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Today’s Outline
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A Seqguence Is a set of things (usually numbers) that
are in order. (z,,2,,25,24.....2,,)

A seriesisasum of asequence of terms.
(81=21,8,=21+25,85=21+2,+Z3, ... , Sy)
A convergent seguence is one that has a limit c.

lim z, = ¢
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A convergent series Is one whose sequence of
partial sums converges.
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Deret Laurent adalah generalisasi dari deret Taylor.

Pada deret Laurent terdapat pangkat negatif yang
tidak dimiliki pada deret Taylor.
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Let f(z) be analytic in a domain containing two concentric
circles C1 and C2 with center Zo and the annulus between
them . Then f(z) can be represented by the Laurent series

¢

: f@zz%&aﬁ+2
n=1

n=0

4., «,(})ﬂ

1) f@= E a,(Z — 2o)"

nN=—00

Laurent’s theorem



Laurent’s theorem




Example 1
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Example 2
Find the Laurent series of z°¢
Solution

From (12) Sec. 15.4 with z replaced by 1/z we obtain
Laurent series whose principal part is an infinite
Series.

Y% \with center O.




Development of 1/(1-2)

(valid if |z] < 1).

(valid if lzl > 1)




Example 4

Find all Laurent series of 1/(z3— z#) with center O.
Solution.

Multiplying by 1/z3 we get from Example 3.
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Example 5 9 £ B

Find all Taylor and Laurent series of f(z) =
with center O.

Solution.
In terms of partial fractions,
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(1) From (a) and (c), valid for |z <1
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(IT) From (c) and (b), valid for 1 < ] < 2,
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(IIT) From (d) and (b), valid for |z] > 2,
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The purpose of Cauchy's residue integration method
IS the evaluation of integrals

jgcf (2) dz

taken around a simple close path C.

If f (z) Is analytic everywhere on C and inside C,
such an integral is zero by Cauchy's integral
theorem (Sec. 14.2), and we are done.



If f(z) has a singularity at a point z =z, inside C, but
IS otherwise analytic on C and inside C, then f(z) has

a Laurent series
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that converges for all points near z =z, (except at z =
Z, I1tself) , in some domain of the form 0<|z — z_|<R.



The coefficient b, of the first negative power 1/(z - z,)
of this Laurent series is given by the integral
formula (2) In Sec. 16.1 with n =1, namely,
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Example 1

Integrate the function f(z) = z* sin z counterclockwise
around the unit circle C.

Solution.
From (14) in Sec. 15.4 we obtain the Laurent series
sin z | | 7 72
f(z) = A :Z—xs—g"!‘g+§—7+—"'

which converges for |z|>0 (that is, for all z |=0). This
series shows that f(z) has a pole of third orderatz=0
and the residue b,= 1/3!. From (I) we thus obtain the

answer - :
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Example 2

Integrate f(z) = 1/(z3 - z*) clockwise around the
circle C: |z] = 1/2.
Solution.
23 -74=73(1-2) shows that f(z) is singularatz=0
and z =1. Now z =1 lies outside C. Hence it is of no
Interest here. So we need the residue of f(z) at 0. We

find it from the Laurent series that converges for
O<|z|<1. This is series (I) in Example 4, Sec. 16.1,



— = —2mi Res f(2) = —2mi




Simple Poles. Two formulas for the residue of f(z)
at a simple pole at z, are
3) Resf(z) = by = lim (z = 20)f(2)
and, assuming that f(z) = p(2)/q(z), p(z,) # 0, and
g(z) has a simple zero at z, (so that f(z) has at Zo a
simple pole, by Theorem 4 in Sec. 16.2),

p(2) p(zo)
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Residue at a Simple pole







Poles of Any Order. The residue of f(z) at an mth-
order pole at z, is
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In particular, for a second-order pole (m = 2),
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Example 4
f(z) =50z/(z3 + 22°- 72 + 4)
has a pole of second order at z = 1 because the
denominator equals (z+4)(z - 1)>.
From (5*%) we obtain the residue
Res f(z) = hIim d

z=1 I | E{:'_,

= d 507

200 g
52 Q.

k:-—l)?ﬁ:ﬂ




Residue integration can be extended from the case of
a single singularity to the case of several singularities
within the contour C.
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Residue theorem



Residue Theorem

Let f(z) be analytic inside a simple closed path C and
on C, except for finitely many singular points z, , z,,
..., Z, Inside C. Then the integral of f(z) taken
counterclockwise around C equals 271 times the sum
of the residues of f(z) at z,, ..., z;:

k
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Example 5

Evaluate the following integral counterclockwise
around any simple closed path such that (a) O and 1
are inside C, (b) O is inside, 1 outside, (c) 1 is inside,
O outside, (d) O and | are outside.
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(a) 2mwi(—4 + 1) = —6mi, (b) =8, (¢c) 27i, (d) 0.




I_lj| :f:_LLRENT SERIES NEAR A SINGULARITY

Expand the given function in a Laurent series that
converges for 0 < |z| < R and determine the precise region
of convergence. (Show the details of your work.)

2. zcos —
g — & z

7-14| LAURENT SERIES NEAR A SINGULARITY

AT z,

Expand the given function in a Laurent series that
converges for 0 < |z — 75| < R and determine the precise
region of convergence. (Show details.)
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15-23| TAYLOR AND LAURENT SERIES

Find all Taylor and Laurent series with center z = z, and
determine the precise regions of convergence.
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— PROBLEM SET 16.3

3-12| RESIDUES

Find all the singular points and the corresponding residues.
(Show the details of your work.)
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14-25| RESIDUE INTEGRATION
Evaluate (counterclockwise). (Show the details.)

sin g
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17. 3‘; tan mzdz, C:lz] =1
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