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Abstract 

Paphies ventricosa is a large surf clam endemic to New Zealand with a patchy 

distribution and whose populations have substantially declined during the past 

century owing to overfishing and habitat degradation. Poor recruitment is now 

evident, and therefore, understanding the larval recruitment of P. ventricosa is key to 

developing and implementing conservation strategies for the species. In order to 

identify factors driving larval recruitment in toheroa, Paphies ventricosa, from Oreti 

Beach, Southland, New Zealand, the southernmost known extent of the species, 

various studies were carried out from 2011 to 2014 in the field and the laboratory 

 In 2011, the reproductive cycle of P. ventricosa was examined over one year in a 

population at Oreti Beach.  In 2012, the spatial variation in reproduction among four 

sites along Oreti Beach, including the site from 2011, was quantified from body 

indices and the histological examination of gonads.  Based on changes in oocyte size, 

gametogenic stage and condition index, we observed a species with a primary 

spawning in spring and a second spawning event in late summer/autumn, with no 

resting phase but minimal reproductive activity over winter. Seasonal reproduction 

corresponded with warmer sea surface temperature and a peak in chlorophyll-a 

concentrations in the region. Small-scale (< 15 km) variation in the timing of 

spawning was also evident along Oreti Beach, with a degree of asynchrony that 

could affect fertilisation success in the population.  These patterns may be an 

important consideration when identifying areas that may be considered for 

conserving source populations. 

Using scanning electron microscopy and light microscopy, fertilisation, and 

embryonic and larval development were observed at three culturing temperatures 
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(12, 16 and 20 ºC). The progress of development follows that previously described 

for the family Mesodesmatidae, with P. ventricosa having a small egg (63–70 mm), 

with an 83–102 mm trochophore stage observed at 15 h, and a 100 mm D-veliger 

larva observed at 22 h at 12 and 16 ºC, and 37 h at 20 ºC. At 20 ºC, the pediveliger 

larval stage was reached by 31 d. While the morphology of the embryonic and larval 

stages of P. ventricosa is typical for bivalves, we show that in this species the shell 

field invagination occurs in the gastrula stage and that the expansion of the dorsal 

shell field occurs during gastrulation, with the early trochophore having a well-

developed shell field that has a clearly defined axial line between the two shell lobes. 

The growth of P. ventricosa larvae cultured at 12, 16 or 20 ºC over 39, 33 and 31 d 

respectively, was faster at warmer temperatures. Using the temperature quotient Q10 

at day 27 to quantify the response to temperature, values of Q10 = 1.82 for the range 

12–16 ºC and Q10 = 2.33 for the range 16–20 ºC were calculated. Larval shape was 

not temperature dependent, suggesting that the smaller larvae found at colder 

temperatures reflect a slowing of larval development, rather than physiological 

damage by temperature resulting in abnormal larval development. 

Temperature is one of the most important environmental factors controlling 

development in marine invertebrates, and thus likely plays a critical in recruitment 

dynamics. The temperature thermal tolerance of fertilisation and early larval 

development in Paphies ventricosa was examined to understand the role of 

temperature in early larval recruitment success.  Fertilisation was examined across a 

thermal gradient of 10.5 to 30 ºC in an aluminium heat block. Fertilisation was 

considered successful by microscopic observance of the breakdown of the germinal 

vesicle, and the appearance of the fertilisation envelope and polar body. The thermal 

tolerance of development was examined across a thermal gradient of 8.0 to 25.5 ºC in 
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an aluminium heat block at 2, 15, 22, and 37 h post-fertilisation.  Fixed samples were 

examined using light microscopy and classified into the developmental stages of 

unfertilised, fertilised, embryonic (2-64 cell embryos), blastula, trochophore, veliger, 

and abnormal.  There was a significant effect of temperature on the fertilisation 

success which ranged from 4.6% to 46.7%.  Fertilisation was > 30% successful 

between 16.0 and 21.0 ºC, and was successful beyond the natural temperature range 

of the species.  P. ventricosa larva were tolerant to temperatures beyond the naturally 

occurring temperatures during spawning/development periods, but were most 

successful around 15 ºC. 

While temperature is important in the recruitment of marine invertebrate larvae, feed 

availability is also crucial, and often thought to be more important in overall larval 

development.  The combined effects of temperature (12, 16, and 20 ºC) and feed 

concentration (1:1 mixed algal diet of Tetraselmis chui and Isochrysis galbana; 

1,000, 10,000, and 20,000 cells ml
-1

) were examined in P. ventricosa larvae over 17 

days. There was found to be significant combine effect of sampling day, temperature, 

and feed concentration on larval shell length.  By 17-d post-fertilisation, the 

combined effect of feed concentration on larvae in each temperature became more 

apparent.  Unlike the results of Chapter 3 when larvae were fed a single species (T. 

chui) diet at 10,000 cells ml
-1

, larvae reared at the colder temperatures had the largest 

shell lengths by 17-d post-fertilisation.  At 17-d fertilisation, larvae at 12 ºC grew 

best when fed 20,000 cells ml
-1

, and 16 and 20 ºC grew best at 10,000 and 1,000 cells 

ml
-1

, respectively. 

Overall, the results of this research fill in many gaps in our knowledge about the life 

history of Paphies ventricosa.  In particular, the reproduction of the local Oreti 

Beach population and the early larval ecology, with implications for both the 
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northern and southern populations, have been explored in depth.  This is the first 

study of its kind for many of its components, including the detailed microscopic 

(both scanning electron and light microscopy) examination and description of the 

early larval stages of toheroa, and the identification of the fertilisation and thermal 

development windows in the species.  In addition, it is the first study in toheroa to 

examine the combined effects of temperature and feed concentration.  The present 

study has greater implications in regards to other bivalves of similar distributions and 

habitats, and provides insight into the conservation and management of the species. 
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Chapter 1 

General Introduction 

Background and taxonomy  

Paphies ventricosa (Gray, 1843) is a bivalve (Veneroida: Mesodesmatidae), endemic 

to New Zealand.  It is a large surf clam, occurring as fragmented populations on 

dissipating beaches.  The species is commonly known by the Maori name toheroa, 

meaning long tongue (Hoby, 1933).  This thesis examines the recruitment dynamics 

of Paphies ventricosa at Oreti Beach, Southland, New Zealand, by examining the 

factors affecting reproduction, fertilisation, and early larval ecology. 

Toheroa were first described by Gray in 1843 as a true gill bearing mollusc 

(Eulamellibranchiata) of the genus Amphidesma (Lamarck, 1818), calling it 

Amphidesma ventricosum (Hoby, 1933; Smith, 2003).  Dawson (1959) suggested that 

Amphidesma was an incorrect classification, belonging to Family Mesodesmatidae 

(Gray, 1840) rather than the current, at the time, Family Semelidae (Stoliczka, 1870), 

and that Donacilla (de Blainville, 1819) replace Amphidesma.  Beu (1971) thought 

that Donacilla should not include large New Zealand Mesodesmatidae, and placed 

them in genus Paphies (Lesson, 1831).  Toheroa are one of four clams belonging to 

the genus Paphies, all of which are large, edible, saltwater clams endemic to New 

Zealand; the others genus members being the pipi (P. australis), northern tuatua (P. 

subtriangulata), and southern tuatua (P. donacina).  Of the four Paphies species, 

toheroa are the largest, with the shell reaching lengths of up to 150 mm.  The current 

taxonomic hierarchy of toheroa is as follows: 
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Kingdom: Animalia 

 Phylum: Mollusca 

  Class: Bivalvia 

   Order: Veneroida 

    Family: Mesodesmatidae 

     Genus: Paphies 

      Species: P. ventricosa (Gray, 1843) 

Distribution 

P. ventricosa is a surf clam, in that it is a clam that lives in the intertidal swash zone.  

It has a broad longitudinal but highly fragmented distribution, ranging between 34º 

31’ S and 46º 20’ S (Figure 1.1A).  Only three significant populations are still 

present – Northland, Wellington, and Southland – and are separated by up to 700 km 

and up to ~ 6 ºC (Figure 1.1B).  Historic populations were also located along both 

Northland coasts, and the southern shore of the Bay of Plenty; a possible historic 

population was located at Moeraki on the South Island. The species is currently 

restricted to high-energy dissipating beaches that are on western-facing fully-exposed 

coasts made of fine sand (250 µm average grain size) (Rapson, 1952; Cassie, 1955).  

Adult size classes (≥ 100 mm) are concentrated at mid-tide levels, sub-adults (40 – 

99 mm) are generally found higher on the beach, while juveniles (< 40 mm) have a 

wider and more even vertical distribution across the entire range, but are most 

abundant higher up the beach (Beentjes & Gilbert, 2006; Beentjes et al., 2006).  

Along the beach, adults are often found aggregated into distinct beds (Redfearn, 

1974). 
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The distribution and habitat characteristics of P. ventricosa are similar to those of 

more commonly known genera, such as the well-studied genus Donax, also of order 

Veneroida.  Similar size class vertical distributions have been reported for D. faba 

(Alagarswami, 1966), D. trunculus (Ansell & Lagardère, 1980); and D. serra 

(McLachlan, 1996).  Donax surf clams are also found on exposed, sandy beaches in 

tropical to temperate latitudes (Ansell, 1983; Donn et al., 1986). In particular, D. 

serra have been observed to populate long, exposed, dissipating sandy beaches 

(Shoeman & Richardson, 2002); to form distinct dense beds along dissipating 

beaches (McLachlan, 1996; Laudien et al., 2003); and to prefer a grain size of 200 to 

300 µm (McLachlan, 1996). Unlike P. ventricosa, and the genus Paphies, Donax 

clams have a global distribution. 
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Figure 1.1. (A) Historic distribution of Paphies ventricosa within New Zealand, with current major 

populations both underlined and in bold (after Redfearn, 1974; Williams et al., 2013). (B) Sea surface 

temperature of New Zealand waters, on December 15, 2012 (1/8º Global HCOM dataset; 

www.ocean.nrlssc.navy.mil). 

http://www.ocean.nrlssc.navy.mil/
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Biology and ecology 

Paphies ventricosa is one of New Zealand’s largest bivalve species.  The shell is 

solid and shaped like a wedge with the umbos closer to the posterior end than the 

anterior end (Figure 1.2).  Adult toheroa are usually found up to 200 mm beneath the 

substratum (Redfearn, 1974), or at depth roughly equivalent to its shell length (Hoby, 

1933; Kondo & Stace, 1995; Various, 2011 pers. comm.).  The toheroa is known for 

its large, muscular, triangular in shape foot, or tongue, which allows for rapid 

burrowing into the sand.  They have been known to dig faster than the person trying 

to dig them up, often when the digger is inexperienced (Various, 2011 pers. comm.).  

The ability to bury themselves so quickly is a defence against predation (Haddon et 

al., 1987).  Like many bivalves, P. ventricosa is an infaunal filter feeder.  They have 

two independent extendable siphons that can either sit flush with the substratum 

(Figure 1.3), or extend slightly above.  The larger inhalant siphon is topped with a 

network of tentacles, or papillae, that act as a primary filter against larger particles 

through which water and food particles are drawn into the mantle cavity for 

processing (Figure 1.3) (Hoby, 1933 Redfearn, 1974).  The smaller exhalent siphon 

ejects deoxygenated water, faeces, and pseudofaeces comprised of non-digestible and 

excess food particles bound in mucous (Figure 1.3).  The siphons and foot are 

usually drawn into the mantle cavity when removed from the substratum, though will 

often be ejected in an exploratory manner to test the substrate.  In situ, the siphons 

will also be withdrawn from the substrate surface when disturbed.  Toheroa have a 

fused ventral mantle edge and the inability to completely close their valves, with a 

constant gape at the posterior end where the siphons emerge from the shell.   

Reproductively, toheroa are gonochoristic broadcast spawners, showing distinct 
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stages of gonad development (Redfearn, 1974; Mandeno, 1999; Smith, 2003; 

Gadomski & Lamare, 2015).  

The wedge shell shape, like that found in toheroa and other surf clams, has been 

noted to have been adapted to provide easy penetration of the sediment and fast 

reburial in the surf clam genus Donax (Ansell, 1983).  Fast reburial and recovery 

when buried too deeply may also be an adaptation to the high energy environments 

in which Donax spp., toheroa and other surf clams are found (Ansell, 1983).  These 

environments are prone to frequent sediment disturbance, with a high potential for 

animal displacement.  A major factor in the success of Donax spp., toheroa, and 

likely other surf clams, is the ability to coordinate their movements to maintain or 

reattain ideal burial depth and position (Ansell, 1983; Kondo & Stace, 1995). 

 

 

 

Figure 1.2. Line drawing of a toheroa with the foot (or tongue; ft), umbo (um), inhalant siphon (is), and 

exhalent siphon (es) extended over a photo of a live adult Paphies ventricosa showing the shell (sh) and 

posterior (post) and anterior (ant) ends. Scale bar = 1 cm. 
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Figure 1.3.  Buried Paphies ventricosa showing inhalant siphon (is), exhalent siphon (es), and 

faeces/pseudofaeces (fp) on Oreti Beach, Southland, New Zealand. 

 

Exploitation and population decline 

Paphies ventricosa populations have decreased substantially over the past century, 

although the reasons for the decline are poorly understood (Williams et al., 2013).  

Substantial overfishing in the first half of the 20
th

 century (Rapson, 1952), habitat 

degradation (Beentjes et al., 2006) and disturbance from beach traffic (Brunton, 

1978; Beentjes et al., 2006) are thought to be contributors.    

Commercial harvest is thought to be a significant contributing factor to population 

decrease in the northern populations.  Commercial harvest of toheroa began in the 

late 1800s, but numbers remained low until commercial canning began in the early 

1900s (Williams et al., 2013).  The first cannery opened in 1904 on Dargaville Beach 

(Figure 1.1A), followed by a second in 1911, with one closing in 1923 having 
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become uneconomic (Williams et al, 2013).  In 1923, a new cannery opened on 

Ninety Mile Beach (Figure 1.1A), and though only open for three months of the year, 

processed almost 10,000 toheroa per day (576,000 per annum) (Williams et al., 

2013).  The Ninety Mile Beach factory closed in 1945 having become uneconomic, 

but briefly reopened between 1962 and 1964 (Williams et al., 2013).  Canning 

peaked in the 1940s, followed by a consistent decline until 1957; production briefly 

resumed in 1960 to a small peak in 1963, before declining again through the rest of 

the decade, until all commercial harvest ceased in 1969 (Williams et al., 2013).  

Commercial production averaged around 20 tonnes per annum, with a record of 77 

tonnes in 1940 (McLachlan et al., 1996).  Toheroa were also briefly canned at 

Muriwai Beach, Wellington beaches, and at Te Waewae Bay (Figure 1.1A) at 

various times for short durations, though nowhere near the scale as at Dargaville and 

Ninety Mile Beach (Rapson, 1952; Redfearn, 1974, 1987).   The majority of toheroa 

commercially harvested were larger than 80 mm in shell length (McKinnon & Olsen, 

1994).  Initially, commercial harvest was managed under licenses issued by the 

Minister of the Marine Department, and only permitted in licensed areas, with 

maximum allowable catch determined by size and condition of a population within a 

licensed area (Williams et al., 2013).  The license system was replaced by 

commercial quotas and restricted harvesting seasons in 1962 (Williams et al., 2013), 

both of which were based on annual surveys.   

Recreational harvest restrictions were first implemented in 1932, and were limited to: 

(a) a daily limit of 80; (b) a size limit of 76 mm; (c) a 2 month closed season 

(October and November); and (d) banning the use of metal implements in digging 

(Williams et al., 2013).  The first closure of a northern beach was in 1940, due to 

increased exploitation (Williams et al., 2013).  In 1955, recreational restrictions were 
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updated to (a) an individual daily limit of 20 toheroa and (b) a closed season of 10 

months (September to June) (Redfearn, 1974).  The use of any implement, other than 

hands, was prohibited in 1962 (Williams et al., 2013).  All Northland beaches were 

closed for the year in 1972, and restrictions were further amended to (a) a daily 

individual limit of 10 toheroa, or daily vehicle limit of 30 toheroa, and (b) a season 

limited to 2 weeks in September (Greenway, 1972).  Recreational harvesting was 

prohibited from Ninety Mile Beach in 1971, followed by Muriwai, Wellington 

beaches, and Dargaville Beach in 1976, 1978, and 1980, respectively (Williams et 

al., 2013).  Southland beaches maintained sporadic one day seasons per year since 

1972, with the last seasons held in 1980 and 1993 at Te Waewae Bay and Oreti 

Beach, respectively (Beentjes, 2010; Williams et al., 2013).  The legal size limit 

increased to the current size of 100 mm in 1979 (Williams et al., 2013).  Currently, 

all toheroa harvest is under customary permiture, with Kaitiaki from local iwi 

managing harvest by issuing permits with the oversight of the Ministry for Primary 

Industries (MPI) (Williams et al., 2013).  There is little information on the extent of 

any illegal harvest. 

 

Population surveys 

One result of the commercial harvest/canning, was estimates of abundance from 

cannery records and subsequent surveys of abundance, which began in the later years 

of commercial harvest, as a means to set limits.  Northland beaches have abundance 

data going back to the 1930s, with intensive surveying from the early 1960s to the 

late 1980s, before resuming in 2000 (Williams et al, 2013).  The surveys show a 

general decreasing trend in population estimates, with greater fluctuations in the 

Ninety Mile Beach and Dargaville populations after the cessation of commercial 
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harvest.  For example, Greenway (1972) estimated the northern population had 

declined from an estimated 10,000,000 individuals in 1964 to an estimated 1,000,000 

in 1971.  Wellington beaches have survey data primarily from the late 1960s and 

early 1970s, with a few estimates going back to 1940 (Williams et al., 2013).  

Though these surveys are fewer in number than the Northland surveys, they do show 

a large population decrease around 1970 (Williams et al., 2013).  Despite the 

cessation of commercial harvesting and recreational open seasons, population 

numbers have not recovered on the North Island. 

Surveys on the southern population at Bluecliffs Beach between 1966 and 2005 show 

a declining population, with numbers decreasing from 2,000,000 to 80,000 adults in 

the early 1990s (Beentjes et al., 2006).  A 2009 survey estimated the adult population 

at Bluecliffs Beach to be only 34,000 adults, ascribing the continuing decline to 

further habitat loss caused by beach erosion (Beentjes, 2010).  The most recent 

survey, concluded in 2014, estimated the adult population to be 8,000 (Berkenbusch 

et al., 2015).   The Oreti Beach population showed natural fluctuations around an 

overall general declining trend in abundance until the mid-1990s, when the 

population appeared to have stabilised (Beentjes, 2010).  The population of adults at 

Oreti Beach has remained around 1,000,000 between 2009 and 2014, while the 

population of juveniles has increased from around 600,000 in 2009 to over 2,000,000 

in 2014 (Berkenbusch et al., 2015). 

 

Research history 

The toheroa has been important historically as a commercial, recreational, and 

customary fishery (Stace, 1991) for generations of New Zealanders.  This, combined 
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with the continued population decline despite a near total ban on harvest over the last 

20 years, has created a push for greater understanding in regards to the biology and 

ecology of the species.   

Previous studies, other than government funded surveys, have focused on population 

dynamics (Rapson, 1954; Cassie, 1955), distribution (Cassie, 1951; Waugh & 

Greenway, 1969; Akroyd et al., 2002), burying behaviour (Haddon et al., 1987; 

Kondo & Stace, 1995), predation (Rapson, 1954; Brunton, 1978; Haddon et al., 

1987), and taxonomy (Dawson, 1959; Beu, 1971).  Hoby (1933) provided the first 

detailed examination of internal structures using extensive histology.  Redfearn 

(1974) summarised the biology of the species, and is a basis for most of the more 

recent studies.  Smith (2003) examined the reproduction and recruitment in toheroa 

from Ripiro Beach, North Island (Figure 1.1A), and was the first to examine 

traditional ecological knowledge regarding spawning.  Mandeno (1999) was the first 

to examine the reproduction and spawning induction of toheroa from Oreti Beach, 

South Island (Oreti Beach; Figure 1.1A). 

 

Research aims 

Given the relatively small, generally decreasing population sizes, and the 

geographically fragmented distribution of the three main populations, recruitment 

has been identified as an important factor in the future of the species (Beentjes et al., 

2006).  Recruitment is influenced by many factors, including fertilisation success, 

temperature, food availability, spatial distribution, and hydrodynamics.  The location 

of the study, Oreti Beach, Southland, was chosen for its proximity to the University 

of Otago, the stability of the population, and interest in the research by local Kaitiaki. 
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The aim of this body of research is to provide a detailed examination of factors likely 

to effect the early recruitment of Paphies ventricosa at Oreti Beach, Southland. 

In Chapter 2: 

Larval recruitment begins with fertilisation, which in turn begins with reproduction.  

Knowing the physical conditions and time when reproduction occurs is the first step 

in understanding the recruitment within a population.  The reproductive stage of 

mature Paphies ventricosa at Oreti Beach is examined in terms of both temporal and 

spatial variation, in order to identify spawning events and how these events relate to 

environmental factors. Histological examination of the gonad is used to describe 

gonad developmental stage, sex ratio, oocyte density, and average oocyte density in 

toheroa.  In addition, the condition index of collected adults is also compared 

spatially and temporally in relation to environmental factors.   

In Chapter 3: 

Once the reproductive physical conditions and timing have been identified, the in situ 

conditions in which embryonic and larval development occur can be deduced.  One 

of the critical physical factors to consider is temperature.   The effect of temperature 

on the rate of larval development at environmentally relevant temperatures to the 

Oreti Beach population (12º, 16º, and 20º C) is examined to estimate how long 

toheroa larvae remain in the water column.  Developmental rates are compared to 

results from Redfearn (1982) at 25º C.  All experimental temperature treatments were 

fed the same single species cultured algae diet.  A detailed description of fertilisation 

and embryonic and larval development is made using light and scanning electron 

microscopy, the first examination of its kind for Paphies ventricosa.  Additionally, a 

new method for spawning induction in toheroa is described.   
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In Chapter 4: 

One of the first things a broadcast egg is exposed to is in situ temperatures.  

Temperature can fluctuate in situ, and larval sensitivity can affect the success of 

larval recruitment to the veliger stage.   However, before larval development can 

occur, fertilisation and successful embryological development must first occur; other 

than predation, temperature is one of the biggest factors limiting this success.  The 

success of fertilisation and early larval development of Paphies ventricosa across a 

thermal gradient, the first study of its kind, is described.  Additionally, a new method 

of lab conditioning for toheroa broodstock is described.  This chapter is in prep to be 

submitted for publication. 

In Chapter 5: 

Even more important than temperature in limiting larval development is food 

availability.  Free-swimming, feeding larvae experience mixed diets of fluctuating 

concentrations and fluctuating temperatures in situ, which can affect development 

and recruitment success to varying degrees, and is critical in understanding 

recruitment in a given species.  The combined effect of temperature and feed 

concentration (cultured, 1:1 mixed algae diet) on the larval development of southern 

Paphies ventricosa is examined.  Understanding the combined effect these factors 

have on larval development is critical in understanding the early recruitment 

processes of toheroa. 
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Chapter 2 

 Reproduction in toheroa (Paphies ventricosa) from 

Oreti Beach, Southland 

This chapter is adapted from: 

Gadomski K. & Lamare, M.  (2015). Spatial variation in reproduction in southern 

populations of the New Zealand bivalve Paphies ventricosa (Veneroida: 

Mesodesmatidae).  Invertebrate Reproduction and Development, 59(2): 81-95. 

Introduction 

Reproduction has been examined in a range of temperate bivalve orders such as 

Veneroida (Newell & Bayne, 1980; Harvey & Vincent, 1989; Gaspar et al., 1999), 

Mytiloida (Wilson & Hodgkin, 1967), Osteroida (Ruiz et al., 1992), and Myoida 

(Zaidman et al., 2012).  This includes a number of bivalve species inhabiting New 

Zealand soft sand environments, such as Ruditapes largillierti (Gribben et al., 2001), 

Panopea zelandica (Gribben et al., 2004) and Zenatia acinaces (Gribben, 2005).  For 

the New Zealand species, reproduction follows relatively well-defined annual cycles 

with spawning occurring within the spring and summer periods. 

