DNA modification and cleavage by a planar dinuclear nickel(II) Schiff-base complex with cationic substituents.

Yoshiteru Kakinuma, Hidekazu Arii, Makoto Chikira

Department of Applied Chemistry, Chuo University

It has been reported that cationic salen-type Schiff base metal complexes bind to DNA and the affinity and cleaving reactivity for DNA are affected by the bridging group in the quadridentate Schiff bases¹⁾. In this study, we have synthesized a novel dinuclear nickel(II) Schiff-base complex $[Ni_2(MS_2dp)(pz)]^{2+}$ (1) and investigated the DNA binding mode, evaluating the binding affinity and oxidative cleavage reactivity.

The hypochromism observed in the UV-vis spectra of **1** on addition of calf-thymus DNA indicated that the complex binds specifically (binding constant $K_b^s = 3.1 \times 10^6 \text{ M}^{-1}$ and sites size number $n_I = 26$) and non-specifically $(K_b^{ns} = 3.1 \times 10^4 \text{ M}^{-1}, n_2 = 6)$. In the case of mononuclear nickel(II) complex $[\text{Ni}(\text{MSen})]^{2+}$ (**2**), the hypochromic effect was too small for the estimation of the binding constant. Furthermore, a positive induced CD band was observed weakly for **1** at around 350 nm whereas negative induced CD bands were observed for **2** in the range 400 – 450 nm. The *K* and *n* values for **2** have been estimated from the induced CD bands for specific binding $(K_b^{s} = 1.1 \times 10^6 \text{ M}^{-1}, n_I = 20)$ and for non-specific binding $(K_b^{ns} = 6.0 \times 10^4 \text{ M}^{-1}, n_2 = 6)$, respectively ¹.

1 cleaved plasmid DNA with OXONE in 100mM cacodylic acid buffer (pH 7.4) at 37 $^{\circ}$ C more mildly than 2. Above results suggest that the di-nikel center of 1 is involved more deeply in the ds-DNA from the pyrazole side.

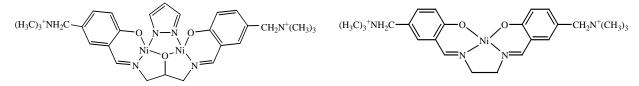


Figure.1 Structure of $[Ni_2(MS_2dp)(pz)]^{2+}(1)$ (left) and $[Ni(MSen)]^{2+}(2)$ (right)

1) K. Fukiura et al., Abstract of ICBIC12, 2005.