
Lecture 10: Finite Volumes

October 20, 2015

1 Goal

As we have seen in the previous lectures, FD are very intuitive but lack flexi-
bility and accuracy towards complex geiometries. FEM solve the problem very
effectively, but at the cost of a significant computational burden. As we shall
see, the FVM offers a very effective intermediate strategy between the two. In
this lecture we shall describe the main ideas behind the Finite Volume (FV)
method, currently the most popular method for commercial CFD software.
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2 Gauss theorems

The mathematical foundation of the FVM is the Gauss integral theorem∮
V

(∇ · ~a) dV =

∮
S

~a · n̂ dS

where ~a is a generic vector. The above states that the integral of the divergence
of a given vector over a closed volume is equal to the flux of this vector across
a closed surface bounding the volume. In the rhs above n̂ denotes the outer
normal to the surface.

The above thorem is particularly relevant to equations in conservation form.
Consider for instance the continuity equation of fluid dynamics:

∂tρ+∇ · ρ~u = 0

Gauss theorem gives
d

dt

∮
V

ρdV = −
∮
S

ρ~u · n̂dS

In other words, the change in time of the total mass in the volume V is equal
to the flux of the current across the surface bounding the volume. This permits
to construct dynamic equations for volume-averaged quantities, such as the total
mass in the volume, rather than pointlike ones, like in FD. This is interesting
because i) volume averaged quantities make much more physical meaning than
pointliek ones, ii) the FV formulation secures built-in conservation laws, which
is an extremely useful property for numerical implementations.

3 FV formulation of Advection-Diffusion equa-
tion

Let us illustrate the practical set-up of a FV formulation for the case of a
multidimensional advection-diffusion-equation:

∂tφ = ∇ · (−~uφ+D∇φ)

Note that the current ~J contains an advective and convective components. The
flow fiells is assumed to be given, hence there is only one scalar unknown, the
field φ. Although much simpler than fluid-dynamics, this case helps establishing
a wide body of general notions of the FVM.

3.1 Geometry

First, let us define the geometry of the computational system. We consider a
two-dimensional structured grid of finite volumes defined by the nodes Pi, i =
1, NN and four connecting links to East,North,West and South neighbors. Each
node is thus surrounded by four trapezoids, North-East NE = (P,E,NE,N),
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North-West NW = (P,N,NW,W ) and so on. To each node we associate a
closed control volume (CV) obtained by joining link midpoints and cell centers,
namely

CV (P ) = {e, ne, n, nw,w, sw, s, se, e}

In the above e is the midpoint along link EP, ne is the barycenter of volume
NE and so on (see Figure). A simpler choice is to define the CV only via the
volume centers

CV (P ) = {se, ne, nw, sw, se}

Obviously, the two come to the same for the case of cartesian volumes.
With the basic geometry in place, we next define the actual unknown as

φP =
1

VP

∮
VP

φdV

where VP is the CV centered around node P . For the case of two-dimensional
volumes, Gauss theorem gives

VP
dφP
dt

= −
∑

k=e,n,w,s

ρkukSk

where the sum runs over the four (east,north,west, south) edges of the trape-
zoidal volume. In the above ukSk

∫
Sk
≡ ~u · n̂kdSk is the surface integral of

the projection of the velocity field on the kth surface along the normal to the
surface, while Sk is the area (length in d=2) of the surface. Each volume VP
generates its own equation, so that by letting P run over the entire domain, a
system of N equations is obtained, N being the number of volunes.

It should be noted, though, that the rhs involve the unknowns φ and ~u
on the surfaces Sk, while the actual unknowns are located at the cell (vol-
ume) centers P . Therefore, a procedure to transfer data from celle centers
to cell surfaces is required. The procedure, basically an interpolation, is not
unique, as it depends on the order of interpolation used. However, with refer-
ence with a structured grid in which the actual volume VP is surrounded by eight
neighbors (East,North,West,South, North-East,North-West,South-West,South-
East), a simple interpolation would read as follows

φe = aPEφP + (1− aPE)φE

and similar for the other four faces. Here lower capital indices denote surface
values while upper capital denote volume centers (see Slides). The interpolation
coefficients are given by

aPE = |eP |/EP |

where eP denotes the vector e− P and EP = E − P .
By the time the interpolation is performed on all four cells, the surface flux

picks up contribution from all four neighbors E,N,W,S, and possibly also the
next-neighbors NE,NW,SW,SE.
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Thus, the equation of motion for the unknowns take the form

dφP
dt

= −
∑

Q=E,N,W,S,...