Of interest in this study is the family Mesodesmatidae (Bivalvia: Veneroida), in 

which the reproduction has been described in a small number of species including the 

Australian Donacilla cuneata (Roberts, 1984), Asian Coecella chinensis (Kim et al., 

2013), the South American Mesodesma donacium (Peredo et al, 1987; Riascos et al, 

2009; Uribe et al., 2012) and Mesodesma mactroides (Herrmann et al., 2009) and the 

tropical species Atactodea striata (Baron, 1992).  Reproduction in New Zealand 



Chapter 2 

15 

 

mesodesmatids, all in the endemic genus Paphies, has been described for P. 

ventricosa (Redfearn, 1974), P. australis (Hooker & Creese, 1995), P. donacina 

(Marsden, 1999), and P. subtriangulata (Grant & Creese, 1995). 

Most of what is known about P. ventricosa reproduction comes from the North 

Island.  Hoby (1933) found that egg diameter increased from June (59 – 65 µm) to 

October (75 – 80 µm) and that sperm activity increased from “fairly active” at the 

end of July to “extremely active” in October.  Additionally, Hoby (1933) found that 

at the beginning of October, few animals had spawned, but by the end of the month, 

most animals had spawned.  Redfearn (1974) identified four stages of gametogenic 

development in P. ventricosa, classified as early active (EA), late active (LA), 

mature, and partially spawned/spent.  The study found that two to three spawning 

events occurred during the summer season, with an initial maturation period in 

September followed by a second maturation period in December/January when mean 

sea surface temperature (SST) was the highest.  Smith (2003) classified five 

gametogenic developmental stages (EA, LA, ripe, partially spawned/spent, and rapid 

redevelopment) and also observed two ripening/spawning events, one in 

August/September, and a second from December to March.  No published accounts 

exist for reproduction in southern New Zealand, although an unpublished account by 

Mandeno (1999) examined reproduction of the South Island population from a single 

site.  Mandeno (1999) classified southern P. ventricosa into the same four 

gametogenic stages as Redfearn (1974) and identified two major ripening events, one 

in September, and a second in February. 

The current study aims to increase the understanding of the reproduction of P. 

ventricosa, particularly in terms of temporal and spatial patterns at Oreti Beach, 

Southland, New Zealand.  Here, a detailed description of the reproduction of P. 
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ventricosa is made using a condition index (CI) and detailed histological study of the 

gonad over a period of two years at four different sites (one site in 2011, and four 

sites in 2012) at Oreti Beach.  Reproductive activity over the period was compared 

with the physical environmental conditions from the study sites. 

This study is the first to detail the reproductive cycle in southern populations of P. 

ventricosa and provides insight into the spatial in variations in reproduction, both 

across latitude and at smaller scales (i.e. < 5 km).  This information is required for 

the effective management of threatened bivalve species such as P. ventricosa, where 

knowledge of spatial and temporal patterns of reproduction can be used in 

conservation strategies to maximise future recruitment by identifying larval source 

populations (Gaines et al., 2010). 

 

Materials and Methods 

Study site and animal collection 

Reproduction in P. ventricosa was examined at four sites along Oreti Beach, 

Southland, New Zealand.  Oreti Beach is a southwest facing, 26 km long, dissipating 

surf beach on the shores of Foveaux Strait (Figure 2.1).  Each end of the beach is 

bordered by two river/estuary systems – New River Estuary to the south, and Jacobs 

River Estuary to the north. 

To examine reproduction over one year, 20 mature animals were collected from a 

single site (Site B) every month between January 2011 and December 2011 (Figure 

2.1), excluding April.  Sampling was unable to occur in the month of April 2011, due 

to a combination of vehicle failure in the field; a University holiday closure period; 
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inclement weather; and lack of workable tides during daylight hours.  In 2012, the 

spatial and seasonal patterns of reproduction in P. ventricosa along Oreti Beach were 

examined at four sample sites along the length of the beach (Sites A – D) for autumn 

(March), winter (June), spring (September) and summer (December) (Figure 2.1).  

For this study, 20 mature animals were collected per site per season.  All animals 

collected in 2011 and 2012 were greater than 95 mm in shell length, exceeding the 

minimum size of sexual maturity (76 mm shell length) reported by Rapson (1952).  

All collections were made under the appropriate customary permit, and thus all 

extractions were made by hand.  Following extraction, animals were packed in local 

sand and seawater for transportation to Portobello Marine Laboratory (PML), 

Dunedin for dissection within 2 days.  Collections in both years were made at low 

tide, ± 2 h.  
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Figure 2.1. Location of the study sites at Oreti Beach, Southland for 2011 (Site B (46.4790º S, 168.2522º E)) 

and 2012 (Sites A (46.4943º S, 168.2604º E), B (46.4790º S, 168.2522º E), C (46.3935º S, 168.1970º E), and D 

(46.3701º S, 168.1673º E).  
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Individual condition index 

For each animal, live individuals were blotted dry and the total wet mass (Mt) was 

determined to the nearest 0.1 g.  Next, animals were dissected by removing the soft 

tissues from the shell in one piece, and removing residual sand from the mantle 

cavity.  The soft tissues were patted dry and the combined weight of the foot and 

visceral mass was determined (Mv), also to the nearest 0.1 g.  Using these weights 

and methods, as described by Herrmann et al. (2009; after de Villiers, 1975), a CI for 

each individual was calculated as: 

            
  

     
  

Histological preparation 

Since the gonad tissue of P. ventricosa is diffuse within the body, an intact 15 mm 

cross-sectional potion of foot, gonad, and gut was excised adjacent to the anterior 

adductor muscle (AAM) and immediately fixed in 10% neutral buffered formalin (30 

g sodium tetraborate l
-1

)  in seawater.  Following fixation, a section of gonad tissue 

(< 15 mm side length, surrounded by foot tissue to stabilise the gonad tissue) was 

removed and placed into tissue cassettes for tissue processing.  Any portion of the 

crystalline style was removed from the sections, and care was taken to avoid gut 

tissue (as it tends to be full of sand) in the preparations. 

Excised sections were dehydrated via an alcohol series and re-saturated using xylene.  

Sections were embedded in Paraplast
®
 wax (Sigma-Aldrich), sectioned at 7-10 µm 

thickness and mounted on chrome alum gelatine coated slides.  Sections were first 

stained with Meyer’s haematoxylin, counterstained with eosin and mounted using 

DPX Mountant (Sigma-Aldrich). 
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Determination of sex and reproductive stage 

Mounted gonad sections were photographed using a BX51 compound microscope 

fitted with an Olympus Colorview III
TM

 camera, controlled by the software AnalySIS 

LS (Olympus Corporation).  Animals were sexed and assigned to one of four 

reproductive stages (Figure 2.2, Table 2.1), namely early active (EA), late active 

(LA), ripe (RI), and spawned/partially spent (SP).  Definitions of the stages were 

adapted from earlier bivalve studies (Ropes, 1968; Redfearn, 1974; Grant & Creese 

1995; Hooker & Creese, 1995; Mandeno, 1999) to apply to toheroa. 
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Figure 2.2.  Histological sections of female and male Paphies ventricosa gonads.  Female stages: EA (A); LA 

(B); ripe (C); and partially spawned/spent (D).  Aw – Alveoli wall; Pg = protogonia; PO = pre-vitellogenic 

oocyte; VO = vitellogenic oocyte; Lm = lumen.  Male stages: EA (E); LA (F); ripe (G); and partially 

spawned/spent (H).  Aw = Alveoli wall; Sp = Spermatogonia; Sd = Spermatid; S = Spermatozoa; Ct = 

Connective tissue; Lm = Lumen.  See Table 2.1 for detailed descriptions of female and male reproductive 

stage.  Scale bars = 100 µm. 
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Table 2.1.  Description of four reproductive stages assigned to female and male Paphies ventricosa gonad 

sections.  Abbreviations refer to Figure 2.2. 

Stage Females Males 

Early active (EA) The alveoli walls (Aw) are thick and 

contain numerous protogonia (Pg).  

Many pre-vitellogenic oocytes (PO) 

are present, attached to the alveoli 

walls by broad cytoplasmic bases.  

Free vitellogenic oocytes (VO) may 

remain in the lumen (Lm) from the 

last ripe cycle. 

The alveoli walls (Aw) are thin and 

have a layer of spermatagonia (Sg). 

Spermatids (Sd) fill the lumen (Lm).  

A few spermatozoa (S) still remain in 

many lumen centres. 

Late active (LA) The alveoli walls (Aw) are less 

dense.  Vitellogenic oocytes (VO) 

are larger and quite numerous.  

Remaining basal attachments are 

much thinner in pre-vitellogenic 

oocytes (PO). 

The alveoli walls (Aw) are lines with 

spermatagonia (Sg).  Roughly one-

third of the lumen (Lm) is filled with 

spermatids (Sd). Lumen centres are 

loosely packed with radiating bands 

of spermatozoa (S).  Little lumen is 

visible. 

Ripe (RI) The alveoli walls (Aw) are thin and 

may contain protogonia (Pg).  

Vitellogenic oocytes (VO) are at 

their largest and fill the lumen of 

most follicles.  Pre-vitellogenic 

oocytes (PO) are few and are broadly 

attached to the alveoli walls (Aw). 

The lumen (Lm) is mostly filled with 

densely packed spermatozoa (S).  A 

thin layer of spermatids (Sd) fill the 

rest of the lumen space. 

Partially 

spawned/spent (SP) 

The alveoli walls (Aw) are thin and 

contracted, with some partially 

ruptured.  Some pre-vitellogenic 

oocytes (PO) remain attached to the 

alveoli walls (Aw).  Few vitellogenic 

oocytes (VO) may remain in the 

lumen. 

The alveoli walls (Aw) may be 

slightly contracted; have few 

spermatagonia (Sg); and have a 

marbled appearance.  Spermatids 

(Sd) form a thin layer around the 

outer edges of the lumen (Lm).  

Remaining spermatozoa (S) are 

distributed throughout the lumen in 

loosely packed groups. 
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Oocyte diameter and density 

For each female, the size of up to 50 oocytes sectioned through the nucleolus was 

measured as the average of two perpendicular measurements of the longest (d1) and 

shortest (d2) axes (Figure 2.3).  From this, the oocyte size frequency and average 

oocyte size was calculated for each female at each month.  In addition, for each 

month, all oocyte size measurements were pooled to obtain the size-frequency 

distribution.  All measurements were made using the software ImageJ (NIH, USA).  

For each section, the average free oocyte density (per mm
2
 of gonad tissue) was 

estimated for each slide. 

 

 

Figure 2.3.  (A) Cross-section of a vitellogenic oocyte (VO), showing the sectioned nucleus (nu) and 

nucleolus (nl).  (B) Cross-section of an oocyte showing the diameter measurements (d1, d2).  Scale bar = 50 

µm. 
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Environmental measurements 

Sea surface temperature (SST) and salinity at each site was collected using a 

HORIBA U-50 multi-parameter water quality meter (HORIBA, Ltd.) at each 

sampling time in 2011 and 2012.  Regional SST was derived from the monthly 

composite Aqua MODIS SST (11 µ daytime) 9 km dataset 

(www.oceancolor.gsfc.nasa.gov).  Regional averages were calculated from the same 

6 by 6 pixel area (2916 km
2
) for each month, stretching from Colac Bay to Bluff, 

Southland and fully encompassing the study area (Figure 2.4), by determining water 

pixel values using the provided scale.  Site-specific chlorophyll-a (chl-a) data, 

calculated following  the method of Strickland and Parsons (1972), averaged from 

two 2 l water samples collected in the surf, were compared to regional satellite 

derived chl-a concentrations from the monthly composite Aqua MODIS chl-a 

concentration 9 km dataset (www.oceancolor.gsfc.nasa.gov) in both 2011 and 2012.  

Regional averages were calculated as previously mentioned for SST.  Day length was 

obtained for the 15
th

 day of each collection month. 

Statistical analyses 

The sex ratio of P. ventricosa at the four sampling sites (months pooled) and for all 

samples pooled was tested using the Χ
2
-test.  Statistical differences (∂ = 5%) in CI 

(arcsine square-root transformed) between sexes and among months were tested 

using a two-way ANOVA, whilst the average oocyte/ova size (ln(x) transformed) 

and abundance (ln(x) transformed) among months in 2011 were tested using a one-

way ANOVA, with significant pairwise differences between months identified using 

Tukey’s post hoc test.  Due to heterogeneity of variances, a Welch’s test was used to 

assess statistical differences in the CI and oocyte density among sites and months in 

2011.  Differences in the CI and oocyte density among sites and months in 2012 

http://www.oceancolor.gsfc.nasa.gov/
http://www.oceancolor.gsfc.nasa.gov/
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were tested using two-way ANOVA and where a significant interaction between the 

two factors occurred, differences among months within each site were testing for 

normality visually via normal quantile-quantile plots and homoscedasticity was 

confirmed by Levene’s test.  All statistical analyses were carried out using the JMP 

10.0 statistical package (SAS Institute). 
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Figure 2.4. Map showing the area of interest (internal black box) used for the analysis of the Aqua MODIS 

chl-a dataset, with the coastline of New Zealand overlaid (in white) to show the approximate location of the 

study area. The same extent was used in the analysis of the Aqua MODIS SST dataset.. 
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Results 

Sex ratio 

The ratio of males and females sampled over 2011 at Site B (103 males: 93 females) 

was not significantly different (Χ
2
 = 0.5102, p = 0.4751) from 1:1 (Table 2.2).  

Similarly, there was no significant difference in the male:female ratio for the four 

sample sites in 2012 (Table 2.2), or when all four sites were pooled despite a bias 

towards males (304 males: 264 females). 

 

 

Table 2.2.  Number and ratio of male (M) and female (F) Paphies ventricosa from Site B collected during 

2011, and from four sites along Oreti Beach, Southland at four times in 2012.  Χ2-values of the comparison 

between the observed sex ratio and an expected 1:1 (M:F) sex ratio are indicated for each population for 

the pooled populations.  P-values based on 1 degree of freedom. 

 Males Females Ratio (M:F) Χ
2
-values p-value 

Site B (2011) 103 93 1.11 0.510 0.475 

      

Site A (2012) 44 32 1.38 1.895  0.168 

Site B (2012) 41 29 1.41 2.057  0.152 

Site C (2012) 44 35 1.26 1.025  0.311 

Site D (2012) 38 39 0.97 0.013  0.909 

Sites Pooled (2012) 304 264 1.15 2.817  0.093 
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Condition indices 

The average monthly CI during 2011 ranged from 41.6 to 73.7% for males and 

43.9% to 72.6% for females (Figure 2.5).  Two-way ANOVA indicated that there 

was no significant difference in the CI between sexes (F(1, 194) = 1.125, p = 0.291) 

across all months (Sex   Month, F(10, 194) = 1.052, p = 0.402).  When males and 

females were pooled, there was a significant difference in the CI among months (F(10, 

194) = 9.4460, p < 0.001), with a Tukey’s post hoc comparison of means indicating 

that the CI in January (42.9%) and December (43.1%) were significantly lower than 

all other months (Figure 2.5).  The greatest CI occurred in October (73.2%), although 

the difference in the CI from May to October was generally not significant. 

The CI for P. ventricosa collected during 2012 (Figure 2.6) varied significantly 

among sites (F(3, 288) = 20.989, p < 0.001), although the effect of site depended on the 

month of collection (F(9, 288) = 7.582, p < 0.001).  In this respect, there was no 

significant difference among sites in September (F(3, 79) = 2.257, p = 0.063) and 

December (F(3, 78) = 1.271, p = 0.291), with the CI ranging between 32.2 and 45.6% 

during these times.  The CI was greater in March and June, ranging between 47.0 and 

75.1%, and was significantly lower at Site A than Site D in both March (F(3, 72) = 

13.853, p < 0.001) and June (F(3, 72) = 16.22, p < 0.001). 
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Figure 2.5.  Changes is male (- - - -) and female (····) CI, and the index for sexes pooled (●) for Paphies 

ventricosa from Oreti Beach, Southland, between January 2011 and December 2011.  Standard errors are 

given for the CI of pooled data, but error bars for the individual sexes are omitted for clarity.  Significant 

differences in the pooled CI among months are indicated by lower case lettering. 

 

 

Figure 2.6.  Average CI (± SE) for Paphies ventricosa at four sites along Oreti Beach, Southland, during 

four months in 2012.  Significant differences in the pooled CI among sites within each month are indicated 

by lower case lettering. 
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Gametogenic cycle 

For females, histological examination of oogenic stages over a one-year period in 

2011 (Figure 2.7A) indicated that ripe females occurred in all months (ranging from 

9 to 70% of the sample), but were most common in September and October (64 and 

70%, respectively).  There was a smaller proportion of ripe females in February 

(40%), which was followed by a decrease in the proportion ripe to 14% by June.  The 

proceeding EA and LA gametogenic stages were most abundant in the months 

between ripe maxima, making up to 86% (EA and LA pooled) in June and 73% in 

December.  Spawned females were present in May (20%), but were most common 

from September to December, making up 50% of the females in November.  As 

shown in Figure 2.7A, there appears to be two spawning events, indicated by the 

appearance of spawned females in May, and again from September to December. 

For males, histological examination of spermatogenic stages over a one-year period 

(Figure 2.7B) indicated a clearer pattern in the abundance of ripe individuals, with 

peaks in February and March (90 and 93%, respectively) and troughs in October and 

November (100% and 83%, respectively). EA and LA stages were predominant in 

the remaining months, whilst spawned males were present in May and August, but 

most common in December when they made up 44% of males.  As shown in Figure 

2.7B, like the females, there appears to be two main spawning events, indicated by 

the appearance of spawned males in May and again in August, November and 

December.   

Spatial variation in the gametogenic stages was examined at four sites along Oreti 

Beach for four months in 2012 (Figure 2.8).  There was a substantial amount of 

variation among sites for both sexes, particularly in March and December, the time 

likely to be near or following spawning, suggest a degree of spawning variability 
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along Oreti Beach.  For both sexes, a greater degree of gametogenic synchrony was 

evident among sites in June and September, although there was a tendency for 

individuals to be more advanced gametogenically with increasing distance north 

along the beach (i.e. from Site A to Site D).  This is reflected in a typically greater 

proportion of ripe and late active stages, and fewer spawned individuals at Site D in 

most months.  

Oocyte/ova size frequencies 

Oocyte and ova size-frequency distributions over the 2011 sampling period (Figure 

2.9) were often bimodal and generally left-skewed.  During the months of January to 

March, the distributions were relatively stable in shape although there was a 

progression of the distribution into larger size classes, showing the emergence of the 

mature cohort, in preparation of spawning.  A clear change in size-frequency 

occurred in May with a broader distribution (≈ 12 – 55 µm), and a reduction in the 

abundance of larger oocytes and ova.  From June to August, there was a distinct 

bimodal distribution, with a slight broadening of the distribution, to a clear 

emergence of a maturing cohort by September.  In the following three months, the 

distributions decreased in size and breadth, with no oocytes larger than 50 µm by 

November, and shifted from left-skewed to right-skewed in December. 

During the 2011 period, the average oocyte size varied significantly (Welch’s test, 

F(10, 1479.5) = 66.26, p < 0.0001) among months (Figure 2.10A), with two distinctive 

peaks in average size – the first in January/March (37.8 – 38.8 µm) and a second in 

September (36.3 µm).  The smallest average oocyte sizes occurred during the winter 

months when oocyte average size was as small as 29.3 µm, and in December when 

oocyte size was at a minimum (25.8 µm).  Tukey’s post hoc tests indicated 
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significant differences among the months of maximum diameter with those of 

minimum sizes (Figure 2.10A).  



Chapter 2 

33 

 

 

 

Figure 2.1.  Monthly changes in the percentage of (A) female and (B) male Paphies ventricosa in each of 

four gametogenic stages from Oreti Beach, Southland between January and December 2011. 
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Figure 2.2.  The percentage of female (left column) and male (right column) Paphies ventricosa in each 

gametogenic stage from four sites along Oreti Beach, Southland, at four months in 2012. 
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Figure 2.3.  Monthly oocyte size-frequency distributions for Paphies ventricosa from Oreti Beach, 

Southland, between January 2011 and December 2011.  n = number of females sampled/number of oocytes 

measured on each sampling date. 
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Figure 2.4.  (A) Average oocyte/ova size (± SE) and (B) average oocyte density (± SE) at monthly intervals 

for Paphies ventricosa from Oreti Beach, Southland, between January 2011 and December 2011.  The 

sample size for each month is given in Figure 2.9.  Significant differences in the oocyte measurements 

among months are indicated by lower case lettering. 
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Oocyte density 

Oocyte density over 2011 ranged from 13.9 oocytes mm
-2

 in December to 47.7 

oocytes mm
-2

 in July (Figure 2.10B).  Densities were significantly different among 

months (F(10, 92) = 8.605, p < 0.001), with Tukey’s post hoc comparisons indicating 

that densities were significantly higher in July, August, and September than in the 

following three months.  Oocyte densities at the four sites measured in 2012 (Figure 

2.11), varied significantly among sites (ln(x) transformed; F(3, 135) = 7.294, p = 

0.002), although the effect of site depended on the month of collection (Site   

Month; F(9, 135) = 5.239, p < 0.001).  Significant differences among sites were evident 

at all the months: March (F(3, 33) = 5.422, p < 0.001); June (F(3, 32) = 3.166, p = 0.013); 

September (F(3, 32) = 5.542, p = 0.004); and December (F(3, 35) = 5.895, p = 0.003).  

With the exception of March, bivalves at Site B generally had significantly lower 

oocyte densities (Figure 2.11), whilst those at Sites A and C had significantly higher 

oocyte densities in March and December, respectively. 
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Figure 2.5.  Average oocyte density (± SE) for Paphies ventricosa at four sites along Oreti Beach, 

Southland, during four months in 2012.  Significant differences in the oocyte density among sites within 

each month are indicated by lower case lettering. 
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Physical environment 

Average SSTs in the Oreti Beach region of the Foveaux Strait (MODIS satellite 

measurements averaged over a 54 km   54 km area; Figure 2.4) for 2011 ranged 

from 15.4 ºC in February to a minimum winter temperature of 9.6 ºC in July (Figure 

2.12A).  In situ measurements of temperature in the surf zone immediately next to 

the P. ventricosa beds were similar in the spring months, but ≈ 2.3 ºC cooler and 2.1 

ºC warmer than remote measurements for the winter and spring months, respectively 

(Figure 2.12A).  Chl-a concentrations for the same region of the Foveaux Strait 

ranged from 1.14 mg m
-3

 in June to a maximum of 5.13 mg m
-3

 in October, 

representing the peak spring bloom for 2011 (Figure 2.12B).  Day length ranged 

from 15 h 46 min in December to 8 h 36 min in June (Figure 2.12C).  The decrease 

in CI and spawning of P. ventricosa during 2011 was associated with periods of 

changing temperature, namely an ≈ 3 ºC warming from September to December, and 

an ≈ 4 ºC cooling from March to May, whilst the main spawning event in spring 

commenced at the time of the September chl-a concentration peak. 
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Figure 2.6.  SST (A), chlorophyll-a concentration (B) and day length (C) for Oreti Beach during 2011.  SST 

(- - - -) and chlorophyll-a concentration (····) are graphed for both Aqua MODIS satellite estimates and in 

situ measurements (●).  The estimated P. ventricosa spawning periods for 2011 are indicated by shaded 

vertical bars. 
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Discussion 

Gametogenic cycle 

Annual and spatial reproductive biology of P. ventricosa was examined over two 

years along Oreti Beach, a location representing the southernmost known extent of 

the species range.  The only published account of the reproductive cycle in P. 

ventricosa by Redfearn (1974) described an annual reproductive cycle in individuals 

from the species’ northernmost extent, which lacked a resting phase with continuous 

spawning punctuated by 2 – 3 main spawning periods occurring over the warmer 

summer months (December to February).  In this study, P. ventricosa at its southern 

location also had an annual reproductive cycle that lacked a resting phase and two 

main spawning periods, the first in spring and the second in late summer.  

