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DIMENSION OF $k$-LEADERS

By

Ken-ichi TAMANO

Introduction.

Let $X$ be a $T_{2}$-space. The k-leader $kX$ of the space $X$ is the set $X$ with
the topology generated by the family of all subsets of $X$ that have closed in-
tersections with all compact subspaces of $X$ (see [1]).

A. Koyama [2] introduced the notion of a c-refinable map and showed that
if $f:X\rightarrow Y$ is a c-refinable map between normal spaces, then $\dim X=\dim Y$. He
asked: Is there a normal space $X$ satisfying $\dim kX\neq\dim X$?

The purpose of this note is to give a positive answer to the question by

constructing a Lindelof non-zerodimensional space $X$ with the property that
every compact subspace of $X$ is finite. Note that the k-leader $kX$ of the space
$X$ is discrete.

The letter $N$ denotes the set of positive integers.

The example.

EXAMPLE. There exists a Lindelof space $X$ such that $\dim X>0$ and every
compact subspace of $X$ is finite.

The real line with the natural topology is denoted by the letter $R$ . Let $S$

and $T$ be subsets of $R^{2}$ satisfying:
(a) $R^{2}=S\cup T,$ $ S\cap T=\emptyset$ ; and
(b) $|F\cap S|=|F\cap T|=\mathfrak{c}$ for every closed uncountable subsets $F$ of $R^{2}$ . For

the existence of such subsets $S$ and $T$, see [3], Ch. III, 40, I, Theorem 1.
Let $\{F_{\alpha} : \alpha<c\}$ be a enumeration of all closed uncountable subsets of $R^{2}$ .

LEMMA. There exist $\{s_{\alpha} : a<c\}$ and $\{t_{\alpha n} ; n\in N\},$ $\alpha<\mathfrak{c}$ , such that
(a) $s_{\alpha}\in F_{\alpha}\cap S$ and $s_{\alpha}\neq s_{\beta}$ for each $\alpha,$ $\beta<\mathfrak{c}$ with $\alpha\neq\beta$ ; and
(b) $\{t_{\alpha n} ; n\in N\}\subset F_{\alpha}\cap T$ and for each $\alpha<\mathfrak{c},$ $\{t_{\alpha n} ; n\in N\}$ converges to $s_{\alpha}$ .

PROOF. For each $\alpha<c$ , by the property of the sets $S$ and $T,$ $F_{\alpha}\cap T$ is
uncountable and hence (Cl $(F_{a}\cap T)$ ) $\cap S$ is uncountable. Thus by a transfinite
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induction on $\alpha<c$ , we can obtain the desired sequences.

CONSTRUCTION. We shall construct the example \langle X, $\tau\rangle$ . Define $X=R^{2}$ as
the set. Each point of $T$ is defined to be isolated in \langle X, $\tau\rangle$ . Denote by $\rho$ and
$d$ the natural topology and the usual distance function of the space $R^{2}$ . Let
$\{s_{\alpha} : \alpha<c\}$ and $\{t_{\alpha n} : n\in N\},$ $\alpha<\mathfrak{c}$ be the sequences obtained by the above
Lemma. For each $s\in S$, we define a sequence $\{t_{n}^{s}\}\subset T$ which $\rho$ -converges to
the point $s$ . If $s=s_{\alpha}$ for some $\alpha<c$ , then define $t_{n}^{s}=t_{an}$ for each $n\in N$. If $ s\not\in$

$\{s_{\alpha} : \alpha<\mathfrak{c}\}$ , then $t_{n}^{s}$ be an arbitrary sequence converging to $s$ . We can choose
the sequence because $T$ is $\rho$-dense in $R^{2}$ .

For each point $x\in R^{2}$ and $\epsilon>0$ , define $B_{\epsilon}(x)=\{y\in R^{2} : d(x, y)<\epsilon\}$ . For each
$s\in S,$ $n\in N$ and a function $f:N\rightarrow N$, define

$U(s, f, n)=\{s\}\cup\cup\{B_{1/f(k)}(t_{k}^{s})-\{t_{k}^{s}\} : k\geqq n\}$ .
Now the basic neighborhood system of the point $s\in S$ in \langle X, $\tau\rangle$ is defined to be
the collection

$\{U(s, f, n):n\in N, f : N\rightarrow N\}$ .
It is easy to see that the space \langle X, $\tau\rangle$ is a regular $T_{1}$-space.

CLAIM 1. $X$ is Lindelof.

