∑
j∈Γ

Aj ,

which implies by hypothesis that
∑
j∈ΓA

j = A.

Denoting l
.
= l(P)

.
= min{k(tj); j ∈ Γ}, we have that

(∆)

∫
fl =

∑
j∈Γ

(∆)

∫
Ij
fl ≤

∑
j∈Γ

(∆)

∫
Ij
fk(tj) ≤

∑
j∈Γ

Aj = A,
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from which follows that∣∣∣∣∣∣
∑
j∈Γ

(∆)

∫
Ij
fk(tj) −A

∣∣∣∣∣∣ ≤
∣∣∣∣(∆)

∫
fl −A

∣∣∣∣ ≤ ε.

Lemma 6.2. Let g, h, f1 and f2 be ∆-integrable in the ∆-elementary set K.
If g(x) ≤ fi(x) ≤ h(x), for i = 1, 2 for almost all x ∈ K, then the functions
min{f1, f2} and max{f1, f2} are also ∆-integrable.

Proof. Again it suffices to prove for when the inequality holds for every
x ∈ K. Suppose also that K is a triangle; it is straightforward to extend to
the ∆-elementary case. Let us consider first the case where g = 0. For each
triangle J ⊂ K, define F ∗(J)

.
= max

{
(∆)
∫
J
f1, (∆)

∫
J
f2

}
. The function F ∗

satisfies, for each triangle J ⊂ K and each partition P of J into triangles,

F ∗(J) ≤
∑
L∈P

F ∗(L). (6.3)

If P is a partition of K, we have moreover that

0 ≤
∑
L∈P

F ∗(L) ≤ (∆)

∫
h,

thus we can consider

0 ≤ A .
= sup

{∑
L∈P

F ∗(L) : P is a partition of K

}
≤ (∆)

∫
h.

Let f = max{f1, f2}, and let us show that (∆)
∫
f = A. Let ε > 0 be given,

let C > 0 be sufficiently large, and fix a partition P1 of K which satisfies∑
L∈P1

F ∗(L) > A− ε. (6.4)

By the Corollary 5.2 of Saks-Henstock Lemma, there is a gauge δ in K such
that for each δ-fine, C-regular ∆-partition P = {(Ij , tj) : j ∈ Γ} of K we have
that

1.
∑
j∈Γ

∣∣f(tj)|Ij | − (∆)
∫
Ij
f
∣∣ ≤ 2ε, for i = 1, 2;

2. P is finer than P1, that is, for each j ∈ Γ there is (L, t) ∈ P1 with
Ij ⊂ L.
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Condition 2. guarantees, by (6.3), that

0 ≤ A−
∑
j∈Γ

F ∗(Ij) ≤ A−
∑
L∈P1

F ∗(L) < ε. (6.5)

For each J ∈ Sub∆(K) and each i = 1, 2, denote the set

sup

 ∑
(K,t)∈Q

∣∣∣∣fi(t)|K| − (∆)

∫
K

fi

∣∣∣∣ : Q is a δ-fine, C-regular ∆-partition of J


by Bi(J). Note that, for i = 1, 2, Bi(K) < ε and∑

L∈P
Bi(L) ≤ Bi(J), (6.6)

for each J ∈ Sub∆(K) and each partition P of J into triangles.
Let P = {(Ij , tj) : j ∈ Γ} be a δ-fine, C-regular ∆-partition of K. For

each j ∈ Γ and i = 1, 2 we have fi(t
j)|Ij | ≤ (∆)

∫
Ij
fi + Bi(I

j) ≤ F ∗(Ij) +
B1(Ij) +B2(Ij), thus

f(tj)|Ij | ≤ F ∗(Ij) +B1(Ij) +B2(Ij). (6.7)

A similar computation gives us

F ∗(Ij)−B1(Ij)−B2(Ij) ≤ f(tj)|Ij |. (6.8)

Then by (6.7), (6.8) and (6.6), we have∣∣∣∣∣∣
∑
j∈Γ

[
f(tj)|Ij | − F ∗(Ij)

]∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
j∈Γ

(B1(Ij) +B2(Ij))

∣∣∣∣∣∣ ≤ B1(I) +B2(I) ≤ 2ε.

By (6.5) we have∣∣∣∣∣∣
∑
j∈Γ

f(tj)|Ij | −A

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
j∈Γ

[
f(tj)|Ij | − F ∗(Ij)

]∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
j∈Γ

F ∗(Ij)−A

∣∣∣∣∣∣ ≤ 3ε,

as desired.
For the case where g 6= 0, since 0 ≤ fi(x)− g(x) ≤ h(x)− g(x), i = 1, 2, it

suffices to apply what we have already shown to conclude that max{f1, f2} is
∆-integrable. min{f1, f2} is also ∆-integrable, since

min{f1, f2} = −max{−f1,−f2}.
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Theorem 6.3 (Dominated convergence). Let K be a ∆-elementary set, f a
real valued function defined in K and (fn)n a sequence of ∆-integrable func-
tions in K, and suppose that the following conditions are satisfied:

1. fn(x)
n→ f(x), for almost every x ∈ K;

2. there exist ∆-integrable functions g, h in K such that, for each n, we
have g(x) ≤ fn(x) ≤ h(x) for almost every x ∈ K.