Histological examination of gametogenesis indicated that whilst ripe females were 

found throughout the year, the proportions were greatest in September to November 

(up to 70%) and February (40%), with intervening months dominated by EA and LA 

ovaries (73%).  The male cycle was more pronounced, with ripe testes prevalent (83 

– 100%) in October/November and February/March.  Redfearn (1974) described a 

similar gametogenic pattern in P. ventricosa ovaries, with two to three periods of 

predominantly mature stages over the spring to late-summer period, separated by 

actively growing ovaries with no resting period during the annual cycle.  In contrast 

to the present study, Redfearn (1974) observed spawned individuals throughout the 

year, whilst the Oreti Beach population lacked spawned individuals in the winter and 

mid-summer months. 

An extended spawning period that involves an intervening resting or active period is 

often observed in bivalve species (Sastry, 1979), including other Mesodesmatids 
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such as M. Mactroides (Herrmann, et al., 2009).  Within the wider Paphies genus, 

gametogenesis also follows an annual cycle, with spawning occurring over the 

summer periods for P. donacina (Marsden, 1999), P. australis (Hooker & Creese, 

1995) and P. subtriangulata (Grant & Creese, 1995).  As for P. ventricosa, the latter 

two species have no resting phase during gametogenesis, and for P. subtriangulata 

spawning occurred in spring and late autumn with a mid-summer active period. P. 

donacina may also undergo more than one gametogenic cycle annually.  However, in 

contrast to other Paphies species, it has an inactive resting phase during winter. 

Monthly changes in the oocyte size frequency distributions and associated average 

oocyte size and density further support the suggestion that female P. ventricosa 

undergo a major spawning in spring, followed by active oocyte development leading 

to a second spawning in late-summer.  The unimodal oocyte distributions in P. 

ventricosa are commonly observed in bivalves (Herrmann et al., 2009), with the 

broad oocyte range observed throughout the year reflecting gametogenic processes 

where active and mature females are present throughout the year.  The distinct loss of 

larger oocytes and reduction in oocyte density in the spring and autumn months 

reflected two spawning episodes. 

Condition index 

A CI has been applied to a range of bivalve species to describe reproductive cycles, 

including mesodesmatids where the gonad and visceral tissue are closely associated 

(Herrmann et al., 2009).  For P. ventricosa, the CI varied seasonally, with an ≈ 50% 

decrease in the index in spring, consistent with the major spawning event seen in the 

Oreti Beach population.  The decrease in CI in late-summer when spawning occurred 

was less clear and not significant.  Redfearn (1974) calculated the CI (determined by 

volume) in P. ventricosa over one year, and correlated decreases in CI with spawning 
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in spring and late-summer.  The application of the index to other mesodesmatids has 

been less informative.  For example, both Marsden (1999) and Herrmann et al. 

(2009) showed the CI cycled annually in P. donacina and M. mactroides, 

respectively, but neither study could consistently correlate changes in the CI with 

gametogenic changes associated with spawning events.  Marsden (1999) noted that 

the poor correlation would result from simultaneous changes in somatic tissue, shell, 

and gonad tissue over a reproductive cycle. 

Spatial and temporal variation 

Whilst the annual reproductive cycle of P. ventricosa showed a clear annual pattern, 

there was a degree of spatial variation among the four sites separated by 15 km.  The 

variation was mostly owing to variation during the months associated with spawning, 

March and December, with individuals at the southern end of the beach (Site A) 

more advanced gametogenically, having the higher oocyte densities earlier, and a 

lower CI in March and June following spawning.  This suggests that whilst annual 

cycles are broadly similar among sites, there may be a degree of spawning 

asynchrony along Oreti Beach.  Spatial differences in bivalve reproduction at 

relatively small scales can be marked (Gosling, 2004).  Pecten maximus populations 

around coastal Isle of Man, for example, showed significant variation in gonad 

condition, fecundity, and spawning onset at small horizontal scales of < 5 km (Hold 

et al., 2013), whilst intertidal bivalves can vary reproductively across tidal heights 

within a population (Harvey & Vincent, 1989; Azouzi et al., 2002). 

Latitudinal differences in reproduction can also be pronounced.  Examples are found 

in a range of bivalve species (Sastry, 1979), including Mesodesmatidae, in which 

Uribe et al. (2012) noted significant reproductive asynchrony in populations of M. 

donacium along the 4000 km long Humboldt Current upwelling ecosystem.  P. 
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ventricosa spans 12º of latitude (1350 km), and whilst the cycles are broadly similar, 

the reproductive cycles of P. ventricosa appear more pronounced in the southern 

population compared with those at its northern extent (Redfearn, 1974).  This is best 

demonstrated by the presence of spawned individuals all year round in the north, 

whilst spawned individuals were absent from winter and late-summer months in the 

southern P. ventricosa population.  Other Paphies species show a similar pattern of 

spatial variation, with differences in spawning period in P. subtriangulata (Grant & 

Creese, 1995) and P. australis (Hooker & Creese, 1995) observed among locations. 

Spatial differences in gametogenesis in bivalves are the result of the interaction of 

environmental factors, which includes primarily sea temperature and food supply, as 

well as photoperiod and lunar cycles (Sastry, 1979), whilst spawning episodes have 

been mainly associated with temperature changes, salinity, and light (Sastry, 1979; 

Gosling, 2004).  Temperature is undoubtedly influential in mesodesmatid species 

inhabiting seasonal environments.  Herrmann et al. (2009) correlated the 

reproductive cycle of M. mactroides with seasonal changes in sea temperatures 

which ranges from 11 to 23 ºC annually: Manzi et al. (1985) reported temperature 

influenced the gametogenic cycle in Mercenaria mercenaria; and Peredo et al. 

(1987) discussed sea temperature variation and annual reproduction in M. donacium.  

In this study, P. ventricosa spawning was associated with periods of changing sea 

temperature, namely an ≈ 3 ºC warming from September to December, and a 4 ºC 

cooling from March to May.  Redfearn (1974) discussed reproductive events 

associated with temperature changes, noting spawning probably occurred in 

December/January following a period of gonad maturation over July to November 

when sea temperatures increased from 14 to 20º C, with a second spawning 

following the 22 ºC summer temperature maxima. 
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Temperature variation may also play a role in the latitudinal reproduction of P. 

ventricosa although it is interesting that the annual variation in temperature at both 

locations (8º C) is similar, despite the southern population having a shorter and more 

defined spawning period.  Latitudinal variation in the reproductive cycles of New 

Zealand bivalves has been related to sea temperature.  Gribben et al. (2004) 

concluded that the duration of gametogenesis and spawning period in two 

populations of the New Zealand geoduck, P. zelandica, separated by ≈ 5º of latitude 

was related to seasonal changes in sea temperature, with spring spawning occurring 

when temperature reached 15 ºC in both populations.  For Paphies species, cold 

temperatures have been shown to delay gametogenesis in P. donacina (Marsden, 

1999), and Grant and Creese (1995) suggested that the minimum temperature 

threshold for spawning in P. subtriangulata was 15 ºC.  It is conceivable, therefore, 

that the colder temperatures in the southern population during June to September (≈ 

10 ºC) suppress spawning in the species during the winter period.  Such cold 

temperatures are not experienced by the northern populations, with temperatures 

remaining above 14 ºC throughout the year, during which spawning is continuous. 

It is also possible that other environmental factors influence reproductive periodicity 

in P. ventricosa.  Indeed, for M. donacium, latitudinal variation in reproductive 

cycles has been attributed to a range of factors in addition to temperature, including 

localised upwelling and changes in salinity and runoff (Uribe et al., 2012).  Few 

studies have considered the effects of day length on reproductive cycles in bivalves, 

as it is often difficult to separate from seasonal temperature changes (Gosling, 2004), 

but it is worth noting that seasonal changes in day length are more pronounced at the 

southern location (from 8 h 34 min to 15 h 50 min, seasonally) compared with the 

north (from 9 h 34 min to 14 h 36 min, seasonally).  Furthermore, seasonal changes 
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in chl-a concentrations which tend to me more variable at higher latitudes, have been 

linked to seasonal reproduction in bivalves (Sastry, 1979; Gosling, 2004) and 

specifically in mesodesmatids (Peredo et al., 1987; Herrmann et al., 2009).  Seasonal 

variations in chl-a concentration are greater in southern New Zealand (Murphy et al., 

2001) which ranged from 0.2 t 0.6 mg m
-3

 of chl-a in northern offshore regions 

compared with 0.3 to > 1.0 mg m
-3

 of chl-a in southern waters offshore of Oreti 

Beach.  A chl-a concentration spike (> 5 mg m
-3

) was observed during October, 

coinciding with the main spawning of P. ventricosa.  It is possible, therefore that the 

more pronounced reproductive cycles in the southern population reflect greater 

seasonality when a range of environmental variables are considered. 

For other Paphies species, Marsden (1999) concluded that P. donacina reproduction 

was promoted by warmer summer temperatures, with high food concentrations 

potentially extending gonad development.  Grant and Creese (1995) suggested that 

warmer temperatures promoted spawning both seasonally and tidally, and Hooker 

and Creese (1995) noted spawning during spring coincided with short-term 

temperature fluctuations.  The small-scale spatial variations in spawning that were 

observed along Oreti Beach are unlikely due to temperature variation, but may be 

associated with gradients in food supply.  Densities of P. ventricosa vary 

significantly along Oreti Beach (Beentjes, 2010) and are greatest at the Sites A and B 

in the current study.  P. ventricosa distribution is thought to be controlled by 

phytoplankton abundances (Redfearn, 1974), and the high densities at Sites A and B 

have been attributed to enhanced food supply from the adjacent New River Estuary 

(Beentjes, 2010; Figure 2.2).  It is likely that the animals at these sites are 

nutritionally advantaged and therefore complete gametogenesis and spawning earlier.  

This suggestion would be consistent with observations in bivalves that intra-specific 
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variation in reproductive cycles can be related to small-scale food supply patterns 

(Hold et al., 2013).  Salinity fluctuations can also induce spawning in bivalves 

(Sastry, 1979), and it is equally plausible that individuals at Sites A and B experience 

greater fluctuations in salinity, associated with freshwater output from the estuary 

that could induce spawning episodes. 

 

Conclusions 

P. ventricosa has experienced dramatic declines in population sizes over the past 

century (Greenway, 1972; Beentjes et al., 2006), and the conservation and 

management of the species require an understanding of the reproductive biology of 

the species across a range of spatial scales.  This study is the first to show that whilst 

reproductive cycles are broadly similar in the species across its latitudinal extent, 

southern populations have a more defined spawning period that may be associated 

with greater environmental seasonality.  Smaller-scale variation in reproduction was 

also evident within the Oreti Beach population and may be an important 

consideration in identifying areas for conserving source populations (Gaines et al., 

2010). 
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Chapter 3 

 Embryonic and larval development of toheroa 

(Paphies ventricosa) at a range of temperatures 

This chapter is adapted from: 

Gadomski, K., Moller, H., Beentjes, M., & Lamare, M. (2015) Embryonic and larval 

development of the New Zealand bivalve Paphies ventricosa Gray, 1843 (Veneroida: 

Mesodesmatidae) at a range of temperatures. Journal of Molluscan Studies, 81: 356-

364. 

Introduction 

This study aims to increase the understanding of embryonic and larval development 

in Paphies ventricosa and the role of temperature in the rate of development.  While 

there are brief descriptions of various preveliger developmental stages (Rapson, 

1952; Redfearn, 1974, 1982), a detailed description of early embryonic and larval 

development of and morphology of P. ventricosa is lacking.  Redfearn (1982) used 

scanning electron microscopy (SEM) to describe larval shell development in the 

veliger, noting that P. ventricosa reaches the straight-hinged veliger stage after 24 – 

48 h and completes development to metamorphosis in 22 d at 25º C.  Importantly, the 

development processes described for P. ventricosa by Redfearn (1982) were at 

temperatures associated with the northern limit of the species (i.e. 18 – 25º C), with 

no description available for larvae at temperatures associated with the species’ 

southern range (i.e. 12 – 16º C).  The effects of temperature on bivalve larval 

development have been established in a number of species, with rates typically 

increasing with temperature (Cataldo et al., 2005; Cragg, 2006; Sánchez-Lazo & 
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Martínez-Píta, 2012); it is therefore likely that development processes are slower in 

the colder southern regions. 

Embryonic and larval development in bivalves have been well described (Sastry, 

1979; Kasyanov et al., 1998), with light microscopy techniques contributing to a 

clear understanding of patterns of fertilisation, spiral cleavage (Lambert, 2010) and 

the functional morphology of the blastula, gastrula, and veliger stages (e.g. in Ostrea 

edulis, Waller, 1981).  This technique has also allowed the timing of these key 

developmental milestones to be determined for ecologically and economically 

important species (review by Ackerman et al., 1994).  The use of scanning electron 

microscopy (SEM) and transmission electron microscopy techniques to examine 

early developmental processes in bivalves is less common, but has been used to view 

spermatozoa (Mouëza & Frenkiel, 1995; Mouëza et al., 1999), embryonic and larval 

morphology (Zardus & Morse, 1998; da Costa et al., 2008), ciliation patterns (Eyster 

& Morse, 1984; Chaparro et al., 1999; Mouëza et al., 1999; Mouëza et al., 2006), 

larval shell differentiation (Eyster & Morse, 1994; Mouëza et al., 2006; Aranda-

Burgos et al., 2014), internal anatomy (Zardus & Morse, 1998), and larval shell 

development and hinge morphology (Redfearn, 1982; da Costa et al., 2008; Arellano 

& Young, 2009). 

Here a detailed description of the development of P. ventricosa is made using both 

light microscopy and SEM techniques.  To gain an understanding of the role of 

temperature in embryonic and larval development across the natural thermal range 

(i.e. 12 – 25 ºC), we examine the effects of three environmentally relevant 

temperatures (12, 16, and 20 ºC) on larval growth.  This is done by quantifying, at 

each of the three temperatures: (1) the timing of key development processes using 

developmental schedules; (2) larval size over the free-swimming period; and (3) 
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differences in larval shell morphology (to understand if temperature not only changes 

the pace of development, but also key developmental processes such as shell 

formation).  The measurements from the present study are compared with those 

previously made for P. ventricosa larvae at 25 ºC by Redfearn (1982), and the role of 

temperature on larval development and its implications for larval supply is discussed 

in the species across its geographic range. 

 

Materials and methods 

Animal collection and conditioning 

In October 2012, 20 adult Paphies ventricosa (100 – 110 mm total shell length [TL]) 

were collected from Oreti Beach (46.479º S, 168.252º E), Southland, under the 

appropriate customary permit.  Animals were extracted by hand during low tide and 

transported to PML, Dunedin, in seawater-filled buckets.  In the laboratory, animals 

were placed at densities of 10 individuals per tank into 4 circular flow-through 116 l 

tanks (43.5 cm   58.5 cm, flow 3 l min
-1

) filled to a 35 cm depth with Oreti Beach 

sand.  Oxygen concentrations were maintained through continuous aeration via 

airstones.  Animals were conditioned for spawning by daily feeding with a cultured 

mixed algae diet (Tetraselmis chui, Isochrysis galbana, Pavlova lutheri, Chaetoceros 

muelleri, and Skeletonema marinoi).  At feeding, water flows were turned off, tanks 

were cleaned by siphoning off ≈ 5 l of water, and 5 l of mixed algae were then added 

to each tank to give a final algal concentration of 8 – 10   10
5
cells ml

-1
 in each tank.  

The relative proportions of each algal species depended on the availability of 

cultures.  During feeding, the tanks’ aeration was maintained in order to maintain 

mixing and water quality.  Water flows were restored once the animals had cleared 
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the water, or after 4 h, whichever came first.  Animals were conditioned for ≈ 7 

weeks. 

Spawning 

For spawning, the animals were removed from their tanks and packed into 15 cm 

deep flow-through trays filled with 25 l of flowing seawater and fitted with airstones 

for additional aeration.  Spawning was induced by an intramuscular crystalline 

serotonin (5-hydroxytryptamine [5-HT]) injection, similar to the methods described 

by Gibbons & Castagna (1984) and Hirai et al., (1988).  After turning off seawater 

flows, animals were given an initial 0.4 ml injection of 2 mM solution of 5-HT 

(Sigma-Aldrich) in 1 µm filtered seawater (FSW) into the AAM and placed back into 

the aerated spawning trays.  Injected animals were observed for the start of spawning 

and then given an additional 0.2 ml injection of 2 mM 5-HT into the AAM every 30 

minutes, for up to 90 min post initial injection (up to a total of 1.0 ml injection 

volume) or until a good spawning was observed.  Spawning was allowed to occur 

within the spawning trays and settled eggs were collected.  Sperm were collected 

from spawning males immediately prior to sperm counting and fertilisation. 

Larval rearing 

Eggs were pooled from five females and sperm allocated from three males.  For 

fertilisation, the pooled eggs were mixed in 1.0 l of 0.22 µm FSW and sperm added 

to obtain a final concentration of 10
6
 sperm ml

-1
.  Fertilisation was confirmed by the 

breakdown of the germinal vesicle and the appearance of the fertilisation envelope 

and polar body.  Following fertilisation, the top 70% of the beaker volume was 

poured off into a 5 l beaker, leaving behind any residual debris.  Fertilised eggs were 
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further diluted with 0.22 µm FSW to a density of 15 eggs ml
-1

 and split into nine 500 

ml lidded jars, each filled to a volume of 450 ml. 

The cultures were then reared simultaneously in the same temperature-controlled 

(CT) room at one of three temperature treatments, 12 ºC (± 0.5 ºC, temperature 

controlled water bath), 16 ºC (± 0.5 ºC, CT room ambient temperature), and 20 ºC (± 

0.5 ºC, temperature-controlled water bath).  Each treatment was replicated three 

times.  Water changes and feeding were carried out every third day.  Larvae were 

filtered and rinsed using a larval filter stack fitted with a 50 µm mesh filter.  Cleaned 

larvae were rinsed off the filter into a jar half filled with fresh FSW and topped to a 

volume of 450 ml.  Following the water change, larvae were fed cultured Tetraselmis 

chui at a concentration of 10,000 cells ml
-1

.  The algal concentration was calculated 

immediately before each feeding using a haemocytometer. 

Larval photography and larval morphometrics 

Early development was observed frequently over the first 48 h post-fertilisation in 1 

ml subsamples for the culture, then every third day.  Developmental stages were 

photographed alive, using an Olympus BX51 compound microscope fitted with an 

Olympus Colorview III
TM

 camera, controlled by AnalySIS LS Research software 

(Olympus Corporation).  Larval shell morphometrics measurements of total shell 

length (TL), total shell height (TH), and shell hinge-line length (HL) were taken 

(Figure 3.1I) as described by Redfearn (1982), using the software ImageJ (NIH, 

USA).  For statistical comparison with measurements made by Redfearn (1982), data 

contained in the published figures were digitised using the software DigitizeIt 

(Braunschweig, Germany). 
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Scanning electron microscopy 

Samples were fixed in 10% neutral buffered formalin in seawater and processed in a 

Bal-Tec CPD-030 critical-point drier (Bal-Tec AG), mounted on stubs and sputter 

coated using an Emitech K575X Peltier-cooled high resolution sputter coater (EM 

Technologies).  Mounted samples were photographed using a JEOL 6700F FE-SEM 

field-emission SEM, with the lower secondary detector set to high magnification 

mode.  All sample processing and SEM work was undertaken at the Otago Centre for 

Electron Microscopy (OCEM).  Images were post-processed using GIMP 2.8 

software (GNOME Foundation, USA) to improve contrast and black out the 

background.   

Statistical analyses 

Significant differences in larval shell measurements (TL, TH, HL) over time and 

among temperature treatments were tested in a univariate repeated-measures 

ANOVA, using data on the days where measurements were available for all 

replicates (days 6, 9, 15, 18, 24, and 27).  Tests for sphericity (homogeneity of 

variances among groups) were made using Mauchly’s sphericity test (W) (Mauchly, 

1940) and departures from the assumption of sphericity were corrected using the 

Greenhouse-Geisser correction (є).  A significant interaction between temperature 

and day necessitated a statistical examination of the effect of temperature treatment 

on separate days by one-way ANOVA of the transformed data.  The effect of 

temperature on the relationship between total larval length and larval height was 

examined using an analysis of covariance (ANCOVA) on ln(x) transformed 

measurements.  All statistical analyses were undertaken using the software JMP 10.0 

(SAS Institute, USA). 
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Results 

Embryonic and larval development 

Spawned eggs had an average diameter of 67.1 µm (range 60.1 – 75.1 µm) and 

before fertilisation were often pear-shaped.  A thin vitelline layer of 2.0 – 2.5 µm 

was present, with no jelly coat visible (Figure 3.1A).  The germinal vesicle was 

prominent, measuring 40 µm in diameter.  Following fertilisation, a polar body 

formed within 10 – 15 min, with the first cleavage occurring within 1 h of 

fertilisation (Figures 3.1C, 3.2A).  The cleavage plane along the animal-vegetal axis 

was uneven and resulted in the characteristic two-cell embryo with the larger B 

blastomere and the smaller A blastomere, with the polar body located at the animal 

end of the cleavage plane (Figures 3.1C, 3.2A).  Subsequent cell divisions followed 

spiral cleavage as described for other bivalve embryos, with the second cleavage 

plane perpendicular to the first, resulting in four blastomeres (Figure 3.1D) and the 

third cleavage to the eight-cell stage resulting in four smaller daughter blastomeres 

visible when viewed from the vegetal pole (Figure 3.1E).  Dexiotropic and laetropic 

spiral divisions gave rise to a 75 µm ciliate blastula (Figures 3.1F, 3.2B) by 15 h at 

20º C.  The ciliated blastula retained the polar lobe and had a sparse, uneven cover of 

cilia (length 18 – 20 µm) running almost equatorially around the embryo body, 

marking the initial development of the prototroch (Figure 3.2B).  The formation of a 

blastopore measuring 10.5 µm across was observed in slightly larger blastulae (80 – 

85 µm length), located ventral-posteriorly to the developing prototroch (Figure 

3.2C).  At the same time, the shell field invagination had formed dorso-posteriorly, 

measuring 30 µm in length with a depth of 7 – 8 µm.  Early trochophores (Figure 

3.2E) measuring 83 µm in length have a well-developed shell field 45 µm wide, 

containing a two-lobed shell pellicle of wrinkled periostracum, each lobe separated 
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along the axial line.  Cilia surrounded the shell field, with the cilia of both prototroch 

and telotroch developed.  During the expansion of the shell field, the blastopore was 

displaced ventro-posteriorly.  Early trochophore larvae (Figure 3.2D) measuring 85 

µm in length and had a well-developed prototroch measuring 95 – 100 µm (cilia 

length 23 µm), postoral cilia (cilia length 16 µm) and a telotroch (cilia length 21 

µm).  At the same time, the developing shell field was apparent, lying dorsal to the 

blastopore (Figures 3.2E).  Trochophore larvae observed in samples at 15 h post-

fertilisation were 102 µm in length (Figures 3.1G, 3.2F).  At this stage, larvae had a 

well-developed prototroch with cilia 26 µm in length (Figure 3.2F).  The prototroch 

divided the larval body into the anterior pretrochal region and the posterior post-

trochal region.  The apical plate of the pre-trochal region contained the apical sense 

organ (not clearly visible in this preparation), which gave rise to sensory apical cilia 

extending to 67µm (Figure 3.1G).  At this stage the post-trochal region was almost 

covered by the dorsally-expanding shell rudiment, which tended to flatten the larval 

body laterally.  During this expansion, the mouth was retained in a ventral position.  

