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NONEXISTENCE OF GLOBAL SOLUTIONS IN TIME
FOR REACTION-DIFFUSION SYSTEMS WITH
INHOMOGENEOUS TERMS IN CONES

By

Takefumi IGAarasHI and Noriaki UMEDA

Abstract. We consider initial-boundary value problems for the
reaction-diffusion systems with inhomogeneous terms in cones. In this
paper we show the nonexistence of global solutions of the problems
in time.

1. Introduction

We consider nonnegative solutions of initial-boundary value problems for the
reaction-diffusion systems of the form

u, = Au+ K (x, t)vP, xeD,t>0,
v, = Av + Ky (x, HuP?, xeD,t>0, 0
u(x,t) = v(x, ) =0, xeadD, t> 0,

M(X, O) = uo(X), U(X, 0) = UO('X)v xeD,
where pi, p» > 1 with pip» > 1. The domain D is a cone in R”, such as
D={xeR";x#0 and x/|x| e Q}, (2)

where Q is some region on S¥~! smooth enough.

The initial data uyp(x) and vo(x) are nonnegative, bounded and continuous
in D, and uy(x) = vo(x) =0 on 0D. The inhomogeneous terms K; (i = 1,2) are
nonnegative continuous functions in D x (0, c0).

In this paper we denote by BC the set of all bounded continuous functions
in D. The “nontrivial solution” denotes the solution u satisfying (u,v) 0 in
D x (0,T) with some 7 > 0, it thus means that (ug,v9) # 0 with the condition
(uo, U()) € BC.
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For the Laplace-Beltrami operator with homogeneous Dirichlet boundary
condition on Qe SV~!, define w, as Dirichlet eigenvalues and ,(0) as the
Dirichlet eigenfunctions corresponding to @, which is normalized so that

J v, (0) do = 1.
Q
It is following that

j YO0, (0) dO =0
Q

for m # n. We introduce the Green’s function G(x, y,t) = G(r,0,p,¢,t) for the
linear heat equation in the cone D, where

r=lxl, p=1[yl, 0=x/|x| and ¢=y/[y|eQ 3)

The Green’s function is expressed to

2 2 «©
GUr,0,p,6.1) = 5. ()2 exp (— L ) > (;@) h(OW(d), (4)

where v, = [(N —2)*/4 + ,]"?, and I, is the modified Bessel function or

()Zk' j/+2k2k+ 0 ®)

with the Gamma function T'(z) = [;" s*'e™* ds (see Watson [27, p. 395)).
For our first theorem we shall give the conditions of the inhomogeneous
terms K; (i=1,2) as following:

there exist Cy, 6, and ¢; > 0 such that (©)
Ki(x,1) < Cydxd% (14 1)% for any xe D, 1t >0,
where (x) = (|x> + 1)"/2,
Let L be a Banach space of L*™-functions in D with the norm
||f||cc,a = esssupxeD(<x>”|§(x)|).
For T > 0, set
Er ={(u,v) : [0, T] — L5} x L; [[(u,v) , < o0} (7)

with the norm

1, 0)llg, = sup {Hlu(@)ll 5, + 00Dl 5,
te[0,T)
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where
_Gpi+6i

oo =1 () =(12),(21). (8)

It is easily seen that Er is a Banach space.
We begin with stating the existence of the local solution for (1).

THEOREM 1. Assume that ug, vy € BC, uy =vy =0 on 0D, and <x>‘51u0(x),
(x)%vg(x) are bounded in D. Suppose that Ki(x,t) (i=1,2) satisfy (6). Then
there exists a nonnegative solution (u,v) € Ey which solves (1) in D x (0,T) for
some T > 0.

