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Laurent Series



Today’s Outline

 Laurent Series
 Residue Integration Method



Wrap up

 A Sequence is a set of things (usually numbers) that 
are in order.  (z1,z2,z3,z4…..zn)

 A series is a sum  of a sequence  of terms.  
(s1=z1,s2=z1+z2,s3=z1+z2+z3, … , sn)

 A convergent sequence is one that has a limit c. 

 A convergent series is one whose sequence of 
partial sums converges.



Wrap up

 Taylor series:

or by (1), Sec 14.4 



Wrap  up

 A Maclaurin series is a Taylor series expansion of a 
function about zero.



Wrap up

 Importance special Taylor’s series (Sec. 15.4)
 Geometric series

 Exponential function



Wrap up

 Importance special Taylor’s series (Sec. 15.4)
 Trigonometric and hyperbolic function



Wrap up

 Importance special Taylor’s series (Sec. 15.4)
 Logarithmic 



Lauren Series

 Deret Laurent adalah generalisasi dari deret Taylor.
 Pada deret Laurent terdapat pangkat negatif yang 

tidak dimiliki pada deret Taylor.



Laurent’s theorem

 Let f(z) be analytic in a domain containing two concentric 
circles C1 and C2 with center Zo and the annulus between 
them . Then f(z) can be represented by the Laurent series



Laurent’s theorem

 Semua koefisien dapat disajikan menjadi satu
bentuk integral



Example 1

Example 1:
Find the Laurent series of  z-5sin z with center 0.

Solution.
menggunakan (14) Sec.15.4 kita dapatkan.



Substitution

Example 2
Find the Laurent series of with center 0. 

Solution
From (12) Sec. 15.4 with z replaced by 1/z we obtain 
Laurent series whose principal part is an infinite 
series.



Development of 1/(1-z)

Example 3
Develop 1/(1-z) 
(a) in nonnegative powers of z
(b) in negative powers of z

Solution. 



Laurent Expantion in Different Concentric Annuli

Example 4
Find all Laurent series of 1/(z3 – z4) with center 0.

Solution. 
Multiplying by 1/z3, we get from Example 3.



Use of Partial Fraction

Example 5
Find all Taylor and Laurent series of 
with center 0.

Solution. 
In terms of partial fractions,



 For first fraction



 For second fraction,



 Regions of convergence in Example 5





Residue Integration Method

 The purpose of Cauchy's residue integration method 
is the evaluation of integrals 

taken around a simple close path C.
 If f (z) is analytic everywhere on C and inside C, 

such an integral is zero by Cauchy's integral 
theorem (Sec. 14.2), and we are done.



 If f(z) has a singularity at a point z = zo inside C, but 
is otherwise analytic on C and inside C, then f(z) has 
a Laurent series

that converges for all points near z = zo (except at z = 
zo itself) , in some domain of the form 0<|z – zo|<R.



 The coefficient b1 of the first negative power 1/(z - zo) 
of this Laurent series is given by the integral 
formula (2) in Sec. 16.1 with n = 1, namely,



 The coefficient b1 is called the residue of f(z) at 
z=zo and we denote it by



Evaluation of an Integral by Means of a Residue

Example 1
Integrate the function f(z) = z-4 sin z counterclockwise  
around the unit circle C.

Solution. 
From (14) in Sec. 15.4 we obtain the Laurent series

which converges for |z|>0 (that is, for all z |=0). This 
series shows that f(z) has a pole of third order at z = 0 
and the residue b1= 1/3!. From (l) we thus obtain the 
answer



Use the Right Laurent series

Example 2
Integrate f(z) = 1/(z3 - z4) clockwise around the 
circle C: |z| = 1/2.

Solution.
z3 - z4 = z3(1 - z) shows that f(z) is singular at z = 0 
and z = 1. Now z = 1 lies outside C. Hence it is of no 
interest here. So we need the residue of f(z) at 0. We 
find it from the Laurent series that converges for 
0<|z|<1. This is series (I) in Example 4, Sec. 16.1,



we see from it that this residue is 1. Clockwise 
integration this yields



Formula for Residue

 Simple Poles. Two formulas for the residue of f(z) 
at a simple pole at zo are

and, assuming that f(z) = p(z)/q(z), p(zo) ≠ 0, and 
q(z) has a simple zero at zo (so that f(z) has at Zo a 
simple pole, by Theorem 4 in Sec. 16.2),



Residue at a Simple pole

Example 3
f(z) = (9z + i)/(z3 + z) 
has a simple pole at i because z2 + 1 = (z + i )(z - i), 
and (3) gives the residue



By (4) with p(i) = 9i + i and q' (z) = 3z2 + 1 we 
confirm the result,



Formula for Residue

 Poles of Any Order. The residue of f(z) at an mth-
order pole at zo is

In particular, for a second-order pole (m = 2),



Residue at a Pole of Higher Order

Example 4
f (z) = 50z/(z3 + 2z2- 7z + 4) 
has a pole of second order at z = 1 because the 
denominator equals (z+4)(z - 1)2. 
From (5*) we obtain the residue



Several Singularities Inside the Contour

 Residue integration can be extended from the case of 
a single singularity to the case of several singularities 
within the contour C. 



 Residue Theorem
Let f(z) be analytic inside a simple closed path C and 
on C, except for finitely many singular points z1 , z2, 
... , zk inside C. Then the integral of f(z) taken 
counterclockwise around C equals 2πi times the sum 
of the residues of f(z) at z1, ... , zk:



Integration by the Residue Theorem. Several Contour

Example 5
Evaluate the following integral counterclockwise 
around any simple closed path such that (a) 0 and 1 
are inside C, (b) 0 is inside, 1 outside, (c) 1 is inside, 
0 outside, (d) 0 and I are outside.



Solution
The integrand has simple poles at 0 and 1, with 
residues [by (3)]



Tugas



Tugas



Thanks
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