Early veliger larvae at 22 h had a fully developed velum 110 – 120 µm in length 

(Figure 3.2G).  Well-developed postoral cilia (21 µm long) and postanal tuft cilia (24 

µm long) were present.  The rudimentary shell had the characteristic D-larval form 

with a straight, dorsal hinge line 65 µm in length (Figures 3.1H, 3.2H).  The 

morphology of the larval-shell hinge (Figures 3.1I, J) was as described by Redfearn 

(1982), with the straight-hinged D-larva having a hinge consisting of up to 25 – 30 

regularly spaced teeth (Figure 3.2I), while at the umbo stage the hinge consisted of  3 

evenly spaced teeth (2.2 µm   3.5 µm) along a hinge line of 68 µm (Figure 3.2I, 

inset). 
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Figure 3.1.  Light micrographs of eggs and embryonic and larval development stages of Paphies ventricosa.   

All were reared at 16 ºC except for (J) and (K), which were reared at 20 ºC.  (A) Unfertilised egg, with 

vitelline membrane (vm) and germinal vesicle (gv). (B) Fertilised egg at 15 min with polar body (pb).  (C) 

Two-cell embryo at 30 min with larger B blastomere (B) and smaller A blastomere (A) dividing along 

animal-vegetal axis (a/v).  (D) Four-cell embryo at 60 min with blastomeres a to d labelled.  (E) Eight-cell 

embryo at 4 h viewed from vegetal pole.  (F) Hatched blastula at 6 h.  (G) Trochophore stage at 16 h, with 

well-developed prototroch (pt), telotroch (tt), and apical tuft (at).  Region of ventral shell field (sf) is 

indicated.  (H) Straight-hinged D-larva at 3 d with prodissoconch I (ds) and extended velum (vl).  (I) 

Straight-hinged D-larvae at 15 d with larval gut (lg).  Larval shell with shell length (TL), shell width (TH), 

and hinge line (HL) dimensions indicated.  (J) Twenty-day umbo larva with larval gut (lg) and retracted 

velum (vl). Posterior (post) and anterior (ant) ends are indicated.  (K) Thirty-day old pediveliger larva with 

foot retracted (ft).  Scale bars (A-I) = 50 µm; (J, K) = 100 µm. 



Chapter 3 

57 

 

 

Figure 3.2.  Scanning electric micrographs of embryonic and larval developmental stages of Paphies 

ventricosa.  All were reared at 16 ºC, except for (H) and (I), which were reared at 20 ºC.  (A) Two-cell 

embryo at 1 h, with larger B and smaller Ablastomere.  Polar body (pb) is located on cleavage plane 

(animal-vegetal axis, a/v) at animal pole.  (B) Blastula at 5 h with cilia of developing prototroch (pt) 

starting to cover equatorial region of embryo.  Polar lobe (pl) still visible at vegetal pole.  (C) Late gastrula 

at 8 h with blastopore (bp) located dorso-posteriorly to developing prototroch (pt), telotroch (tt), and shell 

field invagination (sf) ventro-posterior.  (D) Early trochophore at 15 h; ventral view with well-developed 

prototroch (pt), telotroch (tt), and postoral (po) cilia.  Shell field (sf) just visible on dorsal surface.  (E) 

Early trochophore at 15 h, dorsal view with shell field (sf) consisting of two-lobed shell pellicle of non-

calcified wrinkled periostracum, separated along axial line (al).  (F) Lateral view of late trochophore with 

well-developed prototroch (pt) and telotroch (tt). Apical tuft (at) discernable.  The expanding 

prodissoconch (ds) has laterally flattened the post-trochal region of larva.  (G) Late trochophore at 22 h.  

(H) Early straight-hinged D-larva viewed ventro-laterally.  (G) and (H) show well-developed velum (vl), 

mouth (m), postoral (po) cilia and telotroch (tt).  (I) Late umbo larval shell at 3 d with provinculum (pv) 

and hinge with peg-like teeth (ht) (insert).  Posterior (post) and anterior (ant) ends indicated.  Scale bars 

(A, B, E) = 25µm; (C, D, F-G) = 30 µm; (I) = 50 µm. 
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Temperature and larval development 

Progression through the early embryonic states was temperature dependant (Table 

3.1), with blastulae observed at 15 h post-fertilisation at 20 ºC, while by the same 

time embryos had reached the trochophore stage at 12 and 16 ºC.  D-hinge veliger 

larvae were first observed at 22 h post-fertilisation in the 12 and 16 ºC treatments, 

and at 37 h at 20 ºC.  Later larvae developed more quickly in the warmer treatments, 

with umbo larvae observed at 21, 15, and 12 d post-fertilisation at 12, 16, and 20 ºC, 

respectively.  Larvae reached the pediveliger stage (recognised by a protruding larval 

foot) after 31 d at 20 ºC, but pediveligers were not observed by 39 d in the two colder 

treatments. 

 

Table 3.1.  Time to reach developmental stages for Paphies ventricosa larvae reared in the laboratory at 

three experimental temperatures.  Schedule is based on the time when various larval stages were first 

observed during regular sampling. * Not observed in sample. 

Stage Time to Stage   

 12 ºC 16 ºC 20 ºC 

Polar body formation Not examined 15 min Not examined 

Two-cell 1 h 1 h 1 h 

Four-cell 2 h 1 h 1 h 

Blastula * * 15 h 

Trochophore 15 h 15 h * 

D-hinge larvae 22 h 22 h 37 h 

Umbonate 21 d 15 d 12 d 

Pediveliger Not reached by 39 d Not reached by 33 d 31 d 
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Total larval TL increased from 65 µm at 2 d post-fertilisation to a maximum of 269 

µm after 30 d (Figure 3.3A).  Differences in larval size among temperature 

treatments were most apparent at day 15 when the larvae were 100 µm in length, a 

size at which larvae at 20 ºC progressed from straight-hinge D-larvae to umbo larvae.  

The maximum size of larvae reared at 12 ºC (170 µm) and 16 ºC (196 µm).  A 

repeated-measures ANOVA of change in larval size undertaken on those days when 

measurements were available for all replicates (days 6, 9, 18, 21, 24, and 27) showed 

that, for TL, there was a significant effect of temperature (p < 0.001), although the 

effect of temperature was dependent on day (Temperature   Day, p < 0.001; Table 

3.2A).  A significant (p< 0.05) difference in size among temperatures was first 

apparent on 18 and, by day 27, larvae reared at 20 ºC were significantly larger.  A 

similar pattern of changes in TH was observed among temperature treatments (Figure 

3.3B), with those larvae reared at 20 ºC significantly larger than those at 12 and 16 

ºC.  Larval height increased significantly over time (p < 0.001; Table 3.2B), with the 

height significantly different among temperature treatments.  The effect of 

temperature varied with time (Treatment   Day, p < 0.001) and reflected the 

divergence of height after day 9.  Larval HL (Figure 3.3C) was significantly longer 

in larvae reared at 20 ºC compared with those reared at the colder temperatures (p = 

0.001, Table 3.2C), but there was no significant difference between larvae at 12 and 

16 ºC. 
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Figure 3.3.  Increase in average shell length (A), shell height (B), and hinge-line length (C) (± SE) for 

Paphies ventricosa larvae over a 39-d period at three temperatures (12, 16, and 20 ºC). n = average of three 

replicate jars, with variable number of larvae measured from each replicate at a given time point. 
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Table 3.2.  Repeated-measures analysis of variance (ANOVA) of changes in larval dimensions measured on 

seven days (days 6, 9, 15, 18, 21, 24, and 27) for (A) total larval shell length, (B) total larval shell height, 

and (C) total larval hinge-length of Paphies ventricosa reared at three temperature treatments (12, 16, and 

20 ºC).  Data were ln(x) transformed prior to analysis and tests for sphericity were made using Mauchly’s 

sphericity test. 

(A) Total larval shell length 

Source Df F-ratio p-value 

Between- subjects    

Temperature 2, 6 54.47 0.0001 

Within-subjects    

Day 5, 30 93.65 < 0.0001 

Temperature * Day 10, 30 11.31 < 0.0001 

Mauchly Criterion = 0.003, df  = 14, p = 0.057 

(B) Total larval shell height 

Source Df F-ratio p-value 

Between-subjects    

Temperature 2, 6 55.89 0.0001 

Within-subjects
a 

   

Day 1.77, 10.63 101.89 < 0.0001 

Temperature * Day 3.54, 10.63 11.51 0.0009 

Mauchly Criterion = 0.0003, df = 14, p = 0.003 

a
Degrees of freedom and P-value adjusted by Greenhouse-Geisser, є = 0.354  

(C) Larval shell hinge-length 

Source Df F-ratio P 

Between-subjects    

Temperature 2, 6 76.66 < 0.0001 

Within-subjects
a 

   

Day 2.95, 8.88 315.15 0.042 

Temperature * Day 2.95, 8.85 74.04 0.065 

Mauchly Criterion < 0.001, df  = 14, P < 0.001 

a
Degrees of freedom and p-value adjusted by Greenhouse-Geisser, є = 0.295 
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Temperature and post-trochophore larval shell morphometrics 

The allometric relationships between larval TL and larval TH for larvae from the 

three temperature treatments were generally similar (Figure 3.4), although ANCOVA 

indicated that the slopes of the three groups were significantly different (Temperature 

  TL, F(2, 789) = 8.712, p = 0.0002; Table 3.3).  A closer inspection of the data 

suggests that this result reflects the fact that larvae were only slightly wider for a 

given length as temperatures increased.  This was indicated in the allometric 

equations of the relationship between TL (x) and TH (y), of which the slope 

coefficient increases with increasing temperature (i.e. 12 ºC, y = 0.35x
1.23

; 16 ºC, y = 

0.44x
1.16

; 20 ºC, y = 0.57x
1.09

).  When the data are pooled for the three experimental 

temperatures and compared with the relationship described by Redfearn (1982) for 

larvae reared at 25 ºC (Figure 3.4), the slopes are also significantly different (Source 

  TL, F(3, 1108) = 12.97, p < 0.001; Table 3.3).  The results again reflect the greater 

height of larvae reared at 25 ºC, as indicated by the allometric relation y = 0.92x
0.99

 

for the measurements of Redfearn (1982). 
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Figure 3.4.  Relationship between shell length and shell height for Paphies ventricosa larvae reared over a 

39-d period at three experimental temperatures (12, 16, and 20 ºC) and at 25 ºC (Redfearn, 1982).  

Allometric relationships (y = AxB) are: 12 ºC, y = 0.35x1.23; 16 ºC, y = 0.44x1.16; 20 ºC, y = 0.57x1.09; Redfearn 

(1982), y = 0.92x0.99. 
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Table 3.0.3.   Analysis of covariance (ANCOVA) of total larval shell length versus larval shell height for 

Paphies ventricosa larvae reared over a 39-d period at three experimental temperature treatments (12, 16, 

and 20º C) and at 25 ºC (Redfearn, 1982).  Analyses are presented for (A) differences among the three 

temperatures in the present study and (B) when data of Redfearn (1982) are included.  All data were ln(x) 

transformed for the analysis. 

(A) Differences among three experimental temperatures in the present study 

Source Df F-ratio p-value 

Model 5, 784 6352.8 < 0.0001 

Length 1 21033 < 0.001 

Temperature 2 3.601 0.0152 

Temperature * Length 2 15.375 < 0.001 

 

(B) Comparison among the present experimental treatments and Redfearn (1982) 

Source Df F-ratio p-value 

Model 7, 1104 10029.3 < 0.0001 

Length 1 28015 < 0.001 

Temperature 3 3.696 0.011 

Temperature * Length 3 53.112 < 0.001 
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Discussion 

Development of Paphies ventricosa 

In this study, we have described the development of P. ventricosa through the early 

embryonic to early veliger stages.  The developmental processes resemble those 

previously described for other members of the family Mesodesmatidae, e.g. P. 

australis (Hooker, 1997) and P. subtriangulata (Redfearn, 1987).  Paphies 

ventricosa has a medium-sized egg diameter (67 µm), suggesting limited yolk stores, 

and thus falls within the range typical of other mesodesmatid species with 

planktotrophic larvae (60 – 73 µm).  P. subtriangulata has relatively small eggs (56 – 

61 µm; Redfearn, 1987), as does P. australis (56.3 µm; Hooker, 1997).  For P. 

australis the four-cell and trochophore stages measure 58 and 56.81 µm, respectively 

(Hooker, 1997).  For P. ventricosa, trochophores are larger (83 – 102 µm length) and 

this stage is first observed 15 h post-fertilisation.  Development times to the D-larval 

stage are similar in three of the four New Zealand Paphies species, which reach the 

straight-hinged veliger stage 22 – 37 h after fertilisation in P. ventricosa (Redfearn, 

1982; present study), 24 – 36 h post-fertilisation in P. australis (Hooker, 1997), and 

24 – 48 h in P. subtriangulata (Redfearn, 1987).  There are few published accounts 

of embryonic and larval development in other genera of Mesodesmatidae, but most, 

if not all, have planktotrophic larvae.  Development of the Pacific species 

Mesodesma donacium has been well described; this species has a small egg (50 µm) 

that develops to a blastula of the same size by day 1, to a 70 µm D-larva by day 4, 

and to an umbo larva by day 22 (Carstensen et al., 2006).  Mesodesma mactroides 

from the Atlantic coast of South America releases a large number of eggs (5.3 

million eggs per female) and total larval duration ranges from 2 to 3 weeks (Brazerio 

& Defeo, 1999).  In contrast, the European intertidal species Donacilla cornea has 
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been anecdotally reported as having no planktonic stage with larvae brooded in the 

pallial cavity, although Whiteley et al., (1997) states that the species has a planktonic 

larval stage of unknown duration. 

Development of the pediveliger stage in P. ventricosa is comparatively slow 

compared with other bivalve species.  In a review of bivalve development in 54 

species across a temperature range of 5 – 26 ºC, development to pediveliger in 

marine species was reported to take between 6 and 40 d (Ackerman et al., 1994) at 

20 – 25 ºC, development of P. ventricosa to this stage was complete by 31 to 22 d 

respectively, which is slower than in commonly cultured bivalve species (e.g. 10 – 

20 d in scallop species at the same temperatures; Cragg, 2006).  While development 

rates depend on a range of variables besides temperature, phylogenetic differences 

will also be present and it is possible that slow to moderate development rates are a 

feature of the genus Paphies (i.e. 18 – 22 d in P. australis; 17 d in P. subtriangulata) 

and possibly of the Mesodesmatidae in general (> 2 – 3 weeks in Mesodesma). 

Early larval shell formation 

While the morphology of embryonic and larval stages of P. ventricosa is typical for 

bivalves, there are several points of interest in shell formation in the early 

developmental stages, of which there is a limited understanding elsewhere. Aranda-

Burgos et al. (2014) noted that in bivalve larva there is some uncertainty regarding 

the timing of the shell-gland formation, and whether the process occurs at the 

gastrula stage or later.  For P. ventricosa, the shell-field invagination occurs at the 

gastrula stage, prior to the complete formation of the prototroch (Figure 4.2C).  

Aranda-Burgos et al. (2014) carefully documented the formation of the shell gland in 

Ruditapes decussatus at a similar developmental stage, as reported in Chione 

cancellata (Mouëza et al., 2006) and a number of other bivalve genera (Venus, 



Chapter 3 

67 

 

Ostrea, Crassostrea,  and Mytilus; see Aranda-Burgos et al., 2014).  In contrast, the 

shell field forms at the trochophore stage in Spisula solidissima (Eyster & Morse, 

1984). 

Aranda-Burgos et al. (2014) outlined two contrasting models of shell formation in 

bivalve larvae, one in which the shell-field invagination closes completely during 

shell production and the other in which the shell field only corresponds to the floor of 

the shell-field depression.  The present observations are consistent with the latter 

process, as proposed by Mouëza et al. (2006) and described in R. decussatus by 

Aranda-Burgos et al. (2014).  The expansion of the dorsal shell field in P. ventricosa 

occurs during gastrulation and early trochophore larvae have a well-developed shell 

field with a clearly defined axial line between the two shell lobes. 

The nature of calcification in the larvae was not ascertained in the present study.  In 

the SEM preparations of the early trochophores, the shell field had a wrinkled 

appearance (Figure 3.2E), similar to previous observations, which has been 

suggested to represent noncalcified organic periostracum (Silberfield & Gros, 2006).  

A wrinkled pattern in the shells of P. ventricosa in the straight-hinged D-larval stage 

was observed; similar patterns have been seen in SEM preparations of other bivalve 

larvae, such as Anomalocardia brasiliana (Mouëza et al., 2006) and R. decussatus 

(Aranda-Burgos et al., 2014).  These wrinkles have been attributed to shrinkage 

artefacts associated with dehydration during SEM preparation, and not to a lack of 

calcification, which is likely to be initiated at the trochophore stage (Weiss et al., 

2002) and can occur in the prodissoconch I shell before the formation of the organic 

phase is complete (LaBarbera, 1974). 
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Larval development and temperature 

Embryonic and larval development rate in P. ventricosa was found to be temperature 

dependent within the range tested (12 – 20º C), a response that is typical of bivalve 

larvae (Widdows, 1991; Cragg, 2006).   Examples include increased rate of 

development with temperature in M. edulis (Pechenik et al., 1990), Mytilus 

galloprovincialis (Sánchez-Lazo & Martínez-Pita, 2012), Perna viridis (Manoj Nair 

& Appukuttan, 2003), C. gigas (Kheder et al., 2010), Mytilopsis leucophaeata 

(Verween et al., 2007), Saccostrea glomerata (Parker et al., 2009) and the freshwater 

species Limnoperna fortunei (Cataldo et al., 2005).  While direct comparisons among 

species are difficult, given the range of experimental temperatures and conditions 

used, the magnitude of temperature-dependence observed in P. ventricosa is within 

that observed in other bivalve larvae.  For example, using the temperature quotient, 

Q10 (i.e. the change in growth rate across a 10 ºC temperature difference) to compare 

growth responses to temperature at day 27, we observed a Q10 = 1.82 (from 12 to 16º 

C) and Q10 = 2.33 (from 16 to 20º C).  These values are within the Q10 range reported 

for M. galloprovincialis (Sánchez-Lazo & Martínez-Pita, 2012: Q10 = 0.95 from 20 

to 24 ºC and Q10 = 2.69 from 17 to 20 ºC), M. edulis (Sprung, 1984a: Q10 = 1.9 from 

12 to 18 ºC), Macoma balthica (Drent, 2002: Q10 = 1.5 from 10 to 20 ºC) and Donax 

obesulus (Carstensen et al., 2010: Q10 = 1.19 from 17.8 to 24.6 ºC).  The effect of 

temperature on larval development is best studied in pectinids; in a review by Cragg 

(2006), the relationship between time to metamorphosis and temperature was 

quantified using an Arrhenius plot, from which the positive response to temperature 

(– Ea) was remarkably constant across the family. 

Temperature is thought to be second only to diet in determining larval development 

rates (His et al., 1989; Helm et al., 2004).  Increases in development rate at higher 
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temperatures are related to higher metabolic rates (Rico-Villa et al., 2009) and 

potentially greater assimilation efficiency of algal diets (Manoj Nair & Appukuttan, 

2003).  While a positive developmental response to warmer temperatures is 

universal, optimal development temperatures for bivalve larvae vary among species, 

with ranges of 15 – 20 ºC in C. gigas (Helm & Millican, 1982), 20 – 25 ºC in M. 

galloprovincialis (His et al., 1989), 17 – 20 ºC in M. edulis (Hrs-Brenko & 

Calabrese, 1969), 22 – 26 ºC in S. glomerata (Parker et al., 2009) and 22 ºC for M. 

leucophaeata (Verween et al., 2007).  The optimal temperature for larval growth in 

P. ventricosa could not be established, but TL growth over 39 days was maximal at 

the highest temperature treatment (20 ºC).  Redfearn (1982) observed that pediveliger 

larvae developed after 22 d at 25 ºC, compared with 31 d at 20 ºC in the present 

study, suggesting an optimal temperature of at least 25 ºC. 

Interestingly, while shell growth rates increased with increasing temperatures, the 

appearance of developmental stages among the three experimental temperatures 

suggested the opposite (Table 3.1), with trochophore and D-hinge larvae observed 

earlier at 12 and 16 ºC.  It is difficult to reconcile these observations, although the 

faster development of preveliger stages in colder temperatures is consistent with 

possible acclimation to the colder temperatures experienced by the southern 

populations at the time of spawning (i.e. 12 and 14 ºC).  While there are no examples 

of temperature acclimation in bivalve embryos across latitude (Widdows, 1991), 

examples do exist in other marine invertebrates (Pecorino et al., 2013).  The 

observations could also suggest that the thermal response of the larvae changes with 

developmental stage.  This has been demonstrated in the larvae of S. glomerata 

(Parker et al., 2009).  There is also evidence for changes in the thermal tolerance of 

developmental stages in echinoderm larvae (Hardy et al., 2014; Lamare et al., 2014) 
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and crab zoea and megalops stages (Storch et al., 2011).  Indeed, changes in the 

response to temperature in P. ventricosa were noted during the development of the 

veliger larvae, with no apparent effect of temperature on TL increase until day 15, 

where there was marked divergence in larval size in the 20 ºC treatment.  Day 15 

broadly corresponds with the transition from the straight-hinged to umbo larva, and 

could indicate that developmental progression is associated with changes in 

temperature responses. 

In terms of developmental responses to temperature in P. ventricosa, we note that 

although larval size was temperature dependent, shape was little changed (Figure 

3.4).  This suggests that the smaller size of larvae at colder temperatures simply 

reflects a slowing of larval development, rather than that physiological damage by 

low temperatures results in abnormal or altered development. 

Ecological implications 

The response of P. ventricosa larvae to temperature has implications for spatial and 

temporal recruitment patterns.  The broad latitudinal distribution of the species 

means that larvae develop at 12 – 16 and 18 – 25 ºC in the southern and northern 

populations, respectively.  While other factors will affect larval development in the 

plankton, especially phytoplankton concentration (Pechenik, 1990; Pechenik et al., 

1990) and salinity (Widdows, 1991; Verween et al., 2007; Carstensen et al., 2010), 

the results suggest that spatial differences in sea temperature around New Zealand 

(Greig et al., 1998) could drive important differences in the time to reach settlement, 

ranging from 22 d at 25 ºC (Redfearn, 1982) to > 39 d at 12 ºC (present study).  

Widdows (1991) modelled the number of bivalve larvae reaching settlement as a 

function of development time and noted that, at a typical larval mortality rate of M = 

0.15 d
-1

, there would be an order of magnitude difference in the number of larvae 
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reaching settlement between 22 and 39 d.  Recruitment of P. ventricosa is marked by 

a high degree of temporal variation (Beentjes et al., 2006), and, while the specific 

causes are unknown, sea conditions that influence the development of the larvae will 

clearly be important. 

 



Chapter 4 

72 

 

Chapter 4 

 Thermal tolerance of fertilisation and early larval 

development in Paphies ventricosa 

Introduction 

This study aims to increase the understanding of the temperature sensitivity of 

fertilisation and early larval development in toheroa, Paphies ventricosa, by 

examining thermal windows (8.0 to 30.0 °C) in the development stages of the 

species. Due to the broad latitudinal distribution of the species in New Zealand (see 

Figure 1.1) and the protracted spawning season of the species, populations of P. 

ventricosa are likely to experience contrasting temperature regimes during 

fertilisation and development.  In this respect, at the time of spawning (spring and 

summer) temperatures may range from 12 to 16 ºC in southern New Zealand 

populations (below 45º S), to 18 to 25 ºC in northern populations (above 40º S). 