For given initial values (uo,vp), let T* = T*(up,v9) be a maximal existence
time of the solution of (1). If T* = oo, the solutions are global in time. On the
other hand, if T* < oo, then the solutions are not global in time. If the solution
blows up in finite time such that

limsup||u(-,l)||3@ +1imsupHU('71)Hao = 00, (9)
t—T* t—T*
then the solution is not global, where | - ||, denotes the L*-norm with respect to

space variable.
For our second theorem we shall define a region D such that

there exist k >0 and {x,},._, satisfying 0 < |x,,| < xm+1|,} (10)

B(xp, k|xm|) = D < D for any m, and limy, o0 [ X | = 00,

where B(x,r) denotes the ball with radius r centered at x. We let the inho-
mogeneous terms K; (i =1,2) satisfy
there exist C; >0, d;,¢; > 0 and D satisfying (10) such that (n
Ki(x,t) = Cr|x|%t% for any xe D, t > 0.
For the theorem we should define y, denoting the positive root of the equation
Y+ N-2)=o,
(2+6i+2¢;) + (2+6; +2¢) p:

O = Py — 1 ((17]) = (172)7(27 1))7 (12)

and
H, = {¢ e C(D); &(x) = M{x)™ Y, (x/|x|) for x e D with some M > 0}.

The main result of this paper is summarized in the following theorem.
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THEOREM 2. Assume that ug,vo € BC, up=v9=0 on 0D, and K;(x,t)
(i =1,2) satisfy (11). Suppose that one of the following two conditions holds;

(i) max{oi, o} =N+y .
(1) up € Hy, with a; < oy or vy € Hyy, with ay < op.

Then, there exists no nontrivial nonnegative global solution of (1).

It is expected that if (6) holds, max{da;,d} < N +y,, up < c{x) Y (x/|x|)
and vy < (x>, (x/|x]) with ¢ > 0 small enough, a; > &; (i =1,2), then the
solution of (1) is global in time, where & = {(2+6; +2¢,) + (2+ 6; +24;)pi}/
(pipi — 1) ((i,j) =(1,2),(2,1)). However, we have not proved it yet.

The method using the sequence of balls in (11) was used in [4, 22] and other
papers.

REMARK. (i) It is easily seen that y, =vi — (N —2)/2.
(ii) If both (6) and (11) hold, then it is necessarily that Cy > Cyp, 6; > 6; and
9 = q;-

We briefly recall a history of the study on global nonexistence of solutions
to the system (1). First, the global nonexistence of solutions in the case D = RY
(Q=8S"N u=v, p;=p and Ki(x,t) =1 (i=1,2), that is

= 14 N
{u, Au+ u?, xeRY, >0, (13)

u(x,0) = up(x) >0, xeRY,

was studied by Fujita [3]. Fujita proved that when p < 1+2/N the solution
of (13) is not global in time for any nonnegative bounded and continuous
initial data wuy # 0. Fujita’s results were also extended by some researcher.
Hayakawa [8], Kobayashi-Sirao-Tanaka [11] and Weissler [28] proved that when
p=1+2/N, the solution of (13) blows up in finite time for any uy # 0. For
the case p>1+2/N, Lee-Ni [12] studied that if |ug||, is large enough or
liminf |y o |x|“ug(x) > 0 with a < 2/(p — 1), the solution of (13) is not global in
time. When D is a cone, that is

u; = Au+ u?, xeD,t>0,
u(x, 1) =0, xedD, t>0, (14)
u(x,0) =up(x) >0, xeD,

Levine-Meier [14], [15] proved that if p <1+2/(N+y,), there is no global
solution of (14).
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Fujita’s results were extended to the case D = RY, u =10, p; = p and Ki(x, )
= K(x,t) for i =1,2, that is

{u,:Au—i—K(x,l)uP, xeRY >0, (15)
u(x,0) =up(x) >0, xeRY.

In the case K(x,f) = |x|° with ¢ > 0, Bandle-Levine [1] had that when p < 1+
(24 0)/N the solution of (15) is not global in time for any uy # 0. Hamada [6]
had the same result for p =1+ (2+0)/N (see also [18]). Suzuki [23] extended
to the case o € R for the quasilinear parabolic equations. Thereafter, Qi [20]
extended the result to the case K(x,7) = t9]x| with ¢ > 0, ¢ > 0. He proved that
when p <1+ (24 0+ 2¢)/N there exists no global solution of (15). When D is a
cone, that is

u,=Au+ K(x,t)u?, xeD,t>0,
u(x, 1) =0, xedD, t>0, (16)
u(x,0) =up(x) >0, xeD,

in the case K(x,?) = |x|” with ¢ > 0, Levine-Meier [14], [15] and Hamada [6] had
that if p <14+ (2+0)/(N +y,), there is no global solution of (16). For the case
p>14+(2+0)/(N+y,), Hamada [7] studied that if wuo(x) > M<{x)™ Y (x/|x]|)
witha<(2+4+0)/(p—1), 0<o < (p—1)(N—2) and some M > 0, the solution
of (16) is not global. In the case K(x,t) ~t? with ¢ > —1 as ¢t — oo, Levine-
Meier [15] had that if p <1+ (2+2¢)/(N +y,), there exists no global solution
of (16).