CPQφQ (1)

one for each volume. The connectivity coefficients CPQ are linear combinations
of the interpolation coefficients aPQ, as well as of the geometric factors Sk/VP
associated with the FV geometry. This is a self contained system of ordinary
differential equations, and can be discretized in time with one’s favored time-
marching scheme.

A few general considerations are in order. First, we note that the flux across
a surface separating nodes P and Q is the same as the one crossing from Q to
P, with just opposite sign, i.e.:

ΦPQ = −ΦQP

This identity guarantees that mass conservation is achieved to machine roundoff.
Generally, the ”quality” of the matrix depends on the shape of the volumes.

For instance, once time marching is taken, the connectivity coefficients pick up
dimensionless factors

CFLk ≡ Skuk∆t/VP

which are clearly reminiscent of the CFL condition. This shows that very thin,
elongated volumes, generating high values of S/V lead to very strong restrictions
on the timestep (if an explicit method is used). Likewise, highly distorted
volumes, far from square shape, lead to ill-conditioned matrix problems, and
should be avoided as much as possible. That is, the grid shoudl be such to keep
local CFL close to a constant value everywhere, which means that the grid
should adapt to the flow ~u.

See Slides figs.

4 Diffusive fluxes

The machinery described above applies verbatim to the diffusive fluxes as well,
with the importtant caveat that now teh surface integrals involve gradients of
the unknown, i.e.

ΦD
k =

∫
Sk

∇φ · n̂dS

Following the procedure described for teh advective fluxes, one can approx-
imate teh flux integral as

ΦD
k ∼ Skgk

where gk ≡ ∇φ · n̂k at position rk on the surface Sk.
With reference to the east surface,

∂xφ|e = (φE − φP )/(xE − xP )
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and similarly for the y component.
Caveat: this is very dangerous, since yE−yP can be very small or even zero!

What to do? Take the data along the y direction.

∂yφe = (φne − φse)/(yne − yse)

where ne is interpolated from P,E,NE,N and se from N,NW,SW,P .

5 Practical example

Let us derive the FV equations for a rectangular FV grid with mesh size a and
b along x and y.

See Slides.
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| |

| |
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| |

| |

sw----s-----se

Basic geometrical quantities:
Volume centers: P = (x, y), E = (x+ a, y), W = (x− a, y), N = (x, y + b),

S = (x, y − b).
Edges: e = (x+ a/2, y), w = (x− a/2, y), n = (x, y + b/2), w = (x, y − b/2)
Volume and edge length: V = ab, Se = Sw = b, Sn = Ss = a.
Convective CFL’s:
Seueh/V = uxh/a, Swuwh/V = −uxh/a, Snunh/V = uyh/b, Ssush/V =

−uyh/b.
Hence the sum of the fluxes is:

[uxφ]e − [uxφ]w
a

+
[uyφ]n − [uyφ]s

b

Next we interpolate the surface values as follows

φe = (φP + φE)/2, φw = (φP + φW )/2φn = (φP + φN )/2φs = (φP + φS)/2

so that the sum of the fluxes becomes (take ux = uy = U = constant):

(φE − φW )U/2a+ (φN − φS)U/2b

which coincides with a centered finite difference scheme on a rectangular mesh.
Diffusive fluxes:
With ga ≡ ∂aφ, a = x, y.
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East: Φ(e) = Dgx(e)b,
gx(e) = (φ(E)− φ(P ))/a,
gx(w) = (φ(P )− φ(W ))/a,
gx(e)− gx(w) = [φ(E)− 2φ(P ) + φ(W )]/a,
gy(n)− gy(s) = [φ(N)− 2φ(P ) + φ(S)]/b,

6 Boundary conditions

Essentially, like for FD schemes, ifvthe conditiosn are on the fluxes (von Neu-
mann) even simpler.

7 Exercises

Write a computer program to solve the diffusion equation with the FVM method,
test the accuracy and stability upon changing the size and shape of the volumes.
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