Temperature is known to be one of the most important environmental factors 

controlling developmental rate and success in marine invertebrates, and thus may 

play a significant role in the recruitment dynamics of many species (Pechenik, 1987; 

O’Connor et al., 2007), of which fertilisation and early larval development play an 

important role.   Therefore, knowing the temperature range across which fertilisation 

and embryonic and larval development can occur is important for understanding the 

role of these processes in the geographic distribution of the species (i.e. if they may 

limit distributions).  Quantifying developmental responses to temperature across a 

thermal window are also important in understanding temporal variations in 
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recruitment success in response to changes in sea temperature that may occur 

between years or over the longer term. 

Previous studies have examined fertilisation and larval development in P. ventricosa.  

Redfearn (1974) reported cleavage occurring at 4 h post-fertilisation at 24 ºC in 

northern P. ventricosa.  Redfearn (1982) later successfully reared northern toheroa 

larvae at 25 ºC to settlement in 22 days.  Smith (2003) reported fertilisation and 

development to veliger in northern P. ventricosa at 19.5, 21.5 and 22 ºC.  Gadomski 

et al. (2015) examined larval development in southern P. ventricosa at 12, 16, and 20 

ºC and found a significant effect of temperature on larval development rate (in terms 

of shell length), with faster larval growth occurring at 20 ºC than at 12 and 16 ºC.  

Gadomski et al. (2015) also provided a detailed description of early embryonic 

development and larval development and morphology at the same temperatures. 

There have been a few studies examining the fertilisation and larval development of 

other Paphies species (P. australis, P. subtriangulata, and P. donacina).  Hooker 

(1997) observed fertilisation at 22 and 28 ºC and larval development through to late-

stage veliger at 20 and 28 ºC in P. australis from the North Island, New Zealand.  

Grant et al. (1998) reported a high mean fertilisation of 95.8 and 97.5% of eggs in P. 

subtriangulata and P. australis, respectively, from the North Island, although 

experimental temperature was not reported.   

While there are no published reports on fertilisation and developmental thermal 

windows within the Mesodesmatidae family, there have been such studies on 

bivalves from other families.  Kennedy et al. (1974a) reported 100% mortality in 

cleaved embryos and trochophores, but not veligers, in the latitudinally widespread 

hard clam Mercenaria mercenaria at 34.9 ºC and higher.  Clotteau and Dubé (1993) 
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found that in the temperate surf clam Spisula solidissima, fertilisation success fell 

below 50% below 6 ºC and above 24 ºC.  In the subtropical Sydney rock oyster, 

Saccostrea glomerata, Parker et al. (2009) reported that, there was a statistically 

significant effect of temperature on fertilisation (p< 0.001) when examined at 18º, 

22º, 26º, and 30º C.  In this species, fertilisation rate increased from ≈ 55% at 18 ºC 

to ≈ 90% at 26 ºC, before falling to ≈ 75% at 30 ºC at ambient pCO2.  Parker et al. 

(2010) found that in the Pacific oyster, Crassostrea gigas, from a subtropical 

location, there was a statistically significant effect of temperature on fertilisation 

when examined between 18 and 30 ºC.  While there was less variation in fertilisation 

rates between 18 and 26 ºC (range ≈ 85 – 93%), fertilisation decreased from ≈ 90% 

at 26 ºC to ≈ 75% at 30 ºC.  Bylenga et al. (2015) found a significant effect of 

temperature on the fertilisation of the Antarctic bivalve, Laternula elliptica, when 

examined across the narrow thermal gradient of -1.6º to 0.4º C. 

While fertilisation thermal windows are not well studied in bivalves, there have been 

studies on other broadcast spawning marine invertebrates.  For example, Pecorino et 

al. (2013) examined fertilisation of the sea urchin Centrostephanus rodgersii from 

both Australia and New Zealand from 10 to 35 ºC and found that at 2 h post-

fertilisation, there was a significant effect of temperature on fertilisation success in 

both the New Zealand individuals, and in the Australian individuals, with a 

significant drop in success occurring at ≈ 29 and 31 ºC in the New Zealand and 

Australian animals, respectively.  Hardy et al. (2014) examined the tropical sand 

dollar, Arachnoides placenta, across a gradient of 14 to 37 ºC, and found that 

temperature had a statistically significant effect on normal development (hatching, 

early blastula, and mesenchyme blastula stages present) at 6 h post-fertilisation.  

Normal development occurred between 17 and 32 ºC, with development at 17 and 32 
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ºC significantly different from 19 to 31 ºC (Hardy et al., 2014).  Delorme and Sewell 

(2013) examined fertilisation in the New Zealand sea urchin Evechinus chloroticus (a 

species with a latitudinal distribution of over 13º) between 15.7 and 24.2 ºC, and 

found that at 2 h post-fertilisation, there was a significant effect of temperature on 

fertilisation success.  Lamare et al. (2014) found that in the crown-of-thorns sea star, 

Acanthaster planci, when examined at 5 h post-fertilisation across a gradient of 19.4 

to 36.5 ºC, there was a significant difference among temperature treatments, with 

cleaved embryos observed from 19.4º to 33.2º C.  Kupriyanova and Havenhand 

(2005) found that temperature had a statistically significant effect on the fertilisation 

success in the serpulid polychaete Galeolaria caespitose when examined from 11 to 

31 ºC.  Therefore, we might expect that the thermal window of the species in terms 

of fertilisation and development falls within this range 

These studies have generally supported the hypothesis that the latitudinal distribution 

of marine invertebrates is closely related to the thermal tolerance limits of adult and 

planktonic stages (Andronikov, 1975; Jones et al., 2009; Sunday et al., 2012).  Adult 

toheroa in the northern and southern populations are known to experience 

temperatures within the range of 12 to 25 ºC during spawning, with extremes outside 

this range possible throughout the year (Gadomski & Lamare, 2015).   

The present study examines the fertilisation success and early larval development 

across a larger thermal gradient for P. ventricosa to identify the thermal window of 

development processes, which is lacking for the species.  This data was used to 

examine three hypotheses, namely: (1) P. ventricosa has a thermal window of 

development that is broader than the environmental temperature range of the species, 

and therefore the distribution of the species is not limited by the effects of 

temperature on fertilisation and early larval development; (2) the geographic 
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distribution of P. ventricosa reflects the thermal window of fertilisation and early 

larval development; and, (3) within the thermal window, temperature has a 

significant effect on embryonic and larval development, which may contribute to 

variability in recruitment associated with spatial and temporal variation in sea 

temperature. 

Materials and Methods 

Specimen collection and spawning 

Adult toheroa were collected in October 2013 from Oreti Beach (46.4790° S, 

168.2522° E), under the appropriate customary permit, and transported to the 

Portobello Marine Laboratory (PML) in buckets of ambient seawater.  At PML, the 

animals were placed in circular flow-through tanks filled with sand from the study 

site and maintained on a diet of All-G Rich (Alltech; Appendix I) slurry (supplied at 

5 g l
-1 

day
-1

) until needed for spawning.  All-G-Rich was used instead of cultured 

algae, as the 10 l day
-1

 required per broodstock animal (pers. comm., 2013) was 

beyond the production capabilities of PML. Animals were spawned in 15 cm deep 

trays filled with 25 l of 5 µm filtered seawater and maintained at a temperature of 

15.5 °C (± 0.5 ºC).  Spawning was induced by an injection of a 2 mM solution of 

crystalline serotonin (5-hydroxytryptamine, Sigma Aldrich) into the anterior 

adductor muscle (Mandeno, 1999).  Details of spawning are further described in 

Gadomski et al. (2015; see Chapter 3).   

Thermal window of fertilisation 

The thermal window of fertilisation was studied using a thermal gradient created in 

an aluminium heat block (791   172   66 mm) that had 48 circular wells (32   56 
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mm) milled into the block.  The wells were arranged in 4 rows of 12 wells, with each 

row representing a replicated 12-temperature thermal range (Figure 4.1).  Two 

JULABO F18 thermal baths fitted with JULABO PC thermostats (JULABO GmbH, 

Germany) controlled the heat block temperatures at each end.  The baths were filled 

with ≈ 15 l of glycol solution (1:2 glycerine to water by weight, plus 200 ml ethanol), 

and set to the temperature extremes of 4 and 42º C, creating a thermal gradient within 

the block of temperature treatments ≈ 10.5, 12.5, 14.3, 16.0, 17.5, 19.5, 21.0, 22.5 

24.3, 26.0, 28.0, and 30.0 º C.  All temperature treatments were accurate to within ± 

0.5 ºC across the four replicates.  The heat block was loaded with 48 glass vials (40 

ml volume, 29   79 mm) filled with 0.22 µm filtered seawater and were allowed to 

come up to temperature.  The seawater filled vials were loaded with unfertilised eggs 

(pooled from 3 females) to a final concentration of 30 eggs ml
-1

, and were 

preconditioned at treatment temperature for 30 min prior to insemination.  Eggs were 

then fertilised with 25 µl of sperm solution (1.56   10
6 

sperm ml
-1

, from one male) to 

give a final sperm concentration of 10
4
 sperm ml

-1
 and an egg:sperm ratio of 1:30 

(see Sprung & Bayne, 1984).  Samples were taken 1 h post-fertilisation and fixed to a 

concentration of 10% neutral buffered formalin.  Fixed samples were examined using 

an Olympus BX51 compound light microscope fitted with an Olympus Colorview 

III
TM

 camera and controlled by AnalySIS LS software (Olympus Corporation).  

Successful fertilisation was determined by the breakdown of the germinal vesicle, 

and the appearance of the fertilisation envelope and polar body (Figure 4.2).  Based 

on appearance when viewed microscopically, individuals were classified as 

unfertilised, fertilised, or abnormal (Figure 4.3). 
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Thermal window of development 

The thermal tolerance of development was studied using the thermal gradient as 

described in the previous section.  The water baths were set to the temperature 

extremes of 4 C and 30 ºC, creating a thermal gradient consisting of 12 temperature 

treatments of ≈ 8.0, 9.5, 11.4, 12.9, 14.6, 16.2, 17.8, 19.2, 20.4, 22.4, 23.8, and 25.5 

C.  Pooled eggs from 3 females were mixed with three drops of sperm solution (2.7 

  10
5
 sperm ml

-1
, pooled from 5 males) and allowed to fertilise.  Fertilisation rate 

was determined to be greater than 25%.  After 1 h of fertilisation, 48 glass vials (40 

ml volume, 29   79 mm) were loaded with eggs at a concentration of 10 fertilised 

eggs ml
-1

, and incubated in the heat block.  A reference sample was taken from each 

vial 1 h after the vials were placed in the heat block (2 h post-fertilisation), with 

additional samples taken from each vial at 15, 22, and 37 h post-fertilisation.  All 

samples were fixed to a final concentration of 10% neutral buffered formalin in 

seawater. Fixed samples were examined using the same microscope set up described 

in the previous section.   Individuals were classified into one of seven developmental 

stages, namely unfertilised, fertilised, embryonic (2-64 cell embryos), blastula, 

trochophore, veliger, and abnormal (Figure 4.3). 
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Figure 4.1 Schematic of heat block used to create a thermal gradient for examining fertilisation and 

development rates, where T = temperature, and R = replicate.  Arrows indicate direction of water flow.  

Not to scale. 
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Figure 4.2. (A) Light micrographs of an unfertilised egg showing the germinal vesicle (gm).  (B) A fertilised 

egg, showing the polar body (pb), and the fertilisation envelope (fe).  Fixation artefacts are present in the 

form ofdebris (de) adhering to the egg.  Scale bars = 50 µm. 
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Figure 4.3.  A range of normal (top and middle row) and abnormal (bottom row) embryonic and larval 

development in Paphies ventricosa, showing the stages of unfertilised, fertilised, 2-cell embryo, 4-cell 

embryo, blastula, trochophore, and d-hinge veliger.  Scale bar = 100 µm. 
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Statistical Analyses 

Statistically significant differences (∂ < 0.05) in fertilisation success (fertilised and 

embryonic stages pooled) among temperatures at 1 h post-fertilisation were tested 

using one-way ANOVA.  One-way ANOVA was also used to test for significant 

differences (∂ < 0.05) in the proportion of developmental stages present between 

twelve experimental temperatures at 2, 15, 22, and 37 h post-fertilisation.  When data 

did not meet the assumption of homogeneity of variances, a Welch’s test was used 

with the ANOVA (Quinn & Keough, 2002) when possible.  The sample for 16.2 ºC 

was excluded from all analyses at 2 h post-fertilisation due to sampling error, and 37 

h post-fertilisation, the sample for 8.0 ºC was excluded from analysis due to 0% 

recovery.  Percentage data were arcsine square root transformed prior to analysis.  

For transformed fertilisation data, homoscedasticity was tested using Levene’s test.  

When unequal variances were detected, the Welch’s test was used.  Significant 

differences among temperature treatments were identified using Tukey’s HSD post 

hoc test.  All statistical analyses were performed in JMP 12 (SAS Institute). 

 

Results 

Thermal window of fertilisation  

One-way ANOVA indicated that there was a statistically significant effect of 

temperature on the fertilisation success of Paphies ventricosa (F(10, 33) = 4.017, p = 

0.0012) (Figure 4.4).  Fertilisation success ranged from 4.6% at 28.0 ºC to 46.7% at 

19.5 ºC, with fertilisation greater than 28% between 12.5 and 21.0 ºC.  Fertilisation 

outside of this range was less than 15%.  Tukey’s post hoc test showed that 21.0, 
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24.3, and 26.0 ºC were statistically significantly different from 12.5 ºC.  The 

temperature of 17.5 ºC was removed do to sampling error. 

 

 

 

Figure 4.4. Average fertilisation success (± SE) 1 h post-fertilisation for Paphies ventricosa at a range of 

experimental temperatures.  Significant differences among temperatures are indicated by lower case 

lettering.. N = 4 for each data point. 
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Thermal tolerance of development stages 

2h post-fertilisation 

At 2 h post-fertilisation (Figure 4.5), there was a statistically significant difference 

among temperature treatments for all stages present – unfertilised (F(10, 33) = 19.474, 

p < 0.0001), fertilised (F(10, 33) = 21.349, p < 0.0001), embryonic (F (10, 13.121) = 

30.703, p < 0.0001), and abnormal (F (10, 33) = 3.088, p = 0.007) (Table 4.1).   

Unfertilised eggs ranged from 0.7 to 54.8% of the sample across the thermal 

gradient, but were more prevalent (> 20%) at the lower temperatures of 8.0 to 11.4 

ºC (Figure 4.5).  Post hoc tests indicate that 12.9 to 25.5 ºC are statistically different 

from 8.0 and 9.5 ºC, but not from 11.4 ºC; 8 and 9.5 ºC are statistically different from 

12.9 to 23.8 ºC, while 9.5 ºC is also statistically similar to 11.4 ºC.  Fertilised eggs 

ranged from 6.5 to 57.2% of the sample across the gradient and comprised > 25% of 

the sample from 17.8 to 25.5 ºC (Figure 4.5).  Post hoc tests indicate that 17.8 to 25.5 

ºC are statistically different from 8.0 to 14.6 ºC and that 11.4 ºC is statistically 

different from 8.0 and 22.4 to 25.5 ºC but similar to 9.5 and 12.9 to 20.4 ºC.  

Embryos were present at all temperatures, ranging from 28.4 to 78.8% of the sample, 

but were most prevalent (> 50%) between 12.9 and 17.8 ºC (Figure 4.5).  Post hoc 

tests indicate that 12.9 and 14.6 ºC are statistically different from all other 

temperatures and that 8.0 and 17.8 ºC are statistically different from each other, but 

statistically similar to 9.5, 11.4, and 19.2 to 25.5 ºC.  Abnormal development 

occurred across all temperatures (2.7 – 13.2%), and was higher (>10%) between 8.0 

and 14.6 ºC (Figure 4.5).  Post hoc tests indicate that 9.5 and 11.4 ºC are statistically 

different from 25.5 ºC, but similar to all other temperatures. 
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Table 4.0.1.  One-way ANOVA of the percentage of Paphies ventricosa developmental stages present at 2 h 

post-fertilisation.  All data were arcsine square root transformed prior to analysis.  Instances where the 

Welch’s test was used are indicated by *. 

Developmental Stage Df F-ratio
 

p-value 

Unfertilised  10, 33 19.474 < 0.0001 

Fertilised  10, 33 21.349 < 0.0001 

Embryonic* 10, 13.121 30.703 < 0.0001 

Abnormal 10, 33 3.088 0.007 

 

 

 

 

Figure 4.5. Average percentage of developmental stages present (± SE) at 2 h post-fertilisation in Paphies 

ventricosa across a thermal gradient.  Significant differences are indicated by lowercase lettering.  N = 4 for 

each data point. 
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15 h post-fertilisation 

 At 15 h post-fertilisation (Figure 4.6), there was a statistically significant difference 

among temperature treatments at all stages; blastula (F(11, 36) = 2.102, p = 0.046); 

trochophore (F(11, 36) = 6.858, p < 0.0001), and; abnormal (F(11, 36) = 4.555, p < 0.001) 

(Table 4.2).  Blastulae ranged from 22.5 to 83.3% of the sample, but comprised > 

75% of the sample at 17.8 and from 20.4 to 23.8 ºC (Figure 4.6).  Post hoc tests 

indicated that all temperatures were statistically similar to each other.  Trochophores 

were only found between 8.0 and 19.2 ºC, where they comprised from 5.4 to 77.5% 

of the sample, but only made up > 75% of the sample at 14.6 ºC (Figure 4.6).  Post 

hoc tests indicate that 14.6 ºC is statistically different from all temperatures, except 

11.4 and 16.2 ºC, and that 20.4 to 25.5 ºC were statistically different from 11.4 and 

14.6 ºC.  Abnormal development was only found at 8.0, 9.5, 16.2, and 25.5 ºC, with 

higher percentages (> 25%) at 8.0 and 9.5 ºC than at 16.2 and 25.5 ºC (< 15%) 

(Figure 4.6).  Post hoc tests indicate that 8.0 and 9.5 ºC are statistically similar to 

16.2 and 25 ºC, but different from all other temperatures, and that 16.2 and 25.5 ºC 

are statistically similar to all temperatures. 
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Table 4.0.2. One-way ANOVA of the percentage of Paphies ventricosa developmental stages present at 15 h 

post-fertilisation.  All data were arcsine square root transformed prior to analysis. 

Developmental Stage Df F-ratio
 

p-value 

Blastula 11, 36 2.102 0.046 

Trochophore 11, 36 6.858 < 0.0001 

Abnormal 11, 36 4.555 < 0.001 

 

 

 

 

Figure 4.6. Average percentage of developmental stages present (± SE) at 15 h post-fertilisation in Paphies 

ventricosa across a thermal gradient.  Significant differences are indicated by lowercase lettering.  N = 4 for 

each data point. 
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22 h post-fertilisation 

At 22 h post-fertilisation (Figure 4.7), there was a statistically significant difference 

among temperature treatments for the veliger (F(11, 36) = 8.064, p < 0.0001) stage 

(Table 4.3).  However, there was no significant difference among temperatures for 

the blastula (F(11, 36) = 1.307, p = 0.261), trochophore (F(11, 36) = 1.544, p = 0.159) and 

abnormally developed (F (11, 36) = 0.853, p = 0.591) stages (Table 4.3).  Blastulae 

comprised from 8.3 to 75% at all temperatures except 14.6, 17.8, and 19.2 ºC, where 

blastulae were not present (Figure 4.7).  Blastulae comprised 50% or more of the 

sample at 8.0 and 25.5 ºC.  Trochophores were present between the temperatures of 

9.5 and 19.2 ºC (Figure 4.7).  Trochophores comprised less than 15% of the sample 

between 9.5 and 16.2 ºC, while 17 and 19.2 ºC were comprised of over 35% of 

trochophores.  Veligers were only present from 12.9 to 17.8 ºC, where they 

comprised more than 40% of the sample, except at 17.8 ºC, where they comprised 

less than 15% of the sample (Figure 4.7).  Post hoc  tests indicate that 14.6 ºC is 

statistically different from 8.0 to 11.4 and 17.8 to 25.5 ºC; 8.0 to 11.4 and 19.2 to 

25.5 ºC are statistically different from 14.6 and 16.2 ºC; and that 12.9 ºC is 

statistically similar to all temperature treatments.  Abnormal development occurred 

from 9.5 to12.9 ºC and at 16.2 ºC, and was highest at 9.5 and 11.4 ºC where it 

comprised 15% or more of the sample. 
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Table 4.0.3.  One-way ANOVA of the percentage of Paphies ventricosa developmental stages present at 22 

h post-fertilisation.  All data were arcsine square root transformed prior to analysis. 

Developmental Stage Df F-ratio p-value 

Blastula 11, 36 1.307 0.261 

Trochophore  11, 36 1.544 0.159 

Veliger 11, 36 8.064 < 0.0001 

Abnormal
 

11, 36 0.854 0.591 

 

 

 

 

Figure 4.7. Average percentage of developmental stages present (± SE) at 22 h post-fertilisation in Paphies 

ventricosa across a thermal gradient.  Significant differences are indicated by lowercase lettering.  N = 4 for 

each data point. 
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37 h post-fertilisation 

At 37 h post-fertilisation (Figure 4.8), there was a statistically significant difference 

among temperature treatments for the blastula (F(10, 33) = 2.778, p = 0.013), 

trochophore (F(10, 33) = 3.819, p = 0.002), and veliger (F(10, 33) = 5.918,  p < 0.0001) 

stages (Table 4.4).  There was no statistically significant difference among 

temperature treatments for abnormal development (F(10, 33) = 0.920, p = 0.527) (Table 

4.4).  Blastulae were present in the temperatures of 11.4, 16.2, and 20.4 ºC at 25% or 

less of the sample and at 25.5 ºC at 75% of the sample (Figure 4.8).  Post hoc tests 

indicated that 25.5 ºC was statistically similar to 11.4, 16.2, and 22.4 ºC but 

statistically different from all other temperatures, while 11.4, 16.2, and 22.4 ºC were 

statistically similar to all other temperatures.  Trochophores were found at 25% or 

more of the sample at 9.5, 22.4, and 23.8 ºC, and at a much lower percentage (2.5%) 

at 17.8 ºC (Figure 4.8).  Post hoc tests indicate that 20.4 ºC is statistically similar to 

9.5 and 23.8 ºC but statistically different to all other temperatures.  Veligers were 

present between 11.4 and 22.4 ºC, comprising 75% or more of the sample from 12.9 

to 19.2 ºC and 25% or less of the sample at 20.4 and 22.4 ºC (Figure 4.8).  Post hoc 

tests indicate that 16.2 and 17.8 ºC are statistically similar to 12.9, 14.6, and 19.2 to 

22.4 ºC and that 12.9, 14.6, and 19.2 to 22.4 ºC are statistically similar to all 

temperatures.  Abnormal development was only observed at 22.4 and 25.5 ºC, at 12.5 

and 25% of the sample, respectively (Figure 4.8).   
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Table 4.0.4. One-way ANOVA of the percentage of Paphies ventricosa developmental stages present at 37 h 

post-fertilisation.  All data were arcsine square root transformed prior to analysis. 

Developmental Stage Df F-ratio
 

p-value 

Blastula 10, 33 2.778 0.013 

Trochophore  10, 33 3.819 0.002 

Veliger 10, 33 5.918 < 0.0001 

Abnormal 10, 33 0.920 0.527 

 

 

 

 

Figure 4.8. Average, percentage of developmental stages present (± SE) at 37 h post-fertilisation in Paphies 

ventricosa across a thermal gradient.  Significant differences are indicated by lowercase lettering.  N = 4 for 

each data point. 
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Discussion 

Temperature is one of the most important factors controlling larval development in 

marine invertebrates, thus playing an important role in the recruitment of many 

species (Pechenik, 1987; Pechenik et al., 1990; O’Connor et al., 2007).  It has been 

suggested that the lower range for normal development does not limit distribution in 

some marine invertebrates (Sewell & Young, 1999).  If then, the upper temperature 

range for normal development, including fertilisation, is the limiting factor for a 

species’ distribution, the development and distribution of Paphies ventricosa could 

be affected by the ongoing trend of ocean warming. 