In the case D =R", our results are reduced to Escobedo-Herrero [2] and
Mochizuki [16] with K;(x,f)=1 (i=1,2), to Uda [24] with Kj(x,t) =¥
(i=1,2), and to Mochizuki-Huang [17] with K;(x,¢) = |x|” with ;¢
[0,n(p; — 1)) (i=1,2). Additionally, Guedda-Kirane [5] and Kirane-Qafsaoui
[10] studied in this field. They studied the case K;(x,?) ~ t%|x|” as t — oo and
|x] — co. However, they needed the condition max{2¢;,a;} <n(p;—1) (i=1,2).
Moreover, when K;(x,?) (i =1,2) satisfy (6) and (11) with D = R", the system
(1) was studied by Igarashi-Umeda [9]. When D is a cone, in the case K;(x,7) = 1,
the condition (i) of Theorem 2 is reduced to Levine [13].

The rest of the paper is organized as follows. In section 2, we state the proof
of the local existence (Theorem 1). The proof of global nonexistence (Theorem 2)
is given in section 3. For the change of variable as (3), we decide #(x, y,f) =
n(r,0,p,0,1), n(x,t) =n(r6,t) or ny(x) =mny(r,0) for any function.
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2. Local Existence in Time

In this section we use g; = ; and ¢; = ¢; for i =1,2. In order to show the
local solvability of the Cauchy problem (1), we consider the associated integral

system
u(x, 1) = S(t)uo(x) + JZS(t — $)Ki(x, s)v(x,s)] ds, (17)
0
v(x, 1) = S()ve(x) + Jo S(t — 5)Ka(x, s)u(x, s)5 ds, (18)
where
SO = | 6w r,0200) dy (19)

with G defined by (4). Define
P(u,v) = (S(uo(x) + @1(v), S()vo(x) + 2 (u)), (20)

where
t

(@ (v), Da(u)) = L S(t = 8)(Ki(x,8)v(x,s5)", Ka(x, s)u(x,s)) ds.

Lemma 2.1. Let 0>0 and o:=max{0,—0(N —2—0)/2}. If we take
0<T<(log2)/a, then for 0 <t<T

1S(2)¢

0,0 =< 2”5”30,5

Moreover for 0 <t< T

IS 05 < 2.
PROOF. Let w(x, 1) := S(1)&(x) — [|€]|, 5<x> " exp(at), then we have
Aw — w, = [a]x|* + {20+ (N — 2 = 0) }x|* + NO + o | &[], 5<x> ™~ explout)

> 0.

Combining this with Protter-Weinberger [19, Theorem 10, pp. 183-184], we get
w(x, t) < 0; that is,

XY S()E(x) < ||1&

0,8 exp(at).
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Then we obtain [|S(¢)¢][,, s < <]l 5 exp(az). Moreover, if we take 0 < T <
(log 2)/a, then for 0 <t < T

1S(D)elle,5 < 21l - O

LemMA 2.2, (i) Assume that {x)*'ug(x) and {x)*vo(x) are bounded in D.
(S(-)uo, S(-)vo) € Er for 0 < T < (log2)/a, and we have

1(SC)uo, SCvo)ll g, < 2{lluolls 5, + llvoll o 5.}

where Er is defined in (7).
(i) Let (u,v) € Ep. Suppose that Ki(x,t) (i=1,2) satisfy (6). Then
(@1 (v), D2(u)) € Ex for some T >0, and we have

(@1 (), @2() |z, < 2Cu(Ta(T) + T(T){(0,0)]17, + [1(,0)

b
where the constant Cy is appeared in (6), and Ti(t) = {(t+ D™ = 1}/(¢; + 1)
(i=1,2).