PROOF. Let $cU$ be an open cover of \langle X, $\tau\rangle$ . Define $\mathcal{V}=\{Int_{\rho}U:U\in V\}$ .
Since $\langle R^{2}, \rho\rangle$ is hereditarily Lindelof, there exists a countable subcollection $q$;‘

of $cU$ such that $\cup \mathcal{V}=\cup\{Int_{\rho}U:U\in V^{\prime}\}$ . We need only show that the set
$R^{2}-\cup \mathcal{V}$ is countable. Suppose the contrary, there is a closed uncountable
subset $F$ of $R^{2}-\cup \mathcal{V}$ which is dense in itself with respect to the $\rho$-topology.
Then $F=F_{\alpha}$ for some $\alpha<\mathfrak{c}$ . By the construction of Lemma, there are $ s=s_{\alpha}\in$

$F_{a}\cap S$ and $\{t_{n}^{s}\}=\{t_{\alpha n}\}\subset F_{\alpha}\cap T$. Since $cU$ is a cover of \langle X, $\tau\rangle$ , there is an open
set $U\in\epsilon U$ and a basic neighborhood $U(s, f, n)$ of $s$ such that $s\in U(s, f, n)\subset U$.
Then $(Int_{\rho}U(s, f, n))\cap F_{\alpha}\neq\emptyset$ , because $B_{1/f(n)}(t_{n}^{s})-\{t_{n}^{s}\}\subset Int_{\rho}U(s, f, n)$ and $t_{n}^{s}$ is
a non-isolated point of $F_{\alpha}$ with respect to the $\rho$ -topology. Thus $(Int_{\rho}U)\cap F_{\alpha}\neq$

$\emptyset$ . On the other hand, $(Int_{\rho}U)\cap F_{a}=\emptyset$ , because $F_{\alpha}\subset R^{2}-\cup \mathcal{V}$ and $Int_{\rho}U\in \mathcal{V}$ .
Contradiction.

CLAIM 2. $\dim X>0$.
PROOF. For every Lindelof space, the condition ind $X=0$, $IndX=0$ and

$\dim X=0$ are equivalent (see [1]). We need only show that ind $X>0$ . To see
this, we claim that if $U$ is $\tau$-open, bounded with respect to the usual metric $d$
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of $R^{2}$ and $Int_{\rho}U\neq\emptyset$ , then $Bd_{\tau}U\neq\emptyset$ . Let $U$ be a $\tau$-open set with the above
properties. Put $V=Int_{\rho}U$. Then $V$ is bounded with respect to the usual metric
of $R^{2}$ and hence $Bd_{\rho}V$ is a closed uncountable subset of $\langle R^{2}, \rho\rangle$ . Therefore
there is a $\rho$ -closed uncountable subset $F$ of $Bd_{\rho}V$ which is dense in itself with
respect to the $\rho$ -topology. Then $F=F_{\alpha}$ for some $\alpha<\mathfrak{c}$ . By the construction of
Lemma, there are $s=s_{\alpha}\in F_{\alpha}\cap S$ and $\{t_{n}^{s}\}=\{t_{\alpha n}\}\subset F_{\alpha}\cap T$ satisfying the condition
of Lemma. Since $t_{n}^{s}\in Bd_{\rho}V,$ $ B_{1/f(n)}(t_{n}^{s})-\{t_{n}^{s}\}\cap V\neq\emptyset$ for each $f:N\rightarrow N$ and
each $n\in N$. Thus $s\in C1_{\tau}V\subset CI_{\tau}U$. It remains to show that $s\not\in U$. Suppose
$s\in U$, then there is a basic neighborhood $U(s, f, n)$ of $s$ such that $ s\in U(s, f, n)\subset$

$U$. But then $B_{1/f(n)}(t_{n}^{s})-\{t_{n}^{s}\}\subset Int_{\rho}U\subset V$. On the other hand, $B_{1/f(n)}(t_{n}^{s})\cap F_{\alpha}$

is infinite because $t_{n}^{s}\in F_{\alpha}$ and $F_{\alpha}$ is dense in itself with respect to the $\rho$ -topology.

This contradicts the fact that $F_{\alpha}\subset X-V$.

CLAIM 3. Every compact subset of $X$ is finite.

PROOF. Suppose that there exists a compact subset $C$ of $X$ of infinite car-
dinality. Then there is a non-isolated point $s$ of $C$. Since every point of $T$ is
isolated, $s\in S$ . By the definition of the neighborhood system of $s$ , it is easy to
find an increasing sequence $\{n_{k} : n\in N\}$ of positive integers and a sequence
$\{c_{k} : k\in N\}$ of points of $C$ such that $c_{k}\in B_{1/2^{k}}(t_{n_{k}}^{s})\cap C-\{t_{n}^{s} ; n\in N\}$ for each
$k\in N$. Then $\{c_{k} : k\in N\}$ converges to $s$ with respect to the $\rho$ -topology. But a
simple observation of the basic neighborhood system of the point $s\in S$ verifies
that $s\not\in C1_{\tau}\{c_{k} : k\in N\}$ . Hence $\{c_{k} : k\in N\}$ is a closed infinite subset of $C$, which
contradicts the compactness of $C$. The proof is completed.

REMARK. In a recent letter to A. Koyama, E. van Douwen announced that
for each $n=1,$ 2, $\infty$ , there is a normal space $X_{n}$ with the property that
$\dim X_{n}=n$ and every compact subset of $X_{n}$ is finite. However his examples are
not Lindelof and ind $X_{n}=0$ for each $n$ .

QUESTION. Is there a Lindelof space $X$ with $\dim X=n$ and $\dim kX=0$ for
each $n=2,3,$ $\cdots,$

$\infty$ ?

I am greatly indebted to H. Ohta for many helpful discussions.
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