Thermal tolerance of fertilisation in Paphies ventricosa 

In this study, the fertilisation success of Paphies ventricosa from southern New 

Zealand was examined across a thermal gradient of 19.5 ºC, (ranging from 10.5 to 

30.0 ºC), the first study to do so.  The detected fertilisation tolerance in P. ventricosa 

encompasses temperatures at which fertilisation has been known to occur, i.e. 12 to 

25 ºC (Redfearn, 1974, 1982; Smith, 2003; Gadomski et al., 2015).  When compared 

to other Paphies species, such as the findings by Hooker (1997), fertilisation was 

successful at temperatures observed in P. australis (Hooker, 1997), although not at 

the same rate of success as P. subtriangulata (95.8%) and P. australis (97.5%) 

(Grant et al., 1998).  A possible cause for the comparatively low fertilisation rate in 

the present study is reduced egg quality in late season spawning – there is the 

possibility that broodstock naturally spawned in their tanks prior to induction, and 

did not have adequate time to fully recondition themselves.  In some previous 

spawning attempts, fertilisation rates of over 80% have been achieved. 
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While a direct comparison to other species is difficult, the fertilisation window of 

thermal tolerance resembles that of bivalves from other families – in that it is most 

successful within the natural temperature range of a species.  The surf clam, Spisula 

solidissima is common along the western Atlantic coast from the Gulf of St. 

Lawrence, Canada in the north, to South Carolina, USA in the south.  In animals 

from a Canadian population from Îles de la Madeleine, Quebec, fertilisation occurred 

between 0 and 32 ºC, though was less than 50% successful below 6 ºC and above 24 

ºC (Clotteau & Dubé, 1993).  For the Gulf of St. Lawrence, open water average sea 

surface temperatures range from below 0 ºC in March to over 15 ºC in August and 

can reach summer temperatures of up to 20 ºC in coastal areas (Galbraith et al., 

2013).  When considering that, for practical purposes, it is desirable to raise embryos 

at the highest possible naturally occurring temperatures for a species to accelerate 

development, the laboratory temperature range of 15 to 20 ºC proposed by Clotteau 

& Dubé (1993) as an ideal range for fertilisation and early embryonic development in 

northern S. solidissima is in line with the natural temperature range of the species 

(Galbraith et al., 2013).   

The coot clam Mulinia lateralis, like Paphies ventricosa, has a broad latitudinal 

distribution along the Western Atlantic, ranging from New Jersey, USA to the 

Yucatan Peninsula, Mexico in the Caribbean Sea.  Calabrese (1969) examined the 

thermal window of fertilisation in M. lateralis from 7.5 to 34.5 ºC, and found a 

drastic change in fertilisation success between 10.0 and 12.5 ºC, when it jumped 

from 17.3% to 60.9% success, respectively.  Fertilisation success was over 90% 

successful between 17.5 and 25.0 ºC, with the highest success rate at 20.0 ºC 

(Calabrese, 1969), likely regularly experienced near the southern end of its natural 

distribution. 
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The general trend of higher fertilisation success at temperatures close to a species 

natural range across a thermal gradient has been observed in the oysters Saccostrea 

glomerata and Crassostrea gigas from Australia (Parker et al., 2009, 2010).  C. 

gigas has both a broad, latitudinal distribution (from Japan to the top of the South 

Island of New Zealand) and temperature tolerance from below freezing to over 30 

ºC, with spawning generally occurring above 20º C.  Parker et al. (2010) found that 

C. gigas had optimal levels of fertilisation between 18 and 26 ºC, with levels 

dropping (to ≈ 75%) at 30 ºC.  This thermal fertilisation window is in line with the 

natural temperature range of the species.  S. glomerata, while endemic to Australia 

and the North Island of New Zealand, has been reported as far north as Southern 

Japan (Willan et al., 2009), giving it a narrower latitudinal distribution than C. gigas 

in generally warmer waters.  Parker et al. (2009) found that in S. glomerata 

fertilisation was less successful at 18 ºC (< 55%) than at 22 to 30 ºC (> 65%), with 

26 ºC being the optimal temperature for fertilisation success (89%).  The slight 

skewing of the success of thermal window of fertilisation to the right for C. gigas 

and to the left for S. glomerata is in line with the species respective latitudinal 

distributions. 

The Antarctic geoduck, Laternula elliptica, has a circumpolar distribution with a 

natural temperature range of less than -1.5 ºC to 1.7 ºC (Ahn & Shim, 1998) and is 

sensitive to elevated temperatures – with reduced reburying capacity at 2.5 ºC, 

complete loss of reburying at 5 ºC, and death with prolonged exposure to 

temperatures exceeding 9 ºC (Bylenga et al., 2015). Peak spawning in L. elliptica 

occurs from late December through February on the Antarctic Peninsula and from 

February to May in McMurdo Sound, Ross Sea (Bylenga et al., 2015). Bylenga et al. 

(2015) found that L. elliptica showed a similar pattern of fertilisation success to the 
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present study. While at 4 h post-fertilisation, fertilisation success at -1.6 ºC was 

statistically significantly lower than -0.5 and 0.4 ºC, fertilisation success was not 

significantly different at both 24 and 48 h post-fertilisation, indicating that while 

delayed at lower temperatures, fertilisation success was high across a thermal 

window of the species natural temperature range. 

This pattern of fertilisation success is also similar to that observed in other broadcast 

spawning marine invertebrates, including echinoderms and a polychaete. 

Echinoderm species exhibited thermal fertilisation windows not only at the lower end 

within the natural temperature range of the species, but also at the upper end beyond 

the natural range, including the sea urchin Centrostephanus rodgersii from Australia 

and New Zealand (Pecorino et al., 2013); the sand dollar Arachnoides placenta from 

Australia (Hardy et al., 2014); and, the crown-of-thorns sea star Acanthaster planci 

from the Great Barrier Reef, Australia (Lamare et al., 2014).  Kurpriyanova and 

Havenhand (2005) found that in the free-swimming polychaete, Galeolaria 

caespitose from South Australia, that peak fertilisation success (> 85%) was 

observed at 21 ºC, the average summer water temperature from the sampling location 

when spawning occurs. 

While the present study has not identified the temperature limits at which fertilisation 

fails to occur, there is clear reduction in fertilisation success below 14.3 ºC and above 

21.0 ºC, when the success rate consistently drops below 30%.  Given the broad 

geographical distribution of P. ventricosa (see Figure 1.1), with adults from different 

populations being subjected to contrasting temperature regimes, having a wide 

thermal fertilisation window beyond the thermal range of a particular population is 

realistic (Andronikov, 1975).  The maximum temperatures examined in the present 

study are well beyond the ambient temperatures the southern populations of P. 
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ventricosa would encounter in situ.  The minimum temperatures examined are within 

normally encountered temperatures for the southern populations, albeit lower than 

normal during spawning.  Based on the results of the present study, the ideal thermal 

window of fertilisation in P. ventricosa would be 14 to 21 ºC.  Given the projected 

sea surface temperature rise for 2100 of 2 to 3 ºC for the southern populations and 3 

to 4 ºC for the northern populations of P. ventricosa (IPCC, 2104), the fertilisation 

success of the southern populations will be affected less than that of the northern 

populations. 

Thermal tolerance of development in Paphies ventricosa 

The current study examined early larval development across a thermal gradient of 

17.5 ºC, from 8 to 25.5 ºC, and found that temperature had a significant effect on the 

presence of the early larval developmental stages to varying degrees, depending on 

time since fertilisation.  While initial development through to the feeding veliger 

stage is faster between 11.4 and 20.4 ºC, once at the veliger stage, if fed the same 

diet, larvae at 20 and 25 ºC will grow faster than those at 12 and 16 ºC (see Chapter 

3; Redfearn, 1982; Gadomski et al., 2015).  Hooker (1997) observed a similar 

timeline of development in Paphies australis reared at 20 ºC (± 1 ºC), as veliger 

larvae were first observed between 24 and 48 h post-fertilisation, compared to the 37 

h for P. ventricosa at 20.4 ºC. Given that Paphies australis has been observed to 

develop through to late-stage veliger larvae at 28 ºC (Hooker, 1997), it is conceivable 

that early larval development could progress through to the veliger stage and beyond 

in P. ventricosa at temperatures greater than the maximum examined in this study, 

especially in the northern population. 

The initial faster progression through to a more developed larval stage is important 

for recruitment success as veliger larvae were less likely to die from temperature 
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changes than trochophores and cleavage stages (Kennedy et al., 1974a).  Kennedy et 

al. (1974a) examined the effect of a thermal gradient (from 17.5 to 43.1 ºC) on 

survivorship of embryos and larvae in the hard clam Mercenaria mercenaria from 

Virginia, United States, and found that veliger larvae were more robust, followed by 

trochophores and cleavage stage embryos, in terms of both temperature and exposure 

time.  A conservative estimate of early summer spawning temperatures for the 

population of M. mercenaria was 23 to 29 ºC, and cleavage stages exhibited 90% 

mortality at 30 min exposure to 34 ºC; trochophores exhibited 90% mortality at > 

100 min exposure to 34 ºC; and veliger larvae exhibited no mortality at exposures of 

up to 1000 min (the length of the experiment) at 34 ºC (Kennedy et al., 1974a).  

These results were similar to the dwarf surf clam Mulinia lateralis, in which the 

cleavage stages were more robust and the veliger stage more sensitive to temperature 

than M. mercenaria (Kennedy et al., 1974b).  Since the trochophore and veliger 

stages are more robust, they are more likely to survive environmental changes and be 

more likely to survive through to recruitment, making faster development through to 

the veliger larvae stage an advantage. 

Bylenga et al. (2015), found a significant difference in the percentage of stages 

present across a thermal gradient of -1.6 to 0.4 °C in Laternula elliptica.  At 6 h post-

fertilisation, the 2-cell cleavage stage was present at significantly higher levels at -

0.5 and 0.4 ºC than at -1.6 ºC; trochophores appeared at 10 d post-fertilisation at 0.4 

ºC compared to 11 d for -1.6 and 0.5 ºC; and at 20 d post-fertilisation, veliger larvae 

were present at significantly higher levels at -0.5 and 0.4 ºC than at -1.6 ºC (Bylenga 

et al., 2015).  However, despite the faster rate of development, the rate of abnormal 

development increased from < 15% at 6 h post-fertilisation to > 50% at 35 d. 
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Parker et al. (2009) found that in Saccostrea glomerata, the percentage rate of 

veligers present at 24h post-fertilisation was lower at 18 ºC (≈ 30%) than at 22 to 30 

ºC (≥ 60%), but that by 48 h post-fertilisation veligers were present at > 80% at 18 to 

26 ºC and ≈ 60% at 30 ºC.  The rate of abnormal development at 24 h post-

fertilisation was higher (> 30%) at 18, 22, and 30 ºC than at 26 ºC (< 10%), while at 

48 h post-fertilisation, abnormal development was < 20% at 18 to 26 ºC and ≈ 30% 

at 30 ºC (Parker et al., 2009).  Parker et al. (2010) found that in Crassostrea gigas, at 

both 24 and 48 h post-fertilisation, fewer larvae reached the veliger stage at 18 and 

30 ºC than at 22 and 26 ºC, though were present at > 80% at all temperatures.  

Abnormal development rates were lower at 22 and 26 ºC (< 10%) than at 18 and 30 

ºC (15 to < 25%) (Parker et al., 2010).  While both of these studies did note the same 

faster rate of development at higher temperatures (30 ºC) as expected, they both 

exhibited highest veliger presence and lowest abnormal development rate at 26 ºC, a 

peak fertilisation temperature for both S. glomerata (Parker et al., 2009) and C. gigas 

(Parker et al., 2010).  These studies support the findings in other marine invertebrates 

in terms of development across a species’ thermal range.  However, the rate of 

abnormal development was generally much lower than in similar studies.  

Calabrese (1969), extended the thermal gradient experiment previously mentioned 

for Mulinia lateralis beyond fertilisation and examined the thermal window of 

survival and growth rate for 8 days across the thermal gradient previously mentioned.  

Surprisingly, larvae had survival rates of > 80% from 7.5 to 27.5 ºC, far beyond the 

lower limits of the ideal fertilisation thermal gradient.   The average growth rate over 

8 days was only satisfactory in the range of 20 to 30 ºC, and grew the most rapidly at 

27.5 ºC.  There appears to be a trade off in this species, while larvae at 27.5 ºC grew 

the fastest (93.5% increase in mean larval length) and had a high survival rate 
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(88.4%) during the experimental period, they had a low fertilisation rate (43.3%).  

This could be a strategy so that those animals exhibiting limited fertilisation success 

at the southern extreme of their distribution grow faster to reach settlement and 

recruit to the next stage earlier than those at lower temperatures.  There was no 

mention of abnormal development in this study. 

An increased rate of development at higher temperatures has also been observed in 

echinoderms.  Delorme and Sewell (2013) observed a similar pattern of development 

across a thermal gradient in the sea urchin Evechinus chloroticus from Hauraki Gulf, 

New Zealand where spawning and development of the species occurs at temperatures 

from 13 to 22 ºC.  Across a thermal gradient from 15.7 to 24.2 ºC, blastulae were 

observed at 4 h post-fertilisation at temperatures ≥ 21.5 ºC, compared to 6 h post-

fertilisation at lower temperatures (Delorme & Sewell, 2013).  The mean number of 

cleavage divisions in embryos was significantly higher at temperatures ≥ 21.5 ºC 

than at the temperatures of 15.7 to 17.7 ºC (Delorme & Sewell, 2013).  Abnormal 

development was greater at higher temperatures, reaching 44 and 59% in 24.2 ºC at 8 

and 24 h post-fertilisation, respectively (Delorme & Sewell, 2013). 

Hardy et al. (2014) found that in the sand dollar Arachnoides placenta, when 

examined across a thermal gradient of 14 to 37º C, at 24 h post-fertilisation the more 

advanced 6-armed plutei larvae were present at 27 to 32º C, ranging from 15 to 90% 

of the sample.  There was no development (100% abnormal development) at 14, 35, 

and 37 C, indicating that at the higher temperatures where normal development does 

occur, larvae exhibited the most advanced development (Hardy et al., 2014).  The 

percentage of abnormal development was less than 10% across the development 

range, except for 31 and 32º C, where it reached levels of 15 and 45%, respectively, 
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therefore also exhibiting the pattern of both increased rate of development and 

increased abnormal development at higher temperatures (Hardy et al., 2014). 

In Paphies ventricosa, at 2 h post-fertilisation, the most advanced stage present, 2-64 

cell embryos, occurred at the highest rates around the ideal fertilisation range 

(centred around 14.6º C) for the southern population, and abnormal development was 

< 15%.  The same pattern of advanced development held true at 15 h post-

fertilisation when trochophores were the most advanced stage present, though 

abnormal development was now much higher at the temperature extremes.  At 22 h 

post-fertilisation, veligers, the most advanced developmental stage present, again 

followed the same pattern as the previous time points, though abnormal development 

was now highest in the lower half of the thermal window.  By 37 h post-fertilisation, 

veligers were present at over 50% of the sample across a broader temperature range 

(12.9 to 19.2 ºC), with abnormal development only observed at the high extremes of 

the thermal window.  Within the current study, it was not possible to conclude that 

zero recovery at any time point was due to 100% larval mortality or sampling bias.  

Given that the natural spawning and developmental temperature range of the species 

is 12 to 25 ºC, in this experiment P. ventricosa does not appear to follow the pattern 

of faster development previously identified at the higher natural range for the species 

(see Chapter 3; Redfearn, 1982; Gadomski et al., 2015). However, when taking into 

consideration that this study was conducted using animals solely from the southern 

population, whose natural spawning temperature range is 12 to 16 ºC, the results are 

more representative of in situ conditions. 
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Conclusions 

Given the scope of the study, it can be concluded that Paphies ventricosa has a 

thermal window of fertilisation broader than the natural seasonal spawning and 

development temperature range of the species.  It is likely that the thermal 

developmental window is also broader than the environmental range of the species, 

but given the limited gradient tested in the present study, the exact temperatures in 

which development fails to occur have not been identified.  It will be important to 

identify especially the upper limit of the fertilisation, as this could have serious 

implications on a species survival given the predicted levels of ocean warming in the 

future (Byrne & Przeslawski, 2013). While increased temperature, and ocean pH, can 

have negative impacts on the development of many marine invertebrate species, this 

is not relevant if fertilisation fails completely (Byrne, 2010). 

The ideal fertilisation and early developmental temperatures identified in the present 

study are in line with temperatures corresponding to spawning in the southern 

population of P. ventricosa (see Chapter 2).   However, the overall geographic 

distribution of the species does reflect the thermal fertilisation and early larval 

development windows identified in this study.  But successful recruitment and long-

term stability of a population require that all development stages be successfully 

completed (Byrne, 2011), indicating an on-going need to successfully carry out 

future thermal window experiments across a broader thermal range, and for a longer 

period of time in order to successfully identify the complete thermal limits of the 

species. 

In terms of laboratory culture of the species, there is a trade off.  While higher 

temperatures do generally produce a faster rate of early larval development, they also 
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produce higher rates of abnormal development, which is detrimental to overall 

recruitment success.  Instead, a lower temperature with a lower rate of abnormal 

development would be ideal in a laboratory culture setting.  Additionally, based on 

personal observations, a lower temperature is preferred in a culture setting, as it 

reduces the rate of ciliate infection. Finally, within the identified thermal window, 

temperature does have a significant effect on development, and does contribute to the 

observed variability in recruitment, though other factors, such as feed availability and 

hydrodynamics, cannot be ruled out. 

 

 



Chapter 5 

103 

 

Chapter 5 

Effect of temperature and feed concentration on the 

early larval development of Paphies ventricosa 

Introduction 

This study aims to increase the understanding of the combined effect of temperature 

and diet, in terms of feed concentration, on the early larval development of Paphies 

ventricosa from Oreti Beach, Southland.  Temperature and feed availability are two 

of the most important factors in the recruitment of marine invertebrate larvae 

(Hoegh-Guldberg & Pearse, 1995).   While temperature is important, diet is often 

thought to be more important than temperature in overall larval development (His et 

al., 1989; Olson & Olson, 1989; Hoegh-Guldberg, 1995; Helm et al., 2004).  

However, both can have serious impacts on development. 

While there have been previous studies on the effect of temperature on larval 

development in Paphies ventricosa (see Chapters 3 and 4; Gadomski et al., 2015), 

there have not been any on the effects of feed concentration, let alone both 

temperature and feed concentration.  Likewise, there have not been any additional 

studies on the effect of feed concentration or combined effects of feed and 

temperature on the early larval development of the other Paphies species – P. 

australis, P. subtriangulata, and P. donacina.  While these studies are lacking for P. 

ventricosa and the Paphies genus, there have been studies examining diet in other 

bivalves. 
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 Beiras and Pérez Camacho (1994) found that in the oyster Ostrea edulis, larval 

development rate increased with increasing feed concentration from 20,000 to 

300,000 algal cells ml
-1

.  Rico-Villa et al. (2009) found that in the Pacific oyster, 

Crassostrea gigas, animals fed a 1:1 mixed cell diet of 40,000 cells ml
-1 

grew faster 

than those at 20,000 and 12,000 cells ml
-1

.  Liu et al. (2010) examined the combined 

effects of feed concentration and stocking density on larval development in the 

basket cockle, Clinocardium nuttalli, and found that at all larval densities, 

development significantly increased with an increase in feed concentration from 0 to 

50,000 cells ml
-1

. Marshall et al. (2014) examined the combined effects of larval 

stocking density and feed concentration in the Pacific geoduck, Panopea generosa, 

and found that at 10 larvae ml
-1

, growth rate significantly decreased with an increase 

in feed concentration from 5,000 to 100,000 cells ind
-1

 day
-1

.   

Food concentration studies have also been carried out on other marine invertebrate 

species.  In addition to the mussel Mytilus californianus and oyster Crassostrea 

gigas, Paulay et al. (1985) also examined the effects of 5,000 or 50,000 algal cells 

ml
-1

 (species dependent) diet supplementation on larval development in the ophiuroid 

Ophiopholis aculeata and the polychaete Serpula vermicularis.  They found that for 

both species, the rate of development was faster during the experimental period on 

the enhanced diet, though not always significantly so (Paulay et al., 1985).  Aldana 

Aranda et al. (1989) examined the effects of temperature and feed concentration, 

though not in the same experiment, on the milk conch Strombus costatus.  They 

found that when fed the same algal concentration of 3,000 cells larva
-1

 day
-1

, larvae 

grew fastest at a constant 28 ºC than at a constant 24 ºC or a variable ambient 

temperature (28 ± 2 ºC) (Aldana Aranda et al., 1989).  When larvae were reared at 
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ambient temperature, the rate of development increased with an increase in feed 

concentration from 1,000 to 6,000 cells larva
-1

 day
-1

. 

In general, studies conducted to study the combined effects of temperature and feed 

concentration on invertebrate larval development are lacking.  Invertebrates 

developing at one temperature should show a range of development rates since food 

availability is unlikely to be constant during the development period (Hoegh-

Guldberg, 1995).  Thus, studies examining the combined effects can help better 

understand the complex dynamics driving invertebrate larval recruitment.  This study 

aims to add to the knowledge base of larval recruitment in Paphies ventricosa by 

examining the combined effects of ecologically relevant temperatures and different 

mixed diet algal concentrations on early larval development in the species. 

 

Materials and methods 

Animal collection and conditioning 

In October 2013, 40 adult toheroa (100 to128 mm shell length) were collected from 

the Oreti Beach intertidal, Southland (46.4790° S, 168.2522° E) under the 

appropriate customary permit.  On the same day, animals were transported to 

Portobello Marine Laboratory (PML), Dunedin in seawater filled 20 l buckets.   In 

the laboratory, animals were measured, tagged, and immediately placed into four 116 

l circular flow-through tanks (43.5 x 58.5 cm, flow 3 l min
-1

) fitted with airstones for 

additional aeration and filled to 35 cm depth with sand from Oreti Beach. 

Animals were conditioned for spawning by feeding the formulated food, All-G-Rich 

algae (Alltech, USA).  Each day, tanks were supplied with 1 l of All-G-Rich slurry (5 
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g l
-1 

seawater, equalling 0.5 g All-G-Rich adult
-1

 day
-1

), which was slowly introduced 

to the tank via a gravity fed drip bottle system, at the rate of 0.5 l hr
-1

.  Aeration and 

water flows were left on during feeding to ensure mixing. Animal conditioning 

continued for over 7 weeks. 

Spawning and fertilisation 

Twenty-four hours before spawning, 20 animals were placed into 15 cm deep 

spawning trays filled with ~25 l of 15.5 ºC (± 0.5 ºC) flowing seawater.  After the 

acclimation period, animals were induced to spawn following the methods described 

in Gadomski et al. (2015) with the exception that after initial injection, individual 

animals were isolated in 1 l beakers of 5µm filtered ambient seawater.  Once 

spawning had ceased, animals were removed from their spawning beakers, and 

placed back into the spawning trays.   

Sperm was checked for viability (actively swimming) under a microscope.  Viable 

sperm from 5 males was filtered through a 50 µm mesh to remove any faecal matter 

and sand debris, pooled, and density determined (4.1  10
7 

sperm ml
-1

) using a 

haemocytometer.  Eggs were checked for quality (size, shape, and colour) under a 

microscope.  Eggs from three females were re-suspended by stirring within their 

beakers and then allowed to sit for 1 min to allow faecal matter and sand debris to 

settle out.  The top 70% of the suspended egg mixture was decanted off and pooled.  