Proor. (i) It is obvious from Lemma 2.1 with 6 =9; (i =1,2).
(i) Note that

Jt S(t— $)Ky(x,s)v(x,s)"" ds
0

l o
< J S(t—s5)Cy(s+ )T {x)T21 ds sup ||v(~,s)|fc‘\‘52.
0 s€(0,1] '

A simple calculation gives —a; + dop; = d1. Then it follows from Lemma 2.1 that
1S(2 = )<, 5 < 2.

Thus we have

P
0,02 "

101 (o)l 5, < 2CuT1(2) sup |lo(s)

se(0,1
Similarly, we have

1025, < 2CuTa(0) sup Ju(s)|%:

00,01 "
s€0,1]

We conclude from these inequations. |
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PrOOF OF THEOREM 1. Let Bg = {(u,v) € Er;||(u,v)||y, <R} and Pr =
{(u,v) € Er;u>0,v >0}, and define 7; same as in Lemma 2.2 (ii). For (u,v),
(uy,v2) € BN Py with R > 1 sufficient large, we have

W (1, 01) — P(uz, 02) | g, = [[(@1(v1) — P1(v2), P2(11) — Po(2))| g, (21)
We consider

@1 (v1) — @1 (12)[(x)”

< JI S(t—5)Culs+ 1)1 o1 (x,8)" — vy(x,5)”| ds{xD.
0

Then, since (up,v2) € Bg we obtain

@1 (v1) — @y (v2)] (XD

<21 CuTA(T) sup IR pi(o1(,5) = 02 )l (22)
se[0,1]
By the same argument we have
|2 (1) — D (u)[<x )™
<22 CuT(T) sup [|R7pa(un(-,5) — s(-,5))l] i (23)

se(0,1]
Substitute (22) and (23) into (21). Since max{p;, p»} < p1p2, we obtain
W (1, v1) = ¥ (2, 02) | g,
< 272 Cy(Ti(T) + To(T))R"> " pipal|(ur — uz, v — 1) | -
Taking 7 > 0 small enough, we have
W (1, 01) = W (w2, 02) | g, < pll(er, 01) = (w2, 02)| g,
for some p < 1. Then ¥ is a strict contraction of Bg N Pr into itself, whence there
exists a unique fixed point (u,v) € Bg N Py which solves (1). ]
3. Nonexistence of Global Solution

In this section we treat the nonexistence of global solutions in time of (1).
Here, we take the same strategy as in [17], [18], [25] and [26]. Let o; = 6; and
qi = g; for i=1,2 through this section.

First, we should consider only the case ke (0,1/2) by comparison. Let
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Am >0 denote the principal eigenvalue of —A with Dirichlet problem in
B(x, k|xp|), and let {,,(x) > 0 denote the corresponding positive eigenfunction,
normalized by [ 4. {n(x) dx = 1. Define

F,(t) = J u(x, 0, (x) dx, G,(t) = J v(x, 1), (x) dx. (24)
B(xp, k|xm|) B(Xp, kX |)

By applying Green’s formula and Jensen’s inequality, we see that (F, (), G,(?))
satisfies

F (1) = —c1|Xm| 2 Fu(t) 4 219 x| " Gu(2)",
G' (1) = —c1|Xm| 2 Gn(t) + €29 x| Fp(1)7?

m

(see [9, §3]). We will show that for an appropriate choice of k, (F,(¢), G,(?)) is
not global in time, thereby contradicting the assumption that (u,v) is a global
solution. By the same arguments as in [9, §3], [13] and [21], we have the following
proposition:

PROPOSITION 3.1.  Let (F,(t), Gy (2)) by (24) for some ty € (0,1] and m e N. If

Epler|xm)®) > Alxn|™  or  Gulci|xm|*) > Blxw| ™

with some A,B >0 and some ¢, >0, then (Fy,(t),Gy(t)) is not global in time.