Then f is ∆-integrable and

(∆)

∫
fn → (∆)

∫
f.

Proof. We restrict ourselves again to the case where 1. and 2. are satisfied
for every x ∈ K. By Lemma 6.2, for each n the function min{f1, . . . , fn} is
∆-integrable, and by the monotone convergence Theorem 6.1 we have that
for each positive integer k the function inf{fn : n ≥ k} is also ∆-integrable.
Likewise we show that for each positive integer k the function sup{fn : n ≥ k}
is ∆-integrable. We can write then

(∆)

∫
inf
n≥k

fn ≤ inf
n≥k

(∆)

∫
fn ≤ sup

n≥k
(∆)

∫
fn ≤ (∆)

∫
inf
n≥k

fn. (6.9)

We recall that, for each x ∈ K, fn(x)
n→ f(x) if and only if

lim
k→∞

(
inf
n≥k

fn(x)

)
= f(x) = lim

k→∞

(
sup
n≥k

fn(x)

)
.

Applying the monotone convergence Theorem to the sequence (infn≥k fn)k∈N,
we obtain that f is ∆-integrable and (∆)

∫
f = limk→∞(∆)

∫
infn≥k fn. It is

clear that also (∆)
∫
f = limk→∞(∆)

∫
supn≥k fn. Combining with (6.9), we

have that (∆)
∫
fn → (∆)

∫
f .

From the proof of the dominated convergence theorem we obtain the fol-
lowing:

Lemma 6.4 (Fatou’s Lemma). Let K be a ∆-elementary set, f be a real valued
function defined in K and (fn)n be a sequence of ∆-integrable nonnegative
functions in K which satisfy fn(x) → f(x) for almost all x ∈ K. If the
sequence

(
(∆)
∫
fn
)
n

is bounded, then f is ∆-integrable and

(∆)

∫
f ≤ lim inf

n→∞
(∆)

∫
fn.
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7 Relation with the Lebesgue integral

The first remark we should make in order to compare the ∆-integral with the
Lebesgue integral in a ∆-elementary domain K is that the simple functions
are ∆-integrable, and the value of the ∆-integral coincides with the value of
the Lebesgue integral. Indeed, consider a nonempty measurable set E ⊂ K,
and let us show that χE is ∆-integrable and (∆)

∫
χE = |E|; the result can be

extended to simple functions by the linearity of the ∆-integral. Let ε > 0 be
given, and let C > 0 be sufficiently large. Then there is an open subset U of
K satisfying U ⊃ E and |U | < |E| + ε, and it is possible to define a gauge δ
in K satisfying

1. Bδ(x)(x) ⊂ U , for each x ∈ E;

2. δ(x) ≤ d(x,E), for each x ∈ K \ E.

For each δ-fine, C-regular ∆-partition P = {(Ij , tj) : j ∈ Γ} of K, let us
denote Γ0

.
= {j ∈ Γ : tj 6∈ E} and Γ1

.
= {j ∈ Γ : tj ∈ E}. By the way δ was

defined, we have

|E| ≤ S(χE ,P) =
∑
j∈Γ0

0.|Ij |+
∑
j∈Γ1

1.|Ij | =
∣∣∪j∈Γ1

Ij
∣∣ ≤ |U | < |E|+ ε,

from which follows the desired result.
Also, each nonnegative Lebesgue integrable function is ∆-integrable, and

the values of the ∆-integral and the Lebesgue integral coincide. This comes
from the fact that nonnegative Lebesgue integrable functions can be approxi-
mated from below by a monotone sequence of positive simple functions, then
we can apply the Monotone Convergence Theorem for the ∆-integral (Theo-
rem 6.1).

In general, we have the following characterization of Lebesgue integrability:

Proposition 7.1. Let K be a ∆-elementary set and f : K → R. Then f is
Lebesgue integrable if and only if f and |f | are ∆-integrable, and in that case

(L)

∫
f = (∆)

∫
f.

For the proof we will need the following additional result:

Proposition 7.2. Let K be a ∆-elementary set. If f : K → R is measurable
and g(x) ≤ f(x) ≤ h(x) for almost all x ∈ K, where g and h are ∆-integrable,
then f is ∆-integrable and

(∆)

∫
g ≤ (∆)

∫
f ≤ (∆)

∫
h. (7.1)
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Proof (of Proposition 7.2). Again we restrict ourselves to the case where
the inequalities are satisfied for all x ∈ K and K is a triangle. Let (φn)n
be a sequence of triangle-step functions converging almost everywhere to f .
Then by Lemma 6.2 fn

.
= max{g,min{h, φn}} is ∆-integrable, (fn)n converges

almost everywhere to f and g(x) ≤ fn(x) ≤ h(x), for each n and each x ∈ K.
Then, by dominated convergence Theorem 6.3, f is ∆-integrable, and (7.1)
follows directly from Proposition 3.4.

Proof (of Proposition 7.1). Suppose that f and |f | are ∆-integrable. For
each measurable set E ⊂ K, χEf is a measurable function satisfying

−|f | ≤ χEf ≤ |f |,

then it follows from Proposition 7.2 that χEf is ∆-integrable. Then

f+ .
= max{0, f} and f−

.
= −min{0, f}

are measurable, nonnegative ∆-integrable functions, with f = f+ − f−.
Let us consider the sequence (f+

n )n of truncations of f+ defined for each
positive integer n and each x ∈ K by

f+
n (x)

.
= min{n, f+(x)}.

Each f+
n is Lebesgue integrable, since it is bounded and measurable, and is ∆-

integrable by Lemma 6.2. For each x ∈ K we have moreover that 0 ≤ f+
1 (x) ≤

f+
2 (x) ≤ . . . e f+

n (x)
n→ f+(x). By the monotone convergence Theorem for

Lebesgue integrable functions, each f+ is Lebesgue integrable, and by the
remarks made at the beginning of this Section we have in that case

(L)

∫
f+ = (∆)

∫
f+.

Analogously we show that f− is Lebesgue integrable and (L)
∫
f− = (∆)

∫
f−.

By the linearity of the ∆-integral and the Lebesgue integral it follows that f
is Lebesgue integrable and

(L)

∫
f = (∆)

∫
f.

Conversely, if f is Lebesgue integrable, then f+ and f− are also Lebesgue
integrable, and since they are both nonnegative it follows that they are both
∆-integrable, and the values of the ∆-integrals coincide with values of the
Lebesgue integral. It follows that

f = f+ − f− and |f | = f+ + f−

are ∆-integrable and (∆)
∫
f = (L)

∫
f , (∆)

∫
|f | = (L)

∫
|f | again by linearity

of the ∆-integral.
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8 Divergence theorem

It is worth noting that, up to this point, the C-regularity of the ∆-partitions
has not been needed to prove any result. In this work it is used exclusively to
prove Theorem 8.1.

Theorem 8.1 (Divergence). Let Ω be a nonempty open subset of R2, K ⊂ Ω
be ∆-elementary, and F : Ω → R2 be a differentiable function. Then divF is
∆-integrable in K and

(∆)

∫
K

divF = (L)

∫
∂K

F ·N. (8.1)

Note that the integral to the right in (8.1) always exist at these conditions
by the continuity of F ·N in each line segment which is a side of ∂K.

Proof. Let ε > 0 be given, and let C > 0 be sufficiently large. By the
differentiability of F , for each x ∈ K there is a δ(x) > 0 such that

y ∈ Bδ(x)(x)⇒ ||F (y)− F (x)− dFx(y − x)|| ≤ ε

C
||y − x||, (8.2)

where dFx is the differential of F at the point x. δ naturally defines a gauge
in K. Let P = {(Ij , tj) : j ∈ Γ} be a δ-fine, C-regular ∆-partition of K and
define, for each j ∈ Γ,

Gj(y)
.
= F (tj) + dFtj (y − tj) and

Hj(y)
.
= F (y)− F (tj)− dFtj (y − tj).

Note that, for each j, F = Gj +Hj . Then

∣∣∣∣SK(divF,P)− (L)

∫
∂I

F ·N
∣∣∣∣ =

∣∣∣∣∣∣
∑
j∈Γ

[
divF (tj)|Ij | − (L)

∫
∂Ij

F ·N
]∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
j∈Γ

[
divF (tj)|Ij | − (L)

∫
∂Ij

(Gj +Hj) ·N
]∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
j∈Γ

[
divF (tj)|Ij | − (L)

∫
∂Ij

Gj ·N − (L)

∫
∂Ij

Hj ·N
]∣∣∣∣∣∣ .
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A classic version of the divergence Theorem applied to the affine functions Gj

gives us

(L)

∫
∂Ij

Gj ·N = (L)

∫ ∫
Ij
divGj = divF (tj)|Ij |.

Replacing it in the inequality above we have∣∣∣∣S(divF,P)− (L)

∫
∂I

F ·N
∣∣∣∣ =

∣∣∣∣∣∣
∑
j∈Γ

(L)

∫
∂Ij

Hj ·N

∣∣∣∣∣∣ .
Because of the differentiability condition expressed by inequality (8.2), for each
j we have that∣∣∣∣(L)

∫
∂Ij

Hj ·N
∣∣∣∣ ≤ (L)

∫
∂Ij
||Hj(y)||dy ≤ max

y∈∂Ij
||Hj(y)|| per(∂Ij)

≤ max
y∈∂Ij

ε

C
||y − tj || per(∂Ij) ≤ ε

C
q(Ij). (8.3)

Combining the inequalities we have∣∣∣∣S(divF,P)− (L)

∫
∂I

F ·N
∣∣∣∣ =

∣∣∣∣∣∣
∑
j∈Γ

(L)

∫
∂Ij

Hj ·N

∣∣∣∣∣∣ ≤
∑
j∈Γ

∣∣∣∣(L)

∫
∂Ij

Hj ·N
∣∣∣∣

≤ ε

C

∑
j∈Γ

q(Ij) ≤ ε,

which concludes our proof.

We proved in Section 7 that the ∆-integral in ∆-elementary sets is more
general than the Lebesgue integral, in the sense that each Lebesgue inte-
grable function is also ∆-integrable and the values of the integrals coincide.
By the other hand, there are ∆-integrable functions which are not Lebesgue
integrable; in [8], as was mentioned, there is a discussion on the level of in-
compatibility between the divergence Theorem and Fubini’s Theorem when
one wishes to define an integration process which generalizes the Lebesgue
integral for real valued functions defined on an interval of R2. For example,
if we have an ”integral”4 T which generalizes the Lebesgue integral and inte-
grates the divergence of all differentiable functions (which is the case of the

4Roughly speaking, by integral we mean a mapping from a certain subset of the real-
valued functions into real numbers, satisfying some linearity, additivity and continuity con-
ditions - see [8] for the precise definition. The classical one-dimensional definition can be
found in [18].
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∆-integral), in the cited article it is shown how to define a function which
is ”T -integrable”, but which is not integrable coordinate-wise when we apply
one-dimensional Lebesgue integration; then clearly that function cannot be
Lebesgue integrable.

9 Credits and next steps

Some of the presented proofs can be found for the one-dimensional Henstock-
Kurzweil integral in [12]; our line of arguments, especially through Sections 5
to 7, is similar, making the necessary adaptations to our context. The proof
of the divergence Theorem 8.1 is analogous to the one done for an integral
introduced by Prof. Jean Mawhin in [13].

We conclude by pointing out some natural questions which arise for the ∆-
integral. The first of course is whether it is possible to extend the definition to
more dimensions; in that case, we would have to work with simplicial complex-
shaped domains in Rn, and simplex-based partitions. The irregularity of a
partition P = {(Ij , tj) : j ∈ Γ} can be defined similarly as

irr(P)
.
=
∑
j∈Γ

q(Ij),

where q(Ij) = mn−1(∂Ij) diam(Ij).5 The first difficulty is proving Cousin’s
Lemma 2.1 for n ≥ 3; our proof was based on equality (2.2), which is obtained
by partitioning the original triangular domain into four congruent triangles, all
of them similar to the domain. In three dimensions it is already impossible to
partition a tetrahedron-like domain into smaller tetrahedra which are similar
to the original one. Therefore we would need to obtain a different proof for
Cousin’s Lemma for higher dimensions, or to change the definition of the
integral. If Cousin’s Lemma is proved using the above notion of irregularity,
the rest of the results presented in this paper can be generalized for higher
dimensions, with some technical adaptations on the proofs. But we need
Cousin’s Lemma to define the integral.

The other important question is whether or not it is possible to obtain
a change of variables formula which works for differentiable transformations.
This is an (apparently!) non-trivial problem, related to the problem of study-
ing the additivity properties of the ∆-integral when the sets into which we
wish to partition our domain have piecewise smooth boundaries - that is, sets
that are images of polyhedra by C1-transformations. An affirmative answer
would provide us with a nice nonabsolute integral suitable for differentiable

5mn−1(∂Ij) denotes the (N − 1)-dimensional surface area of the simplex Ij .
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manifolds. It would also be possible to study generalizations of the diver-
gence Theorem when the domains are sets which are more complicated than
∆-elementary sets.

Finally, in connection to the question mentioned in the previous paragraph,
it is also of interest to compare the ∆-integral with the integral presented
by Pfeffer in [16]. If these integrals happen to be equivalent, for example,
Proposition 2.3 could be generalized (it would be valid also when we take
lipeomorphisms6 instead of just affine transformations), and at the same time
our paper would end up simplifying some proofs of [16].
Acknowledgment. The authors would like to thank the referees for their
useful remarks.

References
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