Pooled egg density was determined to be 76 eggs ml
-1

.  Sperm solution was added to 

pooled eggs to a final concentration of 10
6
 sperm ml

-1
.  Fertilisation was confirmed 

under microscope by the breakdown of the germinal vesicle and the observation of 

the fertilisation envelope and/or a polar body. 
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Larval rearing 

Within 1 h post-fertilisation, the fertilised egg solution was split into 27 sterilised 

room temperature jars (≈ 16.0 ºC) 3 l glass jars filled with 2 l of 5 µm filtered 

ambient temperature (15.5 ± 0.5 ºC) sea water to a give a final concentration of 15 

fertilised eggs ml
-1

.  The jars were then placed in to one of three temperature 

treatments (12, 16, and 20 º C) (see Chapters 3 and 4; Gadomski et al., 2015), 

maintained in separate temperature controlled rooms, where they were allowed to 

slowly adjust to the new environmental temperature.  Jars within each temperature 

treatment were then split into three feed concentration treatments (1,000, 10,000, and 

20,000 algal cells ml
-1

) with each temperature/feed concentration combination 

replicated three times.  Every day, each jar was fed a 1:1 mixed diet of monoculture 

Tetraselmis chui and Isochrysis galbana at the treatment concentration.  Feed 

concentration was determined by verifying the monocultures’ densities using a 

haemocytometer immediately before each feeding to calculate the volume of each 

algal species required to feed at the required treatment concentrations.  For the first 4 

days post-fertilisation, then every second day, 75% water changes were carried out 

prior to feeding.  A 1 ml sample was taken from each treatment prior to water 

changes, and fixed to a final concentration of 7% neutral buffered formalin. 

Larval photography and larval morphometrics 

Entire 1 ml fixed samples were examined for larvae, and when present, larvae were 

photographed using an Olympus BX-51 compound microscope fitted with an XC-50 

camera and controlled by cellSens software (Olympus Corporation).  The number of 

larvae found per sample ranged from 0 to 35.  The larval morphometrics of total shell 

length (TL), total shell height (TH), and hinge line length (HL) were taken, as 

described by Redfearn (1982), using the software ImageJ 1.48 (NIH, USA). 
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Cell-specific chlorophyll-a concentrations 

To determine cell-specific chlorophyll a (chl-a) concentrations of Tetraselmis chui 

and Isochrysis galbana,  algal concentrations of 250, 500, 1,000, 2,000, 5,000, 

10,000, and 20,000 cells ml
-1

 were extracted in 90% acetone and pigment 

concentrations determined spectrophotometrically following the method described by 

Strickland and Parsons (1972).  From the relationship between chlorophyll 

concentration and the number of cells extracted, individual cell chl-a concentrations 

were determined to be 1.367 x 10
-6

 µg chl-a cell
-1

for Tetraselmis chui and 7.79 x 10
-7

 

µg chl-a cell
-1

 for Isochrysis galbana.  Therefore, at a 1:1 Tetraselmis chui: 

Isochrysis galbana feeding ratio, our feeding treatments resulted in the total chl-a 

amounts of 2.146, 21.460, and 42.920 µg chl-a fed to each treatment of  for 1,000, 

10,000, and 20,000 cells ml
-1

, respectively.   

Environmental factors 

Regional average chl-a concentrations were derived from the monthly composite 

Aqua MODIS chlorophyll-a 9 km dataset (www.oceancolor.gsfc.nasa.gov).  The sea 

surface examined encompassed an area of 2916 km
2
 (see Figure 2.4) and was 

determined to be that representing the coastal region most likely encountered by P. 

ventricosa larvae originating from Oreti Beach and living in the plankton for 30 

days.  When available, data was extracted for the months of September to March , 

the spawning period of P. ventricosa at Oreti Beach, from September 2002 to March 

2015 (see Chapter 2; Gadomski & Lamare 2015), following the methodology 

detailed in Gadomski and Lamare (2015).  Average sea surface temperature (SST) 

data for the same region was derived from the monthly composite Aqua MODIS sea 

surface temperature (11µ daytime) dataset for same months as the chl-a following 

the methodology detailed in Gadomski and Lamare (2015).  Three month average 

http://www.oceancolor.gsfc.nasa.gov/
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Oceanic Niño Index (ONI) values were obtained for the Niño 3.4 region for the years 

2000 to 2014 (www.cws.ncep.noaa.gov).   

Statistical analyses 

Statistical analyses were carried out on larval size (TL) data from 3, 6, and 17 days 

post-fertilisation.  These sampling days were chosen because larvae were recovered 

from all treatment replicates at these times.  Data were initially tested via a 

generalised least squares (GLS) model to find the best fit model using Akaike’s 

Information Criterion.  Initial analysis was performed using the ‘gls’ function from 

the ’nlme’ package in R ver. 3.2.1 (R Core Team, 2016).  The resulting best fit model 

had weighting to allow for non-constant variance in the data across the different 

combinations of temperature and time. Since the larvae were not able to be 

individually identified at multiple time points, it was not possible to match 

measurements across time and, therefore, the correlation amongst repeated measures 

was not able to be incorporated into the model.  However, it is expected that the 

effects of this on the model will be relatively minor as the time separation between 

measurements is relatively large. 

When statistically significant differences (∂ < 0.05) in the size of larvae (TL) were 

found, the interactions among sampling day, temperature, and feed concentration 

were examined in a three-way ANOVA.  Significant interactions between treatments 

were identified using Tukey’s HSD post hoc test using the ‘lsmeans’ packing in R 

ver. 3.2.1. 

The effect of temperature and food concentration on the relationship between total 

larval shell length (TL) and larval shell height (TH) was examined using an analysis 

http://www.cws.ncep.noaa.gov/
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of covariance (ANCOVA) on ln(x) transformed measurements.  All ANCOVA 

analyses were performed using JMP 12 (SAS Institute, USA).  

 

Results 

Early larval development 

Development at 12 ºC 

Early larvae developed faster at 12 ºC than at 16 and 20 ºC, and within 12 ºC, larvae 

initially developed the fastest at 10,000 cells ml
-1 

(Figure 5.1), but by the end of the 

experiment, were largest at 20,000 cells ml
-1

.   When fed 1,000 cell ml
-1

, larvae grew 

from a size of 93.45 µm TL and 70.95 µm TH at 2-d post-fertilisation to a size of 

121.63 µm TL and 100.23 µm TH at 17-d post-fertilisation for a total average growth 

of 1.9 µm day
-1

 in TL and 2.0 µm day
-1

 in TH (Figure 5.1).  At 10,000 cell ml
-1

, 

larvae grew from 89.57 µm TL and 70.53 µm TH at 2-d post-fertilisation to 153.99 

µm TL and 132.43 µm TH at 17-d post-fertilisation for a total average growth of 4.3 

µm day
-1

 in TL and 4.1 µm day
-1

 in TH (Figure 5.1).  At 20,000 cell ml
-1

, larvae 

grew from 93.54 µm TL and 72.99 µm TH at 2-d post-fertilisation to 167.25 µm TL 

and 147.19 µm TH at 17-d post-fertilisation for a total average growth of 4.9 µm day
-

1
 in TL and 4.9 µm day

-1
 in TH (Figure 5.1).  Larval shell growth exhibited the same 

pattern for both length and width, indicating normal growth (Figure 5.1). The 

greatest difference (46.11 µm) in the average larval size among feeding treatments 

was on day 17.  Larvae reached the umbonate stage at all feed concentrations, but did 

not reach the pediveliger stage in any treatment by the end of the measurement 

period. 
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Development at 16 ºC 

When reared at 16 ºC, early larval development was faster than 20 ºC, but slower 

than 12 ºC, and within the temperature, was fastest at 10,000 cells ml
-1

 (Figure 5.1).  

When fed 1,000 cell ml
-1

, larvae grew from 90.77 µm TL and 70.07 µm TH at 2-d 

post-fertilisation to 109.76 µm TL and 87.61 µm TH at 17-d post-fertilisation for a 

total average growth of 1.3 µm day
-1

 in TL and 1.2 µm day
-1

 in TH (Figure 5.1).  At 

10,000 cell ml
-1

, larvae grew from 99.40 µm TL and 76.74 µm TH at 3-d post-

fertilisation to 141.76 µm TL and 121.81 µm TH at 17-d post-fertilisation for a total 

average growth of 3.0 µm day
-1

 in TL and 3.2 µm day
-1

 in TH (Figure 5.1).  When 

fed 20,000 cells ml
-1

, larvae grew from 90.86 µm TL and 70.72 µm TH at 2-d post-

fertilisation to 128.46 µm TL and 108.39 µm TH at 17-d post-fertilisation for a total 

average growth of 2.7 µm day
-1

 in TL and 2.7 µm day
-1

 in TH (Figure 5.1).  Like 12 

ºC, larval shell growth exhibited the same pattern for both length and width, 

indicating normal growth (Figure 5.1). The greatest difference (26.32 µm) in average 

larval size among feeding treatments was on day 12. Like at 12 ºC, larvae reached 

the umbonate stage at all feed concentrations, but did not reach the pediveliger stage 

by the end of the measurement period. 

Development at 20 ºC 

Early larval development was the slowest at 20 ºC, when compared to 16 and 12 ºC, 

but was fastest at 1,000 cells ml
-1

 within the treatment (Figure 5.1).  When fed 1,000 

cell ml
-1

, larvae grew from 100.64 µm TL and 76.62 µm TH at 3-d post-fertilisation 

to 126.91 µm TL and 108.39 µm TH at 17-d post-fertilisation for a total average 

growth of 1.9 µm day
-1

 in TL and 2.7 µm day
-1

 in TH (Figure 5.1).  At 10,000 cell 

ml
-1

, larvae grew from 92.85 µm TL and 70.10 µm TH at 3-d post-fertilisation to 

112.01 µm TL and 91.70 µm TH at 17-d post-fertilisation for a total average growth 
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of 1.4 µm day
-1

 in TL and 1.5 µm day
-1

 in TH (Figure 5.1).  At 20,000 cell ml
-1

, 

larvae grew from 92.82 µm TL and 71.43 µm TH at 3-d post-fertilisation to 109.79 

µm TL and 87.44 µm TH at 17-d post-fertilisation for a total average growth of 1.2 

µm day
-1

 in TL and 1.1 µm day
-1 

in TH (Figure 5.1).  Again, larval shell growth 

exhibited the same pattern for both length and width, indicating normal growth 

(Figure 5.1). The greatest difference (22.91 µm) in average larval size among feeding 

treatments was on day 12. Like both 12 and 16 ºC, larvae reached the umbonate stage 

at all feed concentrations, but failed to reach the pediveliger stage by the end of the 

measurement period. 

Statistical analyses 

A GLS model using Akaike’s criterion, showed that the three way interaction 

between sampling day, temperature, and feed concentration was the best fit model 

for the day, and the three-way ANOVA showed a significant difference (p < 0.0001) 

in larval shell length (Table 5.1). Within each significantly different sampling day, 

post hoc tests indicated all feed concentrations were significantly different from each 

other. Post hoc tests also indicated two-way significant interactions between 

temperatures within each feed concentration. For the feed concentrations of 10,000 

and 20,000 cells ml
-1

, each temperature treatment was significantly different from 

each other on each sampling day (Figure 5.2).  For 1,000 cells ml
-1

, at 3-d post-

fertilisation, there was no significant difference between temperatures; at 6-d post-

fertilisation, 12 and 16º C were significantly different from 20 º C, but no from each; 

and at 17-d post-fertilisation, 12 and 20 ºC were significantly different from 16 ºC, 

but not from each other (Figure 5.2). The means table showing the two-way 

interaction between temperatures within each feed concentration are presented in 

Appendix II. 
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The allometric relationships between larval length and width for larvae from the 

three pooled temperature treatments and three pooled feed concentration treatments 

visually appeared to have similar slopes.  While the slopes appear very similar 

(Figure 5.3), ANCOVA indicated that the slopes were in fact significantly different 

for both temperature (Temperature   TL, F(2, 1213) = 4.608, p = 0.010; Table 5.2), and 

feed concentration, (Feed Conc.   TH, F(2, 1213) = 16.682, p < 0.0001; Table 5.2).  

Closer inspection, shows that whether significantly different or not, slopes increase 

as either temperature or feed concentration increases, when pooled respectively.   
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Table 5.1. Type III analysis of variance (ANOVA) model parameters resulting from the generalised least 

squares (GLS) model, from which the three-way ANOVA taking into consideration sampling time (3, 6, 

and 17 days post-fertilisation), temperature (12, 16, and 20 ºC), and feed concentration (1,000, 10,000, and 

20,000 cells ml-1) was run.   The means tables for the two-way interaction between temperature and feed 

concentration included in the model are presented in Appendix II. 

 

Fit Model Df F-ratio p-value 

Intercept 1, 667 263,122.89 < 0.0001 

Temperature 2, 667 350.80 < 0.0001 

Feed Concentration 2, 667 4.83 < 0.0001 

Time  2, 667 1,039.55 0.0082 

Temperature × Feed Concentration
 

4, 667 27.08 < 0.0001 

Temperature × Time 4, 667 45.09 < 0.0001 

Feed Concentration × Time 4, 667 50.14 < 0.0001 

Temperature × Feed Concentration × Time 8, 667 12.74 < 0.0001 
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Figure 5.1. Increase in average total shell length (± SE) and average total shell height (± SE) for Paphies 

ventricosa reared over a 17-d period at three algal feed concentrations (1,000, 10,000, and 20,000 cells ml-1) 

within three different temperatures (12, 16, and 20 ºC).  n = average of three replicate jars, with variable 

number of larvae measured from each replicate at given time point.  When error bars are not visible, it is 

because the variation around the mean is too small to show on the graphs. 
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Figure 5.2. Average total shell length of Paphies ventricosa at (A) 3, (B) 6, and (C) 17 days post-fertilisation 

when reared on algal feed concentrations of 1,000, 10,000, and 20,000 cells ml-1 within the temperatures of 

12, 16, and 20 ºC.  Significant differences in total length among temperatures within each feed 

concentration are indicated by lowercase lettering. Error bars are the 95% confidence interval. 
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Figure 5.3.   Allometric relationship between shell length and shell width for Paphies ventricosa larvae 

reared over a 17-d period at three experimental temperatures (12, 16, and 20 ºC) and three different feed 

concentrations (1,000, 10,000, and 20,000 cells ml-1.  The data has been pooled into (a) temperature and (b) 

feed concentration. 

B 

A 
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Table 5.2.  Analysis of covariance (ANCOVA) of total larval shell length versus larval shell height for 

Paphies ventricosa larvae reared over a 17-day period in three experimental temperatures (12, 16, and 20 

°C) and at three different feed concentrations (1,000, 10,000, and 20,000 cells ml-1).  Analyses are presented 

for (a) differences among the three temperatures and (b) differences among the three feed concentrations,  

 

(a) Differences among the three experimental temperatures  

Source Df F-ratio p-value 

Model 2, 1211 0.84 0.4314 

Length 1 12904 < 0.0001 

Temperature 2 0.2223 0.8007 

Temperature × Length 2 4.6079 0.0101 

 

 (b) Differences among the three experimental feed concentrations 

Source Df F-ratio p-value 

Model 2, 1211 3.89 0.0207 

Length 1 21758 < 0.0001 

Feed Conc. 2 4.5131 0.0111 

Feed Conc. × Length 2 16.682 < 0.0001 
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In situ physical factors 

From 2000 to 2014, average seasonal SST was within the range of 12.5 to 14.1 ºC, 

with maximum average monthly SST within a spawning season in the range of 14.4 

to 17.2 ºC (Figure 5.4A).  Average seasonal chl-a concentrations were in the range of 

1.408 to 2.328 mg m
3
 (Figure 5.4B), which is equivalent to approximately 158 – 284 

algal cells ml
-1 

of experimental mixed diet.  Maximum average monthly chl-a within 

a spawning season was in the range of 2.10 to 5.47 mg m
-3

.   

ONI values for the years 2000 – 2014, indicate warmer El Niño events (ONI ≥ 0.5 

for at least 5 consecutive months) during the 2002, 2004, 2006, 2009, and 2014 

spawning seasons for Paphies ventricosa (Figure 5.4C).  Alternately, La Niña events 

(ONI ≤ -0.5for at least 5 consecutive months) occurred during the 2000, 2005, 2007, 

2010, 2011, and 2012 spawning seasons (Figure 5.4C).   

There was a general correlation between the warmer El Niño events and increased in 

situ average chl-a concentration, especially noticeable during the 2006 and 2009 

spawning seasons (Figure 5.4).  Correspondingly, there was a general reduction in 

regional productivity (chl-a) during the colder La Niña events, such as during the 

2007 and 2010 spawning seasons.  The relationship between ONI Index and SST was 

less evident.  It is expected that with El Niño events, both the regional average and 

maximum would be correspondingly higher, which they are not.  However, it needs 

to be taken into consideration that the ONI Index is calculated for a much larger 

extent (south western Pacific Ocean), much of which is open water, and is a three 

month averaged value while the regional SST is calculated for a much smaller area 

(see Figure 2.4) comprising mostly near shore shallow waters, and is averaged over a 

season.  The MODIS derived average seasonal SST and chl-a concentration did not 

show any correlation, either positive or negative, with each other. 
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Figure 5.4. Local environmental factors at Oreti Beach from 2000 to 2014. (A) MODIS derived SST (ºC), 

showing both seasonal average (Sept. – Mar.) and maximum monthly temperature during the season. (B) 

MODIS derived chl-a concentrations (mg m3) showing both seasonal average (Sept. – Mar.) and maximum 

monthly chl-a during the season.  Both SST and chl-a are only reported from 2002 onwards, as the datasets 

originate in 2002. (C) Three month average ONI values (Jan. – Dec.) - saasonal peaks above the red line 

(0.5) are warm El Niño events; seasonal peaks below the blue line (-0.5) are cool La Niña events.           
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Discussion 

In this study, the effect of both temperature and feed concentration on early 

development of Paphies ventricosa, up to 17-d post-fertilisation, has been examined.  

The effect of temperature on the larval development of P. ventricosa has already 

been described by Gadomski et al. (2015) up to 39-d post-fertilisation.  In the current 

study, the rate of development was similar to that described by Gadomski et al. 

(2015) – at 3-d post fertilisation there was little difference in TL between pooled 

temperature treatments in both studies.  However, in the current study, TL was > 95 

µm for all temperatures at 3-d post-fertilisation, while TL was reported in Chapter 3 

(Gadomski et al., 2015) to be ≈ 70 µm for all temperatures at 3-d post-fertilisation.  

This difference in early veliger TL could be the result of a number of factors.   

In the current study, the period of larval rearing was shorter than that described in 

Gadomski et al. (2015) (17 days versus 39 days).  This was because the larval 

cultures crashed after 17 days in the current experiment, likely due to biofilm, 

bacteria, and ciliate contamination (pers. observ.).  Had the sterility been better 

controlled in the current experiment, it is likely the larvae would have reached 

pediveliger like in the experiments described in Chapter 3 (Gadomski et al., 2015), 

which were conducted in air tight containers versus the foil covered jars utilised in 

the present study. 

One such factor is a larger initial egg size.  Increased egg size is a possible result of 

higher lipid content and egg quality, which could then result in a larger initial veliger 

(Wilson et al., 1996).  The possible higher egg quality can be attributed to more 

successful conditioning of broodstock (Utting & Millican, 1997).  In the current 

study, broodstock were conditioned with All-G-Rich supplemental algae as opposed 
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to the cultured algae used in Chapter 3 (Gadomski et al., 2015).  Compared to a 

traditional cultured algae diet, All-G-Rich has higher levels of the fatty acid 

docosahexaenoic acid (DHA) (Appendix I).  DHA diet supplementation has been 

shown to increase egg lipid content in scallops (Caers et al., 1999; Sühnel et al., 

2012).  

The toheroa collected in 2012 (see Chapter 3; Gadomski et al., 2015) and 2013 

(present study) were collected from similar in situ chl-a conditions (Figure 5.5), both 

times in October.  At PML, they were maintained in the same tanks and for the same 

amount of time (≈ 7 weeks).  The only major difference between the two lots of 

broodstock was the conditioning diet.  Therefore, it is likely that the larger 3-d post 

fertilisation size in the current study, when compared to Chapter 3 (Gadomski et al., 

2015), was due to increased egg quality from the broodstock conditioning diet, as 

opposed to rapid larval growth (≈ 25 µm) in the first 24 to 36 h of being fed a mixed 

diet, as all three feed concentrations at all three temperatures had the same TL at 3-d 

post-fertilisation. 

Another possible explanation of the difference in 3-d post-fertilisation veliger sizes 

between experiments relates to the offspring temperature-size rule, which is that 

offspring and egg size vary inversely with temperature, and that eggs are often larger 

at the start of the spawning season compared to the end of the spawning season (see 

Collin & Ochoa, 2016).  From the MODIS SST regional monthly average 

temperature data, it is found that animals collected in October 2012 and 2013 were 

collected during average SSTs of 11.21 and 11.67 ºC, respectively.  By the time 

animals were spawned in the lab after ≈ 7 weeks of conditioning, the animals used in 

2012 would have exposed to higher temperatures in the lab than those in 2013 (≈ 1 

ºC), which could have an effect on initial egg size, causing smaller 3-d veligers in 
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2012 than 2013, thus following the offspring temperature size-rule.  Though, given 

the small temperature variance, it is more likely that the conditioning method had 

greater effect on initial egg, and therefore, offspring size. 

In the present study, when comparing temperature treatments (feed concentrations 

pooled), the result is different from the anticipated result of slower growth at colder 

temperatures, as found for the species in Chapter 3 (Gadomski et al., 2015).  The 

present study found that when fed a 1:1 diet of I. galbana and T. chui at 10,000 cells 

ml
-1

, larvae reared at 12 ºC grew at a faster rate than those at 16 and 20 ºC.  When 

compared to larvae fed a single culture diet of T. chui at 10,000 cells ml
-1

 (see 

Chapter 3; Gadomski et al., 2015), larvae reared at 12 ºC grew at a slower rate than 

those at 20 and 16 ºC.  While a somewhat similar pattern has been observed in the 

basket cockle, Clinocardium nuttalii (Liu et al., 2010), the result of the present study 

is opposite of the previous findings for the species (Gadomski et al., 2015).  The 

current study’s results are also opposite to the findings in many other bivalve species, 

such as the mussels Mytilus edulis (Pechenik et al., 1990), Perna virdis (Manoj Nair 

& Appukuttan, 2003), Limnoperna fortunei (Cataldo et al., 2005), Mytilopsis 

leucophaeta (Verween et al., 2007), Crassostrea gigas (Rico-Villa et al., 2009; 

Parker et al., 2010; Kheder et al., 2010), Saccostrea glomerata (Parker et al., 2009), 

and Mytilus galloprovincialis (Sánchez-Lazo & Martínez-Pita, 2012).  However, the 

separation in developmental rates between temperatures around 8-d post-fertilisation 

is similar in both P. ventricosa studies.  

While temperature is important in determining larval development rates, it is thought 

to be second only to diet (His et al., 1989; Helm et al., 2004).  Across a gradient of 

feed concentrations at a single temperature, one would expect growth to increase 

with increasing feed concentration, up to the point when growth plateaus (Sprung, 
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1984b; Beiras & Pérez-Camacho, 1994; Pérez-Camacho et al., 1994; Rico-Villa et 

al., 2009; Liu et al., 2010).  In the present study, within a temperature treatment, the 

effect of feed concentration became more pronounced as development progressed 

(Figure 5.2).   

However, the chl-a concentrations fed during the experiment were, with the 

exception of 1,000 cells ml
-1

 (7.927 µg chl-a), were far greater than concentrations 

any larvae is likely to encounter in situ at Oreti Beach, as from 2000 to 2014, the 

highest monthly average chl-a in the study area was less than 3 µg l
-1

, and the 

maximum monthly chl-a concentration within a spawning season during this period 

was less than 6 µg l
-1

.  This level is still less than the lowest experimental feed 

concentration of 1,000 cells µg l
-1

 which is a realistic, if not common, level 

encountered in situ.   

Conclusions 

Of the temperature treatments examined, 12 ºC is the closest temperature southern 

Paphies ventricosa larvae would encounter most frequently in situ (Figure 5.4A).  