LemmA 3.1, Let uy and vy are BC and (uy,vo) # 0, and let (u,v) be a solution
of (1). Then for any ©>0 and xe D there exist constants p>1 and C =
C(N,t,ug,vo, K1, K2, p1, p2, 1) > 0 such that

u(x,7) = Clx| ey (x/Ix)) and  v(x,7) = Clx|" e g (x/ 1),

PrOOF. We may let uy(x) # 0 without loss of generality. Since u(x,?) >
S(tuo(x), I,(z) = Cz¥ and y, =v; — (N —2)/2, we obtain

u(x, 1) = e 4y (0)

(2t) 1+n

x r [, 75 g Gy, i
Q

0

Then we have, for every 7; > 0,
u(x,71) = Cirive 7y, (0) (25)

with g, = max{1,1/47,} and
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0

il
Ci = Ci(t,N,up) = ————
1 (71 0) 2™ o

[, et By, ) dadp.
Q
From (18) and the fact that I, > Cz" with some C > 0, we have

i)z @[ [ J, (20;6"'2/4(’_")

0Jo — )"

x pr NN PN () Ka (. . 5)u (p, 6. 5) didpds.
Then by (25) we obtain for 7, > 27y
o 1
w2 (22 —5)""
1

vi+1
)

U(x7 T2) = C2V7+¢1(0)J €7r2/4(1275~) ds

> Cor’ iy (0)

T 1
e—r2/2rz J ds = sz”*l//l (9) 5o e_r2/212
72/2 3

with

Cr = Ca(12, N, up, K>)

o0

= il C[ ] e e g K. b5 . 6.9 ddp
s€(12/2,72) 0 Jo

Then we have

o(x,72) = Cyr=e "y, (0)

with g, = max{1,1/2%,} and C; = C,/27)'. Put C =min{C;, C»,C3} and p=
max{u, i} and 7 =1,. Then we have

u(x,7) > Cr“e_”"ztpl(ﬁ) and v(x,7) > Cr”*e_’”zl//l(ﬁ). 0

Lemma 3.2. For >0, u>1, xe D and t >t with some t© > 0, we have
S(0)p(x0) x| e = CHTTIR( o dgar) "I ] (/)

with some C >0 and B= B(b,a) = D with a>0 and be D, where yg is a
characteristic function of B such that yz(x) =1 for xe B and =0 for x € D\B.
The domain B(b,a) denotes the open ball of radius a centered at b.

ProOF. We can put positive constants a;, a» and domain Q' < Q satisfying
0<a <ay< oo, |Q]#0 and D= {x;|x| € (a1,a),x/|x| e Q'} = B. By (19)
and [, ¥,(¢) dp = C with some C € (0,1], we have
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o —vlx|?
S(1)y5(x) x| 7™

> [7] 60000007 0" dgp

ap

2 @
rive™” /4"//1(9)J

ap

N 1o totN =L o= (1H4up* Aty (4) ddp
(20" L”p "

Cr7+e’r2/4’l,bl(0)
= (2!) l+vlﬂ(l) Vy+o+N

A(t)ay Nol g
J sT+TotN=lo=s" s

At)a

where () = /(1 +4ut)/4t. Since 1 < /u < ji(t) < ji(r) for t > 7, we have
S(0)y5(x)|x| 7 > CATTI2 (1 4 dpur) N Ho0 240 oo Ay, (), O

By Lemma 3.1, we can assume
to(x) > Clx| " ey (x/ )
for some C >0 and u > 0. Then we have, for t >t

w(x, 1) = C(1+ dut) ™77+ x| Pee M4y (/). (26)

LemMA 3.3.  Let v be the second element of the solution of (1). Then we have
v(x, [) > Ct((pZ*l)y++0'2+2t]2+2)/2(t+ 1)*V+P2*sz/2|x|V+ef\.x|2/2tlp(x/|x‘)172+l

for t =t with some >0 and C = C(t,uy, v, K1, K>, p1,p2) > 0.

Proor. It follows from (11), (18) and (26), we obtain

t

v(x, 1) > CJO S(t—98)xg, , (X)|x

Uz+172”/+sqz

x (4s + 1/ﬂ)fNI’Z/Z*PZ"/-efpz\x\z/%w{]z (x/|x|) ds.
By Lemma 3.2, we then have
v(x, 1) > C(,/2)<prl>m/2+az/2(t/4)qz(ztJr 1/ﬂ)7y+per2/z
2 1/2
X |x]7 eI (/1] L/4 ds.