Thus, the results of the 12 ºC larval rearing are the most ecologically relevant to the 

population at Oreti Beach.  Additionally, given the ideal rearing temperature of 12 

ºC, and 12 ºC being close to the in situ conditions of the southern populations, the 

species may be living close to its thermal maximum for successful development, and 

thus larval recruitment.  Given the predicted temperature increase in the southern 

populations’ natural range by 2100 (IPCC, 2014), larval development and 

recruitment are likely to be negatively impacted.   Based on the results of this study, 

for laboratory rearing of southern Paphies ventricosa, it is recommended that larvae 
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be cultured at 12 ºC and fed a diet of 20,000 cells ml
-1 

daily with daily water changes 

with careful efforts made to maintain sterility of the larviculture set up.   

At the realistic feeding rate of 1,000 cells ml
-1

, by 17-d post-fertilisation, the average 

shell length at 12 ºC was still larger than at 16 ºC, a possible, but not probable 

temperature experienced in situ.  Given that larvae usually encounter temperatures 

and feed concentrations at the low end of the experimental range, one would expect 

near constant rates of recruitment, especially given the reduced effect of ENSO on 

the region.  However, surveys have shown that this is not the reality (Beentjes, 

2010).  While the temperature, chl-a, and ONI will influence the larval development 

of P. ventricosa, the findings of this study point to an additional factor, or series of 

factors, that is the primary force driving juvenile recruitment of Paphies ventricosa at 

Oreti Beach.   
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Chapter 6 

General Summary and Conclusions 

Reproduction in the southern population of Paphies ventricosa was examined in 

2011 and 2012 and identified two distinct spawning events in a season – one in late 

spring/early summer and one in late summer/early autumn, the initial event 

corresponding to seasonal warming of coastal surface waters (see Chapter 2). The 

occurrence of two spawning events indicates that there are potentially two waves of 

beach recruits each year.  Similar studies on the northern populations found a 

prolonged season of trickle spawning, with spawned individuals typically found 

within the population year round (Redfearn, 1974).  This could be due to less 

temperature fluctuation experienced by the northern population compared to the 

southern population (Redfearn, 1974; Smith, 2003), making them less sensitive to 

thermal spawning cues.   

For Oreti Beach, spawning appears to occur as early as September for the initial 

spawning event, and as late as June for the second.  This difference in spawning 

period among populations has similarly been observed in the other Paphies species 

P. subtriangulata (Grant & Creese, 1995) and P. australis (Hooker & Creese, 1995) 

from different populations. Along Oreti Beach, there also appears to be a spatial 

component to spawning, with a tendency for individuals to be more gametogenically 

advanced with increasing distance north along the beach.  This could be explained by 

the possibility of greater nutrient input from the Jacobs River Estuary and general 

southeast currents and longshore transport (pers. observ.; pers. comm, 2012).   
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Temperature may play an important role in the recruitment of Paphies ventricosa.  

This study has found that temperature has a significant effect on fertilisation across a 

range of temperatures (see Chapter 4).  If the fertilisation window identified using 

individuals from the southern population holds true for individuals from the northern 

population, which may not be the case as thermal windows can vary among 

separated populations of the same species, this could help contribute to the 

population crashes of the past (see Chapter 1).  The mid to high range of the thermal 

gradient examined are temperatures experienced by the northern populations during 

the main spawning months, when fertilisation occurs.  Low fertilisation leads to low 

recruitment, and if combined natural mortality and harvest are greater than 

recruitment into a population, that population may decline.  The southern 

populations, however, were not subjected to the same level of intense harvest as the 

northern populations and still suffered population crashes.  So while temperature 

likely has an effect, it is not the primary factor driving recruitment to the larval stage 

in the southern populations. 

Temperature also has a significant effect on embryonic and larval development.  

Across a thermal gradient, embryonic development (< 48 h post-fertilisation) was 

delayed at the low (< 11 ºC) and at the high end (> 20 ºC), the rate of abnormal 

development remained low (<30%) (see Chapter 4).  When fed a single culture diet, 

reared veliger larvae grew faster at 20 ºC, followed by 16 and 12 ºC (see Chapter 3).  

This follows the expected pattern of accelerated growth at warmer temperatures in 

marine bivalve larvae (e.g. Pechenik et al., 1990; Widdows, 1991; Cragg, 2006; 

Parker et al., 2009).  However, even at 20 ºC, it took a 31 d to reach the pediveliger 

stage, which for a temperate species is a relatively long time (Cataldo et al., 2005; 

Aranda-Burgos et al., 2014), especially when Redfearn (1982) observed pediveligers 
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at 22 d at 25 ºC in the northern population.  When reared larvae were fed a 1:1 mixed 

culture diet, and again reared at 12, 16, and 20 ºC, the opposite trend was found (see 

Chapter 4).  That is, that larval development was accelerated at lower temperatures.  

This further suggests that while temperature does play a role in larval recruitment, 

diet may have a greater role in driving recruitment in Paphies ventricosa. 

Fertilisation in Paphies ventricosa across a thermal gradient shows a reduction at the 

lower and higher temperatures, including the natural ranges in temperature.  Results 

from the present study suggest that the northern population of toheroa may be 

partially fertilisation limited.  Embryological and early larval development in 

Paphies ventricosa across a natural thermal gradient is also delayed at the low and 

high ends.  The observed fertilisation and early developmental windows for the 

southern population would indicate that the northern population would be more 

susceptible to predicted levels of sea surface temperature rise due to ocean warming 

by 2100 (Byrne, 2010; Byrne & Przeslawski, 2013) if they have the same thermal 

window, as they already experience temperatures at the high end of the examined 

temperature ranges, where fertilisation and developmental rates dropped and 

abnormal development started to increase.  However, the thermal fertilisation and 

developmental windows have not been examined in the northern population of P. 

ventricosa, so direct comparisons may not be realistic.  A study examining the 

thermal window of fertilisation and larval development in the northern population for 

comparison to the present study would help contribute to the overall understanding 

of recruitment in the species as a whole, and give greater insight to the sensitivity of 

the northern population to predicted levels of ocean warming compared to the 

southern population.   
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Another factor that could have a negative impact on fertilisation success is the 

observed asynchrony in gonad maturity in the population at Oreti Beach (see Chapter 

2; Gadomski & Lamare, 2015).  When males and females are not spawning at the 

same time, there is a limit to the number of sperm present to fertilise the spawned 

eggs.  As the sex ratio did not significantly deviate from 1:1 (see Table 2.2), 

fertilisation is unlikely to be limited by to too few of a particular gender. 

When southern Paphies ventricosa larvae are fed a single culture algal diet, 

developmental rates follow the expected pattern across a temperature range, and are 

in line with findings for the same diet in northern toheroa (Redfearn, 1982).  

However, when fed a mixed diet, the pattern deviates, which could be due to the 

species selected for the diet, rather than the mixed diet itself.  Unfortunately, in terms 

of northern toheroa, there is no similar study to compare to, as there have been no 

larval development studies using a mixed diet on the northern population.  Testing a 

mixed diet in the northern population and comparing them to the results found in the 

present study, would be helpful in further understanding recruitment in the species.  

A few ideas have been put forth as to why there are observed differences between the 

northern and southern toheroa in terms of population stability/instability, adult size, 

and spawning (Various, pers. comm.).  One such hypothesis is that the northern and 

southern populations are actually separate subspecies.  Preliminary DNA analysis has 

ruled this false, showing that they are in fact the same species, but that the northern 

population is more genetically diverse than the southern population of P. ventricosa 

(Ross et al., 2014).  An early hypothesis for this result is that the southern population 

is the result of early Ngai Tahu Māori bringing back northern toheroa from the North 

Island and establishing the southern population, resulting in a reduced gene pool 

originating from a few transplanted individuals (Ross et al., 2014).  Another 
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hypothesis resulting from the preliminary DNA analysis is that the remaining genetic 

variant found from the southern population is the only variant that was able to adapt 

to the colder temperatures of Southland. Unfortunately, this was determined using 

only five tissue samples from the South Island, and compared to dozens from the 

North Island.  The researchers are hoping to conduct a more in depth genetic analysis 

of the remaining populations in the near future (Ross et al., 2014) 

Another observed difference between the populations is the ease of spawning.  

Paphies ventricosa from the northern population appear to spawn more readily than 

the southern population.  Northern toheroa were able to be induced to spawn using 

thermal shock and introduction of dilute sperm solution from stripped males 

(Redfearn, 1982), a single injection of serotonin (Smith, 2003), and by shaking 

transport buckets (2013, pers. comm.).  Mandeno (1999) was only able to induce 

spawning via thermal shock after 2 h of treatment protocol.  During spawning pilot 

studies, transport from Oreti Beach to PML, shaking of the spawning trays, a single 

injection of serotonin, dilute sperm solution, UV sterilisation, and thermal shock all 

failed to induce spawning in southern individuals (pers. observ.), hence the 

development of the spawning protocol described in Chapter 3 (Gadomski et al., 

2015).  This difference in ease of spawning could be due to the fact that northern 

toheroa have been found to have a prolonged spawning period, and spawned 

individuals are found in the population nearly year round (Redfearn, 1974).  A 

simultaneous spawning experiment after prolonged simultaneous conditioning of 

broodstock under the same conditions using both southern and northern P. ventricosa 

would be useful in further understanding differences in spawning. 

Another critical factor affecting the success of laboratory spawning is the condition 

of the broodstock.  Improperly or not conditioned broodstock are unlikely to spawn 
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successfully, if at all.  Mandeno (1999) induced spawning immediately after 

collection from Oreti Beach and transport to PML, so the broodstock would have 

been wild conditioned.  Smith (2003) made note of keeping wild caught animals in 

the lab in flowing seawater until needed, but not the amount of time they were kept 

or if they were fed during that time. Redfearn (1982) also kept animals in the lab in 

flowing seawater until needed, but again, made no mention of how long they were 

kept or if they were fed.   

Spawning was successful using broodstock conditioned using both cultured mixed 

algae and the formulated feed, All-G-Rich algae (see Chapters 4 & 5).  However, the 

high in docosahexaenoic acid (DHA) formulated feed was more successful at 

broodstock conditioning, and less labour intensive.  The amount of 10 l cultured 

algae adult
-1 

day
-1

 needed to properly condition the broodstock (2013, pers. comm.) 

was not possible to produce at PML.  It was possible to produce enough cultured 

algae to prevent the broodstock from reabsorbing their gonad tissue, but not enough 

to maintain healthy condition and fully ripen the gonad.  With the formulated feed, 

additional serotonin induced spawnings were successful on animals collected in 

October 2013 and maintained continuously on All-G-Rich - through to February 

2014 (pers. observ.).  For future lab rearing of toheroa, or other bivalve species, 

when large-scale cultured algae production is not feasible, a formulated feed high in 

DHA, like All-G-Rich, is highly recommended for broodstock conditioning and 

laboratory maintenance. 

It is interesting that since commercial harvest and open days have stopped, and 

harvest is tightly controlled through the implementation of customary permits, the 

populations of Paphies ventricosa have not recovered to historic levels.  So what has 

changed? Vehicles still travel across many of the beaches en masse like they did in 
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the past.  While it is not known how many vehicles have travelled onto the beach in 

the past, automated traffic counters placed at the Oreti Beach Main Entrance from 

2010 to 2012 detected an average of 256 vehicles entering the beach per day (Moller 

et al., 2014).  Moller et al. (2014) found that vehicle traffic, which is mostly higher 

up the beach, was most detrimental to juvenile toheroa, which are found higher up 

the beach than adults.  Cars were found to contribute 15% (12 month cumulative) to 

natural juvenile mortality rates, ute type vehicles and 4WDs adding 12%, and 

motorbikes adding 1% (Moller et al., 2014).  Vehicular juvenile mortality was up to 

72% annually within 2 km north and south of the Main Entrance (Moller et al., 

2014), though few adults are found in this area (Beentjes et al., 2009; Berkenbusch et 

al., 2015). 

As a local conservation strategy, a complete ban of driving on Oreti Beach has been 

suggested, but has not been well received and would bring about considerable public 

backlash given the culture surrounding beach usage (Various, pers. comm.), and is in 

fact classified as a road on maps.  At Northland beaches, driving is also still allowed 

on toheroa beaches.  In the past, seasonal closures were enforced, with up to 10 

months closed out of the year (Redfearn, 1974), and some iwi currently have a 

complete ban on  issuing permits within their jurisdiction in Northland (Various, 

pers. comm.).  Seasonal permitting is a conservation strategy that could be locally 

implemented as a conservation strategy.  With knowledge regarding the spatial 

variations in the reproduction cycle of toheroa at Oreti Beach, implementing a 

strategy in which permits are area specific at Oreti Beach and issued only during the 

winter months when mature animals are least likely to spawn.  Another conservation 

strategy is to implement a maximum legal size in addition to the minimum legal size 
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(100 mm) already in place.  This ensures that more sexually reproductive animals are 

left to contribute to the population.   

It has been suggested that the damming of rivers, like the Waiau River which feeds 

Te Waewae Bay, Southland, cutting off sediment supply and depleting sand from the 

beaches, which toheroa need to survive (Various, pers. comm.), has contributed to 

population decline.  While this could have an effect on some populations like Blue 

Cliffs (Beentjes et al., 2006), many of the toheroa beaches have not been reported to 

have suffered from long term beach depletion. 

An important factor of recruitment that has not yet been examined is larval transport.  

It is a critical first step in understanding overall larval recruitment to identify how 

recruitment is affected by temperature and food, but it is also very important to 

understand where the larvae resulting from broadcast spawning of an adult 

population into the surf end up as metamorphosed juveniles.   

The force driving larval transport, and thus juvenile recruitment, is hydrodynamics – 

a combination of physical factors such as current, wind, and bathymetry.  Since 

populations have crashed, or disappeared, it is highly plausible that the larval supply 

to some beaches’ populations have been cut off or reduced.  At present time, there 

has yet to be an examination of the specific hydrodynamics relevant to any toheroa 

population.  There has also been talk of transplanting hundreds, if not thousands, of 

adult P. ventricosa from one beach to another in hopes that a population will recover 

or be established. An important management/conservation strategy is to protect the 

larval supply.   Without knowing where the larvae produced by any beach will end 

up, management strategies and transplantations are likely to be futile.  Thus 

hydrodynamic modelling of larval transport is the next logical step in determining 
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overall recruitment dynamics.  Particle transport modelling can incorporate 

environmental factors such as local currents, wind, bathymetry, and even 

temperature, chl-a concentrations, larval size and growth rates to identify larval 

sources and sinks.   

For the Southland populations, modelling could be very advantageous, as these 

toheroa live in a very dynamic environment.  With the strong Southland Current that 

flows east through the Foveaux Strait and north along the east coast, it is likely that a 

number of larvae get swept up in the current and fail to recruit to a suitable habitat.  

Identifying the unique hydrodynamics of this area would be very advantageous to 

understanding local recruitment. Predictor models can take environmental data from 

past storm events, and recreate a particular event to estimate where larvae present in 

the water column at that point in time, giving a prediction of the effect on 

recruitment on Oreti Beach. 

With the potential for large scale spat production, knowing broodstock source and 

juvenile sink locations would be useful from a conservation stand point, allowing for 

better protection of important contributing populations and the habitat of settling 

juveniles.  Cultured spat could be introduced to areas where wild spat are known to 

wash ashore to help enhance a population.  Additionally, a larval transport predictor 

model would be useful in predicting the success of adult transplantation sites before 

the physical efforts are made.  From understanding recruitment and from a 

management and conservation standpoint, a hydrodynamic larval transport model 

should be the crucial next step undertaken in expanding the still limited Paphies 

ventricosa knowledge base. 
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Additional research should also be undertaken to improve the existing knowledge 

base, such as additional replication experiments that are adjusted to accommodate 

findings from the current study.  Given the still limited knowledge regarding the life 

history of Paphies ventricosa, refined replication studies would be very beneficial.  

For example, mortality/survival rates were not actively measured in the experiments 

conducted in the present study, but provide valuable information regarding ideal 

development conditions.  Repeating the studies conducted here and measuring 

mortality/survival rates could give greater insight into thermal windows of 

development and general development success.  Designing experimental set ups that 

maximise sterility would be beneficial.  While care was taken to maintain sterility in 

algal cultures for feeding larvae and the larval rearing containers, toheroa larvae 

seem to be very sensitive to bacterial and ciliate infection, and would benefit from 

larval experiments conducted in flow through systems.  Also, finding the absolute 

upper and lower limits of fertilisation and development in toheroa would be 

beneficial in gaining greater understanding of the potential effects of ocean warming. 
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ALLTECH SP1 
Typical Nutrient Analysis 

 

Nutritional Profile 
The following nutritional values represent the mean of several batches and though not constituting a part of the product guaranteed 
analysis, are consistent within normal limits (+/- 10%). 

 

 

Nutritional Profile (As received basis) 

Moisture, % 3.70  Fatty acid profile, continued  

Energy   Fatty Acid % of Fat Content 

  Acid hydrolysis fat, % 60    Mystric Acid 3.86% 

  Acid detergent fiber, % 14.0    Myristoleic Acid 0.20% 

Carbohydrates, Calculated, % 24.88    Pentadecanoic Acid <0.10% 

Protein, combustion, % 18.8    Palmitic Acid 54.69% 

Total ash, % 3.67    Palmitoleic Acid <0.10% 

Major Minerals     Margaric Acid 0.63% 

  Sodium, % 0.16    Margaroleic Acid <0.10% 

  Phosphorus, % 0.30    Stearic Aid 1.80% 

  Sulfur, % 0.74    Vaccenic Acid <0.10% 
  Potassium, % 0.30    Oleic Acid <0.10% 
  Calcium, % 0.45    Elaidic Acid <0.10% 
Trace minerals, ppm     Linoleic Acid <0.10% 
  Iron 13    Linolelaidic Acid <0.10% 
  Copper 1.0    Alpha-Linolenic Acid <0.10% 
  Zinc 36    Gamma-Linolenic Acid <0.10% 
  Selenium 0.13    Nonadecanoic Acid <0.10% 
     Arachidic Acid 0.28% 

Glyceride Profile, %     Eicosenoic Acid <0.10% 
  Diglycerides 4.69    Eicosadienoic Acid <0.10% 
  Glycerol < 1.0    Eicosatrienoic Acid <0.10% 
  Monoglycerides 3.81    Homo-gamma-Linolenic Acid <0.10% 
  Triglycerides 85.80    Arachidonic Acid <0.10% 
     Eicosapentaenoic Acid 0.37% 

Fatty Acid Profile     Heneicosanoic Acid <0.10% 
Fatty acid % of Fat content    Behenic Acid <0.10% 
  Caproic Acid <0.10%    Erucic Acid 0.53% 

  Heptanoic Acid <0.10%    Docosadienoic Acid 0.43% 

  Caprylic Acid <0.10%    Docosapentaenoic Acid <0.10% 

  Nonanoic Acid <0.10%    Docosahexaenoic Acid 27.20% 

  Capric Acid <0.10%    Tricosanoic Acid <0.10% 
  Undecanoic Acid <0.10%    Lignoceric Acid <0.10% 
  Lauric Acid <0.10%    Nervonic Acid <0.10% 
  Tridecanoic Acid <0.10%    Unknown 0.71% 
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3031 Catnip Hill Pike     Nicholasville, KY 40356   (859) 885-9613   Fax: (859) 885-6736 
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Appendix II.I. For 3-d post fertilisation, means tables for the two-way interaction between feed 

concentration and temperature, showing mean (Mean), standard error (SE), degrees of freedom (Df), 

lower 95% confidence limit (Lower CL), upper 95% confidence limit (Upper CL), and post hoc pairwise 

comparison relationship (Group) of each temperature treatment within each feed concentration. 

 

 Temperature Mean SE Df 

Lower  

CL 

Upper  

CL Group 

1
,0

0
0
 c

e
ll

s 
m

l-1
 12 ºC 99.7288 1.0063 667 97.7528 101.7047 a 

16 ºC 98.0023 0.9859 667 96.0665 99.9362 a 

20 ºC 100.6415 1.5804 667 97.5383 103.7447 a 

 

 Temperature Mean SE Df 

Lower   

CL 

Upper  

CL Group 

1
0

,0
0
0

 c
e
ll

s 
m

l-1
 12 ºC 102.1973 1.0063 667 100.2214 104.1733 a 

16 ºC 99.3998 0.4142 667 98.5866 100.2130 b 

20 ºC 92.8512 0.7450 667 91.3884 94.3141 b 

 

 Temperature Mean SE Df 

Lower   

CL 

Upper  

CL Group 

2
0

,0
0
0

 c
e
ll

s 
m

l-1
 12 ºC 105.0601 1.0674 667 102.9643 107.1560 a 

16 ºC 98.8403 0.4225 667 98.01067 99.6699 b 

20 ºC 92.8197 1.2904 667 90.2859 95.35334 c 
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Appendix II.II. For 6-d post fertilisation, means tables for the two-way interaction between feed 

concentration and temperature, showing mean (Mean), standard error (SE), degrees of freedom (Df), 

lower 95% confidence limit (Lower CL), upper 95% confidence limit (Upper CL), and post hoc pairwise 

comparison relationship (Group) of each temperature treatment within each feed concentration. 

 

 Temperature Mean SE Df 

Lower   

CL 

Upper  

CL Group 

1
,0

0
0
 c

e
ll

s 
m

l-1
 12 ºC 113.1803 2.5781 667 108.1182 118.2423 a 

16 ºC 114.1993 1.7728 667 110.7184 117.6802 a 

20 ºC 99.5390 2.0789 667 95.4570 103.6210 b 

 

 Temperature Mean SE Df 

Lower   

CL 

Upper  

CL Group 

1
0

,0
0
0

 c
e
ll

s 
m

l-1
 12 ºC 128.1557 1.2013 667 125.7694 130.5420 a 

16 ºC 113.3581 1.8166 667 109.7912 116.9249 b 

20 ºC 97.3178 1.8004 667 93.7826 100.8529 c 

 

 Temperature Mean SE Df 

Lower   

CL 

Upper  

CL Group 

2
0

,0
0
0

 c
e
ll

s 
m

l-1
 12 ºC 126.8096 0.8843 667 125.0734 128.5459 a 

16 ºC 113.8699 2.8722 667 108.2302 119.5096 b 

20 ºC 94.7970 3.6008 667 87.7268 101.8672 c 

 

 

 

Appendix II.III. For 17-d post fertilisation, means tables for the two-way interaction between feed 

concentration and temperature, showing mean (Mean), standard error (SE), degrees of freedom (Df), 
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lower 95% confidence limit (Lower CL), upper 95% confidence limit (Upper CL), and post hoc pairwise 

comparison relationship (Group) of each temperature treatment within each feed concentration. 

 

 Temperature Mean SE Df 

Lower   

CL 

Upper  

CL Group 

1
,0

0
0
 c

e
ll

s 
m

l-1
 12 ºC 121.6342 3.6733 667 114.4216 128.8468 a 

16 ºC 109.7559 0.9959 667 109.8003 111.7114 b 

20 ºC 126.9083 2.0545 667 122.8743 130.9424 a 

 

 Temperature Mean SE Df 

Lower   

CL 

Upper  

CL Group 

1
0

,0
0
0

 c
e
ll

s 
m

l-1
 12 ºC 153.9903 3.6293 667 146.8641 161.1165 a 

16 ºC 141.7596 1.6191 667 138.5804 144.9387 b 

20 ºC 112.0057 3.8436 667 104.4586 119.5527 c 

 

 Temperature Mean SE Df 

Lower   

CL 

Upper  

CL Group 

2
0

,0
0
0
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e
ll

s 
m

l-1
 12 ºC 167.2472 3.8668 667 159.6547 174.8397 a 

16 ºC 128.4550 1.2366 667 126.0269 130.8831 b 

20 ºC 109.7885 4.7074 667 100.5453 119.0317 c 
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