Thus, the inequality of the lemma holds. O
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LemMMmA 3.4. Let u be first element of the solution of (1) and a0y = N +y,.
Then for t > a

oty o § €T () og/20). o 3 = N
’ leN/27*,;|x‘yfef\x\2/21¢1(x/|x‘)Ple+P1+1(zﬁ _ (Zd)ﬁ), if o > N+V+

with C = C(a,up,vo, K1, K>, p1, p2, N) >0, where a >0 is a small constant and
p=(pp2—=1)(u—=N—=7,)/2

ProoOF. By Lemma 3.3, we have

t
u(x,t) > CJ S(t—8)yz (x)|x|‘71SQIS(1+JZ/2+42)P1+P1(PZ—1)1’+/2
) - VD |

a

x (s + 1)*NP1P2/2*V+171172|x|p17+efp1\x\2/25¢1(x/|x|)171(172+1) ds.
It follows from Lemma 3.2 that

u(x, t) > C(l/z)(m+p1;ry+>/2l—(N+m+p1y++y+)/2|x|7+e—\.x|2/2z

/2
X (x/|x]) PP J JAEN=2)(p2=1)+Q+or+20)p1 4o +2013/2 g

a

for small a > 0. Since

{(_N B y+)(P1P2 - 1) + (2 + oy + 2q2)p1 +o + 2q1}/2
={(pip2—D)(on =N —y,)}/2 -1,

this proves the inequality of the lemma. O

ProOF oF THEOREM 2. First we consider the case (i). We may assume
ap > 0. Put Y, =./ci|x,|. From the definition, we have oy > N +y,. By
Lemma 3.4, since x € B(xy, k|xn|), we have

Fu(Y}) = CY, N7 h,

|x‘7+ . |X|2 pipa+pi+1 d
X 7= €Xp| =55 | S ()Y (x/]x]) x
B( | 2Ym

xrmk‘xm‘) |xm

> Clxw| ™V 7 (1) NP, (14 ) exp(—(1 4 k)% /2¢1),
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where /1, = log(Y?/2a) for oy = N 4y, and h,, = Y2 — (2a)? for ay > N +y,
with C = C(a,uo,vo, K1, K>, p1,p2,N) >0 and p defined in Lemma 3.4. Since
oy =N +y,, it follows that

|Xm|oc1Fm(Y,i) > C‘xln|a17N7y+C;(N+y+)/2
X hm(l +k)y+ eXp(_(l + k)Z/zcl) >4

for m large enough. Thus, (F,,(¢), G,(?)) is not global in time by Proposition 3.1.
Next, we consider the case (ii). Since u(x,?) > S(t)uo(x), u € Hy,, I,(z) > Cz"
and [, ¥, (4)* d¢ is constant, it follows that

o0

u(x, 1) = J

j G(r,0.p.4. s (p, )p" " dgdp
0 Q

oor}’+pN+V+*1 VZJF/)Z 2y-a1/2
zCL Wexp<‘ 4 )(Hp) Vi(0) dp.

Then, since y, =v; — (N —2)/2, we obtain

r Y+ ,,2 © 1 p N/2+v;
Y2) > C— SR | (-
iz <) on(—g5) |, 5 (%)

Since Y,, = cl|xm|2, we have for x € B(x,,, k|xp|)

u(x, ¥2) = C(1+R) ™2 (1 = k)7 expl{—(1+ )2 fer)

x r1(0) Joo L <L>N/2+Vl exp(— p22> (14 p») ™/ dp.
0 Ym Ym 47,

m

Putting y = p/Y,,, we have
0 ){2
e 73) = ) [ e (<5 ) 2T
0
Note that 1+ 2Y2 < Y2(1 + ) if m is large enough. Then, we obtain

o 2
e Y3 CHOITl | exp (<4 ) 142272

= Cofry (/6] oo |~
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for sufficiently large m. Since fB(xn Konl) W (x/]x|)¢,,(x) dx is constant, we have

Fu(Y2) >

m/ =

J u(x, Y,,%)Cm(x) dx
B(XW-, k‘xm D

> Clxm| ™ J Wy (x/|x)) G (x) dx = Clx| ™.
B(-\'m-,k‘xm‘)

Since uy € H,, with a; < a;, we have
X Fpu(Y2) = Clxn|™ ™" > 4

for sufficiently large m. If vy € H,, with a, < o, we similarly have
1Xm| 2 G(Y?) = Clx,|® ™ > B

for m large enough. Thus, (F,,(f), G, (f)) is not global in time by Proposition 3.1